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ABSTRACT 

A COMPARISON OF MULTIPATH AND CONVENTIONAL 

NEUROMUSCULAR ELECTRICAL STIMULATION 

by Cody Brian Bremner 

December 2016 

Neuromuscular electrical stimulation (NMES) is the use of an electrical current 

for the purpose of eliciting a muscular response, and these treatments are most often used 

clinically for the specific purpose of increasing quadriceps strength.  It is commonly 

accepted that the effectiveness of NMES for this purpose is primarily determined by the 

NMES training intensity.  However, spatially limited motor unit recruitment, fatigue and 

discomfort negatively impact NMES-induced torque, which subsequently reduces NMES 

training intensities.  Due to the importance of NMES training intensity, a substantial 

amount of research has focused on strategies designed to increase NMES-induced torque 

production, as well as to reduce NMES-induced fatigue and discomfort.  However, 

authors have indicated that additional strategies are needed, as many of the strategies 

supported by empirical evidence cannot be easily applied in clinical settings.   

The Kneehab® XP (Theragen LLC, Leesburg, VA) is an electrical stimulator that 

incorporates a novel multipath current distribution strategy (m-NMES) marketed to 

address the primary factors limiting NMES training intensity, and as such it has gained a 

significant amount of attention in the literature.  Relative to conventional NMES (c-

NMES), authors have reported improved outcomes while using the novel m-NMES but 

due to a series of methodological limitations the influence of the multipath current 

distribution strategy on these outcomes remains unclear. Therefore, the purpose of this 
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project was to further investigate the influence that m-NMES has on NMES related 

outcomes. 

A convenience sample of 21 participants completed two basic studies designed to 

compare the influence of m-NMES and c-NMES on maximum comfortable stimulus 

intensity and NMES-induced peak torque, as well as fatigue and discomfort related 

outcomes.  The statistical analyses of each study did not reveal any significant differences 

across the two conditions deemed to be clinically relevant.  Therefore, it does not appear 

that the novel multipath current distribution method influences the outcomes included 

during this project in a clinically meaningful manner.  The large declines in NMES-

induced torque that occurred, irrespective of the NMES condition, suggest the need for 

the development of additional strategies. 
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CHAPTER I – INTRODUCTION 

Statement of the Problem 

Neuromuscular electrical stimulation (NMES) is the use of an electrical current 

for the specific purpose of eliciting a muscular contraction by stimulating peripheral 

motor nerves via electrodes fixed to the skin,1-3 and it has been used as a therapeutic 

modality for many years.  During the 1970’s NMES gained popularity as a strengthening 

modality, but it was originally used in combination with ultrasound treatments for the 

purpose of allowing patients to experience a sensation and giving the impression that they 

were getting something from the treatment.3  Today NMES treatments are common in 

orthopedic clinical settings as they can be used for muscle reeducation, preventing disuse 

atrophy, decreasing edema, decreasing muscle spasms, increasing range of motion and 

even as a strengthening adjunct for healthy individuals.1,3-5  Despite this versatility, 

NMES is most often used for the specific purpose of enhancing quadriceps strength.6 

Several studies have demonstrated that NMES treatments may lead to increased 

quadriceps strength in healthy7,8 and injured9-11 populations.  Despite these positive 

results, higher levels of evidence (e.g., systematic reviews, meta-analyses12) have 

suggested that NMES treatments should not serve as a replacement for volitional 

strengthening; rather NMES is to be incorporated as an adjunct to traditional 

strengthening exercises.5,6  Interestingly, based on their review of the literature Paillard13 

concluded that training programs that incorporate NMES and voluntary strengthening 

exercises, without performing them concurrently (e.g., superimposed contractions), 

resulted in greater muscular adaptations in healthy and injured populations than programs 

using either NMES or voluntary strengthening alone.  Some authors have suggested that 
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NMES is a promising adjunct for clinicians attempting to enhance the quadriceps strength 

of healthy and injured individuals due to its different motor unit recruitment, which may 

alter the specific stresses placed on the muscle.5,14  NMES-induced contractions may also 

elicit a greater cardiorespiratory demand than voluntary contractions of similar 

intensities.15  Furthermore, NMES treatments may also serve as an alternative 

strengthening technique to break up the monotony of traditional strength training 

exercises. 

NMES training intensity, which is most often defined as the ratio of NMES-

induced torque to torque produced during a maximum voluntary isometric contraction 

(expressed as % MVIC),5 is thought to be the primary determinant of the effectiveness of 

NMES treatments.16,17  This belief is based on the established dose-response relationship, 

which indicates that NMES training intensity is positively related to strength gains.7-10,18-

20  Consequently, clinicians should maximize NMES training intensity to the extent 

possible,17 but due to a series of limitations it is difficult to achieve and maintain a 

sufficient NMES training intensity. 

Based on their review of the literature, Maffiuletti et al.17,21 identified the primary 

limitations of NMES as: muscle fatigue leading to a premature decline in NMES-induced 

torque, spatially limited motor unit recruitment which constrains the amount of NMES-

induced torque that can be achieved, and patient discomfort associated with the electrical 

stimulus and subsequent involuntary contraction.  In agreement, others have also 

identified muscle fatigue,22,23 spatially limited motor unit recruitment24 and patient 

discomfort5,23-27 as primary limitations of NMES.  Although these factors differ from one 

another, each limits the NMES training intensity by restricting torque output during 
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NMES-induced contractions.  Thus in an effort to increase NMES-induced torque, which 

subsequently enhances NMES training intensity, it is recommended that clinicians 

implement strategies with the potential to minimize fatigue and discomfort and maximize 

spatial recruitment.23,24 

Strategies with the potential to minimize NMES-induced fatigue28-35 and patient 

discomfort36-41 associated with NMES treatments, as well as maximizing NMES-induced 

torque,26,34,39,40,42-45 have been examined extensively.  These strategies include but are not 

limited to: decreasing or increasing frequency, pulse duration or intensity of the electrical 

stimulus prior to beginning the treatment26,31-33,46-55; systematically altering the frequency, 

pulse duration or intensity over the course of the treatment44,52,56-58; using greater rest 

intervals between contractions59-62; use of variable frequency trains28,30,55,63-67; increasing 

electrode size68-72; altering electrode placement and/or orientation39,41,69,70,73-75; using 

different current waveforms23,37,38,40,76; implementing blunting strategies77-81; and altering 

joint position.36,42,71,82,83  Unfortunately, some of these techniques supported by empirical 

evidence cannot be easily incorporated or are inaccessible within clinical settings,24 and 

despite the extensive research in this area researchers have indicated that additional 

strategies are needed.22 

The Kneehab® XP (Theragen LLC, Leesburg, VA) is a relatively new electrical 

stimulator approved by the United States Food and Drug Administration for marketing as 

a modality for muscle strengthening.84 This device has been marketed to include a novel 

strategy with the potential to enhance NMES treatment efficacy, and as such it has gained 

a significant amount of attention in the literature.21,27,84-90 Conventional NMES (c-NMES) 

devices transmit an electrical current from one electrode to another via a single fixed 
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path; but by using newly developed multipathTM technology, this novel device transmits 

an electrical current with altered pulse durations between four large electrodes integrated 

within a neoprene thigh garment via two separate channels.21,27,84,88,91  Consequently, this 

device provides multipath current distribution, and thus it is referred to as multipath 

NMES (m-NMES).21,27  According to the manufacturer, this m-NMES stimulator has the 

potential to enhance motor unit recruitment via improved patient comfort and spatial 

distribution of the stimulus leading to stronger NMES-induced contractions, while also 

minimizing muscle fatigue.84,88,92 

By addressing the primary limiting factors of NMES training intensity, the novel 

m-NMES device has the potential to positively impact the efficacy of NMES as an 

adjunct for strengthening the quadriceps of healthy and injured individuals.  Evidence-

based practice requires that clinicians incorporate current best evidence addressing the 

efficacy of therapeutic interventions, along with their clinical expertise, when making 

clinical decisions.93  Therefore, scientific examination of commercially available 

modalities, such as the novel m-NMES device, is needed to provide evidence that can be 

used by clinicians when making decisions with respect to therapeutic interventions (e.g., 

which NMES device to purchase or use as a strengthening adjunct). 

Recent training studies incorporating the novel m-NMES device have 

demonstrated improved patient outcomes.86-90 However, only one87 of these training 

studies compared strength gains across patient groups receiving either c-NMES or m-

NMES; thus creating an appropriate counterfactual framework by which the effectiveness 

of m-NMES could be compared to c-NMES (e.g., what would have happened if patients 

received c-NMES rather than m-NMES).94  Relative to a group of patients receiving c-
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NMES treatments and to a control group that did not receive any NMES, Feil et al.87 

observed greater quadriceps strength six weeks after an ACL repair within a group of 

patients receiving m-NMES treatments.  Although these results appear to indicate that m-

NMES is more effective than c-NMES, they should be interpreted with caution.  The 

on:off ratio for the c-NMES condition was 10:20 during this study, whereas the m-NMES 

was 5:10.  This difference ultimately resulted in an undesired systematic difference that 

may have confounded the results, since the different on:off ratios resulted in the m-

NMES group performing approximately twice the number of repetitions as the c-NMES 

group over the course of each 20 minute treatment session.  It is important to note that the 

duty cycle for both NMES groups was 1:2, which should have resulted in a similar total 

“on” time over the course of the 20 minute treatment.87  To the best of our knowledge 

there are no published studies examining the impact of implementing the same amount of 

“on” time, while allowing the total number of contractions to differ between groups.  

Therefore, it is unclear whether the results observed by Feil et al.87 are attributable solely 

to the use of m-NMES rather than c-NMES, because the extent to which the different 

on:off ratios may have confounded the results is unknown. 

Feil et al.87 also reported that the mechanisms by which m-NMES outperformed 

c-NMES during their study were unclear.  Consequently, Maffiuletti et al.21 and Morf et 

al.27 completed two basic studies to determine if the results were attributable to the 

hypothesized benefits of the m-NMES device.  While each study used a similar 

methodological approach, variations in the patient populations and results were observed.  

Maffiuletti et al.21 used 10 healthy subjects, and did not observe significant differences 

with respect to fatigue related outcomes; which included the change between pre- and 
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post-test MVIC and doublet twitch torque, as well as the decline in NMES-induced 

torque across repetitions.  In contrast Morf et al.27 used 20 total knee arthroplasty (TKA) 

patients 6-12 months post-op, and reported significantly less fatigue under the m-NMES 

condition.  However, the difference was only with respect to the change in pre- and post-

test MVIC torque, whereas there was no difference when comparing the decline of 

NMES-induced torque across repetitions.  Both studies reported significantly greater 

NMES-induced torque under the m-NMES condition while using a maximum tolerable 

intensity, and significantly greater patient comfort was observed under the m-NMES 

condition while using a variety of intensities (e.g., maximum tolerable, or 5% MVIC, 

10% MVIC, 15% MVIC, 20% MVIC).21,27 

Since the results of the fatigue related outcomes were non-significant, or 

inconsistent across these studies,21,27 the proposed benefit of minimizing NMES-induced 

fatigue while using the m-NMES device does not appear to be supported by the current 

literature.  The lack of support may be due to methodological limitations of the previous 

studies.  For example, Morf et al.27 identified the short treatment duration (20 

contractions over a 5 minute period) and low training intensity (20% MVIC), as well as 

the performance of additional experimental trials prior to the fatiguing protocol, as 

possible limitations leading to their non-significant results.  It is important to note that m-

NMES appeared to outperform c-NMES with respect to patient comfort and NMES-

induced torque during each of these basic studies.  However, both sets of authors 

indicated that differences in the electrode configuration of the two NMES techniques may 

have contributed to the observed significant differences, and can be considered a 

limitation.21,27 
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Based on the previously discussed results and limitations of the two basic 

studies,21,27 the mechanisms by which m-NMES outperformed c-NMES during the Feil et 

al.87 study remain unclear.  There are also parameters and outcomes associated with the 

m-NMES device yet to be investigated in the literature that warrant consideration.  For 

example, studies21,27,87 comparing m-NMES to c-NMES have predominantly 

implemented a 5:10 ratio, which is only one of seven options available on the m-NMES 

device.  This is a potential limitation, since the other available ratios may have greater 

clinical relevance.  For example, a 10:50 ratio has been previously recommended.95  A 

meta-analysis6 addressing the topic of NMES efficacy for quadriceps strengthening 

revealed that a 10:50 ratio was used most often by the included randomized controlled 

trials, and other authors have reported a similar observation.86  In addition, one of the 

aforementioned clinical studies86 using the m-NMES device utilized the 10:50 ratio 

option, and a 10:50 ratio is regularly implemented within clinical settings.  Therefore, a 

comparison of m-NMES and c-NMES using a 10:50 ratio is warranted. 

Due to the previously discussed methodological limitations of available studies 

comparing m-NMES and c-NMES,21,27,87 and in order to advance the evidence-based 

decision-making process with respect to NMES treatments, further investigation of the 

novel m-NMES device is warranted.  Therefore, the purpose of this project was to 

compare the effects of m-NMES and c-NMES on fatigue related outcomes and self-

reported discomfort levels. 

In order to appropriately examine NMES-induced fatigue, the initial contraction 

intensity should be standardized across conditions; as any systematic differences could 

significantly impact fatigue related outcomes and bias the results. Although this approach 
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is scientifically sound, it is also a limiting factor because a maximum comfortable 

stimulus intensity, which varies across individuals, should be utilized within clinical 

settings.  In addition, standardizing the initial contraction intensity limits the clinical 

applicability of the results, as it does not allow for inferences regarding which NMES 

method allows for greater training intensities.  Therefore, this project consisted of four 

test sessions that were subdivided into two manuscripts (Chapter IV, Chapter V) 

addressing similar sets of research questions and using a different methodological 

approach to standardize the stimulus intensity.  Data collected during the first two test 

sessions were reported in Manuscript 1 (Chapter IV), whereas data collected during the 

last two test sessions were reported in Manuscript 2 (Chapter V). 

Manuscript 1 Research Questions and Hypotheses 

Manuscript 1 Research Questions 

RQ1 – While implementing a 10:50 on:off ratio and an initial training intensity of 

30% MVIC, does the percent decline in MVIC torque differ between the c-NMES 

and m-NMES conditions?  

RQ2 – While implementing a 10:50 on:off ratio and an initial training intensity of 

30% MVIC, does the percent decline in NMES-induced torque differ between the 

c-NMES and m-NMES conditions and over time?  In addition, does the rate of 

change over time differ based upon NMES condition? 

RQ3 – While implementing a 10:50 on:off ratio and an initial training intensity of 

30% MVIC, does the percent decline in torque-time integral (TTI) differ between 

c-NMES and m-NMES conditions and over time?  In addition, does the rate of 

change over time differ based upon NMES condition? 
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RQ4 – While implementing a 10:50 on:off ratio and an initial training intensity of 

30% MVIC, does the total torque-time integral (T-TTI) differ between the c-

NMES and m-NMES conditions? 

RQ5 – While implementing a 10:50 on:off ratio and a training intensity of 30% 

MVIC, does self-reported discomfort (mm) differ between the c-NMES and m-

NMES conditions and over time? In addition, does the rate of change over time 

differ based upon NMES condition? 

Manuscript 1 Research Hypotheses 

H1 – The percent decline in MVIC torque would be significantly greater after the 

c-NMES condition. 

H2 – The percent decline in NMES-induced torque would be significantly greater 

during the c-NMES condition and the percent decline in NMES-induced torque 

would be significantly greater over time.  In addition, the rate of change would 

differ based upon NMES condition. 

H3 – The percent decline in TTI would be significantly greater during the c-

NMES condition and the percent decline in TTI would be significantly greater 

over time. In addition, the rate of change would differ based upon NMES 

condition. 

H4 – The T-TTI would be significantly greater during the m-NMES condition. 

H5 – The self-reported discomfort levels would be significantly greater during the 

c-NMES condition and would significantly decrease over time. In addition, the 

rate of change would differ based upon NMES condition. 
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Manuscript 2 Research Questions and Hypotheses 

Manuscript 2 Research Questions 

RQ1 – Does the maximum comfortable stimulus intensity (mA) differ between the 

c-NMES and m-NMES conditions? 

RQ2 – While using a maximum comfortable stimulus intensity, does the initial 

normalized NMES-induced torque (Nm/kg) significantly differ between the c-

NMES and m-NMES conditions? 

RQ3 – While implementing a 10:50 on:off ratio and a maximum comfortable 

stimulus intensity, does the percent decline in MVIC torque differ between the c-

NMES and m-NMES? 

RQ4 – While implementing a 10:50 on:off ratio and a maximum comfortable 

stimulus intensity, does the percent decline in NMES-induced torque differ 

between the c-NMES and m-NMES conditions and over time? In addition, does 

the rate of change over time differ based upon NMES condition? 

RQ5 – While implementing a 10:50 on:off ratio and a maximum comfortable 

stimulus intensity, does the percent decline in TTI differ between c-NMES and m-

NMES conditions and over time? In addition, does the rate of change over time 

differ based upon NMES condition? 

RQ6 – While implementing a 10:50 on:off ratio and a maximum comfortable 

stimulus intensity, does the T-TTI differ between the c-NMES and m-NMES 

conditions? 

RQ7 – While implementing a 10:50 on:off ratio and a maximum comfortable 

stimulus intensity, does self-reported discomfort differ between the c-NMES and 
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m-NMES conditions and over time? In addition, does the rate of change over time 

differ based upon NMES condition? 

Manuscript 2 Research Hypotheses 

H1– The maximum comfortable stimulus intensity would be significantly greater 

during the m-NMES condition. 

H2– The initial normalized NMES-induced torque would be significantly greater 

during the m-NMES condition. 

H3 – The percent decline in MVIC torque would be significantly greater after the 

c-NMES condition. 

H4 – The percent decline in NMES-induced torque would be significantly greater 

during the c-NMES condition and the percent decline in NMES-induced torque 

would be significantly greater over time. In addition, the rate of change would 

differ based upon NMES condition. 

H5 – The percent decline in TTI would be significantly greater during the c-

NMES condition and the percent decline in TTI would be significantly greater 

over time. In addition, the rate of change would differ based upon NMES 

condition. 

H6 – The T-TTI would be significantly greater during the m-NMES condition. 

H7 – The self-reported discomfort levels would be significantly greater during the 

c-NMES condition and would significantly decrease over time. In addition, the 

rate of change would differ based upon NMES condition. 
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Assumptions 

1.  Participants provided honest answers while completing the health and physical 

activity questionnaire. 

2.  The wash-out period between test sessions was sufficient and carry-over 

effects did not significantly impact the results.96 

3.  Participants provided maximum effort during MVICs, and recorded MVIC 

peak torque values represented true maximum values. 

4.  Participants completely relaxed during all NMES-induced contractions (e.g., 

participants did not voluntarily aid or inhibit NMES-induced torque production). 

5.  Participants provided honest answers while completing the visual analog scale 

(VAS), and self-reported discomfort levels reflected each participants’ true level 

of discomfort. 

6.  Self-selected maximum comfortable stimulus intensities reflected each 

participant’s true maximum comfortable stimulus intensity (e.g., the highest 

stimulus intensity that does not cause pain).77 

Delimitations 

1.  The project duration was restricted to six sessions. 

2.  Individuals attending The University of Southern Mississippi and/or residing 

within the Hattiesburg community; who were male, recreationally active, healthy, 

age 18-35; with a body mass index (BMI) of ≤30 kg/m2. 

3.  Individuals capable of tolerating a stimulus intensity resulting in a NMES 

training intensity of ≥30% MVIC by the end of two familiarization sessions. 
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4.  Individuals capable of producing three consecutive MVICs within 10% of one 

another during each test session. 

5.  Each test session consisted of 18 NMES-induced contractions and the 

following NMES parameters were used: 70 Hz frequency, 400 µsec pulse 

duration and a 10:50 on:off ratio. 

6.  NMES was only applied to the quadriceps of the dominant leg, and the ensuing 

review of the literature focuses primarily on the use of NMES as a strengthening 

modality specific to the quadriceps.  However, as previously mentioned this is the 

muscle group most often treated with NMES.6 

Limitations 

1.  Participants were exposed to NMES treatments during only six sessions, which 

likely does not allow for training effects, so corresponding outcomes were not 

included (e.g., strength gains).  Therefore, the results of this project do not 

provide direct evidence that m-NMES is, or is not, more effective than c-NMES 

with respect to rehabilitation and/or strength training in injured or healthy 

populations. 

2.  The generalizability of the results was limited by the small regional 

convenience sample of healthy males, that are recreationally active and 18-35 

years old.  

3.  Skin impedance may change daily,97 but no attempts were made to measure 

and subsequently standardize each participants’ skin impedance across days. 

However, it is important to note that the anterior thigh of the test leg was shaved 

and cleaned each day in an effort to reduce skin impedance.  Participants were 
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also be asked to arrive well hydrated each day, but no control over hydration 

status was attempted. 

4.  Participants were asked to refrain from strenuous activities for 12 hours prior 

to reporting each day, but continuous observation of participants to ensure 

compliance was not possible. 

5.  Fatigue related outcome measures included in this project are considered to be 

general assessments of fatigue, and as such the results did not allow for distinction 

between central and peripheral fatigue mechanisms.98 

6.  A direct measure of nerve accommodation, which partially contributes to 

NMES-induced torque declines,99,100 was not included in this project.  Therefore, 

the ability to differentiate between the contributions of muscular fatigue and nerve 

accommodation to declines observed in NMES-induced torque was limited. 

7.  NMES-induced torque production is attributable to central and peripheral 

pathways,101,102 however, measures capable of differentiating the contribution of 

each pathway to overall torque production were not included.  Therefore, the 

results were not sufficient to determine which NMES method (c-NMES, m-

NMES), if any, enhances central recruitment pathways. 

8.  The c-NMES electrodes did not replicate the size of the m-NMES electrodes 

exactly (427 cm2 vs. 360 cm2), which limited the ability to attribute the observed 

difference in maximum comfortable stimulus intensity across conditions to 

current distribution method (e.g., multipath or single path).  
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9.  Due to a lack of availability, it was not possible to blind the primary 

investigator tasked with measuring the outcomes to treatment condition.  Thus, an 

experimenter expectancy threat remained possible.94 

10.  Due to a lack of equipment, it was not possible for participants to complete 

each of the six sessions at the same time.  Therefore, a history threat remained 

possible.94 

Definitions 

The following are definitions of terms used in this project that may be less known 

to the reader, but that are not specifically defined elsewhere within the document. Thus, 

they have been provided to facilitate the reader’s comprehension. 

Asynchronous- The normal pattern of motor unit recruitment, by which the 

activation of motor units is temporally spaced.  The recruitment of a given motor unit is 

temporally spaced from the recruitment of a previously recruited motor unit but their 

forces are summed.103 

Doublet torque- The peak torque produced during a contraction occurring in 

response to a doublet electrical train, which consists of two electrical pulses separated by 

a brief inter-pulse interval (e.g., 100 ms).104  A change in the doublet torque following a 

fatiguing protocol is indicative of peripheral fatigue.105 

Galvanic skin resistance (GSR) - A method by which changes in skin resistance 

are monitored.  It is used to objectively assess pain levels as it is considered to measure 

the response of the sympathetic nervous system to a painful stimulus such as NMES.40 

Hoffman reflex (H-reflex)- An electromyography (EMG) technique that can be 

used to assess motor neuron excitability levels,106 thus it is considered to be a measure of 
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central fatigue.105 The H-reflex is an electrically induced twitch response observed in an 

EMG signal that is equivalent to the stretch reflex, as it occurs due to the depolarization 

of Ia afferent axons in response to an electrical stimulus. 107,108  These large axons (Ia 

afferent) are responsible for transmitting sensory information with respect to changes in 

muscle length from muscle spindles to the spinal cord.109 In an EMG signal, the H-reflex 

appears after an M-wave.107,108 

Low:High Frequency Ratio- The ratio of peak torques produced in response to an 

electrical testing train consisting of a low frequency relative to an electrical train 

consisting of a high frequency (e.g., 10 Hz:100 Hz, 20 Hz:60 Hz ).46,52,104  Low:High 

frequency ratios are used to assess low-frequency fatigue.46,52,104  Low frequency fatigue 

is characterized as a long lasting decrease in force production, with the decrease 

occurring at a greater rate when electrically inducing a contraction using a low-frequency 

stimuli rather than using a high-frequency stimuli.110,111  Low-frequency fatigue occurs as 

a result of a variety of activities, and low-frequency stimulation is not the only possible 

cause.111 

M-wave- An EMG technique used to assess a muscle response because a change 

in the M-wave amplitude is considered to indicate a change in the number of motor units 

activated.112  An M-wave occurs due to the direct stimulation and subsequent 

depolarization of efferent nerve fibers in response to a brief electrical stimulus,107,108 thus 

it is considered to be a measure of peripheral fatigue as it excludes the central nervous 

system (CNS).  In an EMG signal, the M-wave is observed following the stimulus 

artifact.108 
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Non-selective- The random pattern of motor unit recruitment occurring during 

NMES treatments, since the muscle fiber types recruited by the NMES stimulus are not 

recruited in any type of order or pattern (e.g., fast to slow or slow to fast).14,113  

Spatially fixed- The altered pattern of motor unit recruitment occurring during 

NMES treatments.14,113  The number of motor units recruited by a given NMES stimulus 

is fixed, thus when the muscle becomes fatigued additional fibers are not recruited to 

prevent the drop in force production.14 

T2 Signal- A form of signal generated during magnetic resonance imaging (MRI), 

and it is determined by the manner in which the protons of the tissues being imaged 

respond (e.g., relaxation times) to the radiofrequency pulses emitted by the MRI 

machine.114  The intensity of the T2 signal ranges from bright to dark, and is determined 

by the type of tissue imaged (e.g., solid masses and fluid are bright, fat is dark).114  

Increases in T2 signal intensity following NMES have been used to examine the pattern 

of motor unit recruitment and to differentiate the muscular areas activated during the 

treatment from the areas that were not activated.26,50,51 

Temporally synchronous- The altered pattern of motor unit recruitment occurring 

during NMES treatments.14,113  The motor units recruited by the NMES stimulus are 

recruited at the same time, or in a temporally synchronous manner, which has been 

suggested as causing a greater metabolic demand and subsequently resulting in greater 

fatigue.51 

Torque-time integral (TTI)- The area under the torque-time curve.  With respect 

to isometric contractions, the TTI is considered to represent the amount of isometric work 

done during a given contraction.47,115,116  As such, changes in the TTI over course of a 
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series of NMES-induced contractions have been used as a measure of fatigue during 

previous NMES studies.23,29,47,115,116 

Twitch torque- The peak torque produced during a single twitch contraction, 

which occurs in response to a single electrical pulse.104  A change in the twitch torque 

following a fatiguing protocol is indicative of peripheral fatigue.105 
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CHAPTER II – REVIEW OF RELATED LITERATURE 

Overview 

As mentioned previously, Maffiuletti et al.17,21 identified the primary limitations 

of neuromuscular electrical stimulation (NMES) treatments as: muscle fatigue leading to 

a premature decline in NMES-induced torque, spatially limited motor unit recruitment 

which constrains the amount of NMES-induced torque that can be achieved, and patient 

discomfort associated with the electrical stimulus and subsequent involuntary contraction.  

These factors are considered to be limitations because they ultimately influence NMES-

induced force output and the subsequent NMES training intensity used during treatments, 

which is considered to be the primary determinant of strength gains associated with this 

treatment modality.7-10,16-20  What follows is a review of the literature related to the 

limiting factors of NMES, with a focus on the primary strategies that have been 

developed to address these factors.  The purpose of this review was to provide 

background information to enhance the reader’s understanding of the current state of the 

literature and establish the need for this project. 

Muscle Fatigue 

Fatigue Overview 

Various definitions of fatigue exist in the literature,110 which has led to some 

confusion with respect to the interpretation of fatigue related results.117  Regardless of the 

definition used, there are some common characteristics associated with fatigue.  

Specifically, fatigue involves a reversible decline in one or multiple systems of the 

body.118  For the purposes of this project muscle fatigue is operationally defined as an 

exercise-induced decrease in a muscle’s ability to produce force.98,110  NMES-induced 
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contractions were used to represent “exercise”, while the quadriceps represented the 

“muscle” of interest.  It is important to note that using involuntary electrically evoked 

contractions to represent exercise during a fatigue related study is an acceptable 

technique.110 

Based on their extensive review of the literature, Enoka and Stuart117 concluded 

that rather than the result of a single universal underlying factor, declines in force 

attributable to fatigue are the result of many underlying mechanisms; which include 

central drive failure, neuromuscular propagation failure, metabolic substrates and 

excitation-contraction coupling failure.  In addition, they reported that the extent to which 

each underlying mechanism contributes to the overall decline in muscle force appears to 

be task dependent.117  Fatigue can be subdivided into two main categories based on the 

underlying mechanisms responsible for the force declines, which are central and 

peripheral fatigue.98  Peripheral muscle fatigue refers to the decrease in muscle force 

production attributable to changes occurring at or distal to the neuromuscular junction; 

whereas central fatigue refers to the decrease in muscle force attributable to a decreased 

ability to voluntarily activate the muscle.98 

NMES-induced Fatigue 

NMES-induced contractions appear to result in similar amounts of fatigue 

irrespective of the fiber type composition (e.g., more slow twitch than fast twitch, or fast-

twitch than slow twitch) of the muscle being stimulated.63  Despite this consistency 

across muscle groups, NMES-induced contractions have been shown to result in greater 

muscle fatigue relative to voluntary contractions.15,51,62,119,120  The altered motor unit 

recruitment present during NMES-induced contractions relative to voluntary contractions 
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(addressed in the motor  unit recruitment section), is believed to be the primary 

contributing factor to the greater fatigue observed during NMES treatments.119,120 

Although it is commonly accepted that NMES-induced contractions lead to 

greater fatigue relative to voluntary contractions, the relative contribution of central and 

peripheral fatigue mechanisms responsible for NMES-induced fatigue is not as well 

understood.  With respect to NMES-induced contractions of the quadriceps, Zory et al.121 

concluded that the decrease of approximately 20% in MVIC torque they observed 

following 30 NMES-induced contractions was primarily attributable to peripheral fatigue.  

This conclusion was based on their observation that voluntary activation levels did not 

change, while M-wave amplitude significantly decreased following the NMES-induced 

contractions.121  In a more recent study, Fouré et al.104 also attributed the roughly 30% 

decline in quadriceps MVIC torque they observed immediately following 40 NMES-

induced contractions solely to peripheral fatigue; which was based on significant 

decreases in post-test doublet and twitch torque, as well as declines in the low:high 

frequency ratio (10:100 Hz) and rate of force development, while voluntary activation 

was unaltered. 

It appears that NMES-induced fatigue of the quadriceps is primarily due to 

peripheral fatigue,104,121 but this may not hold true across different muscle groups.  For 

example, Boerio et al.122 concluded that peripheral, as well as central mechanisms, 

contributed to NMES-induced muscle fatigue while stimulating the triceps surae, even 

though they used a similar treatment protocol to that of Zory et al.121 (e.g., 6.25 second:20 

second on:off ratio and a maximum tolerable intensity).  This conclusion was based on 

their observation that voluntary activation deficits and a reduction in electromyography 
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(EMG) signal, which represented neural drive from supraspinal centers to the muscle and 

neuromuscular propagation failure, occurred along with the declines in MVIC torque 

following the NMES treatment.122  Although Fouré et al.104 attributed NMES-induced 

fatigue solely to peripheral factors immediately following the NMES treatment, this did 

not hold over the course of a 4 day recovery period during which MVIC deficits 

persisted.  During the recovery period they observed significant declines in voluntary 

activation in addition to peripheral factors that were related to the remaining MVIC 

deficits.  Consequently, they concluded that prolonged NMES-induced fatigue of the 

quadriceps may be attributable to both central and peripheral mechanisms. 

Motor Unit Recruitment 

Voluntary Motor Unit Recruitment 

A motor unit is defined as a motor neuron’s cell body (soma), dendrites, axon, 

axonal branches and the muscle fibers innervated by the axonal branches.103,123,124 The 

axon of a single motor neuron is grouped together with other axons to form a peripheral 

spinal nerve, with each axon of a spinal nerve innervating tens to thousands of fibers of 

the same fiber type.103,124,125  Although there are a variety of muscle fiber types, 

researchers generally use three main groupings based on the fiber’s metabolic 

characteristics and contraction speed; the fiber types are: Type I (slow twitch, slow 

oxidative), Type IIa (fast twitch, fast oxidative glycolytic) and Type IIb (fast twitch, fast 

glycolytic).124 The muscle fibers of a single motor unit are dispersed throughout the 

muscle rather than being grouped closely together, and all fibers belonging to a motor 

unit are recruited when the motor neuron fires.103 
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Based on their seminal study using the gastrocnemius muscles of cats, Burke and 

colleagues126 are credited with developing the classic motor unit typology system.125 

Their classification of motor units was based on the response of motor units to stimulus 

trains eliciting unfused tetani (twitches), as well as each motor unit’s sensitivity to 

fatigue.  The unfused tetanic response of each motor unit was examined for the presence 

of a “sag” property defined as a rapid increase in tension followed by a decline in the 

tension that eventually plateaued.  Each motor unit was also repeatedly stimulated to 

produce a series of contractions.  Sensitivity to fatigue was determined using a fatigue 

index, which compared the peak tension produced during the initial tetanic contraction 

relative to that produced after 2 minutes (120th contraction).  Motor units were then 

classified based on the presence or absence of the sag property and the corresponding 

fatigue index scores.  The classifications created by Burke and his colleges were: fast 

twitch fatigue sensitive (FF), fast twitch fatigue resistant (FR) or slow twitch fatigue 

resistant (S). According to Enoka,125 Burke’s classical motor unit typology is not 

applicable to human motor units.  Therefore, human motor units are often classified 

based on their recruitment threshold.123,125 

It is commonly accepted that during voluntary contractions motor unit recruitment 

order is based on motor unit size, with the recruitment of smaller motor units innervating 

fatigue resistant slow twitch fibers occurring first, while progressively larger motor units 

innervating fatigable fast twitch fibers are recruited as force production requirements 

increase.124,125,127  This pattern of recruitment is referred to as the Henneman principle, as 

it is based on the work of Dr. Elwood Henneman.128,129  Interestingly, the Henneman 

principle is considered to be applicable to all types of voluntary contractions as well as 
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reflexes.125  In addition to the size principle, motor unit recruitment during voluntary 

contractions is believed to be asynchronous.103 

NMES Motor Unit Recruitment 

Voluntary and NMES-induced contractions are similar in that the axon/axonal 

branches of a motor neuron ultimately elicit a muscular response, irrespective of the 

method used.  Despite this similarity, motor unit recruitment in response to NMES is 

significantly different from that of voluntary contractions.  The initial difference is that 

the axon/axonal branches of a motor neuron depolarize in response to an electrical signal 

generated by an external stimulator rather than to one generated by the central nervous 

system (CNS).   Furthermore, the action potential generated in response to NMES is 

conducted in both directions along the axon, due to the lack of normal 

hyperrepolarization occurring behind the signal that is present during signals generated 

by the CNS.130  When the signal is transmitted away from the neuromuscular junction, or 

contrary to the physiological direction, it is referred to as antidromic conduction; whereas 

when the signal is transmitted in the physiological direction it is referred to as 

orthodromic transmission.130 

In addition to bidirectional conduction along axons, the order of motor unit 

recruitment differs significantly during NMES-induced contractions relative to the 

voluntary recruitment order previously discussed.  The traditional theory related to 

NMES motor unit recruitment proposed that the recruitment order was reversed, 

preferentially activating large fast twitch fatigable units followed by the smaller slow 

twitch less fatigable units.3,113,131  According to Gregory and Bickel14 this theory was 

based on the observations that NMES-induced contractions result in greater amounts of 
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fatigue relative to voluntary contractions15,51,62,119,120 and because larger motor units are 

believed to have a decreased resistance to current.131 

A seminal study was performed by Adams et al.51 to test this theory.  These 

authors employed magnetic resonance imaging (MRI) to map the pattern of motor unit 

recruitment following voluntary and NMES-induced isometric contractions of the 

quadriceps using changes in the intensity of the T2 signal.  They identified the location of 

the activated muscle fibers and determined percent of activated cross sectional area (% 

CSA) by examining changes in the T2 signal following the contractions.  Substantial 

inter-individual differences in the location of activated fibers following NMES-induced 

contractions of 25% MVIC, 50% MVIC and 75% MVIC were observed.  Furthermore, 

activated fibers were located in deep and superficial areas, regardless of the contraction 

intensity.  According to Bickel et al.,113 this particular observation is in contrast to 

another commonly held view that NMES primarily stimulates superficial nerves and is 

incapable of recruiting deep muscle fibers.  Adams et al. also observed a significant linear 

relationship between NMES-induced torque and the % CSA activated (R2= 0.74).  This 

relationship lead the authors to hypothesize that NMES does not preferentially activate 

the larger fast twitch motor units, rather the linear relationship suggests that the location 

of the motor neuron branches is the primary determinant of which muscle fibers are 

recruited during NMES treatments.  This hypothesis is in agreement with the 

observations of Knaflitz et al. 127 that NMES recruitment order is not reversed but is 

dependent upon the location of the motor axons relative to the stimulating electrodes, 

with the fibers innervated by the superficial axons being recruited first. 
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Adams et al.51 reported that the T2 signal following voluntary contractions of the 

same duration and intensity changed very little relative to the NMES-induced 

contractions.  They suggested that the differences in the T2 signal changes after NMES-

induced and voluntary contractions provides support to the theory that voluntary 

contractions recruit motor units in an asynchronous manner in an effort to limit metabolic 

demand and fatigue.  Whereas NMES motor unit recruitment occurs in a synchronous 

manner with the same fibers recruited repeatedly, which results in a greater metabolic 

demand and the subsequent greater levels of fatigue.51  McNeil et al.120 also recognized 

synchronous motor unit recruitment as the mechanism responsible for the greater 

metabolic demand and subsequent declines in MVIC (fatigue) they observed following 

NMES-induced contractions, relative to voluntary contractions consisting of the same 

torque-time integral (TTI). 

