Title

Photopolymerization of Pigmented Thiol-ene Systems

Document Type

Article

Publication Date

4-27-2004

Department

Polymers and High Performance Materials

Abstract

Photopolymerization kinetics and optical properties of pigmented thiol-ene coatings were investigated using photo-DSC, real-time FTIR, colorimetry, and AFM. Pigment has no deleterious effect on the unique ability of thiol-ene systems to photopolymerize in air. When trimethylolpropane tris-(3-mercaptopropionate) is incrementally added to tripropylene glycol diacrylate with and without calcium lithol rubine, a red organic pigment, the photopolymerization rate in nitrogen steadily decreases due to a shift in the polymerization mechanism from an acrylate homopolymerization to a thiol-ene copolymerization. However, the photopolymerization rate of pigmented and nonpigmented systems in air significantly increases with increasing thiol concentration, ultimately reaching a maximum at approximately 35 mole percent trifunctional thiol. The increase in rate is due to chain transfer from the non-reactive peroxy radical to the thiol. Thiol groups reduce oxygen inhibition to a greater degree than standard additives such as N-methyldiethanolamine, N-vinyl pyrrolidinone, and thioether containing trifunctional vinyl esters. For a typical acrylate based pigmented photocurable system, greater than 10 wt% photoinitiator is required to achieve a photopolymerization rate equivalent to a comparable thiol-ene system with 1 wt% photoinitiator in air. AFM and colorimetric data indicate that addition of trifunctional thiol has no deleterious effect on pigment dispersion and may in fact increase dispersion quality. (C) 2004 Elsevier Ltd. All rights reserved.

Publication Title

Polymer

Volume

45

Issue

9

First Page

2921

Last Page

2929