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ABSTRACT

AN F4-STYLE INVOLUTIVE BASIS ALGORITHM

by Miao Yu
August 2010

How to solve a linear equation system? The echelon form of this system will be obtained

by Gaussian elimination then give us the solution. Similarly, Gröbner Basis is the “nice

form” of nonlinear equation systems that can span all the polynomials in the given ideal [4].

So we can use Gröbner Basis to analyze the solution of a nonlinear equation system.

But how to compute a Gröbner Basis? There exist several ways to do it. Buchberger’s

algorithm is the original method [2]. Gebauer-Möller algorithm [6] is a refined Buchberger’s

algorithm. The F4 algorithm [5] uses matrix reduction to compute efficiently. Involutive

Basis algorithm [8, 1, 12] is an effective method avoiding much ambiguity in the other

algorithms.

In Chapters 1 and 2 we describe two well-known methods of computing Gröbner

Basis called Buchberger’s and F4 algorithm. In Chapter 3 after presenting the definition

of involutive division we give a detailed formulation of basic and improved Involutive

Basis algorithm. We will see that there exists ambiguity both in Buchberger’s and F4

algorithm. But in the method of Involutive Basis Algorithm, the ambiguity for the choice

of prolonagation has been avoided. So in Chapter 4 we combine the F4 algorithm and

Involutive Basis algorithm in order to obtain a new approach that can reduce polynomials

faster as well as avoid ambiguity. The combined algorithm called F4-involutive is a partial

result due to its efficiency. More work such as implementing Buchberger’s criteria would be

done in the future.
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Chapter 1

WHAT IS A GRÖBNER BASIS?

Recall that in linear algebra, we use Gaussian elimination to obtain the echelon form of a
linear equation system, which will help us analyze the solutions. As a key to the solutions,
echelon form spans all the solutions to the given system. Similarly, Gröbner Basis can
be said as the “nice form” of nonlinear equation systems that is a basis that span all the
polynomials in the ideal. We now define these notations precisely.

1.1 Notation

Let F[x1, . . . ,xn] be a polynomial ring over a field F. (A ring R is a nonempty set with at
least two operations + and×, such that (R,+) is an abelian group and (R,+,×) is closed and
associative under multiplication and satisfies distributivity of addition over multiplication.
For other definitions of ring theory see [11].) Given a subset of R, denoted by S; if S is a
ring under the same operations as R, then S is a subring of R.

Let I be a subring of R ( /0 6= I ⊆ R); we call I an ideal of R if it satisfies the absorption
property: ar ∈ I for all a ∈ I and r ∈ R. An ideal I can be generated by some fixed elements
a1,a2, ...,an ∈ R by setting I = {a1r1 + a2r2 + ...+ anrn | r1, ...,rn ∈ R}. In this case we
write I = 〈a1,a2, ...,an〉 and we call the list (a1,a2, ...,an) a basis of I. In abstract algebra,
ideals have many important applications in mathematics [4].

Example 1.1.1. Consider in F[x1, . . . ,x4] the system of polynomial equations

x1 + x2 + x3 + x4 = 0

x1x2 + x2x3 + x3x4 + x4x1 = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 = 0

x1x2x3x4 = 1.

This corresponds to the ideal

〈 f1, f2, f3, f4〉 ∈ F[x1, . . . ,x4]
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where

f1 = x1 + x2 + x3 + x4

f2 = x1x2 + x2x3 + x3x4 + x4x1

f3 = x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2

f4 = x1x2x3x4−1.

We call this system Cyclic-4 and we will return to it several times.

We say that a monomial is any product of the polynomial ring’s indeterminates. A term
is a product of a monomial and an element of the base field. For example, x2 is a monomial
but 2x2 is a term.

For univariate polynomials, we can easily order terms by the degree of the variable
in each term; however for multivariate polynomials, e.g. x2yz + xy3 + z4, it’s not easy to
determine the terms’ order, so we need a method of ordering of terms (monomials).

Definition 1.1.1. [4] A monomial ordering on F[x1, . . . ,xn] is any relation � on the set of
monomials xα , α ∈ Zn

>0 (xα = xα1
1 xα2

2 · · ·xαn
n and Zn

>0 is the set of vectors of nonnegative
integers), satisfying:

i)� is a total ordering. This means any two items can be compared ( for ∀t1 6= t2, t1 ≺ t2
or t1 � t2 )

ii) If xα � xβ and γ ∈ Zn
>0 , then xα+γ � xβ+γ .

iii) � is a well-ordering on Zn
>0 .This means that every nonempty subset of Zn

>0 has a
smallest element under �.

Graded Reverse Lex Order (grevlex) is a monomial ordering, in which all the terms of a
polynomial are ordered first by the total degree of the monomials then determined by the
smallest degree of the right-most variable. Precisely, let α,β ∈ Zn

>0 we say xα � xβ if

∑
n
1 αi > ∑

n
1 βi or ∑

n
1 αi = ∑

n
1 βi and in α−β ∈ Zn, the right-most nonzero entry is negative.

In the thesis we use grevlex ordering; other ordering exist [4] but we will not consider
them.

Example 1.1.2. Consider a multivariate polynomial f (x,y,z) = x2yz+ xy3 + z4; by graded
reverse lex ordering we can rewrite it into descending order f (x,y,z) = xy3 + x2yz+ z4.

Definition 1.1.2. Let f be a nonzero polynomial in F[x1, . . . ,xn] and let � be a monomial
order; the leading monomial of f is the largest monomial according to monomial ordering.
We denote the leading monomial of f by lm( f ) and denote the leading coefficient of f by
lc( f ).
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Example 1.1.3. Let us come back to Cyclic-4,

f1 = x1 + x2 + x3 + x4

f2 = x1x2 + x2x3 + x3x4 + x4x1

f3 = x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2

f4 = x1x2x3x4−1.

By definition of monomial ordering :

lm( f1) = x1

lm( f2) = x1x2

lm( f3) = x1x2x3

lm( f4) = x1x2x3x4.

1.2 Definition of Gröbner Basis

Let I = 〈 f1, f2, . . . , fm〉 ; let p ∈ F[x1, . . . ,xn] ; is p ∈ I? If it is, then by definition p = ∑ri fi

where ri ∈ F[x1, . . . ,xn]. It would seem that we could easily determine that p ∈ I if there
exists fk such that lm( fk) | lm(p) ; but there may some cancellation that happened in ∑ri fi

which means lm( fi) - lm(p) for some i ∈ {1,2, . . . ,m}; that will give you a false decision
telling you p /∈ I.

Example 1.2.1. Let f1 = x2
1 + x2

2, f2 = x1x2−1, p = x3
2 + x1. Is p ∈ 〈 f1, f2〉? It looks like

it’s not because lm( fi) - lm(p) for i = {1,2}. However, p = h1 f1 +h2 f2 where h1 = x2 and
h2 =−x1, so p ∈ 〈 f1, f2〉.

How to fix this problem? We can modify 〈 f1, f2〉 by adding p to the list of generators
of the ideal and call it f3 ; now we have the same ideal 〈 f1, f2, f3〉 with a different basis,
where lm( f3) | lm(p). In fact f1, f2, f3 have a special form that allows us to decide ∀p ∈
F[x1, . . . ,xn] whether p ∈ I. This basis of ideal I which has a special property is called
Gröbner Basis.

Definition 1.2.1. Let I = 〈g1,g2, . . . ,gm〉. If for every p ∈ I, lm(gk) | lm(p) for some
k ∈ {1,2, . . . ,m}, we say that G = (g1,g2, . . .gm) is a Gröbner Basis. Furthermore, Gröbner
Basis exists for every ideal of a polynomial ring [2, 4].
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1.3 How Do We Compute a Gröbner Basis?

Let G⊆ F[x1, . . . ,xn], we want a Gröbner basis of 〈G〉. We will look for polynomials in the
ideal that do not satisfy the Gröbner basis property and add new polynomials to repair this
defect. In Example 4, f3 is a polynomial in F[x1,x2] which can’t be detected in the ideal I

if the generators of a basis of ideal I are only f1, f2, however, after adding f3 to the list of
generators of the ideal I we get a Gröbner basis which can generate all the polynomials in
the ideal.

But how can we find the polynomials that we need to add ? First of all, we need to define
a special polynomial called an S-polynomial: a minimal construction that cancels leading
monomials of two selected polynomials.