It appears that the traditional theory that NMES motor unit recruitment occurs in a 

reverse order can no longer be supported.  According to Bergquist et al.101 the current 

thought among researchers is that the axons’ diameter, as well as their distance relative to 

the electrodes, determines which axons are depolarized; which is based on the 

understanding that a nerve is more easily stimulated the larger it is, as well as the more 

superficial it is.3  Consequently, the current theory regarding NMES-induced motor unit 

recruitment is that it occurs in a non-selective manner, in addition to being temporally 

synchronous and spatially fixed.14,113  The latter two points suggest that the same motor 

units are repeatedly recruited at the same time throughout the NMES treatment.4,50 

This novel theory of motor unit recruitment during NMES has been examined in 

the literature.  Jubeau et al.132 compared the time to peak torque following a 
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superimposed supramaximal stimulus during a series of voluntary and NMES-induced 

quadriceps contractions.  The time to peak torque was significantly shorter under the 

voluntary condition, regardless of the contraction intensity (e.g., 20% MVIC, 40% 

MVIC, 60% MVIC).  In addition, time to peak torque did not differ during NMES-

induced contractions, regardless of the contraction intensity, whereas it significantly 

decreased as the contraction intensity increased under the voluntary condition.  The 

authors concluded that fast and slow twitch motor units are recruited during sub-maximal 

NMES-induced contractions, as evidenced by the consistently slower time to peak torque 

observed under the NMES condition.  Furthermore, due to the lack of variation across 

contraction intensities during the NMES-induced contractions, the authors concluded that 

the NMES stimulus does not recruit motor units in any systematic way related to muscle 

fiber type. 

Central and Peripheral Pathways 

When considering motor unit recruitment in response to NMES, it is also 

important to discuss two distinct pathways identified in the literature as contributing to 

the overall NMES-induced force production.  Based on their review of the literature, 

Collins et al.102,133 and Bergquist et al.101 suggested that NMES motor unit recruitment 

occurs via peripheral and central pathways or mechanisms.  These authors defined the 

previously discussed recruitment pathway, in which motor axons are depolarized in 

response to the NMES stimulus, as the peripheral pathway.  In addition to the well-

known peripheral pathway, these authors proposed the existence of an additional central 

pathway.  This less familiar pathway is the process by which a sensory volley, caused by 

the concurrent depolarization of sensory (afferent) axons during NMES, results in the 
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synaptic recruitment of motor neurons within the spinal cord.  Motor unit recruitment due 

to the sensory volley is hypothesized to occur via the Hoffman reflex (H-reflex), and/or 

due to activation of motor neurons within the spinal cord due to the generation of 

persistent inward currents in spinal neurons caused by the continuous flow of high-

frequency afferent stimuli.102,133-135 The latter pathway is believed to have the potential to 

produce asynchronous recruitment,135 but while some muscles may be capable of 

asynchronous recruitment via central pathways the quadriceps may not be capable of 

producing this response.136,137 

There is some evidence to support the presence of a central recruitment pathway 

during NMES treatments in the literature.  Collins et al.134 observed that relative to the 

force produced after placing a nerve block proximal to the site of stimulation, plantar 

flexion force generated via NMES over the triceps surae was much greater without the 

presence of a nerve block.  A follow-up study performed by the same authors also 

demonstrated a similar pattern while stimulating the triceps surae or tibialis anterior with 

respect to the presence or absence of a nerve block.133  Furthermore, during both of these 

studies133,134 NMES-induced force was produced while using stimulus intensities below 

the motor threshold, and NMES-induced contractions persisted after the cessation of the 

electrical stimulus.  These authors concluded that such observations suggest the presence 

of a central pathway for motor unit recruitment during electrically induced contractions.  

Lagerquist et al.,135 also compared NMES-induced torque production of the triceps surae 

with and without a tibial nerve block.  In agreement with the observations of Collins et 

al.133,134, under the nerve block condition significant decreases in torque output were 

observed over the course of a 30 second stimulus; whereas significant increases occurred 
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without the presence of a nerve block.  As with the previous studies, these authors 

concluded that their results demonstrate that the sensory volley produced during NMES 

treatments results in the synaptic recruitment of motor neurons within the spinal cord. 

As mentioned previously motor unit recruitment is believed to be synchronous 

during NMES treatments.14,113  However, it has been suggested that recruitment via the 

central pathway has the potential to recruit motor units in a similar order to voluntary 

contractions and in an asynchronous pattern,101,134,135 thus it has been hypothesized that 

enhancing motor unit recruitment via central pathways has the potential to limit NMES-

induced fatigue.29,134,135  Based on their review of the literature, Bergquist et al.101 

suggested that to maximize central contributions during NMES motor unit recruitment 

the stimulus parameters should include long pulse durations, high frequencies and low 

stimulus intensities.  Despite this recommendation, a recent study29 demonstrated that 

both conventional NMES and a wide-pulse-high-frequency (WPHF) approach resulted in 

central pathway motor unit recruitment.  In addition, as evidenced by a significantly 

greater decline in the TTI under the WPHF condition, this method resulted in greater 

amounts of fatigue.  These results lead the authors to conclude that using WPHF to 

enhance central recruitment in an effort to reduce fatigue is questionable.  

The location of NMES application, over the nerve trunk rather than over the 

muscle belly, has also been proposed as having the potential to influence the relative 

contribution of peripheral and central pathways to motor unit recruitment.  With respect 

to the quadriceps, Bergquist et al.136 examined this hypothesis while applying NMES 

over the femoral nerve trunk located within the femoral triangle or via electrodes over the 

quadriceps muscles, with a similar NMES training intensity being maintained across 
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conditions.  Under each condition the peak to peak amplitudes of M-waves and H-

reflexes, as well as the root mean square of asynchronous activity, were measured via 

surface EMG recordings.  The M-wave amplitude was significantly greater while 

stimulating over the muscle belly, whereas H-reflexes were significantly greater while 

stimulating the nerve trunk.  Due to the fact that H-reflex amplitudes are considered a 

measure of central recruitment while M-wave amplitudes are representative of peripheral 

recruitment, the authors concluded that when NMES is applied over the femoral nerve 

trunk the motor unit recruitment and subsequent contraction occurs predominantly via the 

central pathway.  Asynchronous activity was also considered a measure of central 

recruitment, but no such activity was observed under either condition, so the authors 

concluded that enhancement of central recruitment during stimulation of the femoral 

nerve trunk was attributable to the H-reflex.  Similar results have been observed when 

applying NMES to the belly of the triceps surae and tibial nerve trunk, with the exception 

that asynchronous activity partially contributed to the NMES-induced force production 

while stimulating over the muscle belly.137  Despite the apparent involvement of a central 

pathway under this condition, overall NMES-induced torque was still primarily 

attributable to peripheral recruitment.137 

It is important to note that the NMES training intensity was relatively low (e.g., 

10-20% MVIC) during these studies.136,137 Lower intensities were most likely selected to 

prevent elimination of central pathway contributions via large peripheral pathway 

contributions, as antidromic transmission of action potentials along motor axons prevents 

the central pathway mechanisms from activating motor units previously activated via 

peripheral pathways.101,102,138  This technique presents a variety of problems that make it 
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problematic to implement clinically with respect to NMES of the quadriceps.  

Specifically, the femoral nerve trunk is difficult to access, the electrodes have a tendency 

to move and the quadriceps contractions produced via this method are inconsistent.101,136 

Strategies to Reduce NMES-induced Fatigue 

Overview 

As mentioned previously, NMES-induced contractions have been shown to result 

in greater muscle fatigue relative to voluntary contractions, which is attributed to the 

altered motor unit recruitment pattern during NMES treatments.15,51,62,119,120  Muscle 

fatigue negatively influences NMES treatment efficacy, as it contributes to the decline in 

NMES-induced torque that is frequently observed over the course of a treatment.  It has 

been suggested that strategies with the potential to minimize NMES-induced fatigue are 

of significance,31,47 and NMES-induced fatigue is considered to be the greatest concern 

with respect to the limitations of this treatment modality.33  Consequently, strategies with 

the potential to limit fatigue have received a significant amount of interest in the 

literature. 

Strategies with the potential to limit NMES-induced fatigue often involve 

manipulation of the parameters readily controlled on NMES devices, with the most 

widely studied parameter being the stimulus frequency.47  Prior to addressing these 

strategies it is important to discuss the different types of muscular responses that can 

occur in response to NMES, based on the parameters selected by the clinician or 

researcher.  A response resulting in a short muscular contraction followed by complete 

relaxation is referred to as a twitch contraction, while a sustained muscular contraction 

occurring in response to the stimulus is referred to as a tetanic contraction or tetany.3  
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When one twitch is superimposed on another twitch before total relaxation can occur it is 

referred to as summation,4 but this response is not desired during NMES treatments.  A 

high stimulus intensity but low frequency (e.g., <15 Hz or pps) stimulus is used to elicit a 

twitch contraction, whereas a high stimulus intensity and high frequency (e.g., >40 Hz or 

pps) stimulus is used to elicit tetanic contractions.  Summation results when the stimulus 

consists of frequencies between those required to achieve a tetanic or twitch response 

(e.g., 15-25 Hz or pps).1,4  The pulse duration recommended for twitch or tetany is the 

same (e.g., 300-500 µsec).1 Tetanic contractions are of primary concern for this project, 

as these are used clinically during NMES treatments for the purpose of reducing strength 

loss and atrophy or for increasing strength. 

Frequencies and Pulse Durations 

Kesar et al.46 examined the influence of stimulus frequency, as well as the pulse 

duration, on NMES-induced fatigue.  They used three separate fatiguing protocols with 

an initial training intensity of 20% MVIC.  The first protocol combined a low frequency 

(11.5 Hz) and long pulse duration (600 µsec), the second protocol combined a medium 

frequency (30 Hz trains) and medium pulse duration (150 µsec) and the final protocol 

combined high frequency (60 Hz) with a medium pulse duration (131 µsec).  The low 

frequency and long pulse duration protocol resulted in the lowest percent decline in the 

NMES-induced torque, as well as the smallest amount of low frequency muscle fatigue as 

evidenced by a greater low:high frequency ratio (20 Hz:60 Hz).  The authors 

hypothesized that fatigue was minimized during the low frequency condition as a result 

of lowering the metabolic demand by reducing the number of pulses generating action 

potentials, as well as lowering the levels of intracellular calcium.  Based on the results 
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from this study, the authors concluded that performance of NMES-induced isometric 

contractions is maximized by using a long pulse duration and low frequency stimulus, as 

this combination has the potential to minimize fatigue. 

Gregory et al.33 also compared the influence of pulse duration and frequency on 

NMES-induced fatigue, but they maintained a similar total charge (frequency x pulse 

duration) during each protocol.  The stimulus intensity was set to elicit contractions 

torques of 50% MVIC.  Although the initial NMES-induced torque was similar across 

protocols, when using the same total charge (e.g., stimulation with a high frequency low 

pulse duration or high pulse duration low frequency were similar) the decline in NMES-

induced torque over the course of 60 1 second contractions was greater during higher 

frequency conditions.  However, it should be noted that 1 second contractions are not 

clinically practical for strengthening purposes.  Similar to the conclusions of Kesar et 

al.46, Gregory et al. concluded that frequency should be minimized in an effort to limit 

NMES-induced fatigue. 

Gorgey et al.32 examined the relative importance of pulse duration and frequency 

on NMES-induced fatigue, but they also included the stimulus intensity as a variable of 

interest. They measured percent decline in NMES-induced torque, which represented 

fatigue, during four different protocols.  Three of the four protocols maintained similar 

parameters to a standardized protocol as well as to one another, with the exception of 

either using a low frequency, short pulse duration or low stimulus intensity.  A significant 

percent decline during the 11th, 21st and 30th contractions was observed, irrespective of the 

protocol used.  Interestingly, relative to the standardized protocol, manipulating the 

stimulus intensity and pulse duration did not significantly influence NMES-induced 
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fatigue; but relative to the other three protocols, decreasing the frequency from 100 Hz to 

25 Hz significantly reduced the percent decline in NMES-induced torque.  It is important 

to note that in contrast to the studies of Keser et al.46 and Gregory et al.33, the initial 

NMES-induced torque was not held constant across protocols in this study.  Greater 

initial torque was observed while using the standardized protocol, followed by the low 

frequency, low stimulus intensity and short pulse duration procedures.  Despite these 

initial variations, due to the differences in percent decline across the protocols the torque 

produced during the low frequency condition was greater than all the other protocols by 

the 11th contraction (1 minute into the protocol) and this continued throughout the 

remainder of the treatment.  Based on these results it may be acceptable to utilize a lower 

frequency protocol despite the fact that this may result in a smaller initial torque relative 

to a higher frequency protocol, allowing for greater torque production over the course of 

a NMES treatment.  Also of interest is the fact that under the shorter pulse duration 

condition Gorgey et al. observed less torque per active cross sectional area (CSA; 

Nm/cm2) relative to the other protocols, but despite this difference the observed NMES-

induced fatigue was not reduced when compared to the standardized protocol using the 

same frequency and stimulus intensity. 

In a later study Bickel et al.31 also examined the influence of frequency, pulse 

duration and stimulation intensity on NMES-induced fatigue, but in contrast to Gorgey et 

al.,32 the initial NMES-induced torque was standardized across protocols, using 25% 

MVIC as the benchmark.  Despite this difference in methodology, they observed similar 

results, with a significantly lower decline in NMES-induced torque (roughly 25% drop) 
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occurring during the low frequency protocol; whereas the low pulse duration and low 

stimulus intensity protocols had roughly a 50% drop. 

Despite consistent results across a variety of studies demonstrating reduced levels 

of fatigue when decreasing the frequency,31-33,46 there are inconsistencies reported in the 

literature.  Matsunaga et al.48 observed greater fatigue under a low frequency condition 

relative to a high frequency condition (20 Hz vs. 100 Hz).  Although it is unknown why 

their results were in direct contrast to the other studies, differences may have occurred 

because Matsunaga and colleagues measured NMES-induced fatigue over the course of a 

60 minute treatment, as well as using a longer on:off ratio (4:56) and larger beginning 

training intensity (60% MVIC).  Despite possible differences in methodology, the 

observations of Matsunaga et al. suggest inconclusive evidence with respect to the 

influence of stimulation frequency and muscle fatigue.46 

Furthermore,  Russ et al.116 reported no differences in fatigue and metabolic cost 

between a high and low frequency protocol while maintaining similar NMES-induced 

force.  It is important to note that these authors utilized a frequency of 80 Hz to represent 

low frequency, but this is often considered to be a high frequency.  However, for the 

purposes of this study 80 Hz was considered to be low because the higher frequency was 

100 Hz.  A lack of differences in fatigue and metabolic changes have also been observed 

in a study using high and low frequencies of 100 Hz and 20 Hz, respectively.47  Although 

this observation is in agreement with the results of Russ et al., it is important to note that 

this study used rats rather than human subjects. 

Gorgey et al.32 suggested that the non-significant observations of Russ et al. 116 

occurred because the two frequencies that they utilized are within the plateau portion of 
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the force-frequency curve.  Russ et al. also acknowledged this as a limitation of their 

study, and indicated that NMES-induced fatigue may still be positively influenced by 

lower frequencies.  However, they postulated that because their study uniquely 

maintained force across the two protocols, NMES-induced fatigue is influenced more so 

by the resultant force production than by the stimulus frequency.  This argument appears 

to be supported by the results of an additional study performed by the same primary 

author.  While not matching initial force values, Russ and colleagues49 observed greater 

percent declines in NMES-induced torque with higher frequencies (40 & 80 Hz) relative 

to lower frequencies (20 Hz).  These results are in agreement with other studies 

demonstrating a decrease in fatigue while using lower frequencies 31-33,46, but Russ et al.49 

reported that the initial peak torque was a better predictor of fatigue than the number of 

pulses of the stimulus or the initial force-time integral (measure of isometric work).  This 

relationship provides some support to their original argument that NMES-induced force 

rather than frequency influences fatigue.116  However, because Bickel et al.31 observed 

significantly less fatigue while utilizing a low frequency protocol, despite standardizing 

the initial NMES-induced torque across conditions, there appears to be a lack of 

consistent support to the conclusions of Russ et al. 

Although many of these studies demonstrated that frequency influences NMES-

induced fatigue, most of the fatiguing protocols were not clinically relevant as they 

consisted of short contraction durations (e.g., 300 ms, 1 second, 3 seconds) rarely used 

on:off ratios (e.g. 300 ms:700 ms, 1 second:1 second, 3 seconds:3 seconds, 4 seconds:56 

seconds) and/or a large number of contractions (e.g., 30, 60, 150).  It is likely that these 

settings were chosen in an effort to magnify NMES-induced fatigue, but their 
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observations can only be extrapolated to clinical protocols used during NMES treatments.  

Consequently, future studies should verify that these results hold while implementing 

clinically relevant protocols (e.g. 10 second contraction, 10:50 on:off ratio, 20 

contractions). 

Based on the results of studies previously discussed,29,31-33,46,49 it appears that 

higher frequencies increase NMES-induced fatigue.  Therefore, it has been recommended 

that to minimize fatigue, while maximizing NMES-induced torque, clinicians should 

lower the frequency while increasing the pulse duration and stimulus intensity.32  Despite 

this recommendation, there is a lack of consistency in the literature because some studies 

report no difference or greater fatigue with lower frequencies. 47,48,116  Due to these 

results, some have maintained that lowering the frequency while increasing the pulse 

duration is not a sufficient strategy for minimizing fatigue.47  In addition, further research 

is also needed to better understand the costs associated with longer or shorter pulse 

durations, as it has been reported that the influence of this parameter on NMES-induced 

muscle fatigue is less understood than other parameters (e.g., frequency, stimulus 

intensity).32 

Systematically Altering Frequencies 

To this point, the studies reviewed primarily examined the impact of using a high 

or low frequency on NMES-induced fatigue.  Systematically altering the stimulus 

frequency over the course of the treatment is another strategy that has been examined to 

reduce fatigue.  Downey et al.57 reported that relative to a high (40 Hz) or low (20 Hz) 

constant frequency protocol, systematically altering the frequency throughout the 

treatment significantly improved the amount of time in which dynamic NMES-induced 
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quadriceps contractions were adequately performed.  This observation held true 

regardless of whether the frequency was systematically altered from lower to higher or 

higher to lower values.  Consequently, the authors indicated that altering the frequency 

from high to low frequencies, or vise-versa, may be a viable strategy to enhance NMES 

efficacy.  These authors also observed a greater amount of time in which contractions 

were adequately performed while using lower frequencies (e.g., 20-30 Hz) relative to 

higher frequencies (e.g., 30-40 Hz), and this observation held true irrespective of whether 

the frequency was altered from low to high or high to low.  Based on this observation, 

that lower frequencies (20-30 Hz) appeared to enhance performance irrespective of the 

initial frequency or fatigued state, the authors recommended using lower frequencies to 

delay the onset of NMES-induced fatigue; which is in agreement with some of the studies 

previously discussed.33,46 

Kebaetse et al.58 also examined the influence of systematically altering the 

frequency on fatigue during dynamic NMES-induced contractions.  Similar to Downey et 

al.57 they observed less fatigue when altering the stimulus frequency from a low to high, 

as evidenced by a greater number of contractions performed under this condition.  

However, in contrast to Downey et al. they observed a significant increase in fatigue 

when altering the stimulus frequency from high to low.  Thus, these authors suggested 

that lowering the stimulus frequency may not be an effective strategy for minimizing 

NMES-induced fatigue; whereas increasing the stimulus frequency over the course of the 

treatment may be an effective strategy.  It is difficult to determine why differences in 

these two studies occurred, but it may be due to the fact that the higher frequency 
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protocol used by Kebaetse et al. consisted of a series of doublets rather than equally 

spaced pulses. 

Systematically altering the frequency during a treatment consisting of isometric 

contractions has also been shown to influence fatigue.  Binder-Macleod et al.56 compared 

the rate and amount of decline in NMES-induced quadriceps torque under two conditions 

using the same maximum tolerable intensity.  During the frequency modulation protocol 

they systematically decreased the initial frequency of 60 pps by 5 pps throughout the 

treatment, with the final 10 contractions using a frequency of 30 pps.  The constant 

frequency protocol maintained a frequency of 60 pps throughout the treatment.  The rate 

of decline was significantly less by the 4th contraction and by the 6th contraction the 

NMES-induced torque was significantly greater under the condition in which the 

frequency was systematically decreased.  Therefore, systematically reducing the 

frequency during repetitive NMES-induced isometric contractions may also minimize 

fatigue.  It is important to note that unlike systematically increasing the stimulus 

intensity, in order to alter the frequency most NMES units require the clinician to 

interrupt the selected protocol in order to implement this strategy; thus this strategy may 

lack clinical applicability. 

Positive results, with respect to decreases in NMES-induced force, have also been 

observed while systematically increasing the frequency from 20 Hz to 40 Hz.139  

However, these results were not consistent across different stimulus intensities.  Kesar et 

al.52 performed a study that systematically increased the frequency while also comparing 

the influence of modulating the frequency to modulating pulse duration.  Under the 

modulated frequency condition they observed increases in NMES-induced peak torque 
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and the TTI over the course of the fatiguing protocol, but modulating the pulse duration 

did not prevent a decline in NMES-induced peak torque.  Despite not preventing a 

decline in peak torque, modulating the pulse duration resulted in a smaller decline 

relative to maintaining constant parameters.  Although modulating frequencies and pulse 

duration minimized or prevented a decline in peak torque and TTI during the fatiguing 

protocol, smaller declines in the pre- and post-test peak torque elicited by 60 Hz testing 

trains and the low:high frequency ratio (20 Hz:60 Hz) were observed following the 

constant parameter condition; which suggests that significantly greater fatigue occurred 

following the modulated conditions.  The authors concluded that the superior post-test 

fatigue associated with the constant parameter condition occurred due to a smaller 

metabolic demand on the muscle, because the parameter modulation conditions resulted 

in greater NMES-induced torque over the course of the fatiguing protocol. 

The observations made by Kesar et al.52 that NMES-induced torque over the 

course of the fatiguing protocol was enhanced by modulating frequency, while coming at 

the expense of greater post-test fatigue, highlights an important concept.  As suggested by 

Holcomb,140 strategies that maintain NMES-induced torque over the course of a treatment 

are most important.  Thus, strategies that result in greater NMES-induced torque over the 

course of the treatment, like the one implemented by Kesar et al., may be preferred over 

less fatiguing protocols. 

There is a lack of consistency among the results of studies examining the 

influence of modulating frequency on NMES-induced fatigue.  For example, one study58 

demonstrated that increasing the frequency from low to high minimized fatigue but 

systematically decreasing the frequency did not, while another study57 showed similar 



 

41 

improvements while increasing or decreasing the frequency. Furthermore, one study56 

demonstrated that systematically decreasing the frequency minimized the decline in 

NMES-induced torque, while another study52  demonstrated that increasing the frequency 

increased torque production rather than simply minimizing the decline.  Due to the lack 

of consistency across these studies it is difficult to determine the optimal method of 

modulating the frequency to eliminate or minimize NMES-induced fatigue. It may be that 

the impact of frequency modulation is patient dependent, since inter-individual 

differences have been shown to occur with respect to frequency modulation.56  Although 

the optimal method of frequency modulation is unknown, this method does appear to 

have promise with respect to reducing or eliminating the decline in NMES-induced 

torque frequently occurring during treatments.  Therefore, future studies should build 

upon the results of the previous studies in an effort to provide clinicians with an 

evidence-based recommendation with respect to frequency modulation. 

On:Off Ratio or Duty Cycle 

The rest intervals during NMES treatments are determined by the selected on:off 

ratio or duty cycle, which is defined as the ratio of the time in which current is flowing 

relative to when it is not flowing.1,60  Typical on:off ratios within the clinical setting 

range from 10-15 seconds on with an off time of 8-50 seconds.56 The impact of duty 

cycle has also been examined to determine its influence on NMES-induced fatigue.  

Packman-Braun60 observed that participants with hemiparesis were able to maintain 

NMES-induced wrist extensor torque above 50% of  the initial value for a longer period 

of time while using a 1:5 duty cycle (5:25 on:off ratio), relative to a 1:3 (5:15 on:off 

ratio) or 1:1 (5:5 on:off ratio) duty cycle. 
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Interestingly, Packman-Braun60 suggested that her results may be less applicable 

to larger muscles such as the quadriceps, but later studies examining the influence of duty 

cycle while treating the quadriceps in healthy individuals do not support this hypothesis.  

Cox et al.59 compared rest intervals of 35, 50 and 65 seconds during a series of 10 

NMES-induced contractions.  They observed significant reductions in NMES-induced 

torque during the 35 second condition, however, no difference was observed between the 

50 second and 65 second conditions.  This led these authors to hypothesize that longer 

rest intervals may allow for enhanced metabolic recovery. Rankin and colleagues61 

compared fatigue during and after 10 NMES-induced quadriceps contractions at 30% 

MVIC using duty cycles of 1:1, 1:5 and 1:12.  They observed significant declines in the 

NMES-induced torque throughout the treatment under each of the three conditions, but 

the decline was progressively greater as rest time decreased.  These authors also 

examined recovery for 60 minutes following the treatment, as well as after 24 hours.  

Only high frequency fatigue following the 10 second rest condition returned to baseline 

within 24 hours post treatment.  The authors hypothesized that this occurred because less 

work was performed under the 10 second rest condition, as evidenced by the greater 

decline in torque.  In a more recent study, Holcomb et al.62 compared the percent decline 

in NMES-induce torque of the quadriceps over the course of 5 repetitions while using a 

30 second or 120 second rest period.  The shorter rest lead to a 29.6% decline, whereas 

the decline during the longer rest period was only 8.2%. 

Although longer rest intervals resulted in less NMES-induced fatigue, in each of 

the studies reviewed NMES-induced torque was lower during the final contraction 

relative to the initial contraction of the treatment.  Based on the results of these studies it 
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appears that progressively increasing rest intervals does reduce NMES-induced fatigue, 

but rest periods greater than 120 seconds may be required to eliminate declines in force 

production.  However, longer rest intervals between contractions result in longer 

treatment times, thus it is not practical to expect clinicians to use rest periods greater than 

120 seconds.  Therefore, solely increasing rest intervals may not adequately reduce 

NMES-induced fatigue, so other strategies should be used in conjunction with longer rest 

periods. 

Stimulus Intensity 

The influence of the stimulus intensity on NMES-induced fatigue has also been 

examined. In their seminal study examining NMES motor unit recruitment with MRI, 

Adams et al.51 altered the stimulus intensity to achieve quadriceps torque outputs of 25% 

MVIC, 50% MVIC and 75% MVIC.  The authors observed declines in the NMES-

induced torque following 5 sets of 10 contractions at each intensity.  The average percent 

decline in torque was significantly greater following the 25% MVIC condition relative to 

the 75% MVIC condition, which seems to suggest an inverse relationship between 

NMES-induced fatigue and stimulus intensities.  Slade et al.55 observed a lack of 

significant differences over the course of 180 constant frequency trains (CFTs) while 

using a stimulus intensity eliciting 25% MVIC and 50% MVIC, with percent declines of 

60% and 65% respectively. Consequently, they concluded that their results do not support 

the existence of an inverse relationship. 

In contrast to these two studies,  Binder-Mcleaod et al.53 reported that the rate and 

amount of NMES-induced fatigue significantly increased with greater stimulation 

intensities (20% MVIC vs. 50% MVIC), irrespective of the stimulation frequency used.  
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Godfrey et al.54 also demonstrated greater fatigue during higher stimulation intensities, as 

evidenced by greater declines in NMES-induced force and force-time integrals of the 

thenar muscles following stimulation of the median nerve using a supramaximal intensity 

relative to a submaximal intensity.  This observation lead the authors to suggest that 

submaximal stimulation intensities may positively influence muscle fatigue induced by 

electrical stimulation.  Due to the inconsistencies in the reviewed studies, it is unknown 

which stimulus intensity minimizes fatigue.46  Furthermore, it appears that the stimulus 

intensity has less of an influence on NMES-induced fatigue than the frequency of the 

stimulus.31,32 

Variable Frequency Trains 

The use of variable frequency trains (VFTs) in place of CFTs is another strategy 

that has also been hypothesized as having the potential to reduce NMES-induced fatigue.  

A train is defined as the pattern of the electrical pulses while the stimulator is on.140  

Constant frequency trains generally consist of moderate frequency pulses (e.g., 20-40 Hz) 

with consistently spaced interpulse intervals; whereas VFTs implement two or three 

pulses with short interpulse intervals resulting in higher frequencies (e.g., 80-100 Hz),  

prior to a series of pulses with longer interpulse intervals resulting in lowering of the 

frequency.30,65,66,140,141  Variable frequency trains are hypothesized to be advantageous 

due to the “catchlike” property of skeletal muscle; which refers to the observation that a 

high frequency stimulus is required to reach an initial maximum force, but lower 

frequencies are capable of holding the contraction.65,142  Binder-Macleod et al.65 were the 

first authors to demonstrate the catchlike property in whole human skeletal muscle, when 
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they observed greater peak quadriceps torque wile implementing a VFT that incorporated 

a 20 pps stimulus after an initial high frequency stimulus relative to a CFT of 20 pps. 

The ability of VFTs to reduce NMES-induced fatigue relative to CFTs has been 

examined in the literature, with inconsistent results.  Deley et al.30 reported less NMES 

induced fatigue, represented by the decline in MVIC and NMES-induced torque, while 

using a VFT protocol compared to a protocol of CFTs.  Bigland-Ritchie et al.64 compared 

the decline in NMES-induced force and force-time integrals while stimulating the thenar 

muscles with VFTs and CFTs.  These authors chose to standardize the initial force-time 

integral rather than match initial torque or the number of pulses, and they also concluded 

that VFTs may attenuate the rate of NMES-induced fatigue.  In contrast to Bigland 

Ritchie and colleagues, Thomas et al.67 concluded that VFTs and CFTs produce similar 

amounts of fatigue despite also performing their study using the thenar muscles.  

Furthermore, they observed similar results regardless of the health status (healthy vs. 

spinal cord injury) of the participants.  It is unknown why the results of these two studies 

differ, but Thomas and colleagues hypothesized that it may have been due to their small 

sample size of healthy controls. 

Similar to Thomas et al.,67  Papaiordanidou et al.28 observed comparable levels of 

NMES-induced fatigue, as evidenced by equivalent decreases in MVIC torque, following 

CFTs and VFTs protocols, but as concluded by the authors their results do not indicate 

that NMES-induced fatigue is reduced via VFTs.  They also reported no differences 

across the protocols with respect to the mechanisms responsible for the observed fatigue.    

Binder-Macleod and colleagues have also performed many similar studies in which CFTs 

and VFTs were compared.  In a 2001 study,66 they did not observe differences in fatigue, 
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as evidenced by similar declines in NMES-induced torque for both VFT and CFT 

fatiguing trains.  In contrast, during other studies115,143 they observed greater fatigue 

during repetitive stimulation with VFTs relative to CFTs. 

Based on the inconsistent results among the studies comparing CFTs and VFTs, 

the extent to which VFTs reduce NMES-induced fatigue is currently unknown.  

However, based on their review of the literature, Papaiordanidou et al.28 recently 

suggested that the fatigue induced by CFTs and VFTs appears to be similar.   It is 

important to note that only one30 of the studies reviewed utilized a stimulus train of 

sufficient duration to allow for a prolonged contraction time during the fatiguing 

protocol, but this study used a 1:1 duty cycle which ultimately limits the clinical 

applicability of this study.  Future studies should examine the influence of VFTs on 

NMES-induced fatigue while utilizing clinically relevant treatment parameters. 

Specifically, an appropriate on:off ratio and treatment time should be utilized (e.g., 10:50 

for 15-20 minutes). Although VFTs do not appear to be advantageous with respect to 

NMES-induced fatigue, they may be advantageous with respect to increasing NMES-

induced torque when the muscle has been fatigued (discussed in detail in a later 

section).141  Others have suggested that when the goal is to obtain high levels of NMES 

evoked torque VFTs may be a better choice.28 

Accommodation 

Many of the previously discussed studies30-33,46,49,51,54,55,59,61,62,64,66 utilized the 

decline in NMES-induced torque throughout the stimulation protocol as a measure of 

muscle fatigue, but caution should be exercised as these declines may be attributable to a 

combination of fatigue and accommodation of the motor nerve .99,100  Alon and Smith144 
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defined accommodation as the transient process by which the threshold required to excite 

the nerve increases in response to the electrical stimulus.  Accommodation has been 

suggested as contributing factor to declines in NMES-induced force output because an 

increased nerve threshold has the potential to result in a diminished number of recruited 

motor units.28,77,99,100 

Although evidence demonstrating that accommodation contributes to the decline 

in NMES-induced force production has been considered to be mostly anecdotal,145 recent 

research has provided some evidence supporting the premise that accommodation 

contributes to the declines in NMES-induced force output.  Papaiordanidou et al.100 

compared declines in NMES-induced plantar flexion torque across protocols consisting 

of high and low frequencies, as well as long and short pulse durations.  Although each of 

the protocols resulted in significant declines throughout the treatment, significantly 

greater declines in NMES-induced torque occurred under both of the higher frequency 

protocols.  Despite this difference, no other differences in the other fatigue measures (e.g. 

post-test MVIC and twitch torque loss) were observed between protocols.  Furthermore, 

the decreases in post-test twitch torque were positively related to the declines in NMES-

induced torque occurring during the low frequency protocols, whereas no such 

relationship was observed with respect to the high frequency protocols. The authors 

concluded that the lack of a consistency between results, as well as greater percent 

declines in NMES-induced torque relative to declines in MVIC torque, suggest that the 

greater declines observed under the high frequency conditions are not solely attributable 

to greater muscle fatigue.  They subsequently hypothesized that the differences occurred 
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because the higher frequency stimulus led to an increased threshold of excitability in the 

stimulated axonal branches, or accommodation. 

Matkowski et al.99 performed an additional study to examine whether 

accommodation contributes to declines in NMES-induced force production by indirectly 

assessing changes in the proportion of active motor units during NMES-induced 

contractions of the quadriceps.  While applying NMES at an initial training intensity of 

20% MVIC, these authors also applied a supramaximal stimulus to the femoral nerve 

during and after each of the 15 NMES-induced contractions that produced superimposed 

and post-tetanic twitches.  To determine the proportion of active motor units during 

NMES the superimposed and post-tetanic twitches were placed in a muscle activation 

formula similar to that used for voluntary activation.  The decline in NMES-induced 

torque throughout the protocol and the change in post-test MVIC were also assessed.  

Similar to Papaiordanidou et al.,100 Matkowski et al.99 observed greater percent declines 

in NMES-induced torque than in post-test MVIC, with NMES-induce torque decreasing 

roughly 60% while MVIC only declined roughly 20%. Relative to their initial values, the 

post-tetanic twitch torque significantly decreased while the superimposed twitch torque 

significantly increased over the course of the protocol.  This resulted in a roughly 60% 

decrease in the proportion of active motor units during NMES.  The authors concluded 

that these results are indicative of a reduction in the number of motor units activated by 

NMES, which they attributed to accommodation.  Subsequently, they indicated that 

accommodation was the mechanism primarily responsible for the greater reduction in 

NMES-induce torque relative to MVIC. 
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In an earlier study, Randolph et al.145 observed NMES-induced torque declines 

across 10 repetitions while also observing concurrent declines in discomfort; which can 

be attributed to accommodation in sensory nerves, but they also hypothesized that 

accommodation affected motor nerves therefore contributing to their observed declines in 

NMES-induced torque.  Further evidence that accommodation contributes to the declines 

in NMES-induced torque is provided in a study performed by Holcomb et al.,44 in which 

they demonstrated that increasing the stimulus amplitude roughly 5% every other 

contraction eliminated declines in NMES-induced torque across 10 repetitions without 

increasing patient discomfort.  Interestingly, increases in the excitation threshold have 

also been observed following MVICs, with greater increases occurring following 

contractions of longer duration. 146  Accommodation may also occur in afferent nerves, 

but it appears to be greater for motor axons relative to sensory axons.146,147 

Although the previously discussed studies provide evidence that accommodation 

is a contributing factor to the decline in NMES-induced force, the relative contribution of 

accommodation to the declines in NMES-induced force output remains unknown.145  

Furthermore, as evidenced by the suggestion that further research is needed to better 

understand the effects of the fluctuations in the threshold required for excitation of motor 

axons during NMES-induced contractions,100 it can be concluded that a lack of 

comprehensive understanding exists with respect to accommodation.  Accommodation 

has been attributed to hyperpolarization of the nerve axons, which alters the membrane 

potential to a more negative state, and some have hypothesized that the primary 

mechanism causing hyperpolarization is the sodium potassium pump.28,146,147  Despite the 

need for more research, it is understood that if accommodation occurs the nerve cannot 
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be excited without increasing the intensity of the electrical stimulus.148 Although the term 

“fatigue” and “accommodation” are often used interchangeably, it is important to 

acknowledge the difference between accommodation and fatigue with respect to the 

mechanisms responsible for the declines in NMES-induced force output, as others have 

done.44,145,149 

Strategies to Enhance Patient Comfort 

Overview 

Similar to fatigue and accommodation, NMES-induced torque and the subsequent 

NMES training intensity are restricted by patient comfort.  The stimulus intensity used 

during NMES treatments is directly related to the amount of NMES-induced torque 

production, as well as the amount of muscle CSA activated.17,50,51 In order to elicit NMES 

training intensities sufficient for strength gains, stimulus intensities must be adequate.  

