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Figure 5.5: Enhancement of noisy Administration Building image with Model 1. Left
Column - Noisy images, Right Column - Enhanced images corresponding to the images to
the left. First Row - Complete image, Second Row - R channel, Third Row - G channel,
Fourth Row - B channel.
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Figure 5.6: Enhancement of noisy Administration Building image with Model 2. Left
Column - Noisy images, Right Column - Enhanced images corresponding to the images to
the left. First Row - Complete image, Second Row - R channel, Third Row - G channel,
Fourth Row - B channel.
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Trial PSNR (noisy) PSNR (enhanced) PSNR increase
1 41.3559 42.5790 1.2231
2 41.3381 42.5283 1.1902

Channel 1 3 41.4198 42.2817 0.8619
4 41.4715 42.4275 0.9560
5 41.4261 42.2383 0.8122
1 41.2355 43.0414 1.8059
2 41.2387 43.0139 1.7752

Channel 2 3 41.2602 42.9655 1.7053
4 41.1410 42.9904 1.8494
5 41.2254 42.8645 1.6391
1 36.506 36.5452 0.0392
2 36.4252 36.4819 0.0567

Channel 3 3 36.4707 36.5212 0.0505
4 36.45241 36.5245 0.0721
5 36.5284 36.6021 0.0737

Table 5.4: PSNR values for noisy images, PSNR values for enhanced images, and PSNR
increases for five trials of denoising Administration Building image with Model 2.

the G and B channels, the R channel is disregarded. As before, 50 time steps are taken

in each model. The parameters with the best results for Model 1 are k = 0.0001, ε = 0.1,

and dt = 1×10−7. PSNR usage for the enhancement of noisy images is adapted for blurry

images. The results are in Figure 5.8 and Table 5.5.

Figure 5.7: Clean, complete cyan flower image.

In order for Model 2 to sharpen, it needs to include how the image was blurred [14].
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Figure 5.8: Enhancement of blurry cyan flower image with Model 1. Top Row - Blurry
images, Bottom Row - Enhanced images corresponding to the above images. First Column
- Complete image, Second Column - G channel, Third Column - B channel.

Channel PSNR (blurry) PSNR (enhanced) PSNR increase
2 29.1259 33.1206 3.9947
3 29.2879 33.7377 4.4498

Table 5.5: PSNR values for blurry images, PSNR values for enhanced images, and PSNR
increases for sharpening cyan flower image with Model 1.

Therefore, an extra term is added to (3.5) to get

∂ui

∂ t
= ∇ ·

[(
1

1+ k2|∇ui|2
+δ |∇ui|p−2

)
∇ui

]
+λK′(ũi,0−Kui), i = R,G,B, (5.2)

where λ is a scaling parameter, K is a blurring operator chosen to be a Gaussian kernel, and

K′ is the adjoint operator. Since Gaussian functions are radially symmetric, K′ = K. The

equation

∂ui

∂ t
= ∇ ·

[(
1

1+ k2|∇ui|2
+δ |∇ui|p−2

)
∇ui

]
+λK′ ∗ (ũi,0−K ∗ui) i = R,G,B (5.3)
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is computed numerically with the blurred image ũi,0 as the input. Model 2 works best with

the parameters k = 0.001, p = 1.03, δ = 1× 10−5 (with no need to change it over time),

n1 = 40 time steps, and λ = 3×106. The results are shown in Figure 5.9 and Table 5.6.

Figure 5.9: Enhancement of blurry cyan flower image with Model 2. Top Row - Blurry
images, Bottom Row - Enhanced images corresponding to the above images. First Column
- Complete image, Second Column - G channel, Third Column - B channel.

Channel PSNR (blurry) PSNR (enhanced) PSNR increase
2 29.1259 33.1190 3.9931
3 29.2879 33.7352 4.4473

Table 5.6: PSNR values for blurry images, PSNR values for enhanced images, and PSNR
increases for sharpening cyan flower image with Model 2.

The experiments show that both models effectively sharpen the blurry cyan flower image.

Furthermore, all of the denoising and sharpening experiments confirm that separating the

RGB channels leads to successful image enhancement.
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Chapter 6

Conclusion

The two nonlinear diffusion image processing models designed in this project successfully

enhanced color images, when treating their red, green, and blue (RGB) channels separately.

This was possible because Krylov subspace spectral (KSS) methods were adapted to nonlin-

ear diffusion to deal with high resolution and nonlinear partial differential equations (PDEs).

By combining them with exponential propagation iterative (EPI) methods, a numerical

method was developed to efficiently solve our models. Numerical experiments resulted in

effective denoising and sharpening, demonstrating the usefulness of the proposed approach

for image processing.

KSS and EPI methods were successfully used for the first time to solve nonlinear PDEs

to high order accuracy, without having to use standard Krylov projection, unlike in [8]. This

bodes well for using the methods to work with other nonlinear PDEs. Moreover, even higher

order versions of the methods could be used for this project’s PDEs to improve efficiency.

Other improvements that could be made in the models include adaptive time stepping and

automatic parameter selection. It may also be attempted to find faster ways to compute the

frequency-dependent Gaussian quadrature nodes.

This project can be expanded by testing the models with different types of noise and blur

in images. Executing more time steps could also be investigated to produce better results.

Furthermore, the models could be compared to other existing models to see how well they

perform and how efficient they are. Implementation in C++ would allow comparison to other

models that use C++. These expansions would provide more insight into the performance of

our models.
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