Definition 1.3.1. Let p,q ∈ F[x1, . . . ,xn]. We define the S-polynomial of p and q with
respect to a monomial ordering to be

S(p,q) = lc(q) · lcm(lm(p), lm(q))
lm(p)

· p− lc(p) · lcm(lm(p), lm(q))
lm(q)

·q.

Buchberger’s characterization suggests we compute the S-polynomials and top-reduce
them. If they all top-reduce to zero, then Gröbner basis is done already; if not, add the
reduced forms to the current basis and test the new S-polynomials as well. This suggests
Buchberger’s algorithm to compute a Gröbner basis [2]:

set G = F, then iterate the following three steps.

• Choose a critical pair p,q ∈ G that has not yet been considered, and construct its
S-polynomial.

• Top-reduce this S-polynomial with respect to G. That is, while lm(S) remains divisible
by lm(gi) for any gi ∈ G, put S := S− lm(S)

lm(gi)
·gi.

• Once no more top-reductions of S are possible, either S = 0 or lm(S) is no longer
divisible by lm(gi) for any gi ∈ G.

−In the first case, we say that S(p,q) reduces to zero with respect to G.

−In the second case, append S to G. The new entry in G means that S(p,q) now
reduces to zero with respect to G.

The algorithm terminates once the S-polynomials of all pairs in G top reduce to zero. The
pseudocode of Buchberger’s algorithm 1 is given as follows:

Buchberger’s algorithm allows us to compute Gröbner bases, but the algorithm is quite
inefficient without any optimizations. To make it more efficient, Buchberger’s criteria give
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Algorithm 1 .
algorithm Buchberger’s algorithm

inputs
F , a finite subset of F[x1, . . . ,xn]

outputs
G, a finite subset of F[x1, . . . ,xn]

do
Let G := F
Let P := {(i, j) : 1 6 i 6 j 6 m}
while P6= /0 do

Choose (i, j) ∈ P
Remove (i, j) from P
Let S be the S−polynomial of gi,g j ∈ G
Let r be the top-reduction of S modulo G
if r 6= 0 then

G = G∪{r}
P = P∪{(r,g) | ∀g ∈ G and r 6= g}

return G

us a great way to detect useless computations and skip these S-polynomials in order to
improve the efficiency.

• Buchberger’s gcd criterion: Let p and q be two polynomials whose leading mono-

mials u and v have no common variables. Then the S-polynomial of p and q reduces
to zero with respect to the “current” G [2].

• Buchberger’s lcm criterion: Let p and q be two polynomials whose leading mono-

mials are u and v, respectively. Let f be a polynomial whose leading monomial is t. If
t divides lcm(u,v), then the S-polynomial of p and q top-reduces to zero with respect
to G [3].

Now we can detect many S-polynomials that should be skipped during the process of
computation. But how can we detect which pair of the list of generators be selected to
apply the criteria and computed? The selection of elements from the critical pair list during
executions of the iteration is governed by certain strategy. There are two traditional strategies
for this.

• The normal strategy for selecting critical pairs chooses a pair such that the least
common multiple of the leading monomials lm( f1) and lm( f2) is minimal in the
current monomial ordering [3].
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• However, in the sugar strategy, critical pairs are ordered with respect to a phantom
degree called sugar and the pair with minimal sugar will be selected [10].

In this thesis, we use only the normal strategy.
The Gebauer-Möller algorithm is a sophisticated implementation of Buchberger’s algo-

rithm that exploits Buchberger’s criteria independent of strategy, which efficiently makes the
computation of Gröbner basis faster [6]. First set F := G then iterate the following steps:

• Choose a critical pair p,q ∈ G that has not yet been considered, and construct its
S-polynomial.

• Top-reduce the S-polynomial with respect to G, and find the remainder r: if r 6= 0
append r to G, compute critical pairs for r and each g ∈ G, then

– Eliminate new pairs that safely satisfy Buchberger’s lcm criterion.

– Eliminate new pairs that satisfy Buchberger’s gcd criterion from the critical pair
list survived.

– Eliminate old pairs that safely satisfy Buchberger’s lcm criterion.

– Remove elements of the basis made redundant by the new polynomial.

Finally we will get a Gröbner basis of 〈F〉 . See the Gebauer-Möller main algorithm 2 and
algorithm 3 for pseudocode.

Example 1.3.1. We compute a Gröbner basis of Cyclic-4 by the Gebauer-Möller algorithm.
Recall the Cyclic-4 system,

f1 = x1 + x2 + x3 + x4

f2 = x1x2 + x2x3 + x3x4 + x4x1

f3 = x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2

f4 = x1x2x3x4−1.

(We have leading monomials in bold.) Let F = 〈 f1, f2, f3, f4〉 , G = {}, add each polynomial
g ∈ 〈F〉 to G and update the set of critical pairs P:

• For f1, updated G = { f1}, updated P = {}.

• For f2, updated G = { f1, f2}, updated P = {( f1, f2)}.
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Algorithm 2 .
algorithm Gebauer-Möller algorithm

inputs
F , a finite subset of F[x1, . . . ,xn]

outputs
G, a finite subset of F[x1, . . . ,xn]

do
Let G := {}
Let P := {}
while F 6= /0 do

Let f ∈ F
Remove f from F
G,P := U pdate(G,P, f )
while P 6= /0 do

Pick any ( f ,g) ∈ P and remove it
Let h be the top-reduction of S ( f ,g) modulo G
if h 6= 0 then

G,P := U pdate(G,P,h)
return G

• For f3, updated G = { f1, f2, f3}, updated P = {( f1, f2) ,( f1, f3) ,( f2, f3)}. Since

lcm(lm( f1), lm( f3)) = lcm(lm( f2), lm( f3)) = x1x2x3,

Buchberger’s lcm criterion implies that we can safely eliminate critical pair ( f1, f3),
then updated P = {( f1, f2) ,( f2, f3)}.

• For f4, updated G = { f1, f2, f3, f4}, updated

P = {( f1, f2) ,( f2, f3) ,( f1, f4) ,( f2, f4) ,( f3, f4)}.

By Buchberger’s lcm criterion, we can safely eliminate critical pairs ( f1, f4) and
( f2, f4) , then updated P = {( f1, f2),( f2, f3),( f3, f4)}.

Now use the normal strategy to select a critical pair, construct the S-polynomial for that pair,
reduce it, and if it’s non-zero add it to current G, then update the pairs P. (See Table 1.1).
Here we show the details for the third row of Table 1.1.

By the Normal Strategy, we select pair ( f3, f4) to compute for this step. The S-poly-
nomial is

S ( f3, f4) = x4 f3− f4

=
(
((((

(x1x2x3x4 + x2x3x2
4 + x3x2

4x1 + x2
4x1x2

)
− ((((((x1x2x3x4−1)

= x2x3x2
4 + x3x2

4x1 +x2
4x1x2 +1.
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Algorithm 3 .
algorithm Update the Gebauer-Möller pairs

inputs
Gold , a finite subset of F[x1, . . . ,xn]
Fold , a finite set of critical pairs of elements of Gold
p, a non-zero polynomial in 〈Gold〉

outputs
Gnew, a finite subset of F[x1, . . . ,xn], possibly different from Gold
Pnew, a finite set of critical pairs of Gnew

do
Let C := {(p,g) : g ∈ Gold}
Let D := {}
while C 6= /0 do

Pick any (p,g) ∈C and remove it
if lm(p) and lm(g) share no variables or no (p,h) ∈ C ∪ D satisfies
lcm(lm(p) , lm(h)) | lcm(lm(p) , lm(g)) then

Add (p,g) to D
Let E := /0
while D 6= /0 do

Pick any (p,g) ∈ D and remove it
if lm(p) and lm(g) share at least one variable then

E := E ∪ (p,g)
Let Pint := {}

while Pold 6= /0 do
Pick ( f ,g) ∈ Pold and remove it
if lm(p) - lcm(lm( f ) , lm(g)) or lcm(lm(p) , lm(h)) = lcm(lm( f ) , lm(g))
for h ∈ { f ,g} then

Add ( f ,g) to Pint
Pnew := Pint ∪E
Let Gnew := {}
while Gold 6= /0 do

Pick any g ∈ Gold and remove it
if lm(p) - lm(g) then

Add g to Gnew
Add p to Gnew

return Gnew,Pnew

Notice that the leading monomial of S ( f3, f4) is divisible by the leading monomial of f2, so
we can reduce:

S ( f3, f4)− x2
4 f2 =

(
��

��x2x3x2
4 + x3x2

4x1 +��
��x2

4x1x2 +1
)
−
(
��

��x1x2x2
4 +��

��x2x3x2
4 + x3x3

4 + x3
4x1

)
= x3x2

4x1 +1− x3x3
4− x3

4x1.
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Table 1.1: Iteration of Gebauer-Möller algorithm on Cyclic-4 (See Example 1.3.1).
CP RR LCM1 GCD LCM2 updated P

( f1, f2) x2
2 ( f2, f5) ,( f3, f5) , ( f1, f5) {( f2, f3) ,( f3, f4)}

( f4, f5)
( f2, f3) x2x2

3 ( f2, f6) ,( f3, f6) , ( f1, f6) {( f3, f4),( f5, f6)}
( f4, f6)

( f3, f4) x2x3x2
4 ( f2, f7) ,( f3, f7) , ( f1, f7) {( f5, f6) ,( f5, f7) ,

( f4, f7) ( f6, f7)}
( f5, f6) 0 {( f5, f7) ,( f6, f7)}
( f6, f7) x3

3x2
4 ( f2, f8) ,( f3, f8) , ( f1, f8) , {( f5, f7),( f6, f8)}

( f4, f8) ,( f7, f8) ( f5, f8)
( f5, f7) x2x2

3x2
4 ( f2, f9) ,( f3, f9) , ( f1, f9) {( f6, f8),( f5, f9),

( f4, f9) ,( f6, f9) , ( f7, f9)}
( f8, f9)

( f7, f9) x2
3x4

4 ( f2, f10) ,( f3, f10) , ( f1, f10) , {( f6, f8),( f5, f9),
( f4, f10) ,( f7, f10) , ( f5, f10) ( f6, f10),( f8, f10)}

( f9, f10)
( f6, f10) 0 {( f6, f8),( f5, f9),

( f8, f10)}
( f5, f9) 0 {( f6, f8),( f8, f10)}
( f6, f8) 0 P = {( f8, f10)}
( f8, f10) 0 P = {}

CP: critical pair selected by the Normal Strategy
RR: result of reduction, 0 or the leading monomial of a new non-zero polynomial
LCM1: new pairs eliminated by Buchberger’s lcm criterion
GCD: new pairs eliminated by Buchberger’s gcd criterion
LCM2: old pairs eliminated by Buchberger’s lcm criterion

The leading monomial of this reduced form is divisible by the leading monomial of f1, so
we can reduce further:

S ( f3, f4)− x2
4 f2− x3x2

4 f1 =
(
��

��x3x2
4x1 +1− x3x3

4− x3
4x1

)
−
(
�
��
�

x1x3x2
4 + x2x3x2

4 + x2
3x2

4 + x3x3
4

)
= 1−2x3x3

4− x3
4x1−x2x3x2

4− x2
3x2

4.

The leading monomial of this reduced form is not divisible by the leading monomial of fi
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for i = 1,2, . . . ,6, so we can reduce no further. We must add a new polynomial to the basis,

f7 =−x2x3x2
4− x2

3x2
4− x1x3

4−2x3x3
4 +1,

and update P.
We start with new critical pairs {( f1, f7) ,( f2, f7,)( f3, f7) ,( f4, f7) ,( f5, f7) ,( f6, f7)}.

Observe that lcm(lm( f1), lm( f7)) | lcm(lm( fi), lm( f7)) for i = 2, . . .4, so by Buchberger’s
lcm criterion, eliminate ( f2, f7,) ,( f3, f7) ,( f4, f7) [LCM1]. Also, lm( f1) and lm( f7) share
no common variables, so by Buchberger’s gcd criterion, eliminate ( f1, f7) [GCD]. Now
P = {( f5, f6) ,( f5, f7) ,( f6, f7)} where ( f5, f6) is an old pair from the previous iteration, and
lcm(lm( f5), lm( f6)) = x2

2x2
3. Since lm( f7) = x2x3x2

4, we have lm( f7) - lcm(lm( f5), lm( f6)),
so no old pairs are eliminated by using Buchberger’s lcm criterion [LCM2]. Therefore this
iteration concludes with P = {( f5, f6) ,( f5, f7) ,( f6, f7)} and G = { f1, f2, f3, f4, f5, f6, f7}.

Once no critical pairs are left, we have found a Gröbner Basis G such that for all p∈ 〈F〉,
p is top-reducible by G. Thus, G = { f1, f2, f3, f4, f5, f6, f7, f8, f9, f10} where

f5 = x2
2− x1x4 + x2x4− x3x4

f6 = x2x2
3− x1x2x4− x2x3x4 + x2

3x4

f7 = −x2x3x2
4− x2

3x2
4− x1x3

4−2x3x3
4 +1

f8 = −x3
3x2

4− x1x2x3
4− x1x3x3

4− x2x3x3
4− x2

3x3
4 + x3

f9 = −x2x4
4− x5

4 + x2 + x4

f10 = −x2
3x4

4− x1x5
4− x3x5

4− x2x3− x3x4 + x2
4.
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Chapter 2

THE F4 ALGORITHM AND STRATEGY FOR SELECTING
CRITICAL PAIRS

Now we introduce a new algorithm for computing Gröbner Basis called F4. This algorithm
was first described by Faugére in [5]. F4 replaces the traditional polynomial reduction found
in Buchberger’s algorithm by the simultaneous reduction of several polynomials. It uses the
same mathematical principles as Buchberger’s algorithm, but computes many S-polynomials
in one go by forming a matrix and using linear algebra to do the reduction in parallel.

Definition 2.0.2. Let L = [ f1, f2, . . . , fs] be a list of polynomials. Let XL be the ordered list
of monomials of elements of L and n is the number of elements in XL. Define M(L) as the
s×n matrix where the entry in row i, column j is the coefficient of the jth element of XL in
fi.

Example 2.0.2. Given G =
{

g1 = x2 + y, g2 = xy2− xy, g3 = y3−1
}

, for the critical pair
(g1,g2) we get a new polynomial by computing S(g1,g2), which is g4 = x2y+ y3. Recall
that by Buchberger’s algorithm, we do reduction as follows:

g4− yg1 = y3− y2;

y3− y2−g3 =−y2 +1.

We also can use a matrix trangularization to do the reduction. Let L = [g4,yg1,g3]. Then
XL =

[
x2y,y3,y2,1

]
. Then

M (L) =


x2y y3 y2 1

S12 1 1 0 0
yg1 1 0 1 0
g3 0 1 0 −1

 .

Triangularizing M (L) gives us

M (L) =


x2y y3 y2 1

S12 1 1 0 0
yg1 0 −1 1 0
g3 0 0 1 −1

 .
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The first two rows correspond to polynomials whose leading monomials are already ac-
counted for in G by g2 and g3. The third row (0,0,1,−1) corresponds to the polynomial
y2−1 (check the labels on the columns) which is equivalent to the result above.

Faugère argues that instead of using the Normal Strategy (or any other strategy) to pick
one critical pair at a time, we should pick all S-polynomials of minimal degree and process
the reduction in a matrix using techniques for sparse linear algebra. That will be much more
efficient than the traditional, one polynomial at a time reduction of Buchberger’s algorithm.
In fact Faugère used F4 to compute a Gröbner basis for Cyclic-9, which had previously been
intractable. See the basic F4 algorithm 4 for pseudocode.

Algorithm 4 .
algorithm F4 algorithm

inputs
F, a finite subset of F[x1, . . . ,xn].

outputs
G, a finite subset of F[x1, . . . ,xn].

do
G := F ,Fnew := F and d := 0
P := {( f ,g) | f ,g ∈ G with f 6= g}
Done := {}
while P 6= /0 do

d := d +1
Pd := {( f ,g) | ( f ,g) ∈ P and deg(S ( f ,g)) = d}
P := P\Pd
Ld := Le f t (Pd)∪Right (Pd)
Fnew := Reduction(Ld,G)
for h ∈ Fnew do

P := P∪{(h,g) | g ∈ G}
G := G∪{h}

return G

Now we apply F4 algorithm to solve Cyclic-4 problem as well as using Buchberger’s
Criteria 1.3.