However, it is difficult to achieve or maintain sufficient intensities because they are often 

uncomfortable. NMES-induced discomfort is most often considered to be the result of the 

concurrent depolarization of thinner type III and IV sensory fibers, which are responsible 

for delivering pain information to the CNS,109 and this subsequently results in the 

perception of discomfort.150  It is also important to note that NMES-induced discomfort 

has been shown to only decrease roughly 50% following a sensory nerve block.151  

Furthermore, Alon and Smith144 observed that 50% of participants reported that muscle 

cramping was the sensation that limited their willingness to tolerate greater stimulus 

intensities, whereas only 18% of their participants identified pins and needles as the 

limiting sensation.  Others have reported that the muscle pulling or tearing sensation 

experienced during NMES treatments limits higher stimulation intensities more so than 
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the uncomfortable sensation related to the stimulus being applied.78  Thus, NMES-

induced discomfort appears to be attributable to muscular (e.g., cramping) mechanisms as 

well as sensory mechanisms. 

Regardless of which factors primarily contribute to NMES-induced discomfort, 

the fact remains that discomfort may lead to patient resistance toward turning the 

stimulus intensity up to a level sufficient for producing adequate NMES training 

intensities, or may even lead to patient non-compliance.39,97 Consequently, the patient 

discomfort experienced during NMES treatments has been identified as a primary 

limitation of this modality.16 A variety of strategies have been examined in an effort to 

improve patient comfort, but despite these efforts additional strategies have been 

solicited.16 

Electrode Size 

Electrode size influences the current density, which is defined as the quantity of 

current per unit area (e.g., mV/cm2), and the perception of NMES is amplified as the 

current density increases.152 Thus, increasing electrode size to reduce current density has 

received considerable attention as a possible strategy by which clinicians can reduce 

patient discomfort during NMES.  Alon et al.68 examined the influence of electrode size 

on patient comfort while stimulating the gastrocnemius with electrode sizes consisting of 

2.25 cm2, 9 cm2, 20.25 cm2 and 40.3 cm2.  The stimulus intensity was increased and the 

level at which each participant reported reaching their pain threshold and pain tolerance 

was recorded under each condition.  The NMES-induced torque at each level was also 

recorded.  Participants were able to tolerate greater stimulus intensities, which lead to 

greater torque production, under the larger electrode conditions; but similar levels of 
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torque were observed between the two largest, as well as the two smallest electrodes at 

the pain threshold.  As a result, the authors recommended the 20.25 cm2 electrode to 

enhance comfort during NMES of the gastrocnemius. In contrast to the results of Alon et 

al., Lyons et al.70 reported greater comfort while stimulating the gastrocnemius with 

smaller round electrodes relative to larger round electrodes, as evidenced by the 

participants’ tolerance of greater stimulus intensities under the small electrode condition.  

Lyons et al. suggested that their contrasting results may have occurred due to variations 

in the stimulus parameters used in each study. 

Although the results of these two studies appear to be in direct contrast, with 

one70 supporting the use of small electrodes and the other68 supporting large electrodes, 

the small (19.63 cm2) and large electrodes (38.48 cm2) used by Lyons et al. 70 were 

comparable in size to the two largest electrodes used by Alon et al.68  Thus, it seems that 

larger electrodes do not always enhance patient comfort, but when taken together, the 

results of these two studies suggest that an optimum electrode size may exist; which 

appears to be approximately 20 cm2 when stimulating the gastrocnemius.  In agreement, 

Alon et al.68 reported that unreasonably large electrodes do not appear to enhance 

excitation, and they suggested that the ideal electrode size for maximizing comfort and 

force production is primarily dependent upon muscle size. 

Forrester et al.69 also examined the influence of electrode size on patient comfort.  

In addition, they examined the influence of electrode shape while stimulating the 

quadriceps, tibialis anterior and biceps brachii to determine the extent to which these 

effects hold true across muscle groups.  The electrode sizes tested were 5.08 cm2, 4.39 

cm2 and 3.66 cm2, and the shapes consisted of round, square and square with a serrated 
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leading edge.  Under each condition the muscle was stimulated with an intensity required 

to achieve 10% MVIC.  As evidenced by similar visual analog scale (VAS) scores across 

each of the conditions, the authors concluded that differences in electrode shape and size 

did not influence patient comfort. Furthermore, Naaman et al.41 also reported no 

significant differences with respect to discomfort while stimulating the tibialis anterior 

with different shapes and sizes of electrodes. 

These results41,69 directly contrast the studies previously discussed that reported 

differences across electrode sizes, although it is important to note that the significant 

results were inconsistent across studies.68,70  It is unknown why these inconsistencies 

occurred.  Forrester et al.69 suggested that an inability to elicit meaningful differences 

may be attributable to small differences in the size of their electrodes.  This proposition 

seems to be supported by the observations of Alon et al.68 that increasing the electrode 

size 6.75 cm2 (2.25 cm2 to 9 cm2) did not significantly alter the pain threshold, while a 

larger increase of 11.25 cm2 (9 cm2 to 20.25 cm2) did.  However, further increasing the 

electrode size by 20.05 cm2 (20.25 cm2 to 40.3 cm2) did not significantly alter comfort, 

which seems to suggest a limit to the positive influence of increasing electrode size to 

improve comfort.  The inconsistencies may have also occurred due to the differences in 

the measure used to assess comfort.  Forrester et al. measured patient comfort with a 

VAS at a standardized training intensity.  Participants in the study by Naaman et al.41 

provided a numeric rating grade between 0 and 10 and the intensity was altered across 

conditions to elicit the same level of contraction, whereas the other studies68,70 assessed 

the level of stimulus intensity tolerated under each condition. 
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With the exception of the study by Forrester et al.69, the previously discussed 

studies did not examine the influence of electrode size on patient comfort while 

stimulating the quadriceps.  In a study71 reporting no difference between the quadriceps 

twitch torque produced while maintaining a constant stimulus intensity under a small (20 

cm2)  and large (36 cm2) electrode condition, a number of participants anecdotally 

reported greater comfort with the larger electrodes.  Although Alon150 did not directly 

measure patient discomfort while using electrodes measuring 9 cm2, 36 cm2 and 81 cm2, 

he did measure the amount of quadriceps torque produced while using stimulus 

intensities just below the pain threshold (non-painful contraction) as well as when the 

pain threshold (painful contraction) was reached.  Participants were able to tolerate 

greater stimulus intensities under both of the conditions using the 81 cm2 electrodes (9 

cm X 9 cm or 5 cm X 16.2 cm), resulting in significantly greater amounts of non-painful 

and painful NMES-induced torque production.  Consequently, Alon concluded that using 

larger electrodes can elicit greater quadriceps contraction torque without discomfort. 

Patterson and Lockwood72 compared the influence of electrode size on discomfort using 

five different electrode sizes ranging from 20-60 cm2, with the size increasing 10 cm2 

under each condition.  In contrast to Alon, these authors assessed self-reported discomfort 

under each condition while stimulating the quadriceps to elicit a training intensity of 25% 

MVIC.  Despite the fact that there were no significant differences in the stimulus 

intensity required to achieve 25% MVIC, greater discomfort was observed under the 20 

cm2 and 30 cm2 conditions; whereas no such differences were observed with respect to 

the three larger electrode sizes. 
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As with applying NMES to the gastrocnemius, the results of Patterson and 

Lockwood72 also seem to suggest a limit to the positive influence of increasing electrode 

size for the purpose of improving comfort while stimulating the quadriceps.  However, 

the optimal size for applying NMES to the quadriceps remains unknown because the 

results of Alon150 suggested greater comfort while using electrodes much larger than 30 

cm2, whereas the results of Patterson and Lockwood did not demonstrate significant 

improvements when using 60 cm2 relative to 40 cm2. 

It is commonly accepted among clinicians that patient comfort is improved as 

electrode size is increased because larger electrodes result in lower current densities, but 

based on the previously discussed studies41,68-70,72,150 there appears to be a lack of 

consensus in the literature to support this belief.  It has been suggested that the optimal 

electrode size is dependent upon the size of the muscle being treated,68 thus further 

studies are warranted to determine the optimal electrode size for each of the various 

muscle groups frequently treated with NMES. 

Electrode Placement 

The influence of electrode placement has also been examined as a potential 

strategy for improving patient comfort.  It is commonly accepted that a motor point is the 

location by which the motor nerve is most hypersensitive to stimulation.69  A motor point 

is defined electro-physiologically as the portion of skin at which the least amount of 

stimulus intensity is required to produce a visible twitch contraction, or anatomically as 

the point at which the motor nerve branches and enters the muscle belly.68,69,153,154  

Although these two definitions are often used interchangeably, Gobbo et al.24 

recommended that the electrophysiological and anatomical definition be differentiated, 
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with the later representing motor entry points rather than motor points.  Furthermore, they 

suggested that two of the major NMES limitations, restricted spatial recruitment and 

patient discomfort, can be effectively reduced by placing electrodes over the motor 

points; which was based on the hypothesis that applying NMES over a motor point 

results in depolarization of primarily motor axons, whereas applying the stimulus away 

from these points results in greater concurrent sensory axon depolarization and 

necessitates higher stimulus intensities to reach and recruit motor axons. 

Motor points can be identified by using published atlases illustrating their 

location,152 or manually by using a pencil electrode.  The pencil electrode method 

requires that the frequency be set low, to elicit a twitch (e.g., 2 pps), while the skin is 

scanned using the lowest stimulus intensity capable of producing a detectable twitch 

response.24,39  A recent study has demonstrated that relative to using an atlas to identify 

motor points of the tibialis anterior and vastus lateralis, the pencil electrode method 

results in greater patient comfort, torque production and metabolic stress.39 However, it is 

important to note that during this study different stimulus intensities were used under 

each condition, which may have confounded the results. 

During their previously discussed study, Forrester et al.69 also examined the 

impact of electrode placement.   The authors observed that the stimulus intensity required 

to elicit 10% MVIC and the reported discomfort levels were significantly lower when 

placing the electrodes over the motor points rather than placing electrodes away from the 

motor points.  Exceptions to these findings were that similar stimulation intensities and 

comfort levels were observed when the electrodes were placed 2 cm proximal or medial 

to the motor point of the tibialis anterior.  Furthermore, they observed that moving the 
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electrodes closer together tended to increase the discomfort more so than moving the 

electrodes further apart.  The authors hypothesized that this trend was attributable to 

greater activation of afferent nerve fibers due to the superficial flow and increased current 

density that occurs when electrodes are in close proximity.155 

Different electrode placement strategies appear to influence patient 

comfort,39,41,69,70 with greater comfort occurring when the electrodes are placed over 

motor points.39,69  It is important to note that with respect to the tibialis anterior, greater 

comfort has not always been reported when placing the electrodes over the motor 

point.41,69  However, with respect to NMES of the quadriceps, the electrodes should be 

placed over the motor points due to the poor accessibility of the femoral nerve trunk.101 

Other authors have also recommended placing electrodes over the motor points.24  As 

evidenced by their observation of inter-individual differences with respect to motor point 

locations, Botter et al.153 suggested that the usefulness of identifying motor points via the 

atlas method is limited. Thus, in agreement with these authors, the pencil electrode 

method was deemed more appropriate for motor point identification for this project.  

With respect to the influence of electrode placement on patient comfort, it is also 

important to note that using a crossed or parallel electrode arrangement does not appear 

to influence perceived discomfort levels while stimulating the quadriceps.73 

Current Parameters 

It has been suggested that the optimal NMES waveform is one that elicits the least 

amount of discomfort while producing the desired NMES training intensity.156  Thus, a 

variety of current parameters have also been examined to determine the extent to which 

they can improve patient comfort during NMES treatments.  During their previously 
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discussed study, Naaman et al.41 reported greater levels of NMES-induced discomfort 

when increasing the stimulus frequency and altering the stimulus intensity to maintain the 

same level of contraction across protocols.  Although this was significant among healthy 

and neurologically impaired participants, the increased discomfort was significantly 

greater in the neurologically impaired group.  Furthermore, they observed that as the 

pulse duration increased greater amounts of discomfort were reported in the 

neurologically impaired group, but no such difference was observed within the healthy 

group. 

Bennie et al.40 compared patient comfort during a series of 4 minute NMES-

induced isometric quadriceps contractions using four different waveforms.  The 

conditions tested were Russian, Interferential, biphasic sine and biphasic square 

waveforms, and the stimulus intensity was altered throughout the course of each 

contraction to maintain a training intensity of 10% MVIC.  The interferential waveform 

was incapable of producing contractions of 10% MVIC, thus this condition was not 

included in the analysis.  The amount of stimulus intensity required to maintain a 

contraction of 10% MVIC over the course of 4 minutes was significantly less during the 

sine waveform condition.  Despite this difference, there were no significant differences 

across the three conditions with respect to verbal rating scale scores, which represented 

subjective discomfort levels.  These authors also assessed objective discomfort levels by 

measuring changes in galvanic skin resistance (GSR), which they suggested represents 

the response of the sympathetic nervous system to painful stimuli.  During the Russian 

condition the changes in GSR over the first minute of stimulation were significantly 

greater than during either of the other two conditions, and changes in GSR were 
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significantly greater under the sine waveform relative to the square waveform condition.  

Due to their observation that participants consistently rated their discomfort lower under 

the sine waveform condition, and as evidenced by the lower levels of the required 

stimulus intensity to maintain 10% MVIC, the authors concluded that the sine waveform 

was most comfortable.  Caution should be exercised with respect to this conclusion 

because no significant differences were observed in subjective discomfort levels and 

GSR changes were significantly lower during the square waveform condition. However, 

the authors hypothesized that their lack of significant differences with respect to self-

reported discomfort was attributable to their small sample size.40  It should be noted that 

the extent to which these results are clinically applicable is unclear, as it is unlikely that 

clinicians will implement NMES-induced contractions lasting longer than 10-20 seconds. 

Low-frequency pulsed currents (PCs) consist of biphasic or monophasic pulses 

delivered at a range of frequencies between 1-200 Hz, whereas kilohertz-frequency 

alternating currents (KFACs) consist of biphasic waveforms delivered at a range of 

frequencies between 1000-10,000 Hz.23,37,157  Consequently, the biphasic waveforms 

included in the aforementioned study40 can be categorized as PCs while the Russian and 

Interferential waveforms can be categorized as KFACs.  It is important to note that 

KFACs may also be referred to as burst-modulated alternating currents because the 

alternating current is often delivered in the form of bursts followed by inter-burst 

intervals,157 but for the purpose of consistency they were only referred to as KFACs.  The 

proposed theoretical advantage associated with KFACs is that higher frequencies lead to 

reduced skin impedance, ultimately allowing greater amounts of current to be delivered 

to motor nerves.2  Russian and Aussie currents are two commonly used forms of KFACs 
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within the clinical setting.37  The standard Russian current is defined as having a carrier 

frequency of 2,500 Hz delivered at a burst frequency of 50bps and a burst duty cycle of 

50% (e.g., 10 ms on :10 ms off)95; whereas the standard Aussie current is defined as 

having a lower carrier frequency of 1,000 Hz and 20% duty cycle, but is also delivered at 

a burst frequency of 50bps.37 

Vaz et al.38 compared self-reported discomfort and the amount of stimulus 

intensity required to achieve NMES-induced quadriceps contractions of 10% MVIC 

under a PC and Russian condition.  They reported significantly lower discomfort, as well 

as lower stimulation intensity requirements under the PC condition.  In contrast, Laufer et 

al.23 observed similar levels of self-reported discomfort while stimulating the wrist 

extensors at a maximum tolerable intensity under standard Russian (e.g., 50bps and 50% 

burst duty cycle) and PC (50 pps) conditions.  These authors also included variations of 

the standard Russian current (e.g., 20bps and/or 20% burst duration) in their comparison, 

and they reported that the variation consisting of 20bps and a 20% burst duration resulted 

in greater levels of discomfort relative to the standard Russian and PC conditions. 

A more recent study37 compared the impact of two PCs to two KFACs with 

respect to patient comfort during NMES of the quadriceps.  Russian and Aussie 

waveforms were used to represent KFACs, while the PCs differed in pulse duration only.  

The pulse durations selected were 200 µsec or 500 µsec, which mimic the pulse durations 

of Russian and Aussie currents, respectively. Under each of the conditions the stimulus 

intensity was increased until the participant reported reaching their maximum tolerable 

discomfort level, at which point NMES-induced torque and self-reported discomfort 

scores using a VAS were recorded.  The participants received each of the NMES 



 

61 

conditions with the quadriceps in a relaxed state, and when superimposed during an 

MVIC.  There were no significant differences in self-reported discomfort across NMES 

conditions regardless of whether the stimulus was superimposed or applied to the relaxed 

muscle.  This observation is limited because the stimulus intensity was not held constant 

across conditions but rather the intensity was increased until the participant reported 

reaching their maximum tolerable discomfort under each condition.  Consequently, it 

would be expected that similar levels of discomfort were experienced because 

participants reported reaching the same self-reported discomfort level prior to beginning 

each condition.  Likely, a more appropriate approach for comparing NMES-induced 

discomfort levels is to hold either the stimulus intensity or contraction intensity constant 

across conditions, which has been done in other studies.36,38,40,41  It is important to note 

that similar NMES-induced torque was observed across each of the conditions tested, 

except when applying Russian to the muscle in a relaxed state37; thus it may be 

speculated that similar results could have been observed had the researchers standardized 

the contraction intensity across conditions. 

A 2015 meta-analysis,76 which is considered to provide the highest level of 

evidence,12 compared the influence of KFACs and PCs on self-reported patient 

discomfort.  The KFACs included in this study were limited to Aussie and Russian 

waveforms.  According to the authors the grouped data obtained from studies meeting the 

inclusion criteria, which included only one of the previously discussed studies,37 revealed 

that patient comfort was slightly enhanced when using PCs.  However, there were no 

statistically significant differences revealed during the meta-analysis. Consequently, the 

authors concluded that based on the current literature both the KFAC and PC approach 



 

62 

induce similar levels of discomfort, thus they recommended that clinicians can choose 

either of these options. 
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Blunting Strategies 

Blunting strategies, which interrupt the perception of discomfort by the CNS or 

distract patients during treatments, may also be used to diminish or “blunt” the perception 

of NMES-induced discomfort.81  One such blunting strategy that has been examined in 

the literature is the addition of sensory level transcutaneous electrical nerve stimulation 

(TENS) during NMES treatments.  Laufer et al.78 compared self-reported discomfort 

levels during NMES prior to and immediately following a 20 minute TENS treatment.  

However, self-reported comfort levels were not significantly improved via this technique.  

It is important to note that their results may have been confounded by allowing 

participants to alter the stimulus intensity from their initial maximum tolerable stimulus 

intensity prior to the post-treatment NMES protocol.  Consequently, it is plausible that 

the significant increase they observed in the stimulus intensity from pre- and post-test 

masked potential changes in comfort. Although they did not directly measure discomfort, 

Holcomb et al.77 examined whether applying TENS and NMES simultaneously would 

result in greater NMES-induced peak torque of the quadriceps.  They postulated that if 

this approach effectively improved comfort, greater stimulus intensities could be 

comfortably tolerated, which would result in greater NMES-induced torque production.  

However, no significant differences were observed in NMES-induced peak torque while 

using a maximum comfortable stimulus.  Based on the results of these studies, it does not 

appear that TENS decreases NMES-induced discomfort. 

Another blunting strategy that has been examined is the application of 

cryotherapy prior to or during NMES treatments. Miller et al.79 applied a 2 minute ice 

massage over the area of skin identified as the vastus medialis and rectus femoris motor 
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points prior to applying NMES to the area.  Similar to Holcomb et al.,77 these authors did 

not directly measure discomfort but inferred that greater levels of NMES-induced torque 

were indicative of greater comfort.  As evidenced by greater NMES-induced torque under 

the ice massage condition, they concluded that this strategy decreased NMES-induced 

discomfort and they attributed these results to the analgesic effect of cryotherapy.  This 

study provides some evidence to support the use of cryotherapy prior to NMES 

treatments, but due to the methods of this study the duration of the improved comfort 

following a 2 minute ice massage is unknown since only three contractions were 

performed under each condition.  It is unlikely that the analgesic effects of a 2 minute ice 

massage would last the duration of a 15-20 minute NMES treatment. 

Van Lunen et al.80 examined the strategy of applying a longer duration 

cryotherapy treatment in an effort to improve comfort by assessing the maximum 

tolerable stimulus intensity (mV) every 4 minutes over the course of a 20 minute ice bag 

treatment.  They observed a significant increase in the maximum tolerable stimulus 

intensity from baseline over time in both the treatment and control groups, but they also 

observed significant between group differences in favor of the cryotherapy treatment 

condition at the 12, 16 and 20 minute time points.  Despite these between group 

differences there were no significant differences in the NMES-induced torque output, 

with torque significantly increasing over time within each group.  The authors 

subsequently concluded that this strategy has the potential to improve tolerance levels, 

but that it does not ultimately result in improved torque production.  Based on their 

systematic review, which included the two studies79,80 previously discussed, Nolan et al.81 

also concluded that cryotherapy prior to or during NMES treatments has the potential to 
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improving patient comfort, but this improved comfort may not lead to greater NMES-

induced torque output.  Improving patient comfort is important as it may allow for greater 

stimulus intensities which theoretically result in greater NMES-induced force 

production,17,50,51 however, if cryotherapy reduces discomfort without leading to greater 

amounts of force production it may not be a clinically useful strategy.  Consequently, 

Nolan et al. indicated that further research is warranted to determine if this blunting 

strategy decreases or increases NMES-induced torque production. 

Additional Comfort Strategies 

There are additional strategies that also warrant discussion.  For example, while 

stimulating the quadriceps with a standardized stimulus intensity, self-reported comfort 

has been shown to significantly improve while applying NMES with the knee flexed to 

60° relative to a more extended position.36  Acclimation or habituation, which is the 

process by which patients become accustomed to the NMES stimulus and are able to 

subsequently tolerate greater amounts of current also warrants attention.  Alon and 

Smith144 reported that healthy participants were able to tolerate significantly greater 

stimulus intensities over the course of a single session consisting of 10 NMES-induced 

quadriceps contractions, as well as between sessions over the course of 6 days.  

Consequently, they concluded that patient tolerance may improve between and within 

NMES treatment sessions in part due to acclimation.  Others have also reported an 

improved tolerance over the course of a series of initial NMES sessions.97,158 

Patient Characteristics Influencing NMES Tolerance and Comfort Levels 

It is also important to note that some unalterable patient characteristics may have 

the potential to influence NMES-induced discomfort levels and thus limit the amount of 
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stimulus intensity that can be tolerated.  One such patient characteristic is an individual’s 

personality, which has been shown to influence the NMES-induced discomfort 

experienced.25  Another patient characteristic that may influence NMES-induced 

discomfort is gender, however, there appears to be a lack of consensus in the literature 

regarding this topic.  Some authors have reported that males tolerate greater stimulus 

intensities during NMES,73,97,144,145 while others have reported no such gender 

differences.75,80,154  Gender differences with respect to the amount of stimulus intensity 

required to achieve excitatory thresholds (e.g., sensory, motor) have also been 

reported.159,160 

The impact of a possible gender difference, with respect to tolerance levels, on the 

subsequent NMES training intensities is also unclear.  Despite failing to reach 

statistically significant gender differences with respect to the amount of stimulus intensity 

tolerated, Alon et al.154 observed that female participants produced significantly lower 

NMES training intensities while stimulating the triceps surae at maximum comfortable 

and maximum tolerable intensities. Alon and Smith144 observed that males tolerated 

significantly greater stimulus intensities, which also resulted in significantly greater 

NMES training intensities within the male cohort, while stimulating the quadriceps at a 

maximum tolerable intensity.  In contrast,  Laufer et al.97 reported that male total knee 

patients tolerated significantly greater stimulus intensities while treating the quadriceps, 

but this failed to result in a significant gender difference with respect to NMES-training 

intensity.  Bergman et al. 73 and Randolph et al.145 also observed similar results within a 

cohort of healthy individuals, while Kramer82 reported no gender difference in NMES-

training intensities while stimulating the quadriceps at a variety of knee angles and using 
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a maximum tolerable intensity.  Based on the results of these studies, the influence of 

gender differences with respect to the amount of stimulus intensity tolerated on NMES 

training intensities is unclear. 

In addition to tolerance levels, it is important to discuss a possible gender 

difference with respect to self-reported discomfort levels.  Maffiuletti et al.159 did not 

observe any statistically significant gender differences in self-reported discomfort during 

NMES-induced quadriceps contractions while using a stimulus intensity required to 

produce 10% MVIC.  However, they did observe significantly greater discomfort levels 

reported by females while using a stimulus intensity required to reach motor threshold.  

They postulated that the discomfort levels were not different across genders during the 

supramotor condition due to large amounts of inter-individual variability. And they 

observed that a larger number of females were unable to achieve the supramotor level; 

thus they concluded that females perceived the noxious stimulus associated with NMES 

to be more uncomfortable. 

During a follow-up study Maffiuletti et al.160 did not observe any gender 

differences with respect to self-reported discomfort levels recorded immediately after the 

highest excitatory level tolerated by each participant (e.g., sensory, first motor or second 

motor).  Furthermore, Bergman et al.73 also observed similar levels of self-reported 

discomfort across genders.  It is important to note that these results are limited because 

during the Bergman et al. study each participant increased the stimulus intensity to their 

individual maximum tolerable level, which should have resulted in similar levels of self-

reported discomfort across participants; whereas during the Maffiuletti et al. study not all 

of the participants rated discomfort following the same excitatory threshold.  Based on 
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the results of these studies,73,159,160 the influence of gender on self-reported NMES-

induced discomfort appears to be unclear. 

It is also important to gain an understanding of how subcutaneous tissue thickness 

differences may impact the amount of stimulus intensity tolerated, as well as self-

reported discomfort levels.  Miller et al.156 observed that female participants with the 

greatest amount of subcutaneous tissue thickness tolerated significantly greater stimulus 

intensities while using a maximum comfortable stimulus.  However, as with previously 

discussed studies,73,97 these authors reported that the significant difference in the 

maximum comfortable stimulus intensity tolerated by the participants with greater 

amounts of subcutaneous tissue did not result in significantly greater NMES training 

intensities.  They postulated that the thicker subcutaneous tissue acted as a poor 

conductor, which prevented the current from reaching the underlying quadriceps muscle 

bellies.  The participants with greater amounts of subcutaneous tissue were subsequently 

able to tolerate greater stimulus intensities without eliciting strong muscle contractions, 

which may have limited the amount of muscular discomfort previously discussed,78,144,151 

thus allowing for greater stimulus intensities to be tolerated. 

Medeiros et al.161 stimulated the quadriceps in a cohort of healthy women while 

using a maximum tolerable stimulus intensity, and the women were separated into two 

groups representing thick and thin subcutaneous tissue amounts.  As with Miller et al.156 

they observed that greater stimulus intensities were tolerated by those with greater 

amounts of subcutaneous tissue.  However, in contrast to Miller et al., Medeiros et al. 

observed significantly lower NMES training intensities within the thick subcutaneous 

tissue group despite the greater stimulus intensities used by this group; which is also in 
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direct contrast to studies reporting no difference between groups using significantly 

different stimulus intensities.73,97 

With respect to self-reported discomfort levels and subcutaneous tissue thickness, 

Medeiros et al.161 reported no significant difference between the thick and thin 

subcutaneous tissue groups; which should have been expected because a maximum 

tolerable intensity was used by each participant during their study.  During their 

previously discussed study examining gender effects, Maffiuletti et al.160 also categorized 

participants as obese or non-obese based on body mass index (BMI) scores.  In 

agreement with Medeiros et al., they did not observe any significant differences in self-

reported discomfort levels of participants categorized as obese or non-obese while 

measuring discomfort scores immediately after the highest excitatory threshold tolerated 

by each participant.  They also observed a strong positive relationship between BMI and 

stimulus intensity required to reach motor thresholds.  Interestingly, BMI was a better 

predictor of the intensity required to achieve motor threshold than the subcutaneous tissue 

thickness measured at the site of stimulation, with BMI explaining 56%-61% of the 

differences in the stimulus intensity required to achieve motor thresholds and 

subcutaneous tissue thickness only explaining 26%-50%. 

It is important that clinicians consider patient body type while providing NMES 

treatments, since obesity may influence the amount of stimulus intensity required to 

achieve motor thresholds.160  As with gender, the influence of subcutaneous tissue 

thickness and/or obesity on patient comfort is unclear due to methodological limitations 

of the aforementioned studies,160,161 but it does appear that individuals with greater 

amounts of subcutaneous tissue tolerate greater stimulus intensities.156,161  However, 
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Maffiuletti et al.160 concluded that obese participants demonstrated a lower tolerance to 

NMES, as evidenced by the fact that a larger number of obese participants were unable to 

reach the motor thresholds during their study. 

In addition to body type and gender, menstrual cycle phases may also impact 

NMES-induced discomfort levels.  Teepker et al.162 compared sensory and pain 

thresholds while applying an electrical stimulus to the wrist extensors on days 1, 4, 14 

and 22 of a 28 day menstrual cycle.  Although there were no significant differences with 

respect to the sensory threshold, the participants demonstrated significantly greater pain 

tolerance levels on days 14 and 22 relative to day 1.  Consequently, NMES may be more 

comfortable, or greater stimulus intensities may be tolerated, when treating females 

during the later phases of their 28 day menstrual cycle.  Furthermore, these results 

suggest that researchers should collect data between days 4 and 22 of a 28 day cycle 

during studies in which NMES-induced discomfort is assessed in females over time; 

which has been done previously.37 

Strategies to Maximize NMES-induced Force Production 

Overview 

To this point the literature reviewed has primarily focused on potential strategies 

for improving NMES-induced fatigue and/or nerve accommodation, as well as 

discomfort, because improving these factors may ultimately impact the amount of force 

produced during NMES-induced contractions; thus, improving the overall effectiveness 

of this treatment modality by enhancing NMES training intensities.  However, strategies 

having the potential to directly improve NMES-induced force production also warrant 

discussion. 
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Current Parameters 

It is commonly accepted that increasing the stimulus intensity results in a linear 

increase in NMES-induced force output.17,50,51  Similarly, it is commonly accepted that 

increasing the stimulation frequency results in greater NMES-induced force production, 

but only to a certain extent because the established force-frequency relationship curve 

demonstrates a sigmoidal relationship between frequency and NMES-induced force 

output; with a plateau in substantial force increases occurring at roughly 60 Hz.33,52,53 

In contrast to stimulus intensity and frequency, the impact of pulse duration on 

NMES-induced force output is not as well understood.  Based on their review of the 

literature, Gorgey et al.26 reported that the influence of pulse duration on NMES-induced 

force production is underappreciated, and that knowledge regarding the optimal pulse 

duration is limited.  These authors consequently performed a study in which the 

quadriceps of participants were stimulated using a standardized stimulus intensity, which 

was set to elicit a contraction of 45% MVIC.  The NMES conditions consisted of a long 

and a short pulse duration condition (250 µsec or 450 µsec).  Relative to the shorter pulse 

condition (250 µsec), the authors observed significantly greater NMES-induced peak 

torque while using the longer pulse stimulus (450 µsec) during the first NMES-induced 

contraction.  Consequently, the authors concluded that longer pulse durations enhance 

NMES-induced torque production.  It is important to note that the stimulus frequency was 

not standardized across the two conditions, with a lower frequency used during the 

shorter pulse duration condition.  Thus, as acknowledged by the authors, this study was 

limited because different frequencies may have confounded the results.  However, the 

authors contended that inconsistent frequencies were not a sufficient explanation for the 
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20% difference in NMES-induced torque they observed between conditions because the 

two frequencies they used are located within plateau portion of the force-frequency curve 

(60 vs. 100 Hz). 

Despite this limitation, additional evidence also suggests that increasing the pulse 

duration results in greater NMES-induced force output.  In an earlier study, Gorgey et 

al.50 compared the influence of frequency, pulse duration and stimulus intensity on 

NMES-induced torque production of the quadriceps while using four different NMES 

protocols.  Three of the protocols differed from a reference protocol by either lowering 

the stimulus intensity, frequency or pulse duration.  These authors reported that 

increasing the pulse duration from 150 µsec to 450 µsec, while maintaining a constant 

frequency and stimulus intensity, resulted in significantly greater NMES-induced torque 

production.  Although decreasing the frequency and stimulus intensity also resulted in a 

significant decrease in NMES-induce torque, the authors concluded that pulse duration 

appears to influence NMES-induced torque production more than the other parameters; 

as evidenced by a 55% decrease while using a shorter pulse duration whereas decreases 

of 18% and 34% occurred while using a lower frequency and stimulus intensity, 

respectively. 

Increasing the pulse duration, frequency or stimulus intensity results in greater 

NMES-induced force output, 17,26,33,50-53 but it is important to note the mechanism 

responsible for the subsequent increases appears to differ across these parameters.50  

Greater stimulus intensities have been shown to result in a linear increase in the amount 

of muscular area activated by the stimulus,50,51 thus the mechanism responsible for 

greater torque production while treating the quadriceps with higher stimulus intensities 
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has been attributed to a greater amount of muscle activation.50  In contrast, the amount of 

muscular area activated by high and low frequencies appears to be similar, thus the 

mechanism responsible for the improved torque while treating the quadriceps using 

higher frequencies has been attributed to enhanced twitch summation.50  Similar to higher 

stimulus intensities,  Gorgey et al.50 observed that using a longer pulse duration while 

treating the quadriceps resulted in a greater amount of muscle CSA activated by the 

stimulus, but the subsequent increases in torque and in the amount of muscle activated 

were not proportional.  This observation lead the authors to suggest that the increased 

amount of muscle activated did not adequately explain the subsequent increase in torque 

observed while using a longer pulse duration.  Furthermore, during their later study 

Gorgey et al.26 reported that despite a significant difference in torque production, the 

volume of activated muscle CSA (cm3) was not significantly different between the long 

and short pulse duration conditions. Consequently, both sets of authors postulated that the 

greater force output associated with the longer pulse duration conditions may be 

attributable to greater fast-twitch fiber recruitment.26,50 

Although increasing the stimulus intensity, frequency or pulse duration may result 

in greater NMES-induced force output, there are limitations associated with these 

approaches that must be acknowledged.  Clinicians are often unable to simply increase 

the stimulus intensity until a desired force output is achieved because, as has been 

previously discussed, high stimulation intensities are often uncomfortable.  Simply 

increasing the stimulus intensity is also limited because stimulators used within clinical 

settings have a limited stimulus intensity output capacity; so even if an individual is able 

to tolerate high stimulus intensities the machine would ultimately reach its output 
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capacity. Increasing the frequency is a limited approach because high frequencies may 

result in greater amounts of muscle fatigue, which has been discussed previously.  

Greater fatigue limits the increase in force production that can occur while increasing the 

frequency, thus some authors have suggested that simply increasing the frequency to 

increase torque is also a limited approach.26  If the hypothesis that longer pulse durations 

result in greater activation of fast-twitch fibers holds true,26,50 then using longer pulse 

durations to increase NMES-induced force output would likely result in greater amounts 

of fatigue.  Thus, similar to increasing the frequency, the usefulness of this approach to 

increase NMES-induced force output may be questionable; but it is important to note that 

the influence of pulse duration on fatigue is currently unclear.32 

The influence of KFAC and PCs waveforms on NMES-induced force output has 

also been examined.  During their previously discussed study comparing the influence of 

KFAC and PC on NMES-induced discomfort, Dantas et al.37 also observed similar 

amounts of NMES-induced torque across each condition, with the exception of 

significantly lower torque evoked during the Russian condition with the quadriceps in a 

relaxed state.  Consequently, they concluded that for the purposes of maximizing NMES-

induced quadriceps torque PCs or Aussie currents are advantageous relative to Russian 

current.37  The previously discussed meta-analysis76 reported that NMES-induced torque 

was slightly greater when using PC waveforms, but as with comfort there were no 

statistically significant differences. Consequently, the authors concluded that based on the 

current literature both KFACs and PCs approaches induce similar levels of torque, which 

provides further support to their previously mentioned recommendation that clinicians 

can choose either PCs or KFACs.  In agreement with this conclusion, Laufer et al.23 
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observed similar NMES training intensities, while using a maximum tolerable stimulus 

intensity, irrespective of whether the waveform used was PC or any of three Russian 

variations. 

