Biomarker discovery using 1-norm regularization for multiclass earthworm microarray gene expression data

Chaoyang Zhang, University of Southern Mississippi

Abstract

Novel biomarkers can be discovered through mining high dimensional microarray datasets using machine learning techniques. Here we propose a novel recursive gene selection method which can handle the multiclass setting effectively and efficiently. The selection is performed iteratively. In each iteration, a linear multiclass classifier is trained using 1-norm regularization, which leads to sparse weight vectors, i.e., many feature weights are exactly zero. Those zero-weight features are eliminated in the next iteration. The empirical results demonstrate that the selected features (genes) have very competitive discriminative power. In addition, the selection process has fast rate of convergence. (c) 2012 Elsevier B.V. All rights reserved.