Example 2.0.3. Solve Cyclic-4 problem by F4 algorithm,

f1 = x1 + x2 + x3 + x4,

f2 = x1x2 + x2x3 + x3x4 + x4x1,

f3 = x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2

f4 = x1x2x3x4−1.
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Algorithm 5 .
algorithm Reduction

inputs
L, a finite subset of M×F[x1, . . . ,xn]
G, a finite subset of F[x1, . . . ,xn]

outputs
F , a finite subset of F[x1, . . . ,xn] (possible an empty set)

do
F := SymbolicPreprocessing(L,G)
Fint:= Reduction to Row Echelon Form of F w.r.t ≺
Fnew :=

{
f ∈ F̃ | lm( f ) /∈ 〈lm(F)〉

}
return Fnew

Algorithm 6 .
algorithm SymbolicPreprocessing

inputs
L, a finite set of M×F[x1, . . . ,xn]
G, a finite subset of F[x1, . . . ,xn]

outputs
F , a finite subset of F[x1, . . . ,xn]

do
F := {t · f | (t, f ) ∈ L} where t ∈M
Done := lm(F)
Let XL be the set of monomials of all polynomials in F .
while XL 6= Done do

Let m ∈ XL \Done
Done := Done∪{m}
if m top reducible modulo G then

Let f ∈ G such that lm( f ) |L m
Let m′ = m

lm( f )
F := F ∪{m′ · f}
add the monomials of m′ · f to XL

return F

Let F = 〈 f1, f2, f3, f4〉 , G = {}, add each polynomial g ∈ 〈F〉 to G and update the set
of critical pairs P using Buchberger’s criteria 1.3. Then we have G = { f1, f2, f3, f4},
P = {( f1, f2) ,( f2, f3) ,( f3, f4)}. To make it easier to see which pair to choose, we will list
each pair with the lcm of its leading monomials; that is,

P = {(x1x2, f1, f2) ,(x1x2x3, f2, f3) ,(x1x2x3x4, f3, f4)}.

We pick all pairs of smallest degree; here that gives us {(x1x2, f1, f2)}. The S-polynomial of
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f1 and f2 is S12 = x2 f1− f2. To determine L and XL we will think about what terms might be
used while reducing S12. Start with L = {x2 f1, f2} and XL = {x1x2,x2

2,x2x3,x2x4,x3x4,x1x4}.
Since lm(x2 f1) = x1x2 is already accounted for in L, the only monomial that might be
reduced is x1x4, which is divisible by f1, so we add x4 f1 to L and its monomials to XL.
The remaining elements of XL (including new ones) are not reducible by G, so use L =
{ f2,x2 f1,x4 f1}. This gives us

M (L) =


x1x2 x2

2 x2x3 x1x4 x2x4 x3x4 x2
4

x2 f1 1 1 1 0 1 0 0
x4 f1 0 0 0 1 1 1 1

f2 1 0 1 1 0 1 0

 .

Notice that triangularizing the first and third rows of M (L) is equivalent to computing the
S-polynomial of f1 and f2. Triangularizing the matrix gives

M (L) =


x1x2 x2

2 x2x3 x1x4 x2x4 x3x4 x2
4

x2 f1 1 1 1 0 1 0 0
x4 f1 0 0 0 1 1 1 1

f2 0 −1 0 1 −1 1 0

 .

The third row gives us the polynomial

f5 =−x2
2 + x1x4− x2x4 + x3x4,

which matches the result of Example 1.3.1. Now G = { f1, f2, . . . , f5}. Updating the pairs
gives us P = {(x1x2x3, f2, f3) ,(x1x2x3x4, f3, f4)}.

In the next step we need to study ( f2, f3). The S-polynomial is S23 = x3 f2− f3, so
XL = {x1x2x3,x2x2

3,x
2
3x4,x2x3x4,x3x4x1,x4x1x2}. Since x1x3x4 is reducible by x3x4 f1, and

x1x2x4 is reducible by x2x4 f1 , add x3x4 f1, x2x4 f1 to L and their monomials to XL. Update
L and XL, then we have:

L = {x2x4 f1,x3x4 f1,x3 f2, f3}

XL = {x1x2x3,x2x2
3,x1x2x4,x2

2x4,x1x3x4,x2x3x4,x2
3x4,x2x2

4,x3x2
4}.

The new monomials are highlighted. Of the new monomials only one of them is divisible by
a leading monomial of other polynomials in the basis, that is, x2

2x4 is divisible by lm( f5).
Update L and XL, then we have:

L = {x2x4 f1,x3x4 f1,x3 f2, f3,x4 f5}

XL = {x1x2x3,x2x2
3,x1x2x4,x2

2x4,x1x3x4,x2x3x4,x2
3x4,x1x2

4,x2x2
4,x3x2

4}.
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The new monomial are highlighted, that is x1x2
4, which is divisible by x2

4 f1. Update L and
XL, then we have:

L = {x2x4 f1,x3x4 f1,x2
4 f1,x3 f2, f3,x4 f5}

XL = {x1x2x3,x2x2
3,x1x2x4,x2

2x4,x1x3x4,x2x3x4,x2
3x4,x1x2

4,x2x2
4,x3x2

4,x
3
4}.

This gives us:

M (L) =


1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

−1 1 −1 −1

 .

And triangularizing this matrix gives us:

M (L) =


1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
−1 1 1 −1

−1 1 −1 −1


The fifth row gives us the polynomial f6 =−x2x2

3 + x1x2x4 + x2x3x4− x2
3x4 which matches

the result of Example1.3.1. Now G = { f1, f2, . . . , f6} then updating the pairs gives us: P =
{(x1x2x3x4, f3, f4) ,

(
x2

2x2
3, f5, f6

)
}. By the lowest degree strategy, we compute S-polynomial

S34 = x4 f3− f4 and S56 = x2
3 f5− x2 f6. Now L = {x4 f3, f4,x2

3 f5,x2 f6} and

XL = {x2
2x2

3,x1x2x3x4,x1x2
2x4,x2

2x3x4,x1x2
3x4,x2x2

3x4,

x3
3x4,x1x2x2

4,x1x3x2
4,x2x3x2

4,1}

Notice that x1x2
2x4is divisible by lm(x1x4 f5) , x2

2x3x4 is divisible by lm(x3x4 f5) , x1x2
3x4 is

divisible by lm
(
x2

3x4 f1
)
, x2x2

3x4 is divisible by lm(x4 f6), x1x2x2
4 is divisible by lm

(
x2

4 f2
)

and x1x3x2
4 is divisible by lm

(
x3x2

4 f1
)

; update L and XL then we have:

L = {x2
3x4 f1,x3x2

4 f1,x2
4 f2,x4 f3, f4,x2

3 f5,x1x4 f5,x3x4 f5,x2 f6,x4 f6}

XL = {x2
2x2

3,x1x2x3x4,x1x2
2x4,x2

2x3x4,x1x2
3x4,x2x2

3x4,x3
3x4,x2

1x2
4,

x1x2x2
4,x1x3x2

4,x2x3x2
4,x

2
3x2

4,x3x3
4,x1x3

4,1}

Of the new monomials highlighted, x2
1x2

4 is divisible by lm
(
x1x2

4 f1
)

and x1x3
4 is divisible by

lm
(
x3

4 f1
)

, updating L and XL gives us :

L = {x2
3x4 f1,x1x2

4f1,x3x2
4 f1,x3

4f1,x2
4 f2,x4 f3, f4,x2

3 f5,x1x4 f5,x3x4 f5,x2 f6,x4 f6}
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XL = {x2
2x2

3,x1x2x3x4,x1x2
2x4,x2

2x3x4,x1x2
3x4,x2x2

3x4,x3
3x4,x2

1x2
4,x1x2x2

4,x1x3x2
4,

x2x3x2
4,x

2
3x2

4,x1x3
4,x2x3

4,x3x3
4,x

4
4,1}

Notice that no new monomials are divisible by a leading monomial of the polynomial in the
basis in this step. So we get the 12×17 matrix:

M (L) =



1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 −1

−1 1 −1 1
−1 1 −1 1

−1 1 −1 1
−1 1 1 −1

−1 1 1 −1


Triangularizing this matrix gives us:

M (L) =



1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
−1 −1 −1 −2 1

1 −1
−1 1 −1 1

−1 1 −1 1
−1 1 −1 1

−1 1 1 −1


The sixth row gives us a new polynomial f7 = −x2x3x2

4− x2
3x2

4− x1x3
4− 2x3x3

4 + 1 which
matches the result of example 1.3.1 and note that the rank of M (L) is 11 now, which
means that there is one S-polynomial reduction to zero, it is S56. Now G = { f1, f2, . . . , f7}
then updating the pairs gives us: P = {