Variable Frequency Trains 

During their study comparing CFTs and VFTs, Papaiordanidou et al.28 observed 

greater NMES-induced torque during the initial 50 contractions of the VFT condition.  

Consequently, they concluded that when the goal is to obtain high levels of NMES-

induced torque VFTs may be a better choice than CFTs.28  However, based on their 

review of over 50 articles, Binder-Macleod and Kesar141 concluded that VFTs may be 

advantageous with respect to increasing NMES-induced torque only when the muscle has 

been fatigued. 

Some of the previously discussed studies examining the influence of VFTs and 

CFTs on NMES outcomes also examined torque output after the muscle had been 

fatigued.  Binder-Macleod et al.65 reported that after the muscle had been fatigued, the 

VFT stimulus induced greater average torque relative to three different CFT protocols.  

Slade et al.55 observed that prior to a fatiguing protocol VFTs produced significantly a 

smaller TTI relative to CFTs, whereas following the fatiguing protocol VFTs elicited a 

significantly greater TTI; which occurred due to greater peak torque and reduced slowing 

of the rate of rise while using VFTs.  Bickel et al.63 compared the torque produced with a 

VFT to that of a CFT with the muscle in a fatigued state.  They observed a greater TTI, as 

a result of greater NMES-induced torque and faster rates of contraction, under the VFT 

condition. 
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Based on their review of the literature, Binder-Macleod and Kesar141 reported that 

an increase in sarcoplasmic calcium concentration and an increase in the series elastic 

component stiffness are the two primary mechanisms hypothesized as the mechanism by 

which an increase in force occurs while using VFTs.  Although VFTs appear promising 

for increasing NMES-induce torque when the muscle has been fatigued, this is currently a 

limited strategy because most stimulators used within clinical settings do not include 

VFTs as an option. 

Electrode Placement 

The strategies involving electrodes previously discussed primarily focus on 

improving comfort in an effort to indirectly enhance NMES-induced force production, 

but electrode placement strategies may also have a direct impact. Brooks et al.75 

examined whether placing electrodes in a parallel or perpendicular fashion relative to the 

muscle fibers maximized NMES-induced torque production while stimulating the 

quadriceps.  They observed that despite maintaining a similar stimulus intensity across 

conditions, NMES-induced torque was significantly greater when the electrodes were 

placed parallel to the muscle fibers.  This observation held true across genders, and the 

17% difference in NMES-induced torque resulted in NMES training intensities of 44% 

MVIC and 27% MVIC during the parallel and perpendicular conditions, respectively.  

The authors postulated that greater torque occurred during the parallel condition because 

this method facilitates excitation-contraction coupling processes. They further postulated 

that because the inter-electrode distance was smaller there was a greater current density 

under the parallel condition, which may have increased the number of motor units 

activated by the stimulus.  Although current density is a term commonly used to describe 
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the amount of current per unit area of the electrodes used,152  it is important to note that 

these authors appeared to use the term to describe the amount of current per unit area of 

the thigh between the electrodes. 

This later hypothesis is questionable because in order to elicit a motor response 

the current density must be sufficient at the motor axons to cause depolarization.4 When 

electrodes are placed within close proximity a higher current density occurs within 

superficial tissues; whereas greater spacing among electrodes allows for higher current 

densities in deeper tissues, which is where the muscle and motor axons are located.4  

Consequently, wider spacing between electrodes is considered to be advantageous while 

attempting to stimulate deeper structures (e.g., motor axons), as this allows for greater 

dispersion of current.155  It is important to note that during a preliminary study Petrofsky 

et al.163 observed that a greater percentage of the stimulation current reached the deeper 

quadriceps muscle tissue while using a smaller inter-electrode distance, but they did not 

assess the subsequent NMES-induced torque output.  During a more recent study, Viera 

et al.74 observed that NMES-induced torque was significantly enhanced by increasing the 

distance between three pairs of electrodes placed over the muscle bellies of the three 

superficial quadriceps.  Furthermore, they reported that the increase in torque 

corresponding with an increase in stimulus intensity plateaued at relatively low stimulus 

intensities under the smaller inter-electrode distance conditions, while no such plateau 

was observed under the larger inter-electrode distance conditions.  These authors 

subsequently concluded that the inter-electrode distance used while stimulating the 

quadriceps significantly impacts the amount of NMES-induced torque, with greater inter-

electrode distances being advantageous.  It is important to note that Viera et al. allowed 
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the stimulus intensity to vary, as a maximum tolerable intensity was identified prior to 

each condition.  However, the stimulus intensity used under three of the four conditions 

tested was not significantly different, with significantly smaller stimulus intensities used 

only during the smallest inter-electrode distance condition. 

Bergman et al.73 examined the influence of crossing or maintaining electrode pairs 

parallel to one another while stimulating the quadriceps via two independent channels.  

The authors reported that the NMES training intensity was significantly greater under the 

crossed electrode condition, despite the lack of a significant difference with respect to the 

maximum tolerable stimulus intensity used under each condition.  The authors postulated 

that the crossed pattern outperformed the parallel pattern because the greater distance 

between electrodes may have allowed for a greater amount of muscle to be recruited, 

which is in agreement with the aforementioned results of Viera et al.74 but contrary to the 

hypothesis of Brooks et al.75  Bergman et al. also postulated that the flow of current under 

the crossed condition better matched the pennate muscle fiber arrangement of the 

quadriceps. This hypothesis also appears to partially contradict the results of Brooks et 

al., but it is important to note that the crossed or parallel pattern used by Bergman et al. 

referred to the channel arrangement of the two electrode pairs and not the orientation of 

the electrodes.  During both conditions of the Bergman et al. study the electrodes were 

oriented in a similar fashion to the electrode orientation used during the parallel condition 

in the Brooks et al. study.  Therefore, it is difficult to directly compare and contrast these 

two studies. 

Bergman et al.73 also provided a third hypothesis to explain their results, 

suggesting that the crossed electrode arrangement may have enhanced motor unit 
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recruitment by allowing greater current flow through motor points of the quadriceps, 

specifically the rectus femoris motor point.  There appears to be some support in the 

literature for this hypothesis because stimulating over manually identified motor points 

has been shown to enhance NMES-induced torque of the quadriceps39; which 

subsequently lead Gobbo et al.24 to conclude that placing electrodes over manually 

identified motor points may maximize spatial recruitment and the subsequent NMES-

induced force production. 

When discussing the influence of electrode placement on NMES-induced force 

production, it is important to note that while stimulating the quadriceps many of the 

previously discussed studies used a two electrode arrangement,26,50,69,75,150,159 while others 

used an arrangement of four36,42,44,73,145 or even three21,27 electrodes.  To the best of our 

knowledge there have yet to be any studies comparing which approach, if any, is best.  

Consequently, further research is warranted to determine which combination of electrode 

number, size, orientation and placement maximizes NMES-induced force output and 

patient comfort while stimulating the quadriceps. 

Joint Position 

With regards to maximizing NMES-induced torque while stimulating the 

quadriceps it is also important to briefly discuss the influence of the knee joint angle used 

during NMES treatments.  During volitional contractions of the quadriceps it has been 

well established that the greatest peak torque occurs with the knee in roughly 60°-70° of 

knee flexion,164-166 which is most likely due to the optimal overlap of thick and thin 

filaments associated with the well-known length-tension relationship principle.  With 

respect to involuntary contractions, two older studies82,83 investigated NMES-induced 
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torque production at a variety of knee joint angles. Each of these studies reported that 

greater NMES induced torque occurred with the knee positioned in the middle portion of 

the available range of motion, but each had a substantial limitation because the authors 

did not standardize the stimulus intensity across the tested knee positions; which likely 

biased the results because knee joint angle have subsequently been shown to influence 

NMES-induced discomfort levels.36  McNeal and Baker71 also examined the influence of 

knee joint angle on NMES-induced peak torque, but they standardized the stimulus 

intensity across conditions.  As with the earlier studies, they observed greater torque with 

the knee positioned in the mid-range of motion, however, the clinical relevance of their 

study is questionable because they only assessed the torque produced during twitch rather 

than tetanic contractions. 

Due to the limitations of these studies,71,82,83 Bremner et al.42 recently performed a 

study comparing NMES-induced peak torque with the knee positioned at 60° and 15°.  

These authors used a clinically relevant NMES protocol while maintaining a constant 

stimulus intensity, and they observed significantly greater NMES-induced peak torque 

with the knee at 60°.  Consequently, Bremner et al. concluded that the knee joint angle 

during NMES treatments impacts peak torque in the same manner in which voluntary 

contractions are affected, thus the knee should be positioned within the mid-range of 

motion in order to maximize NMES-induced peak torque. 

Multipath NMES 

Multipath NMES (m-NMES) is a novel NMES treatment approach identified in 

the literature as having multiple pathways, or multiple electrode pairings, by which 

current is distributed via two separate channels; whereas during conventional NMES (c-
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NMES) the current is distributed within each channel between a single pair of electrodes, 

or along a single pathway.21,27,84,88  Furthermore, during m-NMES the specific pathways 

by which current is distributed are dynamically changed by opening and closing 

pathways for preset time periods within each pulse of current delivered with the first 

channel.21,84,88  It has been suggested that m-NMES, which is commercially available as 

the Kneehab® XP (Theragen LLC, Leesburg, VA),27 is advantageous because it provides 

an asynchronous stimulus and improves spatial distribution through dynamically 

changing the pathways by which current is distributed and by dynamically altering the 

pulse duration.24,87 

The Kneehab® XP consists of a portable stimulation unit connected to a neoprene 

garment with four self-adhesive reusable gel electrodes integrated into the garment.27,86  

The four electrodes are referred to as electrodes A, B, C and D, and they differ in size; 

with their sizes being 10 cm X 20 cm, 3 cm X 18 cm, 10 cm X 7.5 cm and 7 cm X 14 cm, 

respectively.21,84,87  When the garment is appropriately placed over the quadriceps, 

electrode A is located superficial to the proximal rectus femoris and is oriented 

perpendicular to its muscle fibers; electrodes B and C are located superficial to the 

proximal and distal vastus lateralis, with electrode C and the distal portion of electrode B 

oriented perpendicular to its muscle fibers and the proximal portion of electrode B 

oriented parallel to its muscle fibers; electrode D is located superficial to the distal vastus 

medialis and is oriented somewhat parallel to its muscle fibers. 

The Kneehab® XP produces a symmetric bi-phasic current that is delivered 

through two distinct channels, but as previously mentioned, within each channel the 

current is distributed between multiple electrode pairings or pathways and the pathways 
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of the first channel are dynamically altered within each electrical pulse.21,27,84,88  With 

respect to the pathways by which current of the first channel (medial channel) is 

distributed, the A electrode serves as one pole and the other three electrodes serve as the 

opposite pole; whereas the D electrode serves as one pole and the other three electrodes 

serve as the opposite pole with respect to the pathways of the second channel (lateral 

channel).21,27,87  The pulse duration of the electrical pulses delivered through the medial 

channel is 400 µsec, while the pulse duration of the pulses delivered through the lateral 

channel is only 100 µsec.21,88  The pathways by which the current is distributed within the 

medial channel are created by the A and C as well as the A and D electrode pairings 

during the first 300 µsec of each pulse; while the pathway by which the current is 

distributed changes during the final 100 µsec with the current only being distributed via 

the A and B electrode pairing.21 In contrast, the pathways by which the current is 

distributed in the lateral channel do not change within each pulse.  The pathways by 

which the current is distributed within the lateral channel are created between the D 

electrode and each of the other three electrodes (Figure 1).21  It is also important to note 

that the Kneehab® XP has six NMES programs that determine the frequency of the 

individual electrical pulses delivered by each channel, as well as the on:off ratio used 

throughout a given treatment.167  Thus, it appears that the frequency and on:off ratio of 

each channel are the same, whereas the pulse durations differ. 
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Figure 1. Multipath Current Pathways. 

Note.  Figure based on information provided by Paessler et al.84 

In order to achieve the dynamic pulse duration and dynamic pathways, Crowe and 

Minogue91 developed a control circuit with a series of output terminals that connected to 

each of the four electrodes.  The control circuit is capable of subdividing each electrical 

pulse into a series of time periods, or slots.  Through a series of switches it is determined 

whether a given electrode serves as a cathode, anode or is inactive for each time slot of a 

given electrical pulse.91 Consequently, each 400 µsec pulse delivered via the medial 

pathway can be thought of as being subdivided into four 100 µsec time slots.  During the 

first three time slots of each pulse the switches are manipulated to allow the current to 

flow between the A, C and D electrodes, with A serving as one pole and C and D serving 

as the opposite.  However, during the last 100 µsec time period the switches are 

manipulated to only allow current to flow between the A and B electrodes (Table 1; 

Figure 1).  It is unnecessary to subdivide the 100 µsec pulse delivered via the lateral 
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channel into a series of time slots, because current flows between the same pathways 

without manipulating the pulse (Table 2; Figure 1).21 

Table 1  

Channel 1 Current Pathway Distribution During Each Pulse 

Electrode Time 1 

(0-100 µsec) 

Time 2  

(101-200 µsec) 

Time 3  

(201-300 µsec) 

Time 4 

(301-400 µsec) 

A Active Active Active Active 

B Not Active Not Active Not Active Active 

C Active Active Active Not Active 

D Active Active Active Not Active 
 

Note.  The A electrode serves as one pole while the other electrodes serve as the other pole. 

Table 2  

Channel 2 Current Pathway Distributed During Each Pulse 

Electrode Time 1  

(0-100 µsec) 

Time 2 

(101-200 µsec) 

Time 3  

(201-300 µsec) 

Time 4  

(301-400 µsec) 

A N/A N/A N/A Active 

B N/A N/A N/A Active 

C N/A N/A N/A Active 

D N/A N/A N/A Active 
 

Note.  The D electrode serves as one pole while the other electrodes serve as the other pole. N/A indicates not applicable. 

The theory of this device is grounded upon the principles of temporal and spatial 

summation.91  Temporal summation has been defined as the process by which 

subthreshold stimuli from the same source are summed over time, and spatial summation 

has been defined as the process by which subthreshold stimuli from various sources are 

summed over space.3  Consequently, the developers91 suggested that the device utilizes 

temporal summation when a given electrode is active over consecutive time slots, 

whereas spatial summation is caused when two or more electrodes are active at the same 
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time. As previously discussed, with respect to the medial channel the current is 

distributed between the A and C as well as the A and D electrodes during the first three 

time slots, whereas during the final time slot the current is distributed only between the A 

and B pathway. This pattern ultimately allows temporal summation during the first 300 

µsec of each pulse because current is delivered over a series of consecutive time slots, but 

current density is lowered under electrode C and D (by splitting the overall current 

between two electrodes) without altering current density under electrode A. However, 

greater current density occurs under the B electrode, relative to what was experienced 

under electrodes C and D, during the last 100 µsec of each pulse because the current is 

only running between the A and B electrodes.  Through altering the current density as 

well as the amount of time an electrode is active, the developers indicated that both forms 

of summation occur by using a pattern such as the medial channel of the Kneehab® XP 

device discussed in this example. 91 

Visual Analog Scale Validity Evidence 

A VAS, which consists of a 100 mm horizontal line with vertical anchors and 

verbal descriptors at each end, has been frequently utilized in the literature as a measure 

of self-reported discomfort during NMES treatments.21,23,27,29,36-38,69,72,160,161  In general, 

the verbal descriptors placed at each end of a VAS are “no pain” and “worst imaginable 

pain”168; however, it is important to note that during NMES studies the descriptors are 

often altered from “pain” to “discomfort” (e.g., “no discomfort”, “worst possible 

discomfort”).21,27,29,36,37,159,161 

The most frequent form of validity evidence with respect to the VAS is construct 

validity, particularly in the form of convergent validity.  The observed correlations 
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between VAS scores and scores on various scales used to assess the same latent variable 

(e.g., discomfort/pain) range from 0.30 to 0.95.169-172  Downie et al.171 examined 

convergent validity by comparing VAS scores to scores on a simple descriptive scale 

(SDS) and numerical rating scale (NRS).  Scores on the VAS had a correlation of 0.78 

with scores on the SDS, whereas VAS scores had a correlation of 0.91 with the NRS 

scores.  These authors concluded that their results provide convergent validity evidence, 

since the scales appear to measure the same underlying construct. 

Good et al.172 also used the NRS to examine convergent validity, however, they 

also examined discriminant validity. The correlation between five sets of VAS and NRS 

scores taken over the course of two days ranged from 0.85-0.92, which provides evidence 

of convergent validity because the two measures of the same construct were highly 

correlated.  In order to assess discriminant validity the authors used an alternative NRS 

scale that was designed to measure a different construct (“distress”).  The correlations 

between the VAS designed to measure pain intensity and the alternative NRS scale were 

much lower, ranging from 0.43-0.78 across the five measurements.  The authors 

concluded that these observations provide discriminant validity evidence, since the two 

measures of different constructs were not as highly correlated as the two measures of the 

same construct. 

Some authors have indicated that due to the absence of a gold standard, criterion 

validity evidence has not been established with respect to the VAS.169,170,173 In addition, 

there does not appear to be any reference evaluating the content validity of VAS scores in 

the literature.169 Although these two forms of validity evidence are lacking, there appears 

to be adequate construct validity evidence (discriminant and convergent) to support the 
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use of the VAS; since the VAS is highly correlated with similar measures of the same 

construct (e.g., discomfort/pain) and not as highly correlated with measures of different 

latent variables.171,172 

Conclusion 

As evidenced throughout this literature review, there is a lack of consensus with 

respect to the most appropriate methods to limit NMES-induced fatigue and patient 

discomfort in an effort to indirectly maximize NMES-induced force production, as well 

as with respect to directly maximizing NMES-induced force production.  Some have 

suggested that the primary determinant of NMES-induced quadriceps torque production 

may be uncontrollable intrinsic factors rather than controllable extrinsic factors,174 which 

may explain this lack of consensus.  However, a recent meta-analysis concluded that in 

order to clarify the ideal NMES treatment methods, further well-designed studies are 

needed.76 

Based on the current state of the literature, additional strategies such as the 

multipath method that was studied in this project, are needed.  Furthermore, Gobbo et 

al.24 suggested that some of the advances in evidence based strategies for improving 

NMES are not being used by clinicians because they are difficult to integrate within 

clinical settings.  This project was also needed because the m-NMES device used in this 

study provides a potential strategy that can easily be implemented by clinicians as well as 

patients. 
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CHAPTER III  - METHODOLOGY 

Study Design 

Two single-blind cross-over studies with sequence order counterbalanced were 

performed in a university setting (Figure 2 & 3).  A design allowing for within-

participant comparisons was selected in an effort to eliminate the possibility of inter-

participant differences resulting in confounding factors.  For example, subcutaneous 

tissue thickness differences156,161 and personality factors25 have been shown to impact 

neuromuscular electrical stimulation (NMES) related outcomes similar to those included 

in this project.  This project was subdivided in the form of two separate manuscripts 

(Chapter IV and Chapter V).  However, in an effort to facilitate the reader’s 

comprehension the methodology is presented in a unified format throughout this chapter 

(see Appendix A for detailed diagrams of the study design and methods specific to each 

manuscript). 

 

Figure 2. Manuscript 1 Cross-Over Study Design 

Note.  “O” = observation, “XA” = m-NMES treatment condition while standardizing the stimulus intensity at 30% MVIC, “XB” = c-

NMES treatment condition while standardizing the stimulus intensity at 30% MVIC (served as the control condition for manuscript 1), 

“R” = participants assigned to condition sequence using a probabilistic technique that ensured an equal number of participants in each 

sequence.  O1, O2 = familiarization session observations, O3, O5 = pre-test observations, O4, O6 = post-test observations.  It is 

important to note that due to rolling participant enrollment observations did not occur at the same time for all participants.  The 

notation used in this figure is based on the notation used by Shadish et al.94. 

                R    O3    XA    O4         O5    XB   O6 

O1     O2 

                R    O3    XB    O4          O5    XA    O6 



 

89 

 

Figure 3. Manuscript 2 Cross-Over Study Design 

Note.  “O” = observation, “XC” = m-NMES treatment condition while standardizing the stimulus intensity using a maximum 

comfortable stimulus intensity, “XD” = c-NMES treatment condition while standardizing the stimulus intensity using a maximum 

comfortable stimulus intensity (served as the control condition for manuscript 2), “R” = participants assigned to condition sequence 

using a probabilistic technique that ensured an equal number of participants in each sequence.  O7, O9 = pre-test observations, O8, O10 

= post-test observations.  It is important to note that due to rolling participant enrollment observations did not occur at the same time 

for all participants. The notation used in this figure is based on the notation used by Shadish et al.94 

Due to the incorporation of probabilistic counterbalancing of test session order, as 

well as the deliberate introduction of two NMES interventions prior to measuring their 

effect on fatigue and discomfort related outcomes, the design selected for this project was 

categorized as an experimental design.94  An experimental design was selected as this 

approach facilitated the primary investigator’s ability to make causal inferences.94 

Design Strengths and Weaknesses 

According to Shadish et al.,94 in order to infer a causal relationship the following 

three conditions must be satisfied:  

1.  The cause must precede the effect. 

2.  The cause and effect must be related. 

3.  All other alternative explanations must be unlikely. 

The methodology implemented throughout this project ensured that the proposed 

cause (e.g., NMES treatment condition, time) preceded any observed effects on fatigue 

and discomfort related outcomes.  Furthermore, the use of a probabilistic method to 

counterbalance test session order reduced the likelihood of alternative explanations (e.g., 

R    O7    XC    O8         O9    XD    O10 

 

R    O7    XD    O8         O9    XC    O10 
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order effect, selection bias), which are often referred to as threats to internal validity, thus 

allowing the NMES treatment condition to be the primary remaining systematic 

difference.94  It is important to note that for the purposes of this project the conventional 

NMES (c-NMES) treatment condition served as the control condition.  Therefore, the c-

NMES condition provided an appropriate counterfactual framework necessary for 

establishing an effect (e.g., provided information related to what would have happened 

had participants not received multipath NMES [m-NMES] treatments).94 

Threats to internal validity are considered to be any plausible causes of an 

observed effect other than the independent variable(s)94; which were defined as NMES 

treatment condition and time for the purposes of this project.  Despite the efforts to 

facilitate causal inferences by implementing an experimental design, it is important to 

acknowledge that some threats to internal validity remained plausible.  Due to the use of 

a rolling enrollment strategy, a history threat remained possible because an event 

impacting the outcome(s) could have occurred concurrently with the participation of one 

individual that did not occur for a previously enrolled individual or an individual enrolled 

at a later date.94  A rolling enrollment strategy was utilized because the laboratory 

equipment only allowed the measurement of one participant at a time. 

In addition, due to a lack of availability of other investigators, it was not possible 

to blind the primary investigator tasked with measuring the outcomes to the NMES 

treatment condition.  Consequently, the threat of expectancy also remained possible94; but 

it is important to note that the primary investigator made efforts to standardize feedback 

and participants were blinded to treatment condition to reduce the plausibility of this 

threat.  Due to the large number of sessions (6 total sessions) and contractions within 
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each session, testing and experimental mortality were also possible threats.94  However, 

as discussed later, the probabilistic assignment of test session sequence was delayed until 

the third and fifth sessions in an effort to reduce the plausibility of experimental 

mortality94; which appears to have been an effective strategy since each participant 

assigned a test session sequence completed all six sessions of the study. 

As with threats to internal validity, threats to external validity remained possible; 

which may have limited the generalizability of the results of this project.94  By using a 

healthy male population, rather than including females and/or injured participants, the 

primary plausible threat limiting the external validity or generalizability of this project is 

the interaction of the causal relationship(s) with units; which is defined by Shadish et al.94 

as occurring when an effect observed in a particular population does not hold true in 

other populations. 

Power Analysis and Sample 

A Priori Power Analysis 

In an effort to strengthen the statistical conclusion validity of this project by 

reducing the plausibility of the threat of low statistical power, a priori power analyses 

were performed to determine the necessary sample size to maintain adequate power.94  

The a priori power analyses were performed using G*Power software (version 

3.1.9.2),175 and a power analysis for each of the planned statistical analyses was 

completed (e.g., dependent t-test, two-way repeated measures ANOVA).  The dependent 

t-test power analysis indicated a minimum requirement of 17 participants to successfully 

complete all sessions in order to maintain statistical power above the commonly accepted 
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0.80 threshold (Table 3)94; whereas a minimum of 12 participants was required with 

respect to the two-way repeated measures ANVOA power analysis (Table 4). 

Table 3  

A Priori Power Analysis Inputs for the Dependent t-tests 

Parameter Selected Input 

Effect size (Cohen’s d) 0.65 

Alpha Level (α) 0.05 

Power (1 - β) 0.80 

Tail(s) One 

 

Table 4  

A Priori Power Analysis Inputs for the Two-Way Repeated Measures ANOVAs 

Parameter Selected Input 

Effect size (Cohen’s f) 0.325 

Alpha level (α) 0.05 

Power (1 - β) 0.80 

Number of groups 2 

Number of measurements 17 

Correlation among repeated measures 0.5 

Nonsphericity correction (ε) 0.4 
 

To determine the appropriate effect size for the a priori power analyses, the 

results of two similar studies comparing c-NMES and m-NMES were examined.21,27 With 

respect to fatigue related outcomes, only Morf et al.27 observed a statistically significant 

difference between the c-NMES and m-NMES conditions.  However, only one of the 

three fatigue related outcomes measured by these authors reached statistical significance 

(e.g., significantly greater percent decline in MVIC after c-NMES relative to m-NMES).  

This statistical difference had a corresponding small to medium effect size (Cohen’s d = 

0.38), but the mean difference between the two NMES conditions was only 3%; which 
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suggests that a small to medium effect size corresponding with this outcome variable 

lacks clinical meaningfulness.  Consequently, a medium to large effect size was selected 

for the a priori power analyses because any statistically significant differences with small 

to medium effect sizes would likely lack clinical relevance. The specific medium to large 

effect size values used during the power analyses (Table 3 & 4) were obtained by 

calculating half the distance between the medium and large effect size values defined by 

Cohen.176  It is also important to note that other authors have selected a large effect size 

(e.g., Cohen’s f = 0.68) for an a priori power analysis during a NMES study examining 

similar dependent variables,37 which further supports the selection of a medium to large 

effect size as appropriate for this project.  The alpha level (α) and power (1 - β) values 

were selected based on commonly accepted values.94  In addition, single-tailed tests were 

selected due to the directional research hypotheses (see Chapter I), which were based on 

the results of similar studies.21,27 

Sample 

A convenience sampling technique was used to obtain the sample for this project, 

with participants being recruited from the university and community population via 

flyers, posted campus announcements and recruitment emails.  In order to facilitate 

participant recruitment, participants were incentivized by being entered into a lottery for 

a chance to win one of four $50 gift cards to a local electronics store.  Due to the results 

of the previously discussed power analyses and the possibility of experimental mortality, 

a rolling enrollment strategy was used with the original objective of collecting data until 

17 participants successfully completed all six sessions.   



 

94 

Although a sample of 17 participants that successfully completed all six sessions 

was originally obtained, it was determined that some of the participants’ data needed to 

be excluded from the statistical analyses due to a unique limitation of the c-NMES unit 

used throughout this project.  Specifically, the c-NMES device has an obscure setting that 

may automatically reduce the stimulus output when the unit senses a change in 

impedance over the course of the NMES-induced contractions.177  As would be expected, 

it was observed that the percent decline in MVIC, in NMES-induced torque and in 

torque-time integral (TTI), as well as the total torque-time integral (T-TTI) and self-

reported discomfort levels, were influenced when this automatic step-down occurred, 

ultimately resulting in an undesired systematic bias in c-NMES test sessions during 

which the stimulus output was automatically reduced by the unit. Of the original 17 

participants, the c-NMES device automatically reduced the stimulus output during six of 

the participants’ test sessions corresponding to the study addressed in manuscript 1 

(Chapter IV); whereas it occurred during seven of the participants’ test sessions 

corresponding to the study addressed in manuscript 2 (Chapter V).  Consequently, the 

data of these participants was excluded from the appropriate statistical analyses. 

In an effort to improve the final sample size the rolling enrollment strategy was 

continued, and an additional four participants successfully completed all six test sessions.  

As with the original group of participants, the c-NMES device automatically reduced the 

stimulus output throughout the c-NMES condition test sessions of some of the additional 

participants.  Specifically, the c-NMES device automatically reduced the stimulus output 

during one of the participant’s test sessions corresponding to the study addressed in 
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manuscript 1 (Chapter IV); whereas it occurred during three of the participants’ test 

sessions corresponding to the study addressed in manuscript 2 (Chapter V). 

The final sample included a total of 21 participants that successfully completed all 

six test sessions; but due to the automatic reduction in the stimulus output by the c-

NMES device, only data from 14 participants were used during the statistical analyses for 

manuscript 1.  Since the automatic reduction of the c-NMES stimulus output did not 

influence the initial maximum comfortable stimulus intensity and initial normalized 

NMES-induced torque, the data of all 21 participants for these variables were used during 

the corresponding statistical analyses in manuscript 2.  However, with respect to the other 

statistical analyses for manuscript 2, only data from the 11 participants that did not 

experience an automatic decrease in the stimulus output during the c-NMES condition 

were used. 

The desired sample size of 17 participants indicated by the a priori power 

analyses was not achieved during all statistical comparisons; thus a type II error may 

have occurred due to low statistical power, which reduces the strength of the statistical 

conclusion validity.94  However, medium to large effect sizes were selected for the power 

analyses because small to medium effect sizes would not likely have been clinically 

meaningful with respect to the variables included in this project.  As discussed in future 

chapters, the effect sizes observed corresponding to the non-significant findings were 

predominantly small; which suggests that even if the desired sample size of 17 

participants was obtained, significant findings would not have been meaningful.  

Therefore, the sample size was considered adequate to answer the research questions, 
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since it allowed the primary investigator to identify clinically meaningful differences and 

it is similar in size to a previous publication addressing similar research questions.21 

Instrumentation 

Torque Recording 

A Quickset 4 Biodex dynamometer (Biodex Medical Systems Inc., Shirley, New 

York) was used to measure and record isometric knee extension torque during all 

voluntary and NMES-induced contractions, at a sampling rate of 100 Hz (e.g., one 

sample taken every 10 ms).  Participants were asked to remove their shoe from the 

dominant foot prior to being seated on the dynamometer. The set-up followed standard 

procedures suggested by the manufacturer.  During all voluntary and NMES-induced 

contractions participants were seated in the dynamometer chair with the seat back tilt at 

85° and the dominant leg secured within a lever arm fixed at 60°.  This position was 

chosen for testing as this approximates the joint position at which maximum quadriceps 

torque production occurs.164,166 In addition, this joint position has been used in previous 

NMES studies,26,50 and has been recommended as the position at which NMES 

treatments should occur.42  The axis of rotation of the dynamometer was aligned to the 

anatomical axis of the test knee, and the lower leg was secured in the fixed lever arm via 

an ankle strap placed 2-3 cm above the lateral malleolus.27  The dynamometer was 

calibrated to the manufacturer’s specifications prior to beginning the project to ensure 

reliable measurements.  In addition, stabilization straps were used to prevent undesired 

movement of the upper body and participants were asked to cross their arms over their 

chest while performing all voluntary and NMES-induced contractions (Figure 4).27,178 
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Figure 4. Isokinetic Dynamometer Set-up 

Note.  Participant performing a voluntary isometric contraction with the lever arm fixed at 60⁰. 

Conventional Neuromuscular Electrical Stimulation 

All c-NMES treatments were applied using a Sonicator® Plus 940 stimulator 

(Mettler Electronics® Corp., Anaheim, CA).  To maintain consistency across the two 

NMES conditions, the c-NMES parameters were as similar as possible to the parameters 

used with the Kneehab® XP program 6 (Table 5).  Although the sample size was 

negatively impacted by an unforeseen feature of the device selected for the c-NMES 

condition, it is important to note that this stimulator was selected because it allowed the 

primary investigator to more closely match the settings of the m-NMES device; thus 

reducing the plausibility of confounding factors and facilitating causal inferences.94  For 

example, other c-NMES units available in the laboratory did not allow the use of a 

biphasic waveform while simultaneously setting two channels to co-contract mode. Using 

other available c-NMES units would have resulted in different basic current types across 

the two NMES conditions (e.g., Russian vs. biphasic), ultimately leading to additional 

Dynamometer 

Axis 

Stabilization 

Straps 
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systematic differences and limiting the ability to attribute any observed differences to the 

multipath current distribution method. 

Table 5  

Parameters of Neuromuscular Electrical Stimulation Conditions 

 

Note.  *In addition to current distribution method, the only systematic differences between the c-NMES and m-NMES parameters was 

the lack of a ramp-down using the c-NMES device, and slightly smaller c-NMES electrodes.  It was not a possible to select a ramp-

down of 0.5 seconds with this particular c-NMES device while also maintaining a similar ramp-up and hold time to the m-NMES 

device, thus a ramp-down was not included. 

The c-NMES current was delivered via self-adherent electrodes centered over 

motor points to the extent possible without causing overlap with adjacent electrodes, and 

the appropriate motor points used to guide electrode placement were manually identified 

and marked using the pencil electrode method described in the literature (see pencil 

electrode section). 24,153Authors of the aforementioned studies comparing c-NMES and 

m-NMES identified differences in the electrode sizes across conditions as a possible 

limitation of their observed results.21,27  In an effort to reduce the plausibility of electrode 

Parameter m-NMES c-NMES 

Current distribution Multipath Single path within two 

independent channels 

Waveform Biphasic Square Biphasic Square 

Frequency 70 Hz 70 Hz 

Pulse duration 400 µsec 400 µsec 

Ramp 1 second up : 0.5 seconds 

down 

1 second up : 0 seconds 

down* 

On time / Off time 10 seconds / 50 seconds 10 seconds / 50 seconds 

Stimulus intensity mA required for 30% 

MVIC 

OR 

maximum comfortable 

mA required for 30% 

MVIC 

OR 

maximum comfortable 

Number of electrodes 4 4 

Total area of electrodes 427 cm2 360 cm2* 
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size confounding the results, electrodes as similar in size as possible to the electrodes 

integrated into the m-NMES garment were used during the c-NMES condition.  Two 5 

cm x 9 cm self-adherent electrodes (MetronTM, Bolingbrook, IL) were centered over the 

proximal and distal vastus lateralis motor points.  A 10.79 cm x 17.78 cm electrode 

(TENS Products, Grand Lake, CO) was be centered over the rectus femoris motor point, 

and a 7 cm x 14 cm electrode (SME INC., Wilmington, NC) was centered over the distal 

vastus medialis motor point (Figure 5).  The area covered by the c-NMES electrodes was 

roughly 360 cm2, whereas the m-NMES electrodes covered an area of 427 cm2 (Figure 

6).27  Although a difference in the area covered by the c-NMES and m-NMES electrodes 

remained, these electrodes were a significant improvement from the electrode 

configuration used during the c-NMES condition of previous studies; which consisted of 

three electrodes covering only 100 cm2.21,27  As has been done previously, a Kneehab® 

XP garment was placed over the thigh after the c-NMES electrodes had been applied to 

the quadriceps in an effort to blind the participants to the treatment condition.27 

 

Figure 5. Conventional Electrode Configuration  

Proximal Vastus 

Lateralis Electrode 

Proximal Vastus 

Lateralis Electrode 

Rectus Femoris 

Electrode 

Distal Vastus 

Medialis Electrode 
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Note.  The left edge of the photo corresponds with the participant’s medial leg. 

 

Figure 6. Electrode Configuration Comparison 

Note.  c-NMES electrodes are on the left side of the photo and m-NMES electrodes are integrated into the neoprene garment on the 

right side of the photo. 

Pencil Electrode 

Based on the results of a recent study, which identified seven motor points of the 

quadriceps,153 four commonly identified motor points were selected for use to guide the 

c-NMES electrode placement. Furthermore, the selected motor points allowed the c-

NMES electrodes to be placed in a similar fashion to the m-NMES electrode 

configuration, as they were located on the proximal and distal vastus lateralis, proximal 

rectus femoris and distal vastus medialis. 

The motor points were manually identified with a pencil electrode (Mettler 

Electronics XK2, Active Forever, Scottsdale, AZ; Figure 7).  To locate the motor points 

the stimulus intensity of an Intelect Legend XT (Chattanooga Group, Inc., Hixon, TN) 

electrical stimulator was set to a level that only elicited a motor response when the pencil 

electrode passed over a motor point.24,153  After each motor point was located it was 
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marked with a marker (Figure 7).  The results of Botter et al.153 indicate that the selected 

motor points may not be present or identifiable in every individual.  Consequently, in the 

event that the primary investigator was unable to locate a motor point during the allotted 

8 minute time frame, the motor point was considered unidentifiable and the average 

position reported by Botter et al. was utilized to guide the corresponding electrode 

placement. 