(
x2

2x3x2
4, f5, f7

)
,
(
x2x2

3x2
4, f6, f7

)
}. By the lowest

degree strategy, we compute S-polynomial S57 = x3x2
4 f5− x2 f7 and S67 = x2

4 f6− x3 f7. Now
L = {x3x2

4 f5,x2
4 f6,x2 f7,x3 f7} and

XL = {x2,x3,x2
2x3x2

4,x2x2
3x2

4,x
3
3x2

4,x1x2x3
4,x1x3x3

4,x2x3x3
4,x

2
3x3

4}
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Note that x1x3x3
4 is divisible by lm

(
x3x3

4 f1
)

, x1x2x3
4 is divisible by lm

(
x3

4 f2
)
and x2x3x3

4 is
divisible by lm(x4 f7). Update L and XL, then we have:

L = {x3x3
4f1,x3

4f2x3x2
4 f5,x2

4 f6,x2 f7,x3 f7,x4f7}

XL = {x2,x3,x4,x2
2x3x2

4,x2x2
3x3

4,x
3
3x2

4,x1x2x3
4,x1x3x3

4,x2x3x3
4,x

2
3x3

4,x1x4
4,x3x4

4}

Since only one of the new monomials x1x4
4 is divisible by lm

(
x4

4 f1
)
. Updating L and XL

gives us:
L = {x3x3

4 f1,x4
4f1,x3

4 f2,x3x2
4 f5,x2

4 f6,x2 f7,x3 f7,x4 f7}

XL = {x2
2x3x2

4,x2x2
3x2

4,x
3
3x2

4,x1x2x3
4,x1x3x3

4,x2x3x3
4,x

2
3x3

4,x1x4
4,x2x4

4,x3x4
4,x

5
4,x2,x3,x4}

We notice that no new monomials are divisible, now we have the 8×14 matrix:

M (L) =



1 1 1 1
1 1 1 1

1 1 1 1
−1 1 −1 1

−1 1 1 −1
−1 −1 −1 −2 1

−1 −1 −1 −2 1
−1 −1 −1 −2 1


Triangularizing this matrix gives us:

M (L) =



1 1 1 1
1 1 1 1

1 1 1 1
−1 1 −1 1

−1 1 1 −1
−1 −1 1 1

−1 −1 −1 −1 −1 1
−1 −1 −1 −2 1


We note that the seventh row is the reduction of S-polynomial S67: f8 =−x3

3x2
4− x1x2x3

4−
x1x3x3

4 − x2x3x3
4 − x2

3x3
4 + x3 and the sixth row give us a new polynomial which is the

reduction of S57: f9 = −x2x4
4 − x5

4 + x2 + x4, both match the results of example 1.3.1.
Now we have updated G = { f1, f2, . . . , f9} and using Buchberger’s criteria we have P =
{
(
x2x3

3x2
4, f6, f8

)
,
(
x2

2x4
4, f5, f9

)
,
(
x2x3x4

4, f7, f9
)
}.

Following the previous steps will give us a new 17×23 matrix M (L) whose columns
represent monomials of degree six and triangularizing the matrix will give us a new polyno-
mial f10. Then we have the updated basis G = { f1, f2, . . . , f10} and the set of critical pairs
P = {( f6, f8) ,( f5, f9) ,( f6, f10) ,( f8, f10)}; by constructing and triangularizing the matrix
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from the new L and XL , a zero matrix will be found, which means G is a Gröbner Basis
of the cyclic-4 system. At this point, we’ve show the main idea of the F4 algorithm for
computing the Gröbner Basis.
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Chapter 3

INVOLUTIVE BASES

In this chapter we describe another algorithmic approach to computing a special kind of
Gröbner basis, called an involutive basis [9, 1]. This algorithm is based on a special concept
of monomial multiplication that originates in work done on partial differential equations
early in the 20th century. For each monomial, we separate the set of variables into two
disjoint subsets: multiplicative and non-multiplicative. Using this criterion, some divisions
are forbidden. Modifying Buchberger’s algorithm to accommodate this division will allow
us to compute an involutive basis.

3.1 Involutive Division

In this section we describe involutive division. We will see that there is a general concept
and three specifications in general use.

Definition 3.1.1. Let M be the set of monomials of F[x1, . . . ,xn]. We say that an involutive
division L or L-division is given on M if for any finite set U ⊂M a relation |L is defined on
U×M such that for any u,u1 ∈U and any v,w ∈M the following holds:

i) u |L w implies u | w.

ii) u |L u for any u ∈U .

iii) u |L (uv) and u |L (uw) if and only if u |L (uvw).

iv) If u |L w and v |L w, then u |L v or v |L u.

v) If u |L v and v |L w, then u |L w.

vi) If U ⊆V and u ∈U , then u |L w with respect to V implies u |L w with respect to U .

In other words, L-division holds the following properties for any u,v,w ∈ M and any
U ⊂M:

i) compatibility with ordinary division;

ii) any u is L-divisible by itself;
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x1x2
2x4

↙ ↘
lm( f2) = x1x2 lm( f5) = x2

2

↓
lm( f1) = x1

Two choices of paths for non-involutive division

x1x2
2x4

↘
lm( f2) = x1x2 lm( f5) = x2

2

↓
lm( f1) = x1

Only one choice of path for one involutive division

x1x2
2x4

↙
lm( f2) = x1x2 lm( f5) = x2

2

↓
lm( f1) = x1

Only one choice of path for a different involutive division

Figure 3.1: Choices of paths for non-involutive division and involutive division.

iii) v and w are L-multiplicative for u if and only if vw is L-multiplicative for u;

iv) any w has a unique chain of divisibility;

v) transitivity of L-division;

vi) when adding elements to U , any u ∈U can only lose L-multiples, and will never gain
any.

Remark 3.1.1. The significance for property (iv) is we only have one way to do reduction by
involutive division. Contrast to this Example 2.0.3 on page 15. The monomial x1x2

2x4 can be
reduced by two paths: f1 and f2, or f5. According to the different rule of involutive division,
we only have one choice of path. See Figure 3.1.

Definition 3.1.2. Assume u |L w. We say u is an involutive divisor of w and w is an
involutive multiple of u. Let v ∈M such that w = uv; we write w = u× v and say that v is
multiplicative for u, denoted by v ∈M(u). If t is a conventional divisor of w, but not an
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involutive divisor of w, let v′ ∈M such that w = tv′. We say that v′ is non-multiplicative
for t and write w = t · v′, and we denote v′ as v′ ∈ NML (t).

Remark 3.1.2. In mathematics, × and · have the same meaning. But for involutive division,
we use × instead of ordinary · to mean the involutive multiple of monomials, which differs
from the conventional multiple.

In addition, let t ∈M. We denote degi (t) as the degree of the ith variable of t. By
convention x, y, and z are interpreted as x1, x2, x3.

Now we describe three different examples of involutive division introduced by Janet,
Thomas, and Pommaret.

Definition 3.1.3. Given a finite set U , let

hi (U) = max{degi (u) | u ∈U} .

A variable xi is multiplicative in Thomas Division (or T -multiplicative) for u ∈ U if
degi (u) = hi (U) and non-multiplicative, otherwise.

Example 3.1.1. Let U =
{

xyz,y2,z3} (x� y� z). We have h1 = 1; h2 = 2; h3 = 3.

• Since deg1 (xyz) = h1, x1 is T -multiplicative for xyz and non-T -multiplicative for y2

and z3.

• Since deg2
(
y2) = h2, y is T -multiplicative for y2 and non-T -multiplicative for xyz

and z3.

• Since deg3
(
z3)= h3, z is T -multiplicative for z3 and non-T -multiplicative for xyz and

y2.

Definition 3.1.4. Let U be a finite set. For each 1≤ i≤ n divide U into groups labeled by
non-negative integers d1, . . . ,di:

[d1, . . . ,di] = {u ∈U | degi (u) = d j,1 6 j 6 i}.

A variable xi is considered as multiplicative in Janet Division (or J-multiplicative) for
u ∈U if

• i = 1 and degi (u) = max{deg1 (v) | v ∈U}, or

• i > 1, u ∈ [d1, . . . ,di−1], and degi (u) = max{degi (v) | v ∈ [d1, . . . ,di−1]}.