 

 

 

 

 

 

Figure 7. Motor Point Identification 

Note.  The photo on the left (A) illustrates the pencil electrode method for manually identifying motor points.  The photo on the right 

(B) illustrates the motor point markings.  
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Motor points were identified with the participant in the position in which the 

treatment was applied, as has been recommended.24  Since using an anatomical chart may 

not adequately locate motor points,24 the motor points were manually identified via the 

pencil electrode method to exclude electrode placement as a confounding variable.  

Furthermore, NMES-induced discomfort levels may differ when an atlas is used for 

motor point identification compared to manually identifying motor points.39 

Multipath Neuromuscular Electrical Stimulation 

All m-NMES treatments were applied using a Kneehab® XP stimulator 

(Theragen LLC, Leesburg, VA), with the stimulator parameters set by selecting program 

6 (Table 5).  The m-NMES electrodes were integrated into the neoprene garment and the 

garment was subsequently placed on the dominant thigh according to the manufacturer’s 

recommendations.167 Because the electrodes were integrated within the garment, motor 

point identification was not necessary prior to applying the garment to the thigh.  

However, motor points were still identified during m-NMES test sessions in an effort to 

blind participants to treatment condition. 

Visual Analog Scale 

A 100 mm horizontal visual analog scale (VAS) was used to measure self-

reported discomfort levels during each NMES condition (see Appendix B).  The 

descriptors at each end of the scale were “no discomfort” (0 mm) and “worst possible 

discomfort” (100 mm).21,27,29,36,37,159,161  Participants were given a pen and asked to “rate 

your level of discomfort by making a vertical tick mark on the line” (Figure 8).  The 

primary investigator scored each VAS by measuring the distance in millimeters (mm) 

from the “no discomfort” anchor to the vertical tick mark made on the horizontal line.  
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The VAS is considered to be a reliable and valid measurement tool,159,168,171,172 thus the 

VAS has been frequently utilized in the literature as a measure of self-reported 

discomfort during NMES treatments.21,23,27,29,36-38,69,72,159-161  When used to assess NMES-

induced discomfort in a sample of healthy individuals, the VAS has been shown to have a 

high inter-session test-retest reliability (intraclass correlation coefficient [ICC]≥0.90).159 

 

Figure 8. Participant Marking the Visual Analog Scale 

Procedures 

Participant Inclusion and Exclusion Criteria 

In order to be included, participants were required to be: healthy, recreationally 

active, males, between the ages of 18-35.  Healthy was defined as having no unresolved 

knee injuries or other injuries that would impact the lower-limb function of the leg of 

interest, as well as being free of all applicable electrotherapy contraindications.152 

Recreationally active was operationally defined as participation in some form of physical 

activity (e.g. strengthening related activities, jogging, running, cycling, swimming, 

tennis, etc.) for a minimum of two times per week for at least 20 minutes each time.  
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NMES tolerance and motor thresholds have been shown to differ between individuals 

with a body mass index (BMI) above and below 30 kg/m2,160 thus participants also had to 

have a BMI ≤30 kg/m2 to be included. Females were excluded from participation because 

electrically induced discomfort levels have been shown to significantly differ over the 

course of the menstrual cycle.162  This study was approved by the University’s 

institutional review board (see Appendix C), and participants provided written informed 

consent (see Appendix D). 

Overview 

Participants reported at the same time of day (±2 hours) on six separate occasions.  

Each participant’s dominant leg, which was operationally defined as the leg with which 

they would use to kick a soccer ball, served as the leg of interest throughout the study.  In 

an effort to reduce electrical impedance, participants were instructed to shave the anterior 

thigh of their dominant leg prior to reporting each day.  In the event that a participant 

reported to the laboratory unshaven, they were provided an unused razor and asked to 

shave the anterior thigh of their dominant leg.  Participants were also asked to refrain 

from strenuous activities for 12 hours prior to reporting each day, and instructed to report 

well hydrated. 

Each session lasted approximately 1 hour.  The first two sessions (days 1 & 2) 

served as familiarization sessions and were separated by 24-48 hours, while the other 

sessions (days 3 through 6) served as test sessions and were separated by a 48-72 hour 

washout period.  Participants began each session by completing a standardized warm-up 

that included: 5 minutes of cycling on a stationary bike at a self-selected pace, three 30 

second bouts of dynamic quadriceps stretching and four isometric quadriceps 
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contractions while in  the dynamometer chair (2 at 50%, 1 at 75% and 1 maximum 

contraction at 60° of knee flexion).36  After completing the warm-up, participants stayed 

seated in the dynamometer chair throughout the remainder of the session.  Table 6 

provides a method by day summary to assist the reader. 
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Table 6  

Method by Day Summary 

Method Day 1 Day 2 Day 3  Day 4 Day 5 Day 6 

Informed consent X      

Participant health & activity questionnaire 

(includes health, electrical stimulation contraindications and activity 

level questions) 

X      

Demographic data collected 

(age, height, weight, gender, body mass index) 

X      

Participant assigned to test session sequence   X  X  

Standardized warm-up 

(5 minutes of cycling, dynamic stretching, submaximal MVICs) 

X X X X X X 

8 minute rest after warm-up 

(leg cleansed, motor points identified for c-NMES electrode placement) 

X X X X X X 

Participants allowed to practice performing MVICs 

(minimum of six repetitions) 

X      

3-6 pre-test MVICs 

(performed at 60° of knee flexion, separated by 2 minutes of rest, three 

consecutive repetitions required to be within 10% of one another) 

 X X X X X 

5 minute rest after maximum voluntary isometric contractions X X X X X X 

10 familiarization NMES-induced contractions using c-NMES and m-

NMES 

(participant controls the intensity and is encouraged to maintain a 

maximum comfortable stimulus intensity) 

X X     



 

 

1
0
7
 

Table 6 (continued). 

Method Day 1 Day 2 Day 3  Day 4 Day 5 Day 6 

NMES stimulus intensity determined 

(30% of pre-test MVIC during days 3 & 4 OR  

maximum comfortable stimulus intensity on days 5 & 6) 

  X X X X 

50 second rest after stimulus intensity determined   X X X X 

18 NMES-induced contractions with c-NMES OR m-NMES 

(participant instructed to relax, and initial stimulus intensity was 

maintained constant) 

  X X X X 

Self-reported discomfort levels measured 

(100 mm VAS used after each NMES-induced contraction) 

  X X X X 

1-2 post-test MVICs   X X X X 
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Familiarization Sessions (Days 1-2) 

After obtaining informed consent on the first day, participants were asked to 

complete a brief physical activity and health questionnaire and their demographic data 

was collected (height [cm], weight [kg], age [years], BMI [kg/m2]) (see Appendix E); 

which allowed the primary investigator to determine that the previously discussed 

inclusion criteria were met.  Participants then completed the warm-up, after which they 

were given an 8 minute rest period.  During the rest period the motor points necessary for 

the c-NMES treatment condition were identified using the pencil electrode method 

previously described in the instrumentation section, and the leg of interest was cleansed 

with an alcohol free wipe.  During the first familiarization session, participants were 

instructed on the maximum voluntary isometric contraction (MVIC) procedures and 

given an opportunity to practice performing MVICs of the quadriceps until they reported 

being comfortable with the procedures (discussed in detail in MVIC procedures section).  

An additional 5 minute rest period followed the MVICs, during which the c-NMES 

electrodes and an empty Kneehab® XP garment or the Kneehab® XP garment with 

integrated electrodes were appropriately placed over the participant’s dominant thigh. 

Participants were then exposed to both forms of NMES (c-NMES and m-NMES) 

by performing 10 NMES-induced quadriceps contractions using each NMES device (total 

of 20 contractions).  The NMES parameters used during the familiarization sessions were 

similar to those used during test sessions (Table 5), with the exception that participants 

were allowed to control the stimulus intensity throughout the familiarization sessions.  

During previous studies in our laboratory it was observed that participants are willing to 

use greater stimulus intensities if they are allowed to control the intensity themselves.  
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Thus, during all familiarization sessions the stimulator controls were placed in a manner 

that allowed participants to control the amount of stimulus intensity used during all 

NMES-induced contractions.  It was anticipated that participants would tolerate greater 

intensities as they became acclimated to the stimulus,144 thus the primary investigator 

encouraged participants to increase the stimulus intensity between contractions as well as 

between familiarization sessions to maintain a maximum comfortable stimulus level 

during each contraction (e.g., highest stimulus intensity that does not cause pain).77  The 

initial familiarization session allowed participants to practice the MVIC procedures and 

to acclimate to the NMES stimulus.98,144 

The purpose of the second familiarization session was to allow the participants to 

further familiarize themselves with the MVIC procedures and acclimate to the NMES 

stimulus.  In addition, the second familiarization session allowed the primary investigator 

to verify that each participant was capable of tolerating the stimulus intensity required 

during day 3 and day 4 test sessions.  The procedures for the second familiarization day 

were similar to the first, with the exception that participants performed a series of pre-test 

MVICs following the standardized pre-test MVIC procedures (discussed in detail in 

MVIC procedures section).  In addition, the order in which the devices were used during 

the NMES-induced contractions occurred in a reverse order from the pattern used during 

the initial session. 

Participants were required to tolerate a stimulus intensity sufficient to produce a 

NMES-induced contraction of 30% MVIC during the subsequent day 3 and day 4 test 

sessions.  To evaluate whether a participant was capable of tolerating the required 

stimulus intensity, the greatest peak torque observed over the 10 contractions of each 
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condition during the second familiarization session was identified by the primary 

investigator.  The NMES-induced peak torque observed under each NMES condition was 

then expressed as a percentage of the participant’s pre-test MVIC peak torque measured 

earlier during the second familiarization session (% MVIC; equation 1).  If a participant 

was unable to tolerate a stimulus intensity sufficient to produce a NMES training 

intensity ≥30% MVIC, they were excluded from further participation. 

[Equation 1] 

















 100   MVIC%

 

i

pre

NMES


 

Note.  Where iNMES = peak torque observed during the NMES-induced contraction of interest (e.g., repetition 1-18) and τpre = pre-test 

MVIC peak torque. 

Test Sessions (Days 3-6) 

Upon reporting for the first test session (day 3), participants were assigned via a 

probabilistic technique to one of two permutations designed to counterbalance the session 

order in which the c-NMES and m-NMES treatment conditions were performed on day 3 

and day 4.  Upon reporting for the third test session (day 5) participants were again 

assigned to one of two permutations designed to counterbalance the order in which the c-

NMES and m-NMES conditions were performed on day 5 and day 6.  Rather than using 

the term “random assignment”, the term “probabilistic technique” is used to describe the 

method used for participant assignment because it ensured a similar number of 

participants were assigned to each permutation; which did not allow all participants to 

have the same non-zero chance of being assigned to each permutation.  Participant 

assignment to test session order did not take place until day 3 and day 5 in an effort to 

limit the threat of post-randomization experimental mortality.94  As previously 
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mentioned, this was likely an effective strategy since all participants assigned a test 

session order successfully completed all six sessions. 

The procedures for all test sessions followed the same procedures previously 

outlined in detail with respect to the second familiarization session (Table 6); with the 

following exceptions: 

1.  Only 18 NMES-induced contractions were performed using a single NMES 

device (c-NMES or m-NMES) during each test session. 

2.  The stimulus intensity was standardized and not manipulated by the primary 

investigator or participant within each test session. 

3.  Participants performed post-test MVIC procedures immediately following the 

NMES-induced contractions during each test session (discussed in detail in the 

MVIC procedures section). 

MVIC Procedures 

Gandevia et al.98 provided a series of recommendations that were incorporated 

during the MVIC procedures.  Their recommendations that were incorporated throughout 

this project included the following: 

1.  Participants were given instructions and had an opportunity to practice. 

2.  Participants were provided visual feedback during all MVICs. 

3.  Standardized verbal encouragement was provided by the primary investigator 

during all MVICs. 

4.  Participants were given the opportunity to eliminate trials that they deemed to 

be submaximal. 
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In keeping with the first recommendation, participants were instructed on the 

MVIC procedures and given an opportunity to practice during the initial familiarization 

session (day 1).  They were allowed to practice performing MVICs at a self-selected 

pace, and participants were allowed to practice until they reported being comfortable with 

the procedures.  However, a minimum of six practice trials was required during the initial 

familiarization session. 

All MVICs were 6 seconds in duration.  Participants were instructed to gradually 

increase their effort during the initial portion of each contraction, with maximal effort 

being reached at roughly 3 seconds and maintained for the remaining 3 seconds.  To 

facilitate participant understanding of a gradual increase, a figure showing an ideal MVIC 

curve was placed in the participants’ view while performing all MVICs.  Prior to each 

MVIC participants were instructed as follows: “cross your arms and prepare to push out 

with maximal effort”.  In addition, participants received real-time visual feedback of their 

torque production via the dynamometer computer screen and the primary investigator 

provided verbal encouragement throughout each repetition (Figure 4).  Verbal 

encouragement began at the start of each MVIC and continued throughout the 6 second 

contraction.  The primary investigator encouraged participants to “push out with maximal 

effort” in a loud clear voice, and in the event that a participant showed signs of fatigue 

the volume and intensity of the encouragement was gradually increased.179  The primary 

investigator asked the participants to verify that their effort was maximal immediately 

following each repetition.  In the event that a participant reported a submaximal effort, or 

the investigator judged an effort to be submaximal, the repetition was discarded and 

repeated following a 2 minute rest. 
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Participants performed standardized pre-test MVIC procedures during the second 

familiarization session and all subsequent test sessions (days 2-6).  The standardized pre-

test procedures consisted of a series of three MVICs, with each repetition separated by a 

2 minute rest period in an effort to limit fatigue.31,33  During the test sessions (days 3 

through 6), the peak torque of the three pre-test trials was required to be within 10% or 

participants were asked to perform additional trials until three consecutive MVIC trials 

were within 10%; which is similar to a previous study.27  To limit the possibility of 

fatigue as a confounding variable, participants were given a maximum of six contractions 

during each test session.  If a participant was unsuccessful in completing the pre-test 

MVIC procedures, they were asked to return the following day for a second attempt.  The 

trial with the greatest peak torque, from the three consecutive trials within 10%, was 

defined as the participant’s pre-test MVIC value for that particular test session. 

Pre-test MVICs performed during the second familiarization session (day 2) were 

primarily for the purpose of allowing the participant to further familiarize themselves 

with the MVIC procedures, and the peak torque observed during these repetitions also 

served as a reference value when verifying that each participant was able to tolerate an 

adequate stimulus intensity producing 30% MVIC.  Consequently, three consecutive 

MVICs within 10% of one another during the second familiarization session (day 2) was 

not required for further participation, but participants were given an opportunity to 

perform up to six contractions in the event that three consecutive MVICs were not within 

10%. 

Post-test MVIC procedures were not performed at the conclusion of any of the 

familiarization sessions (days 1 & 2).  However, during all test sessions (days 3-6) each 
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participant performed a single 6 second post-test MVIC immediately after completing the 

assigned NMES treatment condition.  A single repetition was used in an effort to limit 

recovery from the NMES-induced contractions; but in the event that the participant or 

investigator deemed the post-test trial to be submaximal a second MVIC was performed 

after a 20 second rest period, in an effort to continue limiting recovery.178 

An isometric contraction, rather than a dynamic contraction, was selected in an 

effort to limit the number of extraneous variables (e.g., joint stabilization and synergistic 

activity).118  The inter-session and intra-session test-retest reliability of MVICs of the 

quadriceps in a sample of healthy individuals has been previously reported to be within 

acceptable limits (ICC≥0.72).40,104,178,180-184 Furthermore, Place et al.178 reported that the 

inter-session test-retest reliability of MVICs of the quadriceps immediately following a 

fatiguing protocol was also within acceptable limits (ICC=0.91); which subsequently lead 

these authors to conclude that an MVIC performed after a fatiguing protocol is a reliable 

measure of muscle fatigue. 

NMES and Stimulus Intensity Standardization Procedures 

As mentioned in the instrumentation section, all NMES-induced contractions 

occurred with the participant seated in the dynamometer chair with the lever arm fixed to 

60° (Figure 9).  Although NMES may be applied during a relaxed state or superimposed 

during voluntary contraction, in order to better understand NMES-induced torque it has 

been recommended that the superimposed method be avoided during research studies.17  

Consequently, throughout each NMES-induced contraction participants were frequently 

encouraged by the investigator to “relax and allow the machine to do all the work”. 
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Figure 9. NMES Treatments 

Note.  The photo on the left (A) illustrates a c-NMES treatment with the Kneehab XP® garment placed over the c-NMES electrodes in 

an effort to blind participants to treatment condition.  The photo on the right (B) illustrates a m-NMES treatment. 

Prior to beginning each NMES condition during the first two test sessions (day 3 

& day 4), the stimulus intensity required to produce a target torque output of 30% MVIC 

was determined by the investigator immediately after the 5 minute rest period that 

followed the pre-test MVICs.  The primary investigator increased the stimulus intensity 

until the targeted torque output of 30% of the test session’s pre-test MVIC was observed 

(equation 1), and held until the NMES-induced contraction was completed.  If a 

participant reported reaching a maximum comfortable stimulus intensity prior to 

achieving a contraction of 30% MVIC the intensity was immediately decreased and the 

participant recovered for 30 seconds. This process was repeated a maximum of three 

times, and if the participant was unable to tolerate a sufficient stimulus intensity by the 

third attempt they were excluded from further participation.  Following identification of 

the appropriate stimulus intensity participants rested for 50 seconds, after which the 

A B 
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assigned NMES condition was completed.  The initial stimulus intensity on day 3 and on 

day 4 was not manipulated by the investigator or participant over the course of each 

NMES treatment condition.  However, as previously discussed, occasionally the c-NMES 

device automatically reduced the stimulus output and in the event that this occurred the 

negatively influenced data were excluded from the appropriate statistical analyses. 

The stimulus intensity was standardized across conditions on days 3 and 4 using a 

target training intensity of 30% MVIC because it lies within the therapeutic window 

identified in the literature.144  This is a significant improvement from previous studies 

comparing c-NMES and m-NMES, as the intensity used during these studies does not fall 

within the aforementioned window and the authors identified their use of a low target 

training intensity (e.g., 20% MVIC) as a possible explanation for their non-significant 

results.21,27  Furthermore, based on  previous studies performed in our laboratory it is 

likely that most healthy individuals are able to tolerate a stimulus intensity required to 

produce a contraction of 30% MVIC, thus the target intensity was also selected in an 

effort to limit the threat of experimental mortality.94 

Prior to beginning each NMES condition during the last two test sessions (day 5 

& day 6), each participant’s maximum comfortable stimulus intensity was determined 

instead of determining the stimulus intensity required to achieve a target training intensity 

of 30% MVIC.  To determine each participant’s maximum comfortable stimulus 

intensity, the stimulator was placed in a position that allowed each participant to control 

the stimulus intensity (Figure 10), and the investigator instructed the participant to 

gradually increase the stimulus intensity until they reported achieving a maximum 

comfortable stimulus; which was operationally defined as the highest stimulus intensity 
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that does not cause pain.77  After identification of the appropriate stimulus intensity, the 

remaining NMES procedures were similar to the previously discussed day 3 and day 4 

procedures. 

 

Figure 10. Setting Maximum Comfortable Stimulus Intensity 

Note.  Photo on the left (A) illustrates participant setting maximum comfortable stimulus intensity using c-NMES.  Photo on the right 

(B) illustrates participant setting maximum comfortable stimulus intensity using m-NMES. 

The purpose of the day 5 and day 6 test sessions was to address a limitation of the 

earlier test sessions.  Standardizing the stimulus intensity based on a common initial 

NMES training intensity target (e.g., 30% MVIC), as done during day 3 and day 4 test 

sessions, was necessary to reduce the plausibility of alternative explanations for any 

observed differences with respect to fatigue related outcomes.  For example, if 

participants were allowed to self-select an intensity under both conditions, it is plausible 

that an intensity sufficient to induce a contraction of 30% MVIC under one condition and 

an intensity sufficient to induce a contractions of 40% under the other condition could 

have been selected; thus greater fatigue observed during the latter condition may have 

A B 
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occurred solely because a higher initial training intensity was used.  Therefore, due to the 

preliminary nature of  this project, it was necessary to standardize the stimulus intensity 

based on a common initial NMES training intensity target to facilitate and strengthen any 

causal inferences corresponding to the fatigue related outcomes.94 

Despite the fact that standardizing the stimulus intensity based on an initial 

NMES training intensity likely enhanced the experimental control, it also limited the 

generalizability of the subsequent results because the optimal stimulus intensity for 

NMES treatments occurring within clinical settings is a maximum comfortable intensity.  

Standardizing the stimulus intensity based on an initial NMES training intensity target of 

30% MVIC also does not allow for inferences regarding which method of NMES, if any, 

allows for greater NMES training intensities while using a maximum comfortable 

stimulus intensity.  The aforementioned limitation of the first two test sessions 

exemplifies the ever-present tradeoff between internal and external validity that often 

occurs in single studies.94  Due to the necessary prioritization of internal validity on day 3 

and day 4, the extent to which the results of the first test sessions hold true while using a 

clinically relevant maximum comfortable intensity would have remained unknown if this 

limitation was not addressed.  Thus, in an effort to advance the generalizability of this 

project to clinical settings a maximum comfortable stimulus intensity was used under 

each NMES condition during the last two test sessions (day 5 & day 6).  It is also 

important to note that the selected test session order, in which the test sessions using a 

maximum comfortable stimulus occurred after sessions that standardized the stimulus 

intensity based on an initial NMES training intensity target of 30% MVIC, was chosen 

because each of the earlier sessions (days 1-4) allowed for further acclimation to the 
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NMES stimulus; which likely allowed for greater maximum comfortable stimulus 

intensities during the day 5 and day 6 test sessions.144 

Outcome Measures 

Percent Decline in MVIC Torque 

For the purposes of this study, muscle fatigue was operationally defined as an 

exercise-induced decrease in the quadriceps ability to produce force.98,110  In accordance 

with this definition, the most often implemented measurement model is the assessment of 

peak torque production during an individual’s MVIC prior to and immediately following 

fatigue inducing exercise.105,110  A change in peak MVIC torque is also considered to be 

the gold standard for assessing fatigue.105,110  This measurement model is often selected 

by researchers because it is representative of the aggregate chain of neuromuscular events 

required to produce a muscular contraction, thus it is considered to be a general 

assessment of fatigue without differentiating between central and peripheral fatigue.110  

Consequently, each participant’s post-test MVIC peak torque was expressed as a percent 

decline relative to their pre-test MVIC peak torque via equation 2, and the subsequent 

percent decline served as a fatigue related outcome for this project. 

[Equation 2] 
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Note.  Where τpost = post-test MVIC peak torque and τpre = pre-test MVIC peak torque. 

Neyroud et al.29 suggested that quantifying muscle fatigue solely by examining 

decreases in MVIC peak torque may underestimate fatigue when the intensity of NMES-

induced contractions is substantially lower than that of an MVIC, because motor units not 
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recruited during NMES may be recruited during an MVIC; thus three additional measures 

were included as fatigue related outcome measures during this project. 

Percent Decline in NMES-induced Torque 

Failing to maintain a target force is another common method used to asses 

fatigue,110 thus NMES-induced fatigue is also frequently assessed by measuring the 

decline in NMES-induced torque over the course of a treatment.21,27,30-

33,46,49,51,54,55,59,61,62,64,66,100  Accordingly, the peak torque produced during all 18 NMES-

induced contractions of each test session (days 3-6) were recorded by the dynamometer, 

and these values were expressed as a percent decline relative to the peak torque produced 

during the initial NMES-induced contraction of each test session via equation 3. 

[Equation 3] 
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Note.  Where iNMES = ith number of contraction (e.g., i = contraction 2-18), τinitial = NMES-induced peak torque of initial contraction. 

Some authors100 have suggested that simply using a decline in NMES-induced 

torque to represent fatigue is also flawed, as this may result in an overestimation of 

NMES-induced fatigue because other physiological factors (e.g., nerve accommodation) 

unrelated to the mechanisms of motor unit fatigue may influence these results.  

Consequently, the percent decline in MVIC measure was also included as a fatigue 

related outcome. 

Percent Decline in Torque-time Integral 

A decline in the TTI observed during NMES-induced contractions has also been 

used in a number of NMES studies as an index of NMES-induced fatigue,23,29,47,115,116 as 
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it has been suggested to represent isometric work.  Some of these authors used the decline 

of the TTI as the primary index of NMES-induced fatigue,29 while others suggested that 

the TTI be used as a fatigue related outcome when longer stimulation trains are 

implemented.47  Therefore, the data necessary to calculate the TTI (e.g., torque and 

duration of torque recording) was measured and recorded during the NMES-induced 

contractions by the dynamometer system and subsequently exported as a text file 

(sampling rate = 100 Hz, or one sample taken every 10 ms).  The data files were imported 

into an analysis software package (Acqknowledge® 4, Biopac® Systems, Inc., Goleta, 

CA), which was used to calculate the TTI of each contraction via equation 4.  The TTI of 

each NMES-induced contraction during the test sessions (days 3-6) was expressed as a 

percent decline via equation 5, and also served as a measure of NMES-induced fatigue. 

[Equation 4] 


b

a

)( TTI dttf  

Note.  Where a = lower limits, b = upper limits, f (t) = function of the NMES-induced torque curve.  Lower limits = sample 

immediately prior to observed torque onset, whereas upper limits = sample immediately following the observed torque offset.  Onset 

was defined as the first sample with a torque recording above the gravity correction and offset was defined as the first sample that the 

torque recording returned to the gravity correction. 

[Equation 5] 
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Note.  Where iNMESTTI = the TTI of the ith number of the NMES-induced contraction (e.g., contractions 2-18), λNMESTTI = the TTI of the 

initial NMES-induced contraction. 
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Total Torque-time Integral 

The T-TTI was considered an index of the total amount of isometric work 

performed under each condition, and as such also represented a fatigue related outcome.  

The T-TTI for each condition was calculated by summing individual TTI data via 

equation 6. 

[Equation 6] 
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Note.  Where a = lower limits, b = upper limits, f (t) = function of the NMES-induced torque curve, i = ith number of contraction and n 

= total number of contractions.  Lower limits = the sample immediately prior to the observed torque onset, whereas upper limits = the 

sample immediately following the observed torque offset. Onset was defined as the first sample with a torque recording above the 

gravity correction and offset was defined as the first sample that the torque recording returned to the gravity correction. 

Self-Reported Discomfort 

Participants were asked to rate their level of discomfort by making a vertical tick 

mark on a VAS immediately after each NMES-induced contraction performed during the 

test sessions (days 3-6).  As previously mentioned, discomfort levels were obtained by 

measuring the distance from the “no discomfort” anchor to the vertical mark made on the 

horizontal line. 

Maximum Comfortable Stimulus Intensity 

The maximum comfortable stimulus intensity identified by each participant 

during the last two test sessions (day 5 & day 6) was manually recorded (see Appendix F) 

by the investigator and expressed in milliamps (mA), and it served as an additional 

outcome variable in manuscript 2 (Chapter V).  The m-NMES device does not express 

the stimulus intensity in mA units, thus a conversion table provided by the manufacturer 
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was used to convert the observed m-NMES stimulus intensities into the appropriate 

units.185  It is important to note that since this variable was measured during the initial 

contraction it was unaffected by any automatic decrease in the stimulus output by the c-

NMES device that may have occurred over the course of the treatment, thus the 

maximum comfortable stimulus intensity data from each participant that successfully 

completed all sessions was included during the corresponding statistical analysis. 

Initial Normalized NMES-induced Torque 

The initial NMES-induced peak torque was also measured and recorded by the 

dynamometer during the last two test sessions (day 5 & day 6).  However, in an effort to 

reduce inter-participant variability, initial NMES-induced peak torque values were 

normalized to each participant’s body mass via equation 7 and expressed as Newton-

meters per kilogram (Nm/kg), which has been done previously.42,45  The initial 

normalized NMES-induced torque for each condition also served as an additional 

outcome variable in manuscript 2 (Chapter V).  As with the maximum comfortable 

stimulus intensity, since this variable was measured during the initial contraction it was 

unaffected by any automatic decrease in the stimulus output by the c-NMES device that 

may have occurred over the course of the treatment, thus data from each participant that 

successfully completed all sessions was included during the corresponding statistical 

analysis. 

[Equation 7] 

M

initial

       

       torqueinduced-NMES Normalized 
 

Note.  Where τinitial = NMES-induced peak torque of initial contraction and M = body mass of the participant. 
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Statistical Analysis 

All data were analyzed using the Statistical Package for Social Sciences (SPSS) 

version 23.0 (IBM Corporation, Armonk, NY).  Due to methodological differences across 

test sessions (Chapter I), data from the first two test sessions (day 3 & day 4; Table 9) 

were analyzed and reported separately from the data of the last two test sessions (day 5 

and day 6; Table 10).  However, many of the comparisons were made using the same 

analysis procedures because of the similar dependent and independent variables (Table 9 

&10). 

Data Screening 

Prior to performing the statistical analyses the data were screened and the 

tenability of the applicable statistical assumptions was assessed (Tables 7 & 8).  Due to 

the use of a rolling enrollment strategy and the nature of the outcome measures, there was 

very little missing data (less than 1%).  Therefore, in the event that missing data was 

present the corresponding group mean was used to substitute missing values.186  Missing 

data were identified via frequency tables produced via SPSS, and the investigator visually 

inspected each table to verify the presence of an appropriate valid n for each outcome 

variable.  Any impacted analysis was run while including the substituted missing values 

and while excluding participants with missing data to verify that the mean substitution 

technique did not alter the results.186 
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Table 7  

Tests for the Assumptions of a Dependent t-test 

Assumption Test 

Matched pairs valid n in frequency table for all outcome 

variables 

Absence of outliers difference score z-scores < ± 2.50  

Difference scores of dependent 

variables are normally distributed 

skewness and kurtosis z-scores < ± 3.29, 

visual inspection of histogram 
 

Note.  Assumptions and tests based on information provided in the literature.186,187 

Table 8  

Tests for the Assumptions of a Two-way Repeated Measures ANOVA 

Assumption Test 

Matched pairs valid N in frequency table  

Absence of outliers z-scores < ± 2.50  

Dependent variables are normally distributed skewness and kurtosis z-scores < ± 

3.29, visual inspection of histogram 

Matched pairs valid n in frequency table  

Sphericity acceptable epsilon (ε) estimate 

(ε > 0.75) 
 

Note.  Assumptions and tests based on information provided in the literature.186,187 

For this project, outliers were defined as having a z-score greater than ± 2.5.188 A 

transformation procedure was used to change the original raw score of an observed 

outlier to a value ±1 unit larger than the next highest value.  This procedure was 

recommended by Tabachnick and Fidell186 because it allows the case identified as an 

outlier to remain deviant while also reducing the impact of an outlier.  Prior to changing a 

raw score identified as an outlier, the raw data point was checked to verify that it was 

accurately entered.186 
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When dealing with smaller samples, such as the sample included in this project, it 

is recommended to perform skewness and kurtosis significance tests to determine 

normality.186,187  Therefore, normality was assessed via converting skewness and kurtosis 

estimates reported by SPSS for each outcome variable into a z-score.186,187  To determine 

if the sample distribution significantly deviated from a normal distribution, the resulting 

skewness and kurtosis z-scores were compared to a score of ±3.29; which corresponds to 

an alpha level of p<0.001 and is common practice.186  It is important to note that with 

smaller samples, normality significance tests may lack the appropriate power to identify 

deviations in normality.187  Consequently, the primary investigator also examined 

histograms to visually check normality, and the data were considered normally 

distributed if the shape approximated a normal bell curve shape. 

To examine the plausibility of a systematic bias impacting the fatigue related 

outcomes of manuscript 1, a series of dependent t-tests were used to verify that a 

statistically significant difference did not occur with respect to the pre-test MVIC torque 

values, initial NMES training intensity and the initial TTI across the first two test 

sessions (day 3 & day 4).  A dependent t-test was also used to verify that a statistically 

significant difference did not occur with respect to the pre-test MVIC torque values 

across the last two test sessions (day 5 & day 6).  In addition, test-retest reliability 

estimates189,190 (e.g., ICC(2,1)) and measurement precision estimates191 (e.g., SEM) with 

respect to the pre-test MVICs of manuscript 1 and 2 were also calculated.  Due to the use 

of a cross-over study design, period effects were possible; thus the data were also 

examined using a tabular method provided in the literature for examining the presence of 

such effects (see Appendix G).96,192 
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Two-way Repeated Measures ANOVA 

A series of two-way repeated measures ANOVA were used to examine the effect 

of NMES treatment condition and time on the percent decline in NMES-induced torque 

and percent decline in TTI variables, as well as on self-reported discomfort levels (Table 

9 & 10).  In the event of a low epsilon (ε) estimate (e.g., ε<0.75), the assumption of 

sphericity was determined to be violated and the Greenhouse-Geisser procedure for 

correcting degrees of freedom was followed; since it is a more conservative approach and 

has been recommended when ε<0.75.187,193  In the event of a significant interaction effect 

(NMES condition*time), simple effects analysis was performed; which allowed the 

primary investigator to interpret the interaction effect by analyzing the effect of a single 

independent variable at each level of the other independent variable via a series of 

pairwise comparisons.187  The procedures and syntax provided by Field187 were used 

during all simple effects analyses, with the exception that a Bonferroni procedure was 

also included in the syntax to control the family-wise error rate during the multiple 

pairwise comparisons (see Appendix H).  The investigator also examined the 

corresponding profile plot to aid the interpretation of any observed interaction effects. 

In the event of a significant time main effect and the absence of an interaction 

effect, post-hoc pairwise comparisons using a Bonferroni procedure were performed.  

The Bonferroni procedure was selected because it is considered to be the most robust 

post-hoc method with respect to controlling the Type I error rate and power when 

sphericity has been violated.187  Due to the number of NMES-induced contractions that 

occurred during each condition, in the event of a significant time main effect a large 

number of post-hoc pairwise comparisons existed (e.g.> 130).  To simplify the results, 
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only the significant pairwise comparisons deemed to be clinically important were 

provided (e.g., first contraction to demonstrate a significant decline relative to the second 

contraction, and final contraction). 

Dependent t-test 

A series of dependent t-tests were used to compare the percent decline in MVIC, 

as well as the T-TII, across NMES treatment conditions (Table 9 & 10).  In addition, 

dependent t-tests were used to compare the maximum comfortable stimulus intensity and 

initial normalized NMES-induced torque observed during the last two test sessions (days 

5 & 6; Table 10). 

Effect Sizes 

To determine the magnitude of the observed differences, effect sizes 

corresponding with each of the statistical analyses were calculated and reported when 

appropriate (Table 9 & 10).  Cohen’s d effect sizes corresponding to the within groups 

comparisons were calculated using the equation suggested by Cumming194 (equation 8), 

which uses the average standard deviation of the paired data as the standardizer (dsav).  

Lakens195 also recommended this approach when reporting Cohen’s d, in an effort to 

facilitate cumulative science (e.g., future meta-analysis, future a priori power analysis).  

Since d statistics are believed to overestimate the population effect size, Cumming194 

recommended that an unbiased Cohen’s d (dunb) also be provided.  Accordingly, dunb 

effect sizes were also calculated via equation 9.  All Cohen’s d effect sizes (dsav, dunb), as 

well as corresponding 95% confidence intervals, were obtained using the Exploratory 

Software for Confidence Intervals (ESCI Free Software) described by Cumming.194  It is 

important to note that ESCI is unable to calculate confidence intervals when dunb is larger 
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than ±2, thus they were not provided in the event that this occurred.  Cohen’s d effect 

sizes were interpreted as follows: d = 0.20-0.49 small, d = 0.50-0.79 medium and d ≥ 

0.80 large.176 

[Equation 8] 

avS

Md diffsav

   


 

Note.  Where Mdiff = the difference between the paired means, and Sav = the average standard deviation of the paired data. Equation 

based on Cumming194 text. 

[Equation 9] 
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Note.  Where df = the degrees of freedom associated with the standardizer used in the denominator of the utilized Cohen’s d equation 

(which is N-1 because the average standard deviation of the paired data was used194), and d = dsav. Equation based on Cumming194 text.  

Cohen’s f effect sizes were calculated using G*Power software, which converted 

partial eta squared values provided by SPSS to Cohen’s f values (the conversion was also 

verified using the equation provided in the literature).176 Although eta squared effect sizes 

are often reported with respect to the omnibus results of an ANOVA, Cohen’s f values 

were provided in an effort to maintain consistency with respect to the interpretation of the 

reported effect sizes.  In addition, providing Cohen’s f values facilitates future a priori 

power analyses, as this is the effect size required by G*Power.  Cohen’s f values were 

interpreted as follows: f = 0.10-0.24 small, f = 0.25-0.39 medium and f ≥ 0.40 large.176
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Table 9  

Manuscript 1 Research Questions and Related Analyses 

Research Question Independent Variable Dependent Variable Analysis Post-hoc / Effect Size 

1.  While implementing 

a 10:50 on:off ratio and 

an initial training 

intensity of 30% MVIC, 

does the percent decline 

in MVIC torque differ 

between the c-NMES 

and m-NMES 

conditions? 

Treatment condition 

(m-NMES vs. c-

NMES) 

Percent decline in 

MVIC 

Dependent t-test† 

(one-tailed) 

**NA / Cohen’s d (dsav, 

dunb) 
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Table 9 (continued). 

Research Question Independent Variable Dependent Variable Analysis Post-hoc / Effect Size 

2.  While implementing 

a 10:50 on:off ratio and 

an initial training 

intensity of 30% MVIC, 

does the percent decline 

in NMES-induced 

torque differ between 

the c-NMES and m-

NMES conditions and 

over time? In addition, 

does the rate of change 

over time differ based 

upon NMES condition? 

Treatment condition 

(m-NMES vs. c-

NMES) & 

time (repetition 

number) 

Percent decline in 

peak NMES-induced 

torque 

Two-way 

repeated 

measures 

ANOVA† (main 

effects = one-

tailed; interaction 

= two-tailed) 

Simple effects analysis 

OR pairwise 

comparisons with 

Bonferroni procedure / 

Cohen’s f, 

Cohen’s d (dsav, dunb)   
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Table 9 (continued). 

Research Question Independent Variable Dependent Variable Analysis Post-hoc / Effect Size 

3.  While implementing 

a 10:50 on:off ratio and 

a maximum comfortable 

stimulus intensity, does 

the percent decline in 

TTI differ between c-

NMES and m-NMES 

conditions and over 

time? In addition, does 

the rate of change over 

time differ based upon 

NMES condition? 

Treatment condition 

(m-NMES vs. c-

NMES) & 

time (repetition 

number) 

Percent decline in 

TTI  

Two-way 

repeated 

measures 

ANOVA† (main 

effects = one-

tailed; interaction 

= two-tailed) 

Simple effects analysis 

OR pairwise 

comparisons with 

Bonferroni procedure / 

Cohen’s f, 

Cohen’s d(dsav, dunb)   
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Table 9 (continued). 

Research Question Independent Variable Dependent Variable Analysis Post-hoc / Effect Size 

4.  While implementing 

a 10:50 on:off ratio and 

an initial training 

intensity of 30% MVIC, 

does the T-TTI differ 

between the c-NMES 

and m-NMES 

conditions? 

Treatment condition 

(m-NMES vs. c-

NMES) 

T-TTI (Nm*s) Dependent t-test 

(one-tailed) 

** NA / Cohen’s d (dsav, 

dunb) 
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Table 9 (continued). 

Research Question Independent Variable Dependent Variable Analysis Post-hoc / Effect Size 

5.  While implementing 

a 10:50 on:off ratio and 

a maximum comfortable 

stimulus intensity, does 

self-reported discomfort 

(mm) differ between the 

c-NMES and m-NMES 

conditions and over 

time? In addition, does 

the rate of change over 

time differ based upon 

NMES condition? 

Treatment condition 

(m-NMES vs. c-

NMES) &  

time (repetition 

number) 

Self-reported 

discomfort level 

(mm) 

Two-way 

repeated 

measures 

ANOVA (main 

effects = one-

tailed; interaction 

= two-tailed) 

Simple effects analysis 

OR pairwise 

comparisons with 

Bonferroni procedure / 

Cohen’s f, 

Cohen’s d (dsav, dunb)   

 

Note.  †Dependent t-tests were also performed to verify that a statistically significant difference did not occur with respect to the pre-test MVIC torque, initial NMES training intensity and 

TTI across the two conditions. **Post-hoc tests not applicable because dependent t-test compares only two means  
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Table 10  

Manuscript 2 Research Questions and Related Analyses 

Research Question Independent Variable Dependent Variable Analysis Post-hoc / Effect Size 

1.  Does the maximum 

comfortable stimulus 

intensity differ between 

the c-NMES and m-

NMES conditions? 

Treatment condition 

(m-NMES vs. c-

NMES) 

Maximum 

comfortable stimulus 

intensity (mA) 

Dependent t-test† 

(one-tailed) 

**NA / Cohen’s d (dsav, 

dunb) 

2.  Does the initial 

normalized NMES-

induced torque 

significantly differ 

between the c-NMES 

and m-NMES 

conditions while using a 

maximum comfortable 

stimulus intensity? 

Treatment condition 

(m-NMES vs. c-

NMES) 

Initial normalized 

NMES-induced 

torque (Nm/kg) 

Dependent t-test 

(one-tailed) 

**NA / Cohen’s d (dsav, 

dunb)   
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Table 10 (continued). 

Research Question Independent Variable Dependent Variable Analysis Post-hoc / Effect Size 

3.  While implementing 

a 10:50 on:off ratio and 

a maximum comfortable 

stimulus intensity, does 

the percent decline in 

MVIC torque differ 

between the c-NMES 

and m-NMES 

Treatment condition 

(m-NMES vs. c-

NMES)  

Percent decline in 

MVIC  

Dependent t-test* 

(one-tailed) 

**NA / Cohen’s d (dsav, 

dunb) 
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Table 10 (continued). 

Research Question Independent Variable Dependent Variable Analysis Post-hoc / Effect Size 

4.  While implementing 

a 10:50 on:off ratio and 

a maximum comfortable 

stimulus intensity, does 

the percent decline in 

NMES-induced torque 

differ between the c-

NMES and m-NMES 

conditions and over 

time? In addition, does 

the rate of change over 

time differ based upon 

NMES condition? 

Treatment condition 

(m-NMES vs. c-

NMES) & time 

(repetition number) 

Percent decline in 

peak NMES-induced 

torque  

Two-way 

repeated 

measures 

ANOVA (main 

effects = one-

tailed; interaction 

= two-tailed) 

Simple effects analysis 

OR pairwise 

comparisons with 

Bonferroni procedure / 

Cohen’s f, 

Cohen’s d (dsav, dunb)   
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Table 10 (continued). 

Research Question Independent Variable Dependent Variable Analysis Post-hoc / Effect Size 

5.  While implementing 

a 10:50 on:off ratio and 

a maximum comfortable 

stimulus intensity, does 

the percent decline in 

TTI differ between c-

NMES and m-NMES 

conditions and over 

time? In addition, does 

the rate of change over 

time differ based upon 

NMES condition? 

Treatment condition 

(m-NMES vs. c-

NMES) & time 

(repetition number) 

Percent decline in 

TTI 

Two-way 

repeated 

measures 

ANOVA (main 

effects = one-

tailed; interaction 

= two-tailed) 

Simple effects analysis 

OR pairwise 

comparisons with 

Bonferroni procedure / 

Cohen’s f, 

Cohen’s d (dsav, dunb)   
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Table 10 (continued). 

Research Question Independent Variable Dependent Variable Analysis Post-hoc / Effect Size 

6.  While implementing 

a 10:50 on:off ratio and 

a maximum comfortable 

stimulus intensity, does 

the T-TTI differ 

between the c-NMES 

and m-NMES 

conditions? 

Treatment condition 

(m-NMES vs. c-

NMES)  

T-TTI (Nm*s) Dependent t-test 

(one-tailed) 

**NA / Cohen’s d (dsav, 

dunb) 

7.  While implementing 

a 10:50 on:off ratio and 

a maximum comfortable 

stimulus intensity, does 

self-reported discomfort 

differ between the c-

NMES and m-NMES 

conditions and over 

time? In addition, does 

the rate of change over 

time differ based upon 

NMES condition? 

Treatment condition  

(m-NMES vs. c-

NMES) & time 

(repetition number) 

Self-reported 

discomfort level 

(mm) 

Two-way 

repeated 

measures 

ANOVA (main 

effects = one-

tailed; interaction 

= two-tailed) 

Simple effects analysis 

OR pairwise 

comparisons with 

Bonferroni procedure / 

Cohen’s f, 

Cohen’s d (dsav, dunb)   

 

Note.  †A dependent t-test was also performed to verify that a statistically significant difference did not occur with respect to the pre-test MVIC torque. **Post-hoc tests not applicable 

because dependent t-test compares only two means. 
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CHAPTER IV – STUDY 1 MANUSCRIPT 

Abstract 

Context 

Multipath NMES (m-NMES) employs a novel multipath current distribution 

method that is marketed as having the potential to positively impact NMES outcome 

measures, such as NMES-induced fatigue and discomfort.  Relative to conventional 

NMES (c-NMES), previous studies have reported some improved outcomes during m-

NMES treatments.  However, due to methodological limitations, the mechanisms by 

which m-NMES outperformed c-NMES remain unclear. 

Objective 

To compare the effects of m-NMES and c-NMES on fatigue and discomfort 

related outcomes. 

Design 

Single-blind counterbalanced cross-over study. 

Setting 

Research laboratory. 

Patients or Other Participants 

We included data from 14 recreationally active males that successfully completed 

all sessions. 

Interventions 

Participants performed NMES-induced contractions under two conditions: m-

NMES and c-NMES.  Eighteen contractions were completed during each condition. 

Main Outcome Measure(s) 
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We measured percent decline in MVIC torque, percent decline in NMES-induced 

torque, percent decline in torque-time integral and total torque-time integral with an 

isokinetic dynamometer.  Participants reported discomfort levels using a visual analog 

scale. 

Results 

Percent declines in MVIC, NMES-induced torque and torque-time integral were 

not significantly different across conditions (P>0.05).  Self-reported discomfort levels did 

not significantly differ across conditions (P>0.05).  The total torque-time integral was 

significantly greater under the c-NMES condition (P>0.05).  Percent declines in NMES-

induced torque and torque-time integral were significantly greater over time, while self-

reported discomfort levels significantly decreased over time (P<0.05).  

Conclusion 

The novel multipath current distribution method did not positively impact fatigue 

related outcomes or self-reported discomfort.  Therefore, it does not appear that the 

multipath current distribution method influenced the outcomes in a clinically meaningful 

manner. 

Key Words 

Multipath, NMES, quadriceps 

Introduction 

Several studies have demonstrated that neuromuscular electrical stimulation 

(NMES) may lead to increased quadriceps strength in healthy7,8 and injured9-11 

populations.  NMES training intensity, which is most often defined as the ratio of NMES-

induced torque to torque produced during a maximum voluntary isometric contraction 
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(expressed as % MVIC),5 is thought to be the primary determinant of the effectiveness of 

NMES treatments.16,17  This belief is based on the established dose-response relationship, 

which indicates that NMES training intensity is positively related to strength gains.7-10,18-

20  Consequently, clinicians should maximize NMES training intensity to the extent 

possible,17 but it is difficult to achieve and maintain a sufficient NMES training intensity 

due to a series of limitations; which include: muscle fatigue,17,21-23 spatially limited motor 

unit recruitment17,21,24 and patient discomfort associated with the electrical stimulus and 

subsequent involuntary contraction.5,17,21,23-27  Strategies with the potential to minimize 

these limitations have been examined extensively.28-33,36-39,42-45  Unfortunately, many of 

the techniques supported by empirical evidence cannot be easily incorporated or are 

inaccessible within clinical settings,24 thus additional strategies are needed.22 

The Kneehab® XP (Theragen LLC, Leesburg, VA) is an electrical stimulator that 

incorporates a novel clinically applicable strategy referred to as multipathTM technology. 

The stimulator is marketed to enhance motor unit recruitment via improved patient 

comfort and spatial distribution of the stimulus leading to stronger NMES-induced 

contractions, while also minimizing muscle fatigue.84,88,92  Conventional NMES (c-

NMES) devices transmit an electrical current from one electrode to another via a single 

fixed path, while the novel device transmits an electrical current with altered pulse 

durations between four large electrodes integrated within a neoprene thigh garment via 

two separate channels.21,27,84,88,91  Due to its unique current distribution method this 

device has been referred to as multipath NMES (m-NMES), and it has gained a 

significant amount of attention in the literature.21,27,84,86-90 
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Feil et al.87 observed greater quadriceps strength six weeks after an ACL repair in 

a group of patients receiving m-NMES treatments compared to a group receiving c-

NMES treatments.  However, these authors reported that the mechanisms by which m-

NMES outperformed c-NMES during their study remain unclear.  Two basic studies21,27 

were subsequently performed to determine if the mechanisms responsible for the 

outcomes observed by Feil et al. were the proposed benefits of the m-NMES device, and 

both of these studies reported some improved outcomes under the m-NMES condition.  

The m-NMES and c-NMES conditions during these studies differed substantially with 

respect to two distinct factors, current distribution method (e.g., multipath vs. single fixed 

path) and electrode size (e.g., large vs. small).  Therefore, as acknowledged by the 

authors, these previous studies21,27 were limited in their ability to determine if the novel 

multipath current distribution method was the primary mechanism responsible for the 

improved outcomes they observed while using the m-NMES device. 

Evidence-based practice requires that clinicians incorporate current best evidence 

addressing the efficacy of therapeutic interventions, along with their clinical expertise, 

when making clinical decisions.93  Therefore, scientific examination of commercially 

available modalities, such as the novel m-NMES device, is needed to provide evidence 

that can be used by clinicians when making decisions with respect to therapeutic 

interventions (e.g., which NMES device to purchase).  Further investigation of the m-

NMES device, with an emphasis on examining the influence of its novel current 

distribution method, is warranted in order to advance the evidence-based decision-

making process with respect to NMES treatments.  Therefore, the purpose of our study 
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was to compare the effects of m-NMES and c-NMES on fatigue related outcomes and 

discomfort. 

Methods 

Design 

We performed a single-blind counterbalanced cross-over study with 2 

independent variables (NMES condition at 2 levels: m-NMES and c-NMES; time at 17 or 

18 levels: based on number of NMES-induced repetitions) and 5 dependent variables 

(percent decline in MVIC, percent decline in NMES-induced torque, percent decline in 

torque-time integral, total torque-time integral, self-reported discomfort).  We assigned 

participants to one of two permutations designed to counterbalance the session order in 

which the c-NMES and m-NMES treatment conditions were performed (see Appendix A, 

Figure A1). 

Participants 

We determined a target sample size via a priori power analyses using G*Power 

software (version 3.1.9.2).175 For each of the planned statistical analyses, we determined 

the number of participants required to maintain adequate power (1-β = 0.80) and detect a 

medium to large effect size (d = 0.650 , f = 0.325).176 We selected a medium to large 

effect size as we believe that any statistically significant differences with small to 

medium effect sizes would lack clinical relevance with respect to the outcomes of our 

study.  It is also important to note that other authors have selected a large effect size (e.g., 

Cohen’s f = 0.68) for an a priori power analysis during a NMES study examining similar 

dependent variables,37 which further supports our selection of a medium to large effect 

size as appropriate for this study. The dependent t-test power analysis revealed a target 
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sample size requirement of 17 participants, while only 12 participants were required for 

the two-way repeated measures ANOVA. 

A convenience sample of 21 participants from the university and community 

completed all four study sessions.  Although we initially exceeded our target sample of 

17 participants, we determined that seven of the participants’ data needed to be excluded 

due to a unique limitation of the c-NMES unit (discussed in detail in procedures section).  

As a result of this limitation our final sample consisted of 14 participants (age = 23.7 ± 

4.8 years, height = 175.3 ± 6.4 cm, mass = 78.7 ± 11.6 kg, BMI = 25.4 ± 2.8 kg/m2). 

To be included participants were required to be healthy, recreationally active, 

males, between the ages of 18-35. We defined healthy as having no unresolved knee 

injuries or other injuries that would impact lower-limb function, as well as being free of 

all applicable electrotherapy contraindications.  We defined recreationally active as 

participation in some form of physical activity (e.g. strengthening activities, jogging, 

running, cycling, swimming, tennis, etc.) for a minimum of two times per week for at 

least 20 minutes each time.  NMES tolerance and motor thresholds have been shown to 

differ between individuals with a body mass index (BMI) above and below 30 kg/m2,160 

thus participants also had to have a BMI ≤30 kg/m2 to be included. We chose to exclude 

females from participation because electrically-induced discomfort levels have been 

shown to significantly differ over the course of the menstrual cycle.162  This study was 

approved by the University’s institutional review board, and participants provided written 

informed consent.  To facilitate participant recruitment, we incentivized participants via a 

lottery for a chance to win one of four $50 gift cards. 
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Instrumentation 

We used a Quickset 4 Biodex dynamometer (Biodex Medical Systems Inc., 

Shirley, New York) to measure and record isometric knee extension torque during all 

voluntary and NMES-induced contractions, at a sampling rate of 100 Hz.  Participants 

removed their shoe from the dominant foot prior to being seated on the dynamometer.  

During all contractions participants were seated in the dynamometer chair with the seat 

back tilt at 85° and the dominant leg secured within a lever arm fixed at 60°.  We aligned 

the axis of rotation of the dynamometer to the anatomical axis of the test knee, and the 

lower leg was secured in the fixed lever arm via an ankle strap placed 2-3 cm above the 

lateral malleolus.27  We calibrated the dynamometer to the manufacturer’s specifications 

prior to beginning the study to ensure reliable measurements.  In addition, we used 

stabilization straps to prevent undesired movement of the upper body and asked 

participants to cross their arms over their chest while performing all voluntary and 

NMES-induced contractions (Figure 4).27,178 

We applied all c-NMES treatments using the same Sonicator® Plus 940 

stimulator (Mettler Electronics® Corp., Anaheim, CA).  To maintain consistency across 

the two NMES conditions, we set the c-NMES parameters as similar as possible to the 

parameters used with the Kneehab® XP program 6 (Table 5).  Although our sample size 

was negatively impacted by an unforeseen feature of the Sonicator® Plus 940, it is 

important to note that we selected this stimulator because it allowed us to more closely 

match the parameters of the m-NMES device. 

We used four self-adherent electrodes to deliver the c-NMES current (two- 5 cm x 

9 cm [MetronTM, Bolingbrook, IL], one- 10.79 cm x 17.78 cm [TENS Products, Grand 
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Lake, CO], one- 7 cm x 14 cm electrode [SME INC., Wilmington, NC]; Figure 5).  To 

guide the placement of the c-NMES electrodes, we manually identified motor points 

using a pencil electrode (Mettler Electronics XK2, Active Forever, Scottsdale, AZ) 

following the procedures outlined in the literature (Figure 7).24  Based on the results of a 

recent study, which identified seven motor points of the quadriceps,153 we selected four 

commonly identified motor points to guide the c-NMES electrode placement. 

Furthermore, the motor points we selected allowed us to place the c-NMES electrodes in 

a similar fashion to the m-NMES electrode configuration, as they were located on the 

proximal and distal vastus lateralis, proximal rectus femoris and distal vastus medialis 

(Figure 7). 

We applied all m-NMES treatments using the same Kneehab® XP stimulator 

(Theragen LLC, Leesburg, VA), however we assigned each participant a separate 

Kneehab® XP garment with integrated electrodes.  We integrated the m-NMES 

electrodes into the neoprene garment and subsequently placed the garment on the 

dominant thigh according to the manufacturer’s recommendations (Figure 9).167 We set 

the stimulator parameters to program 6 during all m-NMES treatments (Table 5). 

Procedures 

Participants reported at the same time of day (±2 hours) on four separate 

occasions and each session lasted approximately 1 hour.  Each participant’s dominant leg, 

which we defined as the leg with which they would use to kick a soccer ball, served as 

the leg of interest throughout the study (13 right, 1 left).  In an effort to reduce electrical 

impedance, participants shaved their anterior thigh each day. We also instructed 
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participants to report well hydrated and to refrain from strenuous activities for 12 hours 

prior to reporting. 

The first two sessions served as familiarization sessions and were separated by 

24-48 hours, while the last two sessions served as test sessions and were separated by 48-

72 hours.  Participants began each session by completing a standardized warm-up that 

included: 5 minutes of cycling on a stationary bike at a self-selected pace, three 30 

second bouts of dynamic quadriceps stretching and four isometric quadriceps 

contractions while in the dynamometer chair (2 at 50%, 1 at 75% and 1 maximum 

contraction at 60° of knee flexion).36  Participants rested for 8 minutes following the 

warm-up, during which we identified the motor points using the pencil electrode method 

and cleaned the leg of interest with an alcohol free wipe.  Although motor point 

identification was not necessary for the m-NMES condition because the electrodes were 

integrated within the garment, we still identified motor points during all sessions in an 

effort to blind participants to treatment condition. 

Participants performed maximum voluntary isometric contractions (MVICs) of 

the quadriceps and all MVICs were 6 seconds in duration.  Participants gradually 

increased their effort during the initial portion of each contraction, with maximal effort 

being reached at roughly 3 seconds and maintained for the remaining 3 seconds.  To 

facilitate participant understanding of a gradual increase, we placed a figure showing an 

ideal MVIC curve in the participants’ view while performing all MVICs. We instructed 

the participants by saying “cross your arms and prepare to push out with maximal effort”.  

Based on the recommendations provided in the literature,98 we instructed participants on 

the MVIC procedures and gave them an opportunity to practice during the initial 
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familiarization session.  In addition, the dynamometer computer screen provided 

participants with real-time visual feedback of their torque production and we provided 

verbal encouragement throughout each repetition (Figure 4).98  We encouraged 

participants to “push out with maximal effort” in a loud clear voice, and in the event that 

a participant showed signs of fatigue we gradually increased the volume and intensity.179  

We asked the participants to verify that their effort was maximal immediately following 

each repetition.98  In the event that a participant reported a submaximal effort, or we 

judged an effort to be submaximal, the repetition was discarded and repeated. 

We allowed participants to practice performing MVICs at a self-selected pace 

during the initial familiarization session until they reported being comfortable with the 

procedures, but a minimum of six practice trials was required.  Participants performed 

standardized pre-test MVIC procedures during the second familiarization session and all 

test sessions.  These procedures consisted of a series of three MVICs, with each repetition 

separated by a 2 minute rest period.31,33 During the test sessions (day 3 and day 4), the 

peak torque of the three pre-test trials was required to be within 10% or we asked 

participants to perform additional trials until three consecutive MVIC trials were within 

10%.27 To limit the possibility of fatigue as a confounding variable, we gave participants 

a maximum of six contractions during each test session.  If a participant was unsuccessful 

in completing the pre-test MVIC procedures, we asked them to return the following day 

for a second attempt.  We defined the trial with the greatest peak torque, from the three 

consecutive trials within 10%, as the participant’s pre-test MVIC value for that particular 

test session. 
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Although the standardized pre-test MVIC procedures were followed during the 

second familiarization session (day 2), this was done for the purpose of allowing the 

participant to further familiarize themselves with the MVIC procedures.  The peak torque 

observed during these repetitions only served as a reference value when verifying that 

each participant was able to tolerate an adequate stimulus intensity producing 30% 

MVIC.  Consequently, three consecutive MVICs within 10% of one another during the 

second familiarization session was not required for further participation, but we gave 

participants an opportunity to perform up to six contractions in the event that three 

consecutive MVICs were not within 10%. 

Participants rested for 5 minute prior to performing the NMES procedures, during 

which we placed the Kneehab® XP garment with integrated electrodes or the c-NMES 

electrodes over the participant’s dominant thigh.  We also placed an empty Kneehab® 

XP garment over the c-NMES electrodes in an effort to blind participants to treatment 

condition (Figure 9).27  Participants were exposed to both forms of NMES (c-NMES and 

m-NMES) during the two familiarization sessions by performing 10 NMES-induced 

quadriceps contractions using each NMES device (total of 20 contractions).  The NMES 

parameters we used during the familiarization sessions mirrored those used during the 

test sessions, with the exception that we allowed participants to control the stimulus 

intensity throughout the familiarization sessions.  During previous studies in our 

laboratory we have observed that participants are willing to use greater stimulus 

intensities if they are allowed to control the intensity themselves.  Thus, during all 

familiarization sessions we placed the stimulator controls in a manner that allowed 

participants to control the amount of stimulus intensity used during all NMES-induced 
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contractions.  We anticipated that participants would tolerate greater intensities as they 

became acclimated to the stimulus,144 thus we encouraged participants to increase the 

stimulus intensity between contractions as well as between familiarization sessions to 

maintain a maximum comfortable stimulus level during each contraction (e.g., highest 

stimulus intensity that does not cause pain).77 

The NMES procedures for the second familiarization day were similar to the first, 

with the exception that the devices were used in a reverse order from the pattern used 

during the initial session.  Participants were required to tolerate a stimulus intensity 

sufficient to produce a NMES-induced contraction of 30% MVIC during the subsequent 

test sessions (day 3 and day 4).  To evaluate whether a participant was capable of 

tolerating the required stimulus intensity, we identified the greatest peak torque observed 

over the 10 contractions of each condition during the second familiarization session.  We 

expressed the NMES-induced peak torque observed under each NMES condition as a 

percentage of the participant’s pre-test MVIC peak torque measured earlier during the 

second familiarization session (equation 1).  If a participant was unable to tolerate a 

stimulus intensity sufficient to produce a NMES training intensity ≥30% MVIC, we 

excluded them from further participation. 

The NMES procedures during the two test sessions were similar to the 

familiarization sessions, with the following exceptions: participants only performed 18 

NMES-induced contractions using a single NMES device (c-NMES or m-NMES) during 

each test session; we standardized the stimulus intensity using a target training intensity 

of 30% MVIC and did not manipulate it within each test session; and participants 
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performed post-test MVIC procedures immediately following the NMES-induced 

contractions during each test session. 

Prior to beginning each test session’s NMES condition we determined the 

stimulus intensity required to produce a target torque output of 30% MVIC, which we 

selected because it falls within the therapeutic window identified in the literature.144  We 

increased the stimulus intensity until the targeted torque output of 30% of the test 

session’s pre-test MVIC was reached. If a participant reported reaching a maximum 

comfortable intensity prior to this point we immediately decreased the intensity and the 

participant recovered for 30 seconds. We repeated this process a maximum of three times 

and if the participant was unable to tolerate a sufficient stimulus intensity by the third 

attempt we excluded them from further participation.  After 50 seconds of rest 

participants completed the assigned NMES condition, and we frequently encouraged 

participants to “relax and allow the machine to do all the work” during all NMES-

induced contractions.  We did not manipulate the initial stimulus intensity used during the 

test sessions over the course of each NMES treatment condition.  However, the c-NMES 

device we used has an obscure setting that may automatically reduce the stimulus output 

when the unit senses a change in impedance over the course of the NMES-induced 

contractions.177  As expected, we observed that the outcome measures were influenced 

when this occurred, ultimately resulting in an undesired systematic bias in c-NMES test 

sessions during which the stimulus output was automatically reduced by the unit.  

Consequently, when this automatic step-down in output occurred we excluded the 

negatively influenced data from the statistical analyses. 
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Immediately after completing the assigned NMES treatment condition 

participants performed a single 6 second post-test MVIC.  We elected to use a single 

repetition in an effort to limit recovery from the NMES-induced contractions.  However, 

in the event that we deemed the post-test trial to be submaximal, or the participant 

deemed it to be submaximal, a second MVIC was performed after a 20 second rest period 

in an effort to continue limiting recovery.178 

Outcome Measures 

Percent Decline in MVIC Torque 

A change in peak MVIC torque is considered to be the gold standard for assessing 

fatigue.105,110  Therefore, we expressed each participant’s post-test MVIC peak torque as 

a percent decline relative to their pre-test MVIC peak torque (equation 2), and the 

subsequent percent decline served as a fatigue related outcome measure for our study. 

Percent Decline in NMES-induced Torque 

Failing to maintain a target force is another common method used to asses 

fatigue,110 thus NMES-induced fatigue is also frequently assessed by measuring the 

decline in NMES-induced torque over the course of a treatment.21,27,30-

33,46,49,51,54,55,59,61,62,64,66,100  Accordingly, we expressed the peak torque produced during 

all 18 NMES-induced contractions for each test session as a percent decline relative to 

the peak torque produced during the initial NMES-induced contraction of each test 

session (equation 3) 

Percent Decline in Torque-time Integral 

A decline in the torque-time integral (TTI) observed during NMES-induced 

contractions has also been used in a number of studies as an index of NMES-induced 
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fatigue, as it has been suggested to represent isometric work.23,29,47,115,116  Therefore, the 

data necessary to calculate the TTI (e.g., torque and duration of torque recording; 

expressed as Newton-meter seconds [Nm*s]) was measured and recorded during the 

NMES-induced contractions and subsequently exported as a text file (sampling rate = 100 

Hz, or one sample taken every 10 ms).  We imported the data files into an analysis 

software package (Acqknowledge® 4, Biopac® Systems, Inc., Goleta, CA), which we 

used to calculate the TTI of each contraction (equation 4).  We expressed the TTI of each 

NMES-induced contraction during the test sessions as a percent decline (equation 5), 

which also served as an outcome measure of NMES-induced fatigue. 

Total Torque-time Integral 

We considered the total torque-time integral (T-TTI) to be an index of the total 

amount of isometric work performed under each condition, and as such it also 

represented a fatigue related outcome.  We calculated the T-TTI for each condition by 

summing individual TTI data (equation 6). 

Self-reported Discomfort 

We used a 100 mm horizontal visual analog scale (VAS) to measure self-reported 

discomfort levels during each NMES condition.  As is common during NMES studies, 

the descriptors at each end of the scale were “no discomfort” (0 mm) and “worst possible 

discomfort” (100 mm).21,27,29,36,37,159,161  We gave the participants a pen and asked them to 

“rate your level of discomfort by making a vertical tick mark on the line” following each 

NMES induced contraction (Figure 8).  We obtained self-reported discomfort levels by 

measuring the distance (mm) from the “no discomfort” anchor to the vertical mark made 

on the horizontal line.  When used to assess NMES-induced discomfort in a sample of 
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healthy individuals, the VAS has been shown to have a high inter-session test-retest 

reliability (intraclass correlation coefficient [ICC] ≥0.90).159 

Statistical Analysis 

We analyzed the data using the Statistical Package for Social Sciences (SPSS) 

version 23.0 (IBM Corporation, Armonk, NY).  We performed a series of two-way 

repeated measures analysis of variance (ANOVA) on three of the outcome measures 

(percent decline in NMES-induced torque, percent decline in TTI, and self-reported 

discomfort).  In the event that the assumption of sphericity was determined to be violated, 

we followed the Greenhouse-Geisser procedure for correcting degrees of freedom.  In the 

event of a significant time main effect, we performed post-hoc pairwise comparisons 

using a Bonferroni procedure to maintain family-wise error rate.  Due to the number of 

NMES-induced contractions, we performed a large number of post-hoc pairwise 

comparisons (e.g., >130).  To simplify the results, we provided only the significant 

pairwise comparisons deemed to be clinically important (e.g., first contraction to 

demonstrate a significant decline relative to the second contraction, and final 

contraction). 

We performed a dependent t-test on the other outcome measures (percent decline 

in MVIC, T-TTI).  In addition, we performed dependent t-tests to examine any potential 

baseline differences between the two conditions with respect to pre-test MVIC, initial 

NMES training intensity (% MVIC), and initial TTI.  We also calculated test-retest 

reliability (ICC(2,1))
189,190 and measurement precision (SEM)191 estimates for pre-test 

MVIC measurements using the equations provided in the literature. 
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To examine the magnitude of the differences, we calculated Cohen’s f and d effect 

sizes.176  We calculated Cohen’s d effect sizes corresponding to within groups 

comparisons using the equation suggested by Cumming194 (equation 8), which uses the 

average standard deviation of the paired data as the standardizer (dsav).  Since d statistics 

are believed to overestimate the population effect size, Cumming194 recommended that an 

unbiased Cohen’s d (dunb) also be provided.  Accordingly, we calculated dunb values using 

the equation provided by Cumming194 (equation 9).  We interpreted Cohen’s f values as 

follows: f = 0.10-0.24 small, f = 0.25-0.39 medium and f ≥ 0.40 large; whereas we 

interpreted Cohen’s d effect sizes as follows: d = 0.20-0.49 small, d = 0.50-0.79 medium 

and d ≥ 0.80 large.176 

Results 

Prior to analyzing the data, we assessed the tenability of the applicable statistical 

assumptions.  We defined outliers as any raw score with a corresponding z-score >2.5.188  

For outliers, we transformed the score by changing the original raw score to a value ±1 

unit larger than the next highest value, as has been recommended because this allows the 

case to remain deviant while also reducing the impact of an outlier.186  There was a small 

amount of missing data (<1%), which we replaced using the corresponding group 

mean.186  We assessed the normality of the data via skewness and kurtosis z-scores, and 

the data were considered to be normally distributed.  There were no significant 

differences with respect to baseline measurements across the two conditions (Table 11), 

and the test-retest reliability and measurement precision estimates of the pre-test MVICs 

were within acceptable limits (ICC(2,1) = 0.957; 95% CI: 0.855, 0.983; SEM = 13.35 
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Nm).184  Furthermore, these values are similar to those reported in the literature when 

assessing healthy populations.181,183 

Table 11  

Baseline Comparisons Across Conditions 

 NMES condition   

Variable m-NMES c-NMES P Value d 

Pre-test MVIC (Nm) 221.9 ± 56.5 217.021 ± 66.1 0.420 0.079 

Initial NMES Training 

Intensity  (% MVIC) 

31.0 ± 6.0 32.1 ± 5.0 0.653 -0.17 

Initial TTI (Nm*s) 541.2 ± 146.8 653.5 ± 260.4 0.122 -0.531 
 

Note.  Values represent mean ± 1SD. 
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Percent Decline in MVIC Torque 

The dependent t-test revealed that the percent decline in MVIC torque following 

the NMES treatments was not significantly different across conditions (t13 =1.086; P = 

0.149; d = 0.310; 95% CI for effect size: -0.276, 0.884; dunb = 0.292; Figure 11) 

 

Figure 11. Percent Decline in MVIC Torque 

Note.  Error bars indicate 95% confidence intervals calculated using a critical t-value as has been recommended.194 

Percent Decline in NMES-induced Torque 

For the percent decline in NMES-induced torque, the repeated-measures ANOVA 

revealed no significant condition by time interaction (F2.6, 34 = 0.849; P = 0.464; f = 

0.255) or condition main effect (F1, 13 = 0.052; P = 0.411; f = 0.063).  However, there was 

a significant time main effect (F2.9, 38.1 = 192.156; P<0.001; f = 3.857; Figure 12). Post-

hoc analysis revealed that the decline was significantly greater by the sixth contraction 

(difference = 10.9 ± 7.5%; P<0.001; d =1.559; 95% CI for effect size: 0.978, 2.125; dunb 

= 1.515) and it remained significantly greater for each of the subsequent contractions 

(18th contraction, difference = 54.0 ± 13.7%; P<0.001; d = 5.004; dunb = 4.863) 



 

159 

 

Figure 12. Percent Decline in NMES-induced Torque 

Note.  *First contraction with a significantly greater decline relative to contraction 2 (P<0.001).   

Percent Decline in Torque-time Integral 

For the percent decline in TTI, the repeated-measures ANOVA revealed no 

significant condition by time interaction (F2.4, 30.6 = 1.223; P = 0.313; f = 0.306) or 

condition main effect (F1, 13 = 0.182; P = 0.338; f = 0.119).  However, there was a 

significant time main effect (F2.7, 34.8 = 276.330, P<0.001; f = 4.607; Figure 13).  Post-hoc 

analysis revealed that the decline was significantly greater by the fifth contraction 

(difference = 9.04±7.7%; P =0.004; d =1.123; 95% CI for effect size: 0.654, 1.579; dunb = 

1.091) and it remained significantly greater for each of the subsequent contractions (18th 

contraction, difference = 59.0±14.0%; P<0.001; d = 5.48; dunb = 5.326). 

* 
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Figure 13. Percent Decline in Torque-time Integral 

Note.  *First contraction with a significantly greater decline relative to contraction 2 (P=0.004).   

Total Torque-time Integral 

The dependent t-test revealed that the T-TTI was significantly greater during the 

c-NMES condition (t13 = -2.068, P =0.0295; d = -0.391; 95% CI for effect size: -0.783, 

0.015; dunb = -0.368; Figure 14).  

* 
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Figure 14. Total Torque-time Integral 

Note.  *Significantly greater T-TTI (P = 0.0295).  Error bars indicate 95% confidence intervals calculated using a critical t-value as 

has been recommended.194 

Self-reported Discomfort 

The repeated-measures ANOVA revealed that there was no significant condition 

by time interaction (F2.7, 35.7 = 0.963; P = 0.415; f = 0.272) or condition main effect (F1, 13 

= 0.419; P = 0.265; f = 0.179) for self-reported discomfort levels.  However, there was a 

significant time main effect (F1.92, 25 = 3.60; P = 0.022; f = 0.526; Figure 15), but post-hoc 

analyses did not reveal any significant differences (P >0.05).  

* 
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Figure 15. Self-reported Discomfort 

Discussion 

Overall, while using similar stimulus parameters and electrode configurations, the 

findings of our study indicate that m-NMES was not significantly better on any of the 

outcome measures when compared to c-NMES.  To the best of our knowledge m-NMES 

and c-NMES have not been previously compared while implementing similar electrode 

configurations.  Therefore, we believe these findings are important because our approach 

allowed us to better isolate the influence of the novel multipath current distribution 

method on fatigue and discomfort related outcomes. 