Example 3.1.2. Let U =
{

xyz,y2,z3} (x� y� z).
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Table 3.1: Three different kinds of involutive division.
Monomial Thomas Janet Pommaret

multiplicative (M) non-multiplicative (NM) M NM M NM
xyz x y,z x,y,z − z x,y
y2 y x,z y,z x y,z x
z3 z x,y z x,y z x,y

• For i = 1 we have deg1 (xyz) = max
{

deg1 (xyz) ,deg1
(
y2) ,deg1

(
z3)}. So x is J-

multiplicative for xyz.

• For i = 2 we have [d1] = {[0] , [1]}, where

[0] =
{

y2,z3} ; [1] = {xyz} .

So y is J-multiplicative for y2 and xyz.

• For i = 3 we have [d1,d2] = {[1,1] , [0,2] , [0,0]} where

[1,1] = {xyz} ; [0,2] = y2; [0,0] = z3.

So z is J-multiplicative for xyz, y2, and z3.

Definition 3.1.5. For a monomial xd1
1 · · ·x

dk
k with dk > 0 the variables x j with j ≥ k are

considered to be multiplicative in Pommaret division (or P-multiplicative) and x j with
j < k as non-multiplicative. For the monomial u = 1, all the variables are P-multiplicative.

Example 3.1.3. Let U =
{

xyz,y2,z3} (x� y� z). By definition of Pommaret division, we
can say that x is non-P-multiplicative for xyz,y2and z3; y is P-multiplicative for y2 ; z is
multiplicative for xyz, y2, and z3.

We summarize the different kinds of division for U =
{

xyz,y2,z3} (x� y� z) in Table
3.1.

We will compute a Gröbner basis of Cyclic-4 using Janet division in the next section, so
we conclude here by identifying the multiplicative and non-multiplicative variables of its
leading terms.

Example 3.1.4. Recall the Cyclic-4 system,
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Table 3.2: Cyclic-4 Janet division.
t M NM

lm( f1) = x1 x1,x3,x4 x2

lm( f2) = x1x2 x1,x2,x4 x3

lm( f3) = x1x2x3 x1,x2,x3 x4

lm( f4) = x1x2x3x4 x1,x2,x3,x4 −

f1 = x1 + x2 + x3 + x4

f2 = x1x2 + x2x3 + x3x4 + x4x1

f3 = x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2

f4 = x1x2x3x4−1.

Here we choose the grevlex ordering with x1 � x2 � x3 � x4 and the Janet division. Let
U = {lm( f1) , lm( f2) , lm( f3) , lm( f4)}= {x1,x1x2,x1x2x3,x1x2x3x4}.

• For i = 1, max j∈{1,2,...,4} deg1 lm
(

f j
)

= 1 so x1 is multiplicative for f1, . . . , f4.

• For i = 2, [d1] = {[1]} where [1] = {x1,x1x2,x1x2x3,x1x2x3x4} and

max
j∈{1,2,3,4}

deg2
(
lm
(

f j
))

= 1;

so x2 is multiplicative for f2, f3, f4 ∈ [1] and non-multiplicative for f1.

• For i = 3, [d1,d2] = {[1,0] , [1,1]} where [1,0] = {x1},

[1,1] = {x1x2,x1x2x3,x1x2x3x4} ,

and max j∈{2,3,4} deg3
(
lm
(

f j
))

= 1; so x3 is multiplicative for f1 ∈ [1,0] , f3, f4 ∈
[1,1] and non-multiplicative for f2.

• For i = 4, [d1,d2,d3] = {[1,0,0] , [1,1,0] , [1,1,1]} where [1,0,0] = {x1} , [1,1,0] =
{x1x2} , [1,1,1] = {x1x2x3,x1x2x3x4} and max j∈{3,4} deg4

(
lm
(

f j
))

= 1; so x4 is mul-
tiplicative for f1 ∈ [1,0,0] , f2 ∈ [1,1,0] , f4 ∈ [1,1,1] and non-multiplicative for f3.

Now we summarize the results above into Table 3.2 for Janet division.
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3.2 Involutive Bases of Polynomial Ideals

In this section we describe an algorithm that uses involutive division to compute a special
Gröbner basis of a polynomial ideal. We first need to describe an important concept called
autoreduction.

Definition 3.2.1. Let G ⊂ F[x1, . . . ,xn]. G is L-autoreduced if lm(g) -L lm(g′) for any
g,g′ ∈ G.

Example 3.2.1. Recall the Cyclic-4 system. Notice lm( f1) -J lm( f2); lm( f2) -J lm( f3);
lm( f3) -J lm( f4). In fact, lm( fi) -J lm

(
f j
)

for i, j = 1,2,3,4 and i 6= j. By Definition 3.2.1,
the initial polynomial set of the Cyclic-4 is autoreduced.

We give a special name to multiples of a polynomial by a variable.

Definition 3.2.2. The prolongation of a polynomial g by a variable x is a product xg. If
x ∈ NM(lm(g)) then the prolongation is called non-multiplicative, otherwise multiplicative.

We can now introduce a new kind of ideal basis.

Definition 3.2.3. G ⊂ F[x1, . . . ,xn] is an involutive basis if it is autoreduced and all non-
multiplicative prolongations of its elements are linear combinations of multiplicative prolon-
gations of its elements. That is, for G = { f1, f2, . . . , fm},

∀g ∈ G ∀x ∈ NM(lm(g)) ∃u1,u2, . . . ,um ∈M : g · x =
m

∑
i

ui× fi.

Another way of saying this is that a autoreduced polynomial set G is said to be an involutive

basis if any non-multiplicative prolongation of the element in this set is L-reduced to zero
by G.

Remark 3.2.1. Recall that in Chapter 1, the Gebauer-Möller algorithm [6] tries to compute
the generators of a Gröbner Basis by constructing and reducing S-polynomials. In this
chapter we use non-multiplicative prolongations and reduce them in terms of involutive
division instead of S-polynomials. But the reduction of a non-multiplicative prolongation is
the same as the computation of an S-polynomial, since we can see the combination of the
non-multiplicative prolongation and its first involutive divisor as an S-polynomial.

Using this definition, we can compute an involutive basis as follows [12]. Let G := /0
and F be the given set of polynomial in F[x1, . . . ,xn]. While F 6= /0, repeat the following:

• Let G := Autoreduce(G∪F) and set F = /0.
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• For each polynomial g ∈ G:

– Find the non-multiplicative set of lm(g) = {x1, . . . ,xi | 1 6 i 6 n}.

– For each non-multiplicative variable of lm(g):

∗ Compute the non-multiplicative prolongation xi ·g and reduce it by G using
L-division.

∗ The result, p, is no longer L-divisible by lm( f ) for any f ∈ G. If p is
non-zero, add it to F and autoreduce F .

See algorithm 7 for pseudocode.

Algorithm 7 .
algorithm Basic algorithm of Involutive Bases

inputs
F , a finite polynomial set.

outputs
G, an involutive basis of ideal 〈F〉.

do
G := /0
while F 6= /0 do

G := Autoreduce(G∪F)
F := /0
for each g ∈ G do

for xi ∈ NML (lm(g)) do
f := NFL (g · xi,G)
if f 6= 0 then

F := F ∪{ f}
return G

Example 3.2.2. Let F be the Cyclic-4 system. We compute an Involutive Basis of F using
Janet division.

The leading monomial of f1 has a non-multiplicative variable because NMJ = {x2}.
Observe that x2 · f1 is Janet-divisible by f2, so we reduce:

x2 · f1− f2 = x2
2− x1x4 + x2x4− x3x4.

We let f5 be this new polynomial, and update the [d1, . . . ,di−1]:

• For i = 1, deg1 lm( f5) = 0 < maxi∈{1,2,...,5} deg1 lm
(

f j
)

so x1 is not multiplicative
for f5.
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• For i = 2, [d1] = {[0] , [1]} where [0] =
{

x2
2
}

and [1] is the same as Example 3.1.4. So
x2 is multiplicative for f5.

• For i = 3, [d1,d2] = {[0,2] , [1,0] , [1,1]} where [0,2] =
{

x2
2
}

and [1,0] and [1,1] are
the same as Example 3.1.4. So x3 is multiplicative for f5.

• For i = 4, [d1,d2,d3] = {[0,2,0] , [1,0,0] , [1,1,0] , [1,1,1]} where [0,2,0] =
{

x2
2
}

and
the remaining elements are as Example 3.1.4. So x4 is multiplicative for f5.

By Janet division, the only non-multiplicative variable for lm( f5) is NMJ (lm( f5)) = {x1}.
Update Gint = G∪{ f5}; let G = Autoreduce(Gint) = { f1, f2, f3, f4, f5}, and pick f2 ∈G

with NMJ (lm( f2)) = {x3}. The first prolongation is reducible:

x3 · f2− f3 = x2x2
3− x1x2x4− x2x3x4 + x2

3x4.

Let f6 be this new polynomial. We have lm( f6) = x2x2
3, and update the [d1, . . . ,di−1]:

• For i = 1, deg1 lm( f6) = 0 < maxi∈{1,2,...,6} deg1 lm
(

f j
)

so x1 is not multiplicative
for f6.

• For i = 2, [d1] = {[0] , [1]} where [0] =
{

x2
2,x2x2

3
}

and [1] is the same as before. So x2

is not multiplicative for f6.

• For i = 3, [d1,d2] = {[0,1] , [0,2] , [1,0] , [1,1]} where [0,1] =
{

x2x2
3
}

and the remain-
ing elements are as before. So x3 is multiplicative for f6.

• For i = 4, [d1,d2,d3] = {[0,1,2] , [0,2,0] , [1,0,0] , [1,1,0] , [1,1,1]} where [0,1,2] ={
x2x2

3
}

and the remaining elements are as before. So x4 is multiplicative for f6.

So NMJ (lm( f6)) = {x1,x2}.
Update Gint = { f1, f2, f3, f4, f5, f6} and autoreduce Gint ; now G = { f1, f2, f3, f4, f5, f6}.

We study f3 in the next step. Since NMJ (lm( f3)) = {x4}, compute

x4 · f3− f4 = x1x2x2
4 + x1x3x2

4 + x2x3x2
4→ p.

Now lm(p) = x1x2x2
4, since lm( f2) |J lm(p) then reduce p into f7 as follows:

p− x2
4× f2 = x1x3x2

4− x1x3
4− x3x3

4 +1

p− x2
4× f2− x3x2

4× f1 =−x2x3x2
4− x2

3x2
4− x1x3

4−2x3x3
4 +1→ f7.

We have lm( f7) = x2x3x2
4. We skip the details of the remaining [d1, . . . ,di−1] but now we

have NMJ (lm( f7)) = {x1,x2,x3}.
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Update G and we get the autoreduced G = { f1, f2, f3, f4, f5, f6, f7}; now choose f4. For
lm( f4) we have NMJ (lm( f4)) = /0 , so no prolongations of f4 need be computed. Now we
choose f5 and NMJ (lm( f5)) = {x1}:

x1 · f5− x2× f2 =−x2
2x3 + x1x2x4− x2x3x4 + x1x2

4

(x1 · f5− x2× f2)+ x3× f5 = x1x2x4 + x2x3x4 + x1x2
4 + x3x2

4

(x1 · f5− x2× f2 + x3× f5)− x4× f2 = 0.

So x1 · f5 J-reduces to 0. We turn to f6, which has two non-multiplicative prolongations.
First choose f6 with NMJ (lm( f6)) = {x1,x2}:

x1 · f6− x3× f3 =−x1x2x3x4− x2x2
3x4− x1x2x2

4− x1x3
4

(x1 · f6− x3× f3)+ f4 =−x2x2
3x4− x1x2x2

4− x1x3
4−1

(x1 · f6− x3× f3 + f4)+ x4× f6 =−x1x2x2
4 + x2

3x2
4− x1x3

4− x2x2
4− x4

4−1

(x1 · f6− x3× f3 + f4 + x4× f6)+ x2
4× f2− f7 = 0.

So x1 · f6 J-reduces to 0. The next prolongation gives us,

x2 · f6− x2
3× f5 + x4× f6 + x2

4× f5 = 0.

So all the non-multiplicative prolongations of f6 reduces to 0 by the current basis G.
In the following step, we compute the prolongation of f7 ∈ G. Recall NMJ (lm( f7)) =

{x1,x2,x3}:

x1 · f7 + x4× f4 =−x1x2
3x2

4− x2
1x2

4−2x1x3x3
4 + x1− x4

(x1 · f7 + x4× f4)+ x2
3x2

4× f1− x2
4× f6 = x3

3x2
4− x2

1x3
4 + x1x2x3

4−2x1x3x3
4

+ x2x3x3
4 + x1− x4

→ f8.

Now we have lm( f8) = x3
3x2

4 and NMJ (lm( f8)) = {x1,x2}. Update Gint = { f1, f2, . . . , f8}
and Autoreduce(Gint) = { f1, f2, . . . , f8}= G. The next prolongation x2 · f7 gives us:

x2 · f7 + x3x2
4× f5 + x2

4× f6 +2x3
4× f2

+x3x3
4× f1 + x4× f7− x4

4× f1 =−x2x4
4− x5

4 + x2 + x4→ f9.

For the new polynomial f9 with lm( f9) = x2x4
4, NMJ (lm( f9)) = {x1,x2,x3}. We have

updated Gint = { f1, f2, . . . , f9} and Autoreduce(Gint) = { f1, f2, . . . , f9} = G. The final
prolongation of f7 gives us:

x3 · f7 + x2
4× f6 + f8 + x1x3

4× f1− x3
4× f2 +2x3x3

4× f1 + x4× f7 + x4
4× f1 + f9− f1 = 0.
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So x3 · f7 J-reduces to 0.
Now we compute the non-multiplicative prolongations of f8. Since NMJ (lm( f8)) =

{x1,x2}, we consider x1 · f8 and x2 · f8. The first gives us a new polynomial, f10:

x1 · f8− x3
3x2

4× f1 + x3x2
4× f6 + x3× f8 + x2

1x3
4× f1

−2x1x2
4× f2 +2x1x3x3

4× f1− x2
4× f4

+x1x4
4× f1− x3x4

4× f1−2x2
4× f7 = x2

3x4
4 +2x1x5

4 +2x3x5
4 + x2

1

+ x1x3− x1x4− x3x4− x2
4

→ f10.

Update G = { f1, f2, f3, f4, f5, f6, f7, f8, f9, f10} and lm( f10) = x2
3x4

4. Computing x2 · f8 gives
us:

x2 · f8 + x2
3× f7 + x3× f8 + x3

4× f2− x2x3
4× f2

+x1x3x3
4× f1− x2

4× f4 +2x2
3x3

4× f1

−3x3
4× f6− x1x4

4× f1− x4
4× f2− x3x4

4× f1

+2 f10−2x5
4× f1−2x4× f9−2x1× f1

+ f2− x3× f1 +3x4× f1 = 0.

So x2 · f8 J−reduces to 0.
Now we choose f9. We know lm( f9) = x2x4

4 with NMJ (lm( f9)) = {x1,x2,x3}. All non-
multiplicative prolongations of f9 J- reduce to 0, so no new polynomials result. Likewise,
all the non-multiplicative prolongations of f10, x1 · f10,x2 · f10 and x3 · f10 J- reduce to 0, so
no new polynomial results in these two loops.

We have verified that all the non-multiplicative prolongations of elements in G reduce to
zero with respect to the Janet division, which means that G = { f1, f2, . . . , f10} is an Janet
Basis for the Cyclic-4 system.

Remark 3.2.2. In the step reducing x4 · f3 of the previous example, in both Buchberger’s
algorithm and F4, we could choose either f1 or f2 to reduce p. However, lm(p) is not a
Janet multiple of f1 because x2 is non-multiplicative for Janet division. Thus we have to use
f2 to reduce p.

In the previous example, f8 has the same leading monomial as the f8 generated by
Buchberger’s algorithm (see Example 1.3.1 on page 6) but using a different S-polynomial
pair: (4,7) instead of (6,7). We get a different polynomial and thus a different basis of the
ideal, but it is still an involutive basis, and thus a Gröbner basis. This illustrates how one
ideal can have more than one Gröbner basis.
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3.3 Computing an Involutive Basis with Buchberger’s Criteria

The algorithm of Section 3.2 above is a basic method for computing an involutive basis.
We can see that 10 out of 15 non-multiplicative prolongations reduce to zero, and thus
make no contribution to our work. So now we describe an improved algorithm that avoids
unnecessary reductions in Example 3.2.2 by applying Buchberger’s lcm criterion.