The findings of our study also indicate that some of the outcome measures 

significantly changed over time, irrespective of the stimulator.  The decline in NMES-

induced torque and decline in the TTI were significantly greater over time (Figure 12 & 

13), while self-reported discomfort levels significantly decreased over time (Figure 15).  

We believe these findings are also important as they illustrate the need for additional 
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strategies to prevent the decline in NMES-induced torque in order to maintain a sufficient 

NMES training intensity over the course of a treatment. 

Studies examining NMES-induced fatigue of the quadriceps, while using a variety 

of stimulus parameters, have reported declines in MVIC ranging from 7-

33%.21,27,30,99,104,121,145  For the m-NMES and c-NMES conditions in our study we 

observed declines of only 3.6 ± 4.4% and 5.6 ± 8.2%, respectively.  It is unclear why the 

declines in MVIC we observed are lower than the values reported in the aforementioned 

studies, but it may be attributable to a variety of methodological differences (e.g., total 

number of NMES-induced contractions, duration of contractions, rest time, initial NMES 

training intensity).  Despite the fact that the declines in MVIC we observed were lower 

than expected, our observation that the declines were not significantly different between 

the two NMES conditions is in agreement with the results of Maffiuletti et al.21; but 

contradicts the results of Morf et al.27  One possible explanation is that Maffiuletti et al. 

also used healthy participants while Morf et al. used individuals who had recently 

undergone a knee replacement. 

Although the results for decline in MVIC of our study and those of Maffiuletti et 

al.21 are in direct contrast to those reported by Morf et al.27, the mean differences 

observed between the NMES conditions and corresponding effect sizes are similar across 

all three studies.  While reporting a statistically significant difference, Morf et al. 

observed a mean difference between the two NMES conditions of only 3.0%, which is 

similar to the non-significant 2.6% difference observed by Maffiuletti et al. and the 2.1% 

non-significant difference we observed.  Corresponding Cohen’s d effect sizes for each 

study were considered to be small because they were 0.383, 0.311 and 0.310, 
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respectively.  Since all three studies observed similar small mean differences between the 

two conditions, as well as small corresponding effect sizes, we believe the more likely 

explanation for the inconsistent statistical results is the difference in sample size across 

the three studies; which were n = 20, n = 10 and n = 14, respectively.  Furthermore, the 

comparable small effect sizes consistently observed across each of these studies suggests, 

irrespective of the presence or absence of statistical significance, that m-NMES does not 

reduce the decline in MVIC in a clinically meaningful way.  Although, with a large 

enough sample statistically significant differences may be observed.27 

Others have observed declines in NMES-induced torque ranging from 8-61% 

while using a variety of treatment parameters.21,27,31,46,51,61,62,99 Our observation that 

NMES-induced torque significantly declined over the course of each treatment condition 

is in agreement with these previous studies.  Likewise, our observation that the decline in 

NMES-induced torque was not significantly different between the two NMES conditions 

is in agreement with the two earlier studies comparing c-NMES and m-NMES.21,27  Morf 

et al.27 hypothesized that they did not observe a significant difference between conditions 

due to their use of short contraction durations and a low target training intensity, which 

may have limited potential differences between the two conditions.  Consequently, we 

chose to include a longer contraction duration (10 seconds) and higher target training 

intensity (30% MVIC), but we observed a similar result for decline in NMES-induced 

torque so our results do not appear to support their hypothesis. 

In addition to longer contraction durations, we implemented a longer rest period 

than earlier studies.21,27 We elected to use an on:off ratio of 10:50 rather than 5:10 

because a meta-analysis6 addressing NMES efficacy for quadriceps strengthening 
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revealed that a 10:50 ratio was used most often by the included randomized controlled 

trials.  Despite implementing a longer rest period between contractions, which has been 

shown to reduce the decline in NMES-induced torque,61,62 we observed a mean decline in 

NMES-induced torque of roughly 50% under each condition.  This was much greater 

than the declines of roughly 20-25% observed by  Maffiuletti et al.21 and Morf et al.27.  

The declines we observed were likely larger because we implemented a higher initial 

target training intensity and our NMES-induced contractions were twice the duration. 

Declines in NMES-induced torque over the course of a treatment pose a 

significant clinical problem because this subsequently reduces the NMES training 

intensity, which is considered to be the primary determinant of NMES treatment 

efficacy.16,17  Therefore, we believe that the substantial difference in the declines in 

NMES-induced torque we observed versus those reported during the two earlier 

studies21,27 warrants further investigation.  The smaller percent declines observed during 

the two earlier studies may indicate that shorter contraction durations result in smaller 

percent declines in NMES-induced torque, but because our target training intensity was 

higher and our rest intervals were longer it is difficult to directly compare our results to 

those of earlier studies.  To the best of our knowledge the decline in NMES-induced 

torque while implementing different contraction durations has yet to be examined.  We 

believe differences in contraction duration warrant further examination, particularly 

because the previously mentioned training study87 reporting improved patient outcomes 

while using m-NMES implemented on:off ratios of 10:20 and 5:10 for the c-NMES and 

m-NMES conditions, respectively.  Therefore, different contraction durations may have 
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been a confounding factor, but due to a lack of research in this area the extent to which 

different contraction durations influenced these results remains unclear. 

Declines in NMES-induced torque are often used as a measure of muscle 

fatigue,21,27,31,46,51,59,61,62 but caution should be exercised while interpreting these results 

since declines in NMES-induced torque may be a combination of muscle fatigue and 

accommodation of the motor nerves.99,100  Alon and Smith144 defined accommodation as 

the transient process by which the threshold required to excite the nerve increases in 

response to the electrical stimulus.  Accommodation has been suggested as a contributing 

factor to declines in NMES-induced torque output because an increased nerve threshold 

has the potential to result in a diminished number of recruited motor units.28,77,100  We did 

not directly measure accommodation in our study, thus we are unable to confidently 

differentiate between muscle fatigue and accommodation. However, we did observe two 

interesting patterns that warrant discussion.  

We observed a much larger decline in NMES-induced torque (roughly 50%) 

relative to the decline in MVIC (roughly 5%), irrespective of the NMES condition.  A 

similar pattern has also been observed in recent studies attempting to examine 

accommodation.99,100  Matkowski et al.99 hypothesized that their observed pattern of a 

larger decline in NMES-induced torque relative to a much smaller decline in MVIC, 

which we also observed in our study, is primarily attributable to accommodation 

occurring during the NMES-induced contractions.  In addition to declines in NMES-

induced torque, we also observed a significant decline in self-reported discomfort over 

the course of the treatments (Figure 15).  Randolph et al.145 also observed a decline in 

discomfort which can be attributed to accommodation in sensory nerves, but the authors 
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also hypothesized that accommodation affected motor nerves therefore contributing to 

their observed declines in NMES-induced torque.  Although we are unable to definitively 

determine the relative contributions of accommodation and fatigue, based on our 

observed pattern of a smaller decline in MVIC relative to the decline in NMES-induced 

torque, as well as a corresponding decline in self-reported discomfort, we hypothesize 

that accommodation was the primary contributing factor to the large declines in NMES-

induced torque.99,100,145 

We achieved our target training intensity of 30% MVIC, but due to the large 

declines in NMES-induced torque the mean NMES training intensity was only 15.2 ± 

4.6% MVIC during the final contraction; which is well below the therapeutic window of 

25-50% MVIC .144  The low NMES training intensities of the final NMES-induced 

contractions may offer an additional explanation for the observed minimal decreases in 

post-test MVIC torque.  Since participants were producing very little torque during the 

final NMES-induced contractions their quadriceps were not heavily taxed during these 

contractions, which may have allowed them to fully recover from earlier more intense 

contractions prior to performing post-test MVICs. This observation, as well as our 

hypothesis that accommodation was the primary contributing factor to the large declines 

in NMES-induced torque that we observed, highlights a need for researchers to develop 

clinically applicable strategies focused on combating accommodation rather than muscle 

fatigue.  One such strategy that has been successfully used is systematically increasing 

the stimulus intensity over the course of the treatment.44 

Relative to others who have compared m-NMES and c-NMES,21,27 our study is 

unique in that we also compared TTI data between the two conditions.  Due to a lack of 
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similar comparisons in the literature it is difficult to compare the declines in TTI that we 

observed to earlier studies.  However, a previous NMES study has observed a different 

TTI response when comparing two NMES conditions.29  The declines we observed in 

TTI mirrored the declines we observed in NMES-induced torque, as the decline in the 

TTI was not significantly different between the two conditions but it was significantly 

greater over time.  The decline in TTI reached 55.4 ± 15.4% and 56.7 ± 12.9% during the 

18th contraction for m-NMES and c-NMES, respectively.  Since the declines in TTI 

mirrored the declines in NMES-induced torque during our study, including TTI 

comparisons may seem repetitive.  However, we elected to include TTI comparisons 

because it has been suggested as a better determinant of fatigue during longer duration 

NMES-induced contractions like those performed during our study.47  We also felt that it 

was important to examine the decline in TTI because peak torque alone does not provide 

an adequate summary of the entire 10 second contraction.  For example, it is plausible 

that similar peak torque values could be observed during two contractions, but if the 

amount of time during which the contraction is held at or near peak torque differed 

substantially then the TTI of each contraction would differ. 

We also examined the T-TTI, which is representative of the total amount of 

isometric work performed under each condition.  Despite non-significant baseline 

differences with respect to the initial NMES training intensity or initial TTI, as well as 

similar declines in NMES-induced torque and in TTI during each condition, the T-TTI 

was significantly greater during the c-NMES condition.  However, it is important to 

acknowledge that this difference reached statistical significance due to our use of a one-

tailed test, but was contrary to our hypothesized direction.  This may be due to an 
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observed mean torque recording duration of 8.6 ± 0.2 seconds during the m-NMES 

condition while the mean duration of the torque recording during c-NMES was 10.3 ± 0.2 

seconds.  Since each device used similar “on” times this was unexpected.  The isokentic 

dynamometer is only capable of recording torque when the contraction intensity is 

sufficient to overcome the force of gravity and cause the lower leg to push against the 

fixed lever arm.  Therefore, it appears that the amount of time the NMES-induced 

contractions exceeded gravity during the m-NMES condition was roughly 1.7 seconds 

shorter than during c-NMES.  This difference may be attributable to the multipath current 

distribution method of the m-NMES device. Research into NMES has primarily focused 

on NMES-induced peak torque, which influences the total amount of work performed 

during a particular session but is not the only determining factor of isometric work.  To 

the best of our knowledge there are no published studies that have examined the impact 

that the amount of work done during NMES sessions has on the effectiveness of the 

treatments, thus we believe that future research in this area is warranted. 

Our observation that self-reported discomfort levels were similar across the two 

NMES conditions is contrary to the results of the earlier studies comparing m-NMES and 

c-NMES.21,27  Morf et al.27 observed that VAS scores during c-NMES were 39% higher 

over the course of their treatment, and Maffiuletti et al. observed a similar 35% difference 

prior to the 20th contraction.  We believe this discrepancy in our results was due to the 

similarly sized electrodes that we used across the two conditions.  Both Morf et al. and 

Maffiuletti et al. acknowledged that using different electrode configurations during the 

NMES conditions limited their ability to attribute the improved outcomes observed 

during the m-NMES condition to the novel multipath current distribution method.  
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Therefore, we used similarly sized electrodes during each condition in our study.  The c-

NMES electrodes covered a surface area of roughly 360 cm2, whereas the m-NMES 

electrodes covered an area of 427 cm2 (Figure 6).27  Although there was a small 

difference in the area covered by c-NMES and m-NMES, our electrodes were more 

similar than the electrode configuration used during the c-NMES condition of the 

previous studies; which consisted of three electrodes covering only 100 cm2.21,27 

Although we observed a significant time main effect indicating a decline in self-

reported discomfort levels over the course of the NMES treatment conditions, we did not 

observe any statistically significant post-hoc pairwise comparisons. This likely occurred 

because of our use of the conservative Bonferroni correction to maintain family-wise 

error rate.  The largest mean differences we observed during the pairwise comparisons 

were minimal, ranging from 6.4-7.6 mm. During a previous NMES study performed in 

our laboratory we defined a 13 mm threshold for determining clinically significant 

differences with respect to self-reported discomfort levels.36  Therefore, we do not 

believe that the mean differences we observed during the pairwise comparisons 

represented clinically significant differences, which is in agreement with our non-

significant findings during the post-hoc analyses. 

Although outcome measures for m-NMES were not significantly better than c-

NMES in our study the devices did perform similarly, which we believe is also an 

important observation.  The m-NMES device is portable and because the electrodes are 

integrated within a neoprene sleeve patients can easily apply the treatment themselves.  

Feil et al.87 observed greater compliance during the m-NMES condition of their training 

study, which they suggested may have occurred due to the convenience of the m-NMES 
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device.  Therefore, in agreement with previous authors,21 we believe that the m-NMES 

device may serve as a clinically useful option because it performed similarly to c-NMES 

and is easier to use. 

Limitations 

The extent to which the findings of our study hold true with respect to females 

and injured populations remains unclear, thus excluding females and using only healthy 

participants may be viewed as limitations of our study.  We did not use females because 

the menstrual cycle has been shown to influence self-reported discomfort levels,162 thus 

due to our study design requiring repeated measurements over time we felt it was 

necessary to exclude females.  In addition, during exploratory NMES studies, similar in 

nature to our study, it is common practice to use healthy 

participants.21,26,29,30,33,37,44,62,77,99,104,144,145,159 

Despite achieving an original sample size larger than our a priori power analyses 

indicated, we excluded the data of seven participants due to a limitation of the c-NMES 

device that we used.  Therefore, our sample size was smaller than desired which may 

have allowed a type II error.  However, due to the fact that each of our non-significant 

observations also had corresponding effect sizes that were below the medium to large 

threshold used during our a priori power analyses, we believe that our sample size was 

adequate for the purposes of our study; which we designed to focus on clinically 

meaningful differences. 

A maximum comfortable stimulus intensity, which may vary across NMES 

conditions and individuals, should be utilized in clinical settings. Therefore, another 

limitation of our study was that we used a fixed target training intensity of 30% MVIC, 



 

172 

which does not permit inferences regarding which NMES method allows for greater 

initial training intensities or regarding fatigue and discomfort related outcomes while 

using a clinically applicable stimulus intensity.  A maximum comfortable stimulus 

intensity is self-selected by each individual and so baseline differences in NMES-induced 

torque may occur across conditions or individuals; whereas using a target training 

intensity is likely to prevent a baseline difference.  Therefore, we standardized the 

stimulus intensity by using a target training intensity of 30% MVIC in an effort to 

enhance experimental control and subsequently facilitate our interpretation of the results.  

Future studies should compare the two NMES conditions while using a clinically relevant 

maximum comfortable stimulus intensity.  Although participants were required to shave 

their dominant thigh each day prior to reporting and the leg was cleansed with a non-

alcoholic wipe in an effort to standardize electrical impedance across test sessions, we did 

not make an attempt to standardize skin impedance via an objective measure.  Since skin 

impedance may vary on a daily basis,97 this may also be considered a limitation of our 

study. 

Conclusions 

Based on our results, it does not appear that the novel multipath current 

distribution method positively impacts NMES-induced fatigue and discomfort in a 

clinically meaningful manner.  Since we used similar electrode configurations across 

conditions and did not observe any significant differences across the two conditions in 

favor of m-NMES, we believe it is likely that a contributing factor for the improved 

outcomes observed during previous similar studies21,27 is the larger electrodes integrated 

into the garment of the m-NMES device rather than the novel current distribution 
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method.  Although we did not directly measure accommodation, we hypothesize that the 

large declines in NMES-induced torque we observed during both NMES-conditions are 

primarily attributable to motor nerve accommodation.  Therefore, the novel multipath 

current distribution method does not appear to positively influence motor nerve 

accommodation in a clinically meaningful manner, thus additional strategies are needed. 
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CHAPTER V – STUDY 2 MANUSCRIPT 

Abstract 

Context 

During a previous study performed in our laboratory comparing multipath NMES 

(m-NMES) and conventional NMES (c-NMES) we standardized the stimulus intensity 

using a target training intensity.  However, standardizing the stimulus intensity by using a 

maximum comfortable stimulus intensity is a more clinically relevant approach 

warranting examination.    

Objective 

To compare the effects of m-NMES and c-NMES on NMES related outcomes, 

while addressing a methodological limitation of our previous study. 

Design 

Single-blind counterbalanced cross-over study. 

Setting 

 Research laboratory. 

Patients or Other Participants 

We included data from 21 recreationally active males that successfully completed 

all sessions. 

Interventions 

Participants performed 18 NMES-induced contractions while using a maximum 

comfortable stimulus intensity under two conditions: m-NMES and c-NMES.  
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Main Outcome Measure(s) 

We manually recorded maximum comfortable stimulus intensity (mA).  We 

measured initial normalized NMES-induced torque (Nm/kg), percent decline in MVIC 

torque, percent decline in NMES-induced torque, percent decline in torque-time integral 

and total torque-time integral (Nm*s) with an isokinetic dynamometer.  Participants self-

reported discomfort levels using a visual analog scale (mm). 

Results 

Maximum comfortable stimulus intensity was significantly greater under the m-

NMES condition (P<0.05), but the subsequent normalized NMES-induced torque was 

not significantly different across conditions (P>0.05).  Percent declines in MVIC, 

NMES-induced torque and torque-time integral, as well as the total torque-time integral, 

were not significantly different across conditions (P>0.05).  Percent declines in NMES-

induced torque and torque-time integral were significantly greater over time (P<0.05).  

Depending on the level of time, self-reported discomfort levels significantly differed 

across conditions (P<0.05). 

Conclusion 

Although m-NMES resulted in a significantly greater maximum comfortable 

stimulus intensity, it did not subsequently result in significantly greater NMES-induced 

torque production.  It also did not positively impact NMES-induced fatigue and 

discomfort related outcomes. Therefore, it does not appear that the multipath current 

distribution method influenced the outcomes in a clinically meaningful manner.  

Key Words 

Multipath, NMES, quadriceps 
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Introduction 

Neuromuscular electrical stimulation (NMES) treatments are common in 

orthopedic clinical settings as they can be used for a variety of purposes.1-5 Despite this 

versatility, NMES is most often used for the specific goal of enhancing quadriceps 

strength.6  The effectiveness of NMES for this purpose is believed to be primarily 

determined by the NMES training intensity,16,17 which is often defined as the ratio of 

NMES-induced torque to torque produced during a maximum voluntary isometric 

contraction (expressed as % MVIC).5  Accordingly, clinicians are encouraged to 

maximize NMES training intensities to the degree possible,17 but the ability to achieve 

and maintain appropriate NMES training intensities is limited by a variety of factors; 

which include: patient discomfort,5,17,21,23-27 muscle fatigue17,21-23 and spatially limited 

motor unit recruitment.17,21,24 

The Kneehab® XP (Theragen LLC, Leesburg, VA) is an electrical stimulator that 

has received substantial attention in the literature,21,27,84,86-90 because it implements a 

novel strategy marketed to address the primary factors limiting NMES training 

intensity.84,88,92  The stimulator uses multipathTM technology, which distributes the 

electrical current between four large electrodes integrated within a neoprene thigh 

garment via two separate channels while also altering pulse durations21,27,84,88,91; thus it is 

referred to as multipath  NMES (m-NMES).21,27 In contrast, conventional NMES (c-

NMES) stimulators distribute the electrical current in each channel via a single fixed path 

between a pair of electrodes.84 

Studies comparing m-NMES and c-NMES have reported improved outcomes 

while using m-NMES, but due to limitations of these studies the authors acknowledged 
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that the mechanisms by which m-NMES outperformed c-NMES remain unclear.21,27,87  

For example, two basic studies21,27 comparing m-NMES and c-NMES used substantially 

different electrode configurations across conditions, thus the authors’ ability to attribute 

improved NMES-induced torque, as well as fatigue and discomfort related outcomes, to 

the novel multipath current distribution method was limited.  Consequently, we 

performed a similar basic study in our laboratory comparing the influence of m-NMES 

and c-NMES on fatigue and discomfort related outcomes while using similar electrode 

configurations (Chapter IV).  We believe this approach allowed us to better examine the 

influence of the novel multipath current distribution method on these outcomes. 

When comparing fatigue and discomfort related outcomes, as we did in our 

previous study, it is necessary to standardize the NMES stimulus intensity across 

conditions.  However, different standardizing methods exist in the literature.  Two 

common methods of standardizing the stimulus intensity are using a maximum 

comfortable or maximum tolerable intensity (e.g., mA) identified by each 

individual,23,37,45,62,73,75,77 or by using a target NMES training intensity (e.g., % MVIC) set 

by the investigator.21,27,30,38  Since the maximum comfortable or maximum tolerable 

intensity approach uses self-selected stimulus intensities by each individual, it may allow 

significant baseline differences in the initial NMES-induced torque production to occur 

across conditions or individuals.  The target training intensity approach is more likely to 

limit these baseline differences, thus it provides greater experimental control.  Therefore, 

since we felt that any systematic baseline differences across conditions could influence 

the outcomes, which would make the results difficult to interpret, we elected to 

standardize the stimulus intensity by using a target training intensity of 30% MVIC 
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during our previous study.  Although we believe this approach allowed for greater 

experimental control, it also limited the generalizability of our results because each 

individual’s maximum comfortable stimulus intensity should be used within clinical 

settings.  In addition, this approach limited our previous study because we were unable to 

determine which current distribution method, if any, allowed for greater maximum 

comfortable stimulus intensities and subsequent NMES-induced torque production.  Each 

of these outcome measures are clinically relevant and warrant further investigation, as 

they ultimately impact the NMES training intensity.  Therefore, the primary purpose of 

our study was to compare the effects of m-NMES and c-NMES on the clinically relevant 

maximum comfortable stimulus intensity and the subsequent NMES-induced torque.  Our 

secondary purpose was to compare fatigue and discomfort related outcomes across the 

two NMES conditions while using a maximum comfortable stimulus intensity. 

Methods 

Design 

We performed a single-blind counterbalanced cross-over study with 2 

independent variables (NMES condition at 2 levels: m-NMES and c-NMES; time at 17 or 

18 levels: based on the number of NMES-induced contraction repetition) and 7 dependent 

variables (maximum comfortable stimulus intensity, initial normalized NMES-induced 

torque, percent decline in MVIC, percent decline in NMES-induced torque, percent 

decline in torque-time integral, total torque-time integral, self-reported discomfort).  We 

assigned participants to one of two permutations designed to counterbalance the session 

order in which the c-NMES and m-NMES treatment conditions were performed (see 

Appendix A, Figure A2). 
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Participants 

We performed a priori power analyses using G*Power software (version 

3.1.9.2)175 to determine a target sample size.  We determined a target sample size of 17 

participants in order to maintain adequate power (1-β = 0.80) and detect a medium to 

large effect size (d = 0.650 , f = 0.325).176  We selected medium to large effect sizes for 

the power analyses because we believe that any statistically significant differences with 

corresponding effect sizes smaller than this threshold would lack clinical relevance for 

the outcomes included in our study.  It is also important to note that other authors have 

selected a large effect size (e.g., Cohen’s f = 0.68) for an a priori power analysis during a 

NMES study examining similar dependent variables,37 which further supports our 

selection of a medium to large effect size as appropriate for this study. The dependent t-

test power analysis revealed a target sample size requirement of 17 participants, while 

only 12 participants were required for the two-way repeated measures ANOVA. 

A convenience sample of 21 participants (age = 23.9 ± 5.1 years, height = 175.1 ± 

7.4 cm, mass = 78.1 ± 11.7 kg, BMI = 25.3 ± 2.6 kg/m2) from the university and 

community completed the two study sessions.  As has been done previously,26 

participants in our current study had prior NMES experience due to their participation in 

an earlier study performed in our laboratory intended to address related research 

questions, but using a different methodologic approach.  We elected to use participants 

from our previous study comparing m-NMES and c-NMES because an individual’s 

tolerance to NMES is likely to improve over the first few exposures to NMES 

treatments.144  We believe that through their participation in our previous study, which 

exposed participants to NMES during four sessions, participants were appropriately 
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familiarized with the NMES stimulus prior to participating in our current study.  This 

likely reduced the “fear of the unknown” that often accompanies initial NMES 

treatments, which we believe allowed participants to self-select a more accurate 

maximum comfortable stimulus intensity. 

Data from all 21 participants were included during the maximum comfortable 

stimulus intensity and initial normalized NMES-induced torque comparisons.  However, 

we determined that 10 of the participants’ data needed to be excluded from the fatigue 

and discomfort related outcome comparisons due to a unique limitation of the c-NMES 

unit (discussed in detail in procedures section).  As a result of this limitation, data from 

11 of the 21 participants were included when comparing the fatigue and discomfort 

related outcomes (age = 24.5 ± 5.2 years, height = 174.8 ± 5.7 cm, mass = 77.1 ± 12.4 kg, 

BMI = 25.1 ± 3.1 kg/m2). 

Participants were required to be healthy, recreationally active, males, between the 

ages of 18-35.  We defined recreationally active as participation in some form of physical 

activity (e.g. strengthening activities, jogging, running, cycling, swimming, tennis, etc.) 

for a minimum of two times per week for at least 20 minutes each time.  We defined 

healthy as having no unresolved knee injuries or other injuries that would impact lower-

limb function, as well as being free of all applicable electrotherapy contraindications.  

We excluded females from participation because electrically induced discomfort levels 

have been shown to significantly differ over the course of the menstrual cycle.162 

Participants also had to have a body mass index (BMI) ≤30 kg/m2 to be included, as 

NMES tolerance and motor thresholds have been shown to differ between individuals 

with a BMI above and below 30 kg/m2.160  To be included in our current study 
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participants had to tolerate a NMES training intensity of at least 30% MVIC during the 

second session of our previous study.  This study was approved by the University’s 

institutional review board and participants provided written informed consent.  To 

facilitate participant recruitment, we incentivized participants via a lottery for a chance to 

win one of four $50 gift cards.  

Instrumentation 

We used a Quickset 4 Biodex dynamometer (Biodex Medical Systems Inc., 

Shirley, New York) to measure and record isometric knee extension torque during all 

NMES-induced and voluntary contractions, at a sampling rate of 100 Hz.  Participants 

removed their shoe from the dominant foot prior to being seated on the dynamometer.  

During all contractions participants were seated in the dynamometer chair with the seat 

back tilt at 85° and the dominant leg secured within a lever arm fixed at 60°.  We aligned 

the axis of rotation of the dynamometer to the anatomical axis of the test knee, and the 

lower leg was secured in the fixed lever arm via an ankle strap placed 2-3 cm above the 

lateral malleolus.27  We calibrated the dynamometer to the manufacturer’s specifications 

prior to beginning the study to ensure reliable measurements.  In addition, we used 

stabilization straps to prevent undesired movement of the upper body and asked 

participants to cross their arms over their chest while performing all voluntary and 

NMES-induced contractions (Figure 4).27,178 

We applied all c-NMES treatments using the same Sonicator® Plus 940 

stimulator (Mettler Electronics® Corp., Anaheim, CA).  To maintain consistency across 

the two NMES conditions, we set the c-NMES parameters as similar as possible to the 

parameters used with the Kneehab® XP program 6 (Table 5).  Although our sample size 
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was negatively impacted by an unforeseen feature of the Sonicator® Plus 940, it is 

important to note that we selected this stimulator because it allowed us to more closely 

match the parameters of the m-NMES device. 

We used four self-adherent electrodes to deliver the c-NMES current (two- 5 cm x 

9 cm [MetronTM, Bolingbrook, IL], one- 10.79 cm x 17.78 cm [TENS Products, Grand 

Lake, CO], one- 7 cm x 14 cm electrode [SME INC., Wilmington, NC]; Figure 5).  To 

guide the placement of the c-NMES electrodes, we manually identified motor points 

using a pencil electrode (Mettler Electronics XK2, Active Forever, Scottsdale, AZ) 

following the procedures outlined in the literature (Figure 7).24  Based on the results of a 

recent study, which identified seven motor points of the quadriceps,153 we selected four 

commonly identified motor points to guide the c-NMES electrode placement.  

Furthermore, the motor points we selected allowed us to place the c-NMES electrodes in 

a similar fashion to the m-NMES electrode configuration, as they were located on the 

proximal and distal vastus lateralis, proximal rectus femoris and distal vastus medialis 

(Figure 7). 

We applied all m-NMES treatments using the same Kneehab® XP stimulator 

(Theragen LLC, Leesburg, VA), however we assigned each participant a separate 

Kneehab® XP garment with integrated electrodes.  We integrated the m-NMES 

electrodes into the neoprene garment and subsequently placed the garment on the 

dominant thigh according to the manufacturer’s recommendations.167  We set the 

stimulator parameters to program 6 during all m-NMES treatments (Table 5). 
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Procedures 

Following completion of our previous study, which consisted of four sessions, 

participants reported at the same time of day (±2 hours) on two additional occasions and 

each session lasted approximately 1 hour.  Each participant’s dominant leg, which we 

defined as the leg with which they would use to kick a soccer ball, served as the leg of 

interest throughout the study (20 right, 1 left).  In an effort to reduce electrical 

impedance, participants shaved their anterior thigh each day. We also instructed 

participants to report well hydrated and to refrain from strenuous activities for 12 hours 

prior to reporting. 

Our previous study served as familiarization sessions for our current study, which 

consisted of two additional test sessions separated by 48-72 hours.  Each session began 

with the participants completing a standardized warm-up that included: 5 minutes of 

cycling on a stationary bike at a self-selected pace, three 30 second bouts of dynamic 

quadriceps stretching and four isometric quadriceps contractions while in the 

dynamometer chair (two- at 50%, one- at 75% and one- maximum contraction at 60° of 

knee flexion).36  Participants rested for 8 minutes following the warm-up, during which 

we identified the motor points using the pencil electrode method and cleaned the leg of 

interest with an alcohol free wipe.  Although motor point identification was not necessary 

for the m-NMES condition because the electrodes were integrated within the garment, we 

still identified motor points during both sessions in an effort to blind participants to 

treatment condition. 

Participants performed maximum voluntary isometric contractions (MVICs) of 

the quadriceps and all MVICs were 6 seconds in duration.  Participants gradually 
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increased their effort during the initial portion of each contraction, with maximal effort 

being reached at roughly 3 seconds and maintained for the remaining 3 seconds.  To 

facilitate participant understanding of a gradual increase, we placed a figure showing an 

ideal MVIC curve in the participants’ view while performing all MVICs. We instructed 

the participants by saying “cross your arms and prepare to push out with maximal effort”.  

We familiarized participants with the MVIC procedures during our previous study.  We 

provided verbal encouragement throughout each repetition while the dynamometer 

computer screen provided real-time visual feedback of the participant’s torque production 

(Figure 4).98  We encouraged participants to “push out with maximal effort” in a loud 

clear voice, and in the event that a participant showed signs of fatigue we gradually 

increased the volume and intensity.179  We asked the participants to verify that their effort 

was maximal immediately following each repetition.98  In the event that a participant 

reported a submaximal effort, or we judged an effort to be submaximal, the repetition was 

discarded and repeated. 

Pre-test MVIC procedures consisted of a series of three MVICs, with each 

repetition separated by a 2 minute rest period.31,33  The peak torque of the three pre-test 

trials was required to be within 10% or we asked participants to perform additional trials 

until three consecutive MVIC trials were within 10%.27  To limit the possibility of fatigue 

as a confounding variable, we gave participants a maximum of six contractions during 

each session.  If a participant was unsuccessful in completing the pre-test MVIC 

procedures, we asked them to return the following day for a second attempt.  We defined 

the trial with the greatest peak torque, from the three consecutive trials within 10%, as the 

participant’s pre-test MVIC value for that particular session. 
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Participants rested for 5 minutes prior to performing the NMES procedures, 

during which we placed the Kneehab® XP garment with integrated electrodes or the c-

NMES electrodes over the participant’s dominant thigh.  We also placed an empty 

Kneehab® XP garment over the c-NMES electrodes in an effort to blind participants to 

treatment condition (Figure 9).27  Participants performed 18 NMES-induced contractions 

using a single NMES device (c-NMES or m-NMES) during each session while using a 

self-selected maximum comfortable stimulus intensity, which is defined as the highest 

intensity that does not cause pain.77 

To determine maximum comfortable stimulus intensity, we placed the stimulator 

controls in a manner that allowed the participants to increase the stimulus intensity 

(Figure 10).  We instructed them to “increase the intensity until reaching the highest 

intensity that does not cause pain”.  Participants completed the NMES-induced 

contractions after 50 seconds of rest.  We frequently encouraged participants to “relax 

and allow the machine to do all the work”, and we did not adjust the self-selected 

maximum comfortable stimulus intensity over the course of each NMES treatment 

condition.  However, the c-NMES device we used has an obscure setting that may 

automatically reduce the stimulus output when the unit senses a change in impedance 

over the course of the NMES-induced contractions.177  As expected, we observed that the 

fatigue and discomfort related outcome measures were negatively impacted when this 

occurred, resulting in an undesired systematic bias during c-NMES test sessions in which 

the stimulus output was automatically reduced by the unit.  Consequently, when this 

automatic step-down in output occurred we excluded the participant’s fatigue and 

discomfort related data from the corresponding statistical analyses. 
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Immediately after completing the assigned NMES treatment condition 

participants performed a single 6 second post-test MVIC.  We elected to use a single 

repetition in an effort to limit recovery from the NMES-induced contractions.  A second 

MVIC was performed after a 20 second rest period in an effort to continue limiting 

recovery in the event that we deemed the post-test trial to be submaximal, or the 

participant deemed it to be submaximal.178 

Outcome Measures 

Maximum Comfortable Stimulus Intensity 

We manually recorded the maximum comfortable stimulus intensity selected by 

each participant, which was expressed in milliamps (mA).  The m-NMES device does not 

express the stimulus intensity in mA units, thus a conversion table provided by the 

manufacturer was used to convert the observed m-NMES stimulus intensities into the 

appropriate units.185  Since maximum comfortable stimulus intensity was recorded during 

the initial contraction it was unaffected by the automatic step-down function of the c-

NMES device, thus we included data from each participant during the statistical analysis 

of this outcome measure. 

Initial Normalized NMES-induced Torque 

The isokinetic dynamometer measured and recorded the initial NMES-induced 

peak torque under each condition.  In an effort to reduce inter-participant variability, we 

normalized the initial NMES-induced peak torque values to each participant’s body mass 

(see equation 7), which converts the unit of measure to Newton-meters per kilogram 

(Nm/kg) and has been done previously.42,45  Initial normalized NMES-induced torque 

was also unaffected by the automatic step-down function of the c-NMES device because 
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it was recorded during the first contraction.  Therefore, we included the data from each 

participant during the statistical analysis of this outcome measure. 

Percent Decline in MVIC Torque 

A change in peak MVIC torque is considered to be the gold standard for assessing 

fatigue.105,110 Therefore, we expressed each participant’s post-test MVIC peak torque as a 

percent decline relative to their pre-test MVIC peak torque (equation 2), and the 

subsequent percent decline served as a fatigue related outcome measure for our study. 

Percent Decline in NMES-induced Torque 

Failing to maintain a target force is another common method used to asses 

fatigue,110 thus NMES-induced fatigue is also frequently assessed by measuring the 

decline in NMES-induced torque over the course of a treatment.21,27,30-

33,46,49,51,54,55,59,61,62,64,66,100  Accordingly, we expressed the peak torque produced during 

all 18 NMES-induced contractions for each test session as a percent decline relative to 

the peak torque produced during the initial NMES-induced contraction of each test 

(equation 3). 

Percent Decline in Torque-time Integral 

A decline in the torque-time integral (TTI) observed during NMES-induced 

contractions has also been used in a number of studies as an index of NMES-induced 

fatigue, as it has been suggested to represent isometric work.23,29,47,115,116  Therefore, the 

data necessary to calculate the TTI (e.g., torque and duration of torque recording; 

expressed as Newton-meter seconds [Nm*s]) was measured and recorded during the 

NMES-induced contractions and subsequently exported as a text file (sampling rate = 100 

Hz, or one sample taken every 10 ms).  We imported the data files into an analysis 
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software package (Acqknowledge® 4, Biopac® Systems, Inc., Goleta, CA), which we 

used to calculate the TTI of each contraction (equation 4).  We expressed the TTI of each 

NMES-induced contraction during the test sessions as a percent decline (equation 5), 

which also served as an outcome measure of NMES-induced fatigue. 

Total Torque-time Integral 

We considered the total torque-time integral (T-TTI) to be an index of the total 

amount of isometric work performed under each condition, and as such it also 

represented a fatigue related outcome.  We calculated the T-TTI for each condition by 

summing individual TTI data (equation 6). 

Self-reported Discomfort 

We used a 100 mm horizontal visual analog scale (VAS) to measure self-reported 

discomfort levels during each NMES condition.  As is common during NMES studies, 

the descriptors at each end of the scale were “no discomfort” (0 mm) and “worst possible 

discomfort” (100 mm).21,27,29,36,37,159,161 We gave the participants a pen and asked them to 

“rate your level of discomfort by making a vertical tick mark on the line” following each 

NMES induced contraction (Figure 8).  We obtained self-reported discomfort levels by 

measuring the distance (mm) from the “no discomfort” anchor to the vertical mark made 

on the horizontal line.  When used to assess NMES-induced discomfort in a sample of 

healthy individuals, the VAS has been shown to have a high inter-session test-retest 

reliability (ICC≥0.90).159 

Statistical Analysis 

We used the Statistical Package for Social Sciences (SPSS) version 23.0 (IBM 

Corporation, Armonk, NY) to analyze the data.  We performed a series of two-way 



 

189 

repeated measures analysis of variance (ANOVA) on three of the outcome measures 

(percent decline in NMES-induced torque, percent decline in TTI, and self-reported 

discomfort).  We followed the Greenhouse-Geisser procedure for correcting degrees of 

freedom when the assumption of sphericity was determined to be violated.  We 

performed simple effects analysis in the event of a significant interaction effect (NMES 

condition*time), which allowed us to analyze the effect of  NMES condition at each level 

of time via a series of pairwise comparisons.187  We used the procedures and syntax 

provided by Field187 to perform the simple effects analysis, with the exception that a 

Bonferroni procedure was also included in the syntax to control the family-wise error rate 

(Appendix H).  In the event of a significant time main effect and the absence of an 

interaction effect, we performed post-hoc pairwise comparisons and we again used a 

Bonferroni procedure to maintain family-wise error rate.  Due to the number of NMES-

induced contractions, we performed a large number of post-hoc pairwise comparisons 

(e.g., >130).  To simplify the results, we provided only the significant pairwise 

comparisons deemed to be clinically important (e.g., first contraction to demonstrate a 

significant decline relative to the second contraction, and final contraction). 

We performed a dependent t-test on the other four outcome measures (maximum 

comfortable stimulus intensity, initial normalized NMES-induced torque, percent decline 

in MVIC, T-TTI).  In addition, we performed a dependent t-test to examine any potential 

baseline differences between the two conditions with respect to pre-test MVIC.  We also 

calculated test-retest reliability (ICC(2,1))
189,190 and measurement precision (SEM)191 

estimates for pre-test MVIC measurements using the equations provided in the literature. 
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To examine the magnitude of the differences, we calculated Cohen’s f and d effect 

sizes.176  We calculated Cohen’s d effect sizes corresponding to within groups 

comparisons using the equation suggested by Cumming194 (equation 8), which uses the 

average standard deviation of the paired data as the standardizer (dsav).  Since d statistics 

are believed to overestimate the population effect size, Cumming194 recommended that an 

unbiased Cohen’s d (dunb) also be provided.  Accordingly, we calculated dunb values using 

the equation provided by Cumming194 (equation 9). We interpreted Cohen’s f values as 

follows: f = 0.10-0.24 small, f = 0.25-0.39 medium and f ≥ 0.40 large; whereas we 

interpreted Cohen’s d effect sizes as follows: d = 0.20-0.49 small, d = 0.50-0.79 medium 

and d ≥ 0.80 large.176 

Results 

Prior to analyzing the data, the tenability of the applicable statistical assumptions 

was assessed.  We defined outliers a priori as any raw score with a corresponding z-score 

>2.5.188  For outliers, we transformed the corresponding raw score by changing the 

original raw score to a value ±1 unit larger than the next highest value, as has been 

recommended because this allows the case identified as an outlier to remain deviant 

while also reducing the impact of an outlier.186  We assessed the normality of the data via 

skewness and kurtosis z-scores, and the data were considered to be normally distributed.  

There was no significant difference with respect to the pre-test MVIC measurements 

across the two conditions (t10 = 1.985; P = 0.075; d = 0.123; 95% CI for effect size: -

0.012, 0.254; dunb = 0.114).  In addition, the corresponding test-retest reliability and 

measurement precision were within acceptable limits (ICC (2, 1) = 0.975; 95% CI: 0.934, 
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0.990; SEM = 10.02 Nm),184 and these estimates are similar to those reported in the 

literature when assessing healthy populations.181,183 

Maximum Comfortable Stimulus Intensity 

The dependent t-test revealed that the maximum comfortable stimulus intensity 

(mA) was significantly higher during the m-NMES condition (t20 = 2.817; P = 0.006; d = 

0.581; 95% CI for effect size: -0.133, 1.018; dunb = 0.559; Figure 16). 

 

Figure 16. Maximum Comfortable Stimulus Intensity 

Note.  *Significantly greater maximum comfortable stimulus intensity (P = 0.006).  Error bars indicate 95% confidence intervals 

calculated using a critical t-value as has been recommended.194 

Initial Normalized NMES-induced Torque 

The dependent t-test revealed that the initial normalized NMES-induced torque 

(Nm/kg) was not significantly different across conditions (t20 = 1.397; P = 0.089; d = 

0.282; 95% CI for effect size: -0.125, 0.683; dunb = 0.272; Figure 17). 

* 
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Figure 17. Initial Normalized NMES-induced Torque 

Note.  Error bars indicate 95% confidence intervals and were calculated using a critical t-value as has been recommended.194 

Percent Decline in MVIC Torque 

The dependent t-test revealed that the percent decline in MVIC torque following 

the NMES treatments was not significantly different across conditions (t10 = 1.186; P = 

0.132; d = 0.385; 95% CI for effect size: -0.269, 1.022; dunb = 0.356; Figure 18) 

 

Figure 18. Percent Decline in MVIC 
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Note.  Error bars indicate 95% confidence intervals calculated using a critical t-value as has been recommended.194 

Percent Decline in NMES-induced Torque 

For percent decline in NMES-induced torque, the repeated measures ANOVA 

revealed no significant condition by time interaction (F2.2, 22 = 2.106; P = 0.142; f = 

0.459) or condition main effect (F1, 10 = 0.225; P = 0.322; f = 0.150).  However, there was 

a significant time main effect (F2, 20.4 = 245.502; P<0.001; f = 4.964; Figure 19).  Post-hoc 

analysis revealed that the decline was significantly greater by the fourth contraction 

(difference = 5.1 ± 3.5%; P = 0.004; d = 0.866; 95% CI for effect size: 0.504, 1.218; dunb 

= 0.834) and it remained significantly greater for each of the subsequent contractions 

(18th contraction, difference = 51.9 ± 10.7%; P<0.001; d = 5.745; dunb = 5.537).  

 

Figure 19. Percent Decline in NMES-induced Torque 

Note.  *First contraction with a significantly greater decline relative to contraction 2 (P=0.004).  

  

* 
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Percent Decline in Torque-time Integral 

For percent decline in TTI, the repeated measures ANOVA revealed no 

significant condition by time interaction (F2.3, 23.1 = 3.263; P = 0.050; f = 0.571) or a 

condition main effect (F1, 10 = 0.431; P = 0.263; f = 0.207).  However there was a 

significant time main effect (F1.8, 18.3 = 274.311; P<0.001; f = 5.251; Figure 20). Post-hoc 

analysis revealed that the decline was significantly greater by the fourth contraction 

(difference = 5.0 ± 3.1%; P = 0.001; d = 0.598; 95% CI for effect size: 0.356, 0.834; dunb 

= 0.576) and it remained significantly greater for each of the subsequent contractions 

(18th contraction, difference = 57.3 ± 12.3%; P<0.001; d = 5.509; dunb = 5.309).  

 

Figure 20. Percent Decline in Torque-time Integral 

Note.  *First contraction with a significantly greater decline relative to contraction 2 (P=0.001).   

  

* 
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Total Torque-time Integral 

The dependent t-test revealed that the T-TTI was not significantly different across 

conditions (t10 = 0.074; P =0.471; d = 0.027; 95% CI for effect size: -0.682, 0.734; dunb = 

0.025; Figure 21). 

 

Figure 21. Total Torque-time Integral 

Note.  Error bars indicate 95% confidence intervals calculated using a critical t-value as has been recommended.194 

Self-reported Discomfort 

The repeated measures ANOVA revealed that there was no significant condition 

main effect (F1, 10 = 1.526; P = 0.123; f = 0.390) for self-reported discomfort levels.  

However there was a significant condition by time interaction (F2.3, 22.6 = 3.999, P = 

0.029; f = 0.633; Figure 22) and time main effect (F2.5, 24.8 = 5.662; P = 0.003; f = 0.753).  

The simple-effects analysis revealed significantly lower discomfort during the c-NMES 

condition but only during the final three contractions (16th difference = 14.9 ± 20.0 mm; 

P = 0.033; d = 0.536; 95% CI for effect size: 0.042, 1.010; dunb = 0.495, 17th difference = 

16.5 ± 19.8 mm; P = 0.020; d = 0.625; 95% CI for effect size: 0.094, 1.133; dunb = 0.577, 
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18th difference = 15.5 ± 20.8 mm; P = 0.033; d = 0.556 ; 95% CI for effect size: 0.044, 

1.047; dunb = 0.513).  

 

Figure 22. Self-reported Discomfort 

Note.  *Significantly lower self-reported discomfort levels during the c-NMES condition (P<0.05). 

Discussion 

Overall, while using similar electrode configurations, the findings of our study 

indicate that the maximum comfortable stimulus intensity was significantly higher under 

the m-NMES condition.  However, the higher stimulus intensity did not subsequently 

result in significantly greater normalized NMES-induced torque during the initial 

contraction.  Due to the positive linear relationship between stimulus intensity and 

NMES-induced torque,17,50,51 the primary clinical objective of using higher stimulus 

intensities is to enhance the NMES training intensity by increasing NMES-induced 

torque production.  Therefore, the greater maximum comfortable stimulus intensity that 

we observed during the m-NMES condition does not appear to be clinically meaningful.  

Despite our efforts to standardize the electrode configurations, the m-NMES electrodes 

covered an area of 427 cm2 while the c-NMES electrodes covered a surface area of 

* 
* * 
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roughly 360 cm2 (Figure 6).27  Since the current was spread over a greater area during the 

m-NMES condition, the current density (mA/cm2) was subsequently lower during this 

condition while using the same amount of current (e.g., mA).4  Therefore, the small 

difference in electrode sizes is a possible explanation as to why we did not observe 

significantly greater NMES-induced torque during the m-NMES condition.  Although a 

small difference in the area covered by c-NMES and m-NMES remained during our 

study, the c-NMES electrode configurations used during previous studies consisted of 

three electrodes covering only 100 cm2.21,27 

The findings of our current study also indicate that the declines in NMES-induced 

torque and in TTI were significantly greater over time, irrespective of the type of NMES 

used.  These results are similar to those of our previous study comparing m-NMES and c-

NMES while standardizing the NMES training intensity at 30% MVIC, as well as those 

of previous studies using a training intensity of 20% MVIC.21,27  To the best of our 

knowledge, our current study is the first to compare the influence of m-NMES and c-

NMES on fatigue and discomfort related outcomes while using similar electrode 

configurations and a maximum comfortable stimulus intensity.  Therefore, we believe our 

findings are important because our approach allowed us to better isolate the influence of 

the novel multipath current distribution method while also using a more clinically 

relevant stimulus intensity. 

The maximum comfortable stimulus intensities we observed under the m-NMES 

and c-NMES conditions were 69.1 ± 11.3 mA and 62.5 ± 11.6 mA, respectively.  During 

a similar study Maffiuletti et al.21 reported values of 92 ± 25 mA and 53 ± 25 mA during 

their m-NMES and c-NMES conditions.  Despite the fact that both of these studies 
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observed significantly greater stimulus intensities under the m-NMES condition, the 

mean stimulus intensity we observed during m-NMES is much smaller.  Two likely 

explanations for this difference are that Maffiuletti et al. used a maximum tolerable 

stimulus intensity and a modified m-NMES device that allowed a maximum current 

output of 200 mA.  We elected to use a lower threshold maximum comfortable stimulus 

intensity because it has been suggested to be more clinically relevant.77  In addition, 

Maffiuletti et al. acknowledged that their use of a modified version of the m-NMES 

device was a limitation of their study, so we elected to use the clinically available m-

NMES device with a maximum output of only 79.2 mA. 

During the initial contraction of the m-NMES and c-NMES conditions we 

observed normalized NMES-induced torque values of 1.4 ± 0.6 Nm/kg and 1.3 ± 0.5 

Nm/kg, respectively.  It is difficult for us to directly compare these values to some similar 

studies comparing m-NMES and c-NMES because normalized torque values were not 

reported, and these studies did not use a maximum comfortable stimulus intensity.21,27  

However, while using a c-NMES device and a maximum comfortable stimulus intensity a 

comparable normalized NMES-induced torque value of 1.1 ± 0.7 Nm/kg was reported 

during a previous study.42  In order to facilitate the comparison of our results to previous 

studies, we converted the initial normalized NMES-induced torque values to NMES 

training intensities.  The subsequent training intensities were 47.9 ± 17.1% MVIC and 

43.6 ± 13.8% MVIC for m-NMES and c-NMES, respectively.  Our observed values are 

comparable to other NMES studies examining a variety of parameters while using 

maximum comfortable stimulus intensities, with reported values in the literature ranging 

from 20-48% MVIC.42,45,62,75,77  Although previous studies21,27 comparing peak torque 
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output across m-NMES and c-NMES conditions used a higher threshold maximum 

tolerable stimulus intensity, the NMES training intensities we observed are also 

comparable to values reported during these studies; which ranged from roughly 35-45% 

MVIC.  Despite using a lower threshold maximum comfortable stimulus intensity, we 

believe that comparable NMES training intensities observed during our study are due to 

the participation in the four familiarization sessions, as this likely allowed participants to 

better acclimate to the NMES stimulus prior to participation in our current study.144  In 

contrast, one21 of the other studies comparing m-NMES and c-NMES  did not incorporate 

familiarization sessions and the other27 included a single familiarization session. 

Although we observed a significantly greater maximum comfortable stimulus 

intensity under the m-NMES condition, we did not observe a significant difference with 

respect to the initial normalized NMES-induced torque across the two conditions.  This 

observation is contrary to the results of Maffiuletti et al.21 and Morf et al.,27 as they 

reported significantly greater stimulus intensities and NMES-induced torque during their 

m-NMES conditions.  One possible explanation for the inconsistency of our results is that 

we used a lower threshold maximum comfortable stimulus intensity.  Additional 

methodological differences between our study and the previous studies also warrant 

further discussion. 

Maffiuletti et al.21 and Morf et al.27 hypothesized that a possible mechanism for 

the significantly greater NMES-induced torque they observed during m-NMES was the 

novel multipath current distribution method.  Maffiuletti et al. suggested that relative to 

the fixed single path current distribution method of c-NMES, a larger number of motor 

units may have been recruited during the m-NMES condition due to its greater spatial 
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distribution of the stimulus.  However, the m-NMES and c-NMES conditions during 

these studies differed in two systematic ways, which were the current distribution method 

and electrode configuration.  Morf et al. indicated that as a result of these two systematic 

differences, it is unclear whether the greater NMES-induced torque they observed was 

primarily attributable to the multipath current distribution method, larger electrodes or a 

combination of these factors.  Consequently, we standardized the electrode configuration 

across conditions to the extent possible during our study, as we believe this approach 

allowed us to better isolate the influence of current distribution method on NMES-

induced torque.  Since we did not observe significantly greater NMES-induced torque 

under the m-NMES condition, our results do not support the hypothesis of Maffiuletti et 

al. and Morf et al. that the multipath current distribution method is a possible mechanism 

by which m-NMES resulted in greater NMES-induced torque during their studies. 

Maffiuletti et al.21 also suggested that the higher maximum tolerable stimulus 

intensity they observed under the m-NMES condition may have increased the number of 

motor units recruited, and as such they hypothesized that the difference in stimulus 

intensity across the two conditions was another possible mechanism by which NMES-

induced torque was greater during the m-NMES condition.  This hypothesis is reasonable 

due to the aforementioned positive linear relationship between stimulus intensity and 

NMES-induced torque.17,50,51 Nonetheless, our results do not support the hypothesis of 

Maffiuletti et al., because we also observed significantly greater stimulus intensities 

under the m-NMES condition but this did not result in significantly greater NMES-

induced torque.  It is possible that our results do not support this hypothesis because the 

difference in stimulus intensity we observed across the two conditions is much smaller in 
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magnitude than that observed by Maffiuletti et al. (d = 0.581 vs. d = 1.560). We do not 

know why the magnitude of our effect is substantially smaller, but it may be attributable 

to the different target stimulus intensity and/or c-NMES electrode configuration that we 

used.  Another possible explanation for the inconsistent effect size is that we used a 

clinically available version of the m-NMES device that has a maximum output capacity 

of only 79.2 mA, whereas Maffiuletti et al. used a modified unit with a maximum output 

capacity of 200 mA.  Eight participants reached the output capacity of the m-NMES 

device prior to achieving their maximum comfortable threshold during our study.  This 

likely prevented these participants from reaching their true maximum comfortable 

stimulus intensity during the m-NMES condition, and this may have subsequently 

reduced the magnitude of our observed effect. Furthermore, the smaller effect size we 

observed corresponding to the difference in stimulus intensity across conditions may also 

explain why we did not observe significantly greater NMES-induced torque under the m-

NMES condition. 

The declines in MVIC we observed following m-NMES and c-NMES treatments 

were 3.6 ± 5.6% and 6.3 ± 8.5%, respectively (Figure 18).  The corresponding mean 

difference across the conditions was 2.7 ± 7.5% lower following m-NMES, but this did 

not reach statistical significance.  We observed a similar non-significant 2.6% mean 

difference during our previous study and Maffiuletti et al.21  likewise reported a 2.1% 

non-significant mean difference.  In contrast to each of these studies, Morf et al. reported 

a significantly lower decline in MVIC following m-NMES but the corresponding mean 

difference was only 3.0%.  Despite inconsistent results, the magnitude of the observed 

effects during each of these studies are consistently small (e.g., d = 0.385, d = 0.310, d = 
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0.383, 0.311), suggesting that a large sample size is required in order to detect any 

potential effect with a statistical test.  This observation is a likely explanation as to why 

Morf et al. reported a significant difference while the other studies, including our current 

study, observed a non-significant difference (n = 20 vs. n = 11, n = 14, n = 10 ).  

Interestingly, each of the reported effect sizes are consistently positive, which indicates a 

consistent tendency for the decline in MVIC to be lower following m-NMES treatments.  

However, based on the non-significant results of our current study, as well as our 

observation that the reported effect sizes are consistently small throughout the literature, 

it does not appear that m-NMES limits the decline in MVIC in a clinically meaningful 

manner. 

We observed significantly greater declines in NMES-induced torque and in TTI 

over time during our current study that were similar to those we observed during our 

previous study, even though the initial NMES training intensities of our current study 

were more than 10% higher relative to those of our previous study.  Although declines in 

these outcomes are commonly attributed to muscle fatigue, caution should be exercised 

as these declines may be attributable to a combination of fatigue and accommodation of 

the motor nerve99,100; which is defined as the transient process by which the threshold 

required to excite a nerve increases in response to the electrical stimulus.144  Since we did 

not included a direct measure of accommodation we are unable to determine if muscle 

fatigue or accommodation is the primary mechanism responsible for the large declines 

that we observed.  However, we hypothesize that accommodation is the primary 

mechanism responsible for these declines.  This hypothesis is based on our observation 

that the percent declines in NMES-induced torque production were much larger than the 
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decline in MVIC (e.g., roughly 50% vs. 5%), which has been suggested by others to be a 

pattern that may indicate motor nerve accommodation as the primary mechanism 

responsible for declines in NMES-induced torque.99,100 

The previously mentioned initial NMES training intensities of our current study 

were near the upper margin of the proposed therapeutic window of 25%-50% MVIC.144  

However, due to the large declines in NMES-induced torque, the mean NMES training 

intensities fell below the therapeutic window with values of 24.4% MVIC and 20.9% 

MVIC occurring during the final contraction of the m-NMES and c-NMES conditions.  

Based on our hypothesis that the declines in NMES-induced torque we observed are 

primarily attributable to accommodation, this observation demonstrates that after 

achieving adequate NMES training intensities clinicians also need to implement 

strategies that limit the impact of accommodation to prevent declines in NMES-induced 

torque; such as systematically increasing the stimulus intensity.44 This observation also 

demonstrates the need for future research toward additional strategies capable of 

preventing these declines, as m-NMES did not appear to be an effective strategy during 

our studies or during previous studies.21,27 

The T-TTI, which is primarily determined by the magnitude and duration of the 

torque recording, was not significantly different across the two conditions.  This finding 

is contrary to that of our previous study, during which we observed a greater T-TTI under 

the c-NMES condition.  We do not know why the results of our two studies are 

inconsistent, but it may be attributable to the fact that we observed a significantly higher 

stimulus intensity under the m-NMES condition during our current study.  We expected 

the duration of the torque recordings to be similar across conditions because the 
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stimulator “on” times were comparable.  However, the isokinetic dynamometer is only 

able to record torque output when the contraction intensity surpasses the force of gravity, 

and as a result torque recording durations may differ across conditions while using 

similar “on” times.  The duration of the torque recordings was roughly 1.7 seconds 

shorter during the m-NMES condition of our previous study, which we hypothesized was 

a possible explanation for the greater T-TTI we observed during the c-NMES condition.  

We observed a smaller 1.4 second difference in the torque recordings during our current 

study, which may explain why we did not observe a difference in favor of c-NMES.  We 

do not know why the torque recording duration is consistently shorter during the m-

NMES condition of our studies, but it may be due to the fact that the m-NMES device is 

designed to deliver the output only to the medial channel during initiation and 

termination of each contraction cycle to focus on stimulating the vastus medialis.92 

The significant condition by time interaction for the self-reported discomfort 

levels is a unique finding of our current study, and it indicates that while using a 

maximum comfortable stimulus intensity the effect of NMES condition on self-reported 

discomfort depended upon the level of time.  Figure 22 illustrates that a greater rate of 

decline in self-reported discomfort occurred over time during the c-NMES condition.  

This greater rate of decline subsequently resulted in significantly lower levels of self-

reported discomfort under the c-NMES condition, but only during the last three NMES-

induced contractions.  Interestingly, the self-reported discomfort levels were not 

significantly different across the two conditions until the difference was greater than 13 

mm, which has been identified as the threshold for determining clinically meaningful 

differences during a previous NMES study.36 The primary mechanism responsible for our 
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observed interaction effect is unknown, but similar to NMES-induced torque the decline 

in self-reported discomfort levels may be attributable to sensory nerve 

accommodation.145,147 Therefore, the greater rate of decline in self-reported discomfort 

levels we observed during the c-NMES condition may have occurred because the 

multipath current distribution method resulted in less sensory nerve accommodation, but 

future research is needed to verify this hypothesis.  We are unaware of a clinical benefit 

for preventing sensory nerve accommodation during NMES treatments, but a greater 

decline in self-reported discomfort levels may prove beneficial when combating the 

negative effects of motor nerve accommodation on NMES-induced torque by 

systematically increasing the stimulus intensity.44 

The results of our study do not indicate that the novel multipath current 

distribution method improves any of the outcomes included in our study in a clinically 

meaningful manner.  However, the m-NMES device did perform similarly, which we also 

believe to be an important observation.  Alon196 has indicated a need for more patient 

friendly NMES stimulators, which the m-NMES device accomplishes because it is 

portable and the electrodes are integrated within a neoprene sleeve.  The convenience of 

the m-NMES device may improve patient compliance, which has been proposed as a 

mechanism by which m-NMES outperformed c-NMES during a recent training study.87  

Therefore, in agreement with previous authors,21 we believe that the m-NMES device 

may still serve as a clinically useful option. 
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Limitations 

Using the clinically available m-NMES device with a maximum output of only 

79.2 mA likely prevented eight participants from achieving their maximum comfortable 

stimulus intensity during this condition, and this may have limited our results.  Although 

incorporating the clinically available device during our study may be viewed as a 

limitation, we feel that it ultimately enhances the clinical applicability of our findings.  

Despite achieving an original sample size larger than our a priori power analyses 

indicated, we excluded the data of 11 participants during the fatigue and discomfort 

related comparisons due to a limitation of the c-NMES device that we used.  Therefore, 

our sample size was smaller than desired during five of our comparisons, which may 

have resulted in a type II error.  Excluding the interaction effects for the decline in 

NMES-induced torque and decline in TTI outcomes, our non-significant observations 

also had corresponding effect sizes that were below the medium to large threshold used 

during our a priori power analyses.  Therefore, we believe that our sample size was 

adequate for the purpose of our study, which we designed to focus on clinically 

meaningful differences. 

The extent to which our results are generalizable is unclear, due to our use of 

healthy participants and exclusion of females.  The menstrual cycle has been shown to 

influence self-reported discomfort levels,162 thus due to our study design requiring 

repeated measurements over time we felt it was necessary to exclude females.  In 

addition, during exploratory NMES studies, similar in nature to our study, it is common 

practice to use healthy participants.21,26,29,30,33,37,44,62,77,99,104,144,145,159  Although 

participants were required to shave their dominant thigh each day prior to reporting and 
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the leg was cleansed with a non-alcoholic wipe in an effort to standardize electrical 

impedance across test sessions, we did not make an attempt to standardize skin 

impedance via an objective measure.  Since skin impedance may vary on a daily basis,97 

this may also be considered a limitation of our study. 

Conclusion 

Although the novel multipath current distribution method resulted in a 

significantly greater maximum comfortable stimulus intensity, this did not subsequently 

result in significantly greater NMES-induced torque production.  Therefore, we do not 

believe the difference in stimulus intensity we observed to be clinically meaningful. 

Based on our results, it also does not appear that the novel multipath current distribution 

method positively impacts NMES-induced fatigue and discomfort in a clinically 

meaningful manner.  We believe future NMES research and device development should 

focus specifically on counteracting motor nerve accommodation in an effort to limit the 

decline in NMES-induced torque.  Similar previous studies21,27 have observed improved 

outcomes when comparing m-NMES and c-NMES, but because we did not observe any 

clinically meaningful differences while using similar electrode configurations across 

conditions, we believe it is likely that a contributing factor for their improved outcomes is 

the difference in electrode configuration rather than the novel current distribution 

method. 
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APPENDIX A – Individual Manuscript Design Figures 

 

Figure A1. Manuscript 1 Design  
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Figure A2. Manuscript 2 Design 
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APPENDIX B – Visual Analog Scale 
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APPENDIX C – IRB Approval Letter 
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APPENDIX D – Informed Consent 

 

 

 

  



 

214 

 

 

  



 

215 

 

 

  



 

216 

 

 

  



 

217 

 

 

  



 

218 

APPENDIX E – Physical Activity and Health Questionnaire  
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APPENDIX F – Data Collection Sheets 
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APPENDIX G – Period Effects Tables 

Table A1.  

Manuscript 1 Cross-over Difference by Sequence 

  Percent Decline in 

MVIC 

 Percent Decline in NMES-

induced Torque† 

 

Sequence Participant m-NMES c-NMES Δ m-NMES c-NMES Δ 

c-NMES/m-NMES 3 2.95 -4.17 7.11 -2.47 -24.65 22.18 

 5 -2.92 -1.29 -1.63 -38.18 -29.82 -8.35 

 9 -2.53 4.08 -6.61 -33.41 -41.12 7.71 

 12 -0.88 6.04 -6.92 -13.94 -14.94 1.00 

 16 -3.29 -13.21 9.93 -19.35 -24.76 5.41 

 22 -1.45 -5.87 4.42 -21.18 -20.59 -0.59 

 24 3.44 -4.37 7.81 -33.35 -28.65 -4.71 

        

m-NMES/c-NMES 2 -7.07 -9.69 2.62 -30.53 -18.82 -11.71 

 6 -6.63 -25.38 18.75 -30.59 -13.29 -17.29 

 11 -7.24 -6.95 -2.90 -37.06 -10.82 -26.24 

 15 -9.35 -5.14 -4.21 -27.65 -33.35 5.71 

 23 -5.97 -7.09 1.12 -24.82 -20.88 -3.94 

 26 -10.27 -10.98 0.71 -38.76 -32.00 -6.76 

 28 -1.40 5.30* -3.90 -0.94 -27.47 26.53 
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Table A1 (continued). 

  Percent Decline in TTI†  T-TTI (Nm*s)  

Sequence Participant m-NMES c-NMES Δ m-NMES c-NMES Δ 

c-NMES/m-NMES 3 -5.88 -26.06 20.18 11578.27 14979.87 -3401.60 

 5 -40.88 -32.12 -8.76 5917.35 3899.24 2018.12 

 9 -41.18 -44.71 3.53 7506.35 5437.45 2068.90 

 12 -16.65 -23.53 6.88 10584.24 10587.69 -3.45 

 16 -23.29 -29.12 5.82 6605.26 7677.51 -1072.25 

 22 -38.65 -24.00 -14.65 7428.78 7704.10 -275.32 

 24 -36.24 -31.18 -5.06 5656.01 8055.78 -2399.78 

        

m-NMES/c-NMES 2 -34.65 -21.00 -13.65 5667.40 7220.67 -1553.27 

 6 -34.88 -17.41 -17.47 4569.03 17579.07 -13010.03 

 11 -38.59 -12.65 -25.94 4235.81 6211.09 -1975.27 

 15 -30.59 -35.71 5.12 6747.12 6152.91 594.21 

 23 -26.59 -21.71 -4.88 5349.50 7107.29 -1757.79 

 26 -40.82 -38.12 -2.71 9264.45 11450.03 -2185.58 

 28 -2.0 -30.41 28.41 7669.28 7885.37 -216.09 
 

 

  



 

 

2
3
3
 

Table A1 (continued). 

  Self-reported 

Discomfort† (mm) 

 

Sequence Participant m-NMES c-NMES Δ 

c-NMES/m-NMES 3 8.17 16.61 -8.44 

 5 41.78 36.39 5.39 

 9 23.61 37.50 -13.89 

 12 1.50 3.67 -2.17 

 16 18.78 4.22 14.56 

 22 47.33 37.17 10.17 

 24 45.28 51.83 -6.56 

     

m-NMES/c-NMES 2 27.33 22.11 5.22 

 6 13.94 52.61 -38.67 

 11 5.22 5.50 -0.28 

 15 69.67 24.00 45.67 

 23 64.17 68.00 -3.83 

 26 79.67 11.39 68.28 

 28 22.78 35.17 -12.39 
 

Note.  †Values are each participant’s mean over the 17-18 levels of time.  Δ = Cross-over difference (m-NMES – c-NMES) 
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Table A2.  

Manuscript 2 Cross-over Difference by Sequence 

  Percent Decline in 

MVIC 

 Percent Decline in NMES-

induced Torque† 

 

Sequence Participant m-NMES c-NMES Δ m-NMES c-NMES Δ 

c-NMES/m-NMES 2 -13.93 -7.70 -6.23 -23.59 -16.12 -7.47 

 5 5.51 2.19 3.33 -23.65 -17.18 -6.47 

 12 -0.67 3.72 -4.39 -22.59 -24.76 2.18 

 15 -6.93 -6.66 -0.28 -15.94 -32.88 16.94 

 22 -9.87 -11.15 1.29 -28.29 -20.29 -8.00 

 26 -6.50 -12.76 6.26 -25.59 -36.00 10.41 

        

m-NMES/c-NMES 6 -6.17 -23.61 17.44 -28.24 -12.06 -16.18 

 7 -1.33 -6.82 5.49 -15.94 -8.88 -7.06 

 9 1.55 -5.72 7.27 -23.12 -29.24 6.12 

 16 0.17 -8.30 8.47 -31.35 -21.71 -9.65 

 23 -1.79 7.17 -8.96 -10.06 -13.12 3.06 
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Table A2 (continued). 

  Percent Decline in TTI†  T-TTI (Nm*s)  

Sequence Participant m-NMES c-NMES Δ m-NMES c-NMES Δ 

c-NMES/m-NMES 2 -25.18 -16.24 -8.94 6568.59 10095.24 -3526.66 

 5 -24.76 -15.59 -9.18 14693.47 14697.32 -3.85 

 12 -27.18 -28.06 0.88 21400.74 12571.83 8828.91 

 15 -17.41 -35.65 18.24 15847.70 7796.81 8050.89 

 22 -29.47 -24.35 -5.12 13703.15 13483.10 220.05 

 26 -32.47 -40.35 7.88 6950.39 9296.67 -2346.29 

        

m-NMES/c-NMES 6 -32.12 -16.12 -16.00 7606.23 16041.03 -834.80 

 7 -16.71 -7.59 -9.12 12682.56 7658.52 5024.04 

 9 -28.47 -36.53 8.06 6076.51 8873.89 -2797.38 

 16 -31.94 -21.71 -10.24 11689.01 16803.87 -5114.86 

 23 -13.12 -14.12 1.00 5850.50 4422.51 2877.99 
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Table A2 (continued). 

  Self-reported 

Discomfort† (mm) 

 

Sequence Participant m-NMES c-NMES Δ 

c-NMES/m-NMES 2 48.61 49.22 -0.61 

 5 77.61 70.00 7.61 

 12 2.78 2.78 0.00 

 15 71.11 60.89 10.22 

 22 65.72 66.33 -0.61 

 26 72.22 16.44 55.78 

     

m-NMES/c-NMES 6 23.83 41.72 -17.89 

 7 44.28 39.39 4.89 

 9 14.06 31.22 -17.17 

 16 24.39 6.00 18.39 

 23 79.83 57.11 22.72 
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Table A2 (continued). 

  Maximum Comfortable 

Stimulus Intensity (mA) 

 Initial Normalized NMES-

induced Torque (Nm) 

 

Sequence Participant m-NMES c-NMES Δ m-NMES c-NMES Δ 

c-NMES/m-NMES 1 79.20 62.00 17.20 1.49 0.92 0.57 

 2 57.60 69.00 -11.40 1.15 1.39 -0.24 

 5 68.00 73.50 -5.50 1.69 1.39 0.30 

 11 76.00 51.50 24.50 1.55 0.84 0.71 

 12 79.20 55.50 23.70 2.27 1.23 1.04 

 15 79.20 55.00 24.20 1.88 1.00 0.89 

 17 79.20 80.00 -0.80 2.40 2.34 0.05 

 22 79.20 73.50 5.70 1.82 1.41 0.41 

 24 54.40 54.50 -0.10 0.77 1.38 -0.61 

 26 79.20 71.50 7.70 0.72 0.93 -0.21 

        

m-NMES/c-NMES 3 66.40 55.50 10.90 1.95 1.65 0.31 

 6 79.20 84.50 -5.30 0.97 1.45 -0.49 

 7 57.60 38.50 19.10 1.46 0.70 0.76 

 9 64.00 55.00 9.00 0.82 1.12 -0.31 

 13 66.40 62.50 3.90 2.66 2.17 0.50 

 14 52.00 52.00 0.00 0.69 0.97 -0.28 

 16 79.20 76.00 3.20 1.46 1.61 -0.15 

 18 66.40 68.00 -1.60 1.40 1.22 0.18 

 23 76.80 59.50 17.30 0.59 0.43 0.15 
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Table A2 (continued). 

  Maximum Comfortable 

Stimulus Intensity (mA) 

 Initial Normalized NMES-

induced Torque (Nm) 

 

Sequence Participant m-NMES c-NMES Δ m-NMES c-NMES Δ 

m-NMES/c-NMES 25 72.00 67.00 5.00 1.18 1.05 0.12 

 28 40.80 47.50 -6.70 1.06 1.66 -0.60 
 

Note.  †Values are each participant’s mean over the 17 or 18 levels of time.  Δ = Cross-over difference (m-NMES – c-NMES) 
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APPENDIX H – Simple Effects Analysis Syntax 

 

GLM VisualAnalScore_mNMESMAX_1  VisualAnalScore_mNMESMAX_2 

VisualAnalScore_mNMESMAX_3 VisualAnalScore_mNMESMAX_4 

VisualAnalScore_mNMESMAX_5  VisualAnalScore_mNMESMAX_6 

VisualAnalScore_mNMESMAX_7 VisualAnalScore_mNMESMAX_8 

VisualAnalScore_mNMESMAX_9 VisualAnalScore_mNMESMAX_10 

VisualAnalScore_mNMESMAX_11 VisualAnalScore_mNMESMAX_12  

VisualAnalScore_mNMESMAX_13 VisualAnalScore_mNMESMAX_14 

VisualAnalScore_mNMESMAX_15 VisualAnalScore_mNMESMAX_16  

VisualAnalScore_mNMESMAX_17 VisualAnalScore_mNMESMAX_18  

VisualAnalScore_cNMESMAX_1 VisualAnalScore_cNMESMAX_2  

VisualAnalScore_cNMESMAX_3 VisualAnalScore_cNMESMAX_4  

VisualAnalScore_cNMESMAX_5 VisualAnalScore_cNMESMAX_6  

VisualAnalScore_cNMESMAX_7  VisualAnalScore_cNMESMAX_8  

VisualAnalScore_cNMESMAX_9  VisualAnalScore_cNMESMAX_10  

VisualAnalScore_cNMESMAX_11  VisualAnalScore_cNMESMAX_12  

VisualAnalScore_cNMESMAX_13 VisualAnalScore_cNMESMAX_14  

VisualAnalScore_cNMESMAX_15 VisualAnalScore_cNMESMAX_16  

VisualAnalScore_cNMESMAX_17  VisualAnalScore_cNMESMAX_18 

/WSFACTOR= Condition 2 Time 18 

/EMMEANS= TABLES(Condition*Time) COMPARE(Condition)ADJ(BONFERRONI) 
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APPENDIX I – Photo Release 
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