Definition 3.3.1. Let T = {au | u ∈M,a ∈ R} be the set of terms in F[x1, . . . ,xn]. Let L be
an involutive division L on M and let F be a finite set of polynomials. We say:

• p is L-reducible modulo f ∈ F if p has a term t = au ∈ T(a 6= 0) such that u =
lm( f )× v, for some v ∈ML (lm( f )) in F . It yields the L-reduction p→ g = p−
(a/lc( f )) f × v.

• p is L- reducible modulo F if there exists f ∈ F such that p is L-reducible modulo f .

• p is in L-Normal Form modulo F if p is not L-reducible modulo F and we denote p

as p = NFL ( f ,F).

Now we describe a new version of Buchberger’s lcm criterion regarding involutive
division.

Definition 3.3.2. Let u ∈M, deg(u) = ∑
n
i=1 degi (u) be the total degree of all the variables

of u. An ancestor of a polynomial f ∈ F ⊂ R\{0} is a polynomial g ∈ F of the smallest
deg(lm(g)) among those satisfying f = g ·u modulo 〈F \{ f}〉with u∈M. If deg(lm(g)) <

deg(lm( f )) (u 6= 1) the ancestor g of f is called proper.
Recall that in Chapter 1 we state Buchberger’s lcm criterion in normal sense; here we

give a different statement of Buchberger’s lcm criterion in involutive version.

Theorem 3.3.1 ([7]). Let F be a finite L-autoreduced polynomial set, and let p = x ·g be a
non-multiplicative prolongation of g ∈ F . Then NFL (x ·g,F) = 0 if there exists a different
polynomial f ∈ F and

• lm(anc(p)) · lm(anc( f )) = lm(pol(p)); or

• lcm(lm(anc(p)) , lm(anc( f ))) properly divides lm(pol(p)).

Now we can use Buchberger’s lcm criterion to compute an involutive basis. Before the
computation, we create for each element f in the intermediate set of polynomials the triplet
structure

p = ( f ,g,vars)
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where pol(p) = f ; anc(p) = g is a polynomial ancestor of f in F; vars = nmp(p) is a
(possibly empty) set of variables. The set nmp(p) associated with polynomial f accumulates
those non-multiplicative variables that have already been used to construct non-multiplicative
prolongations.

We compute an involutive basis by repeating the following:

• Divide all elements in F into two sets, T and Q: choose f ∈ F without proper divisor
of lm( f ) in the rest of the elements’ leading monomials in F and add triplet of f to T .
Let Q be the set of all other triplets of q ∈ F \{ f}.

• Top-reduce Q by T in an involutive division, then let Q be the set of top-normal forms
from Q.

• Choose p ∈ Q without proper divisors of lm(pol(q)) in lm(pol(Q))\{lm(pol(q))}
and remove q from Q.

• Apply Buchberger’s lcm criterion (Theorem 3.3.1) to add triplets of elements in T to
Q.

• Tail-reduce p by T in an involutive division then let h be the tail-normal form of h,
add triplet (h,anc(p) ,nmp(p)) to T .

• For all q ∈ T compute the non-multiplicative prolongation x · pol(q) where x ∈
NML (q,T ) \ {nmp(q)} and add the triplet of this prolongation to Q and add x to
the set nmp(q).

• Top-reduce Q by T in an involutive division.

• Return all first entries in the triplets of T .

Definition 3.3.3. A minimal involutive basis is an involutive basis such that lc(p) = 1 for
all p ∈ G and for all p ∈ G, lm(p) is not L-divisible by any q ∈ G\{p}.

See Algorithm 8 for pseudocode.

Example 3.3.2. Let F be the Cyclic-4 system. Now we compute an involutive basis using
Janet division of G.

Recall that F = { f1, f2, f3, f4}, choose f1 ∈ F . Then T = {( f1, f1, /0)} and

Q = {( f2, f2, /0) ,( f3, f3, /0) ,( f4, f4, /0)} .

Since x2 is non-multiplicative for f1, J-top-reduction of Q is

Q = {( f2, f2, /0) ,( f3, f3, /0) ,( f4, f4, /0)} .
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Algorithm 8 .
algorithm Involutive Basis with Buchberger’s criteria

inputs
F , a finite polynomial set

outputs
G, an minimal involutive basis of the ideal 〈F〉

do
Choose f ∈ F without proper divisors of lm( f ) in lm(F)\{lm( f )}
T := {( f , f , /0)}
Q := {(q,q, /0) | q ∈ F\{ f}}
L-Top reduce Q by T , checking Buchberger’s criteria and changing ancestors of reduced
polynomials to themselves.
while Q 6= /0 do

choose p ∈Q without proper divisors of lm(pol(p)) in lm(pol(Q))\{lm(pol(p))}
Q := Q\{p}
if pol(p) = anc(p) then

for all q ∈ T such that lm(pol(p)) properly divides lm(pol(q)) do
Q := Q∪{q}
T := T\{q}

Let h be the L-tail reduction of p by T
T := T ∪{(h,anc(p) ,nmp(p))}
for all q ∈ T and x ∈ NML (q,T )\nmp(q) do

Q := Q∪{(pol(q) · x,anc(q) , /0)}
nmp(q) := nmp(q)∩NML (q,T )∪{x}

L-top reduce Q by T and checking Buchberger’s criteria.
return {pol( f ) | f ∈ T} or {pol( f ) | f ∈ T | f = anc( f )}

• Loop 1: choose ( f2, f2, /0) ∈Q and update Q = {( f3, f3, /0) ,( f4, f4, /0)}; there does not
exist q ∈ T such that lm(pol( f2)) properly divides lm(pol(q)).

– Now J- tail-reduce f2 by T :

f2− x4× f1 = x1x2 + x2x3− x2x4− x2
4.

Let f5 be the new polynomial, so f5 = x1x2 + x2x3 − x2x4 − x2
4 and update

T = {( f1, f1, /0) ,( f5, f2, /0)}.

– Now we compute the non-multiplicative prolongations of f1, f5 ∈ T . Since
NMJ ( f1,T ) = {x2} ,NMJ ( f5,T ) = /0, we only compute x2 · f1 in this loop,
which gives us:

x2 · f1 = x1x2 + x2
2 + x2x3 + x2x4.
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Update Q into Q = {( f3, f3, /0) ,( f4, f4, /0) ,(x2 · f1, f1, /0)} and update nmp( f1) =
{x2}.

– Now J-top-reduce Q by T :

x2 · f1− f5 = x2
2 +2x2x4 + x2

4→ f6.

Checking Buchberger’s criteria gives us: lm( f2) · lm( f1) 6= lm(x2 · f1) and
lcm(lm( f1) , lm( f2)) does not divides lm(x2 · f1), since NFJ (x2 · f1) = f6 6= 0
and lm(pol(x2 · f1)) 6= lm( f6), remove (x2 · f1, f1, /0) from Q and add ( f6, f6, /0)
to Q. Note that f6 has the same leading monomial as f5 we computed in Example
3.2.2 and it passes through the main loop then is added to T .

• Loop 2: now we have T = {( f1, f1,{x2}) ,( f5, f2, /0)}; choose ( f3, f3, /0) ∈ Q and
update Q = {( f4, f4, /0) ,( f6, f6, /0)}; there does not exist q ∈ T such that lm(pol( f3))
properly divides lm(pol(q)).

– Now J- tail-reduce f3 by T :

f2− x3× f5− x3x4× f1 =−x2x2
3 + x2x3x4− x2

3x4→ f7.

where f7 = NFJ ( f3,T ). Update T = {( f1, f1,{x2}) ,( f5, f2, /0) ,( f7, f3, /0)}.

– Now we compute the non-multiplicative prolongations of f1, f5, f7 ∈ T . Since
NMJ ( f1,T )\{x2}= /0,NMJ ( f5,T ) = /0,NMJ ( f7,T ) = {x1}, so update Q into
Q = {( f4, f4, /0) ,( f6, f6, /0) ,(x1 · f7, f3, /0)} and update nmp( f7) = {x1}.

– Now J-top-reduce Q by T :

f4− x3x4× f5 =−x2x2
3x4 + x2x3x2

4 + x3x3
4−1→ f8.

add ( f8, f8, /0) to Q; f6 ∈ Q is irreducible by T , so return f6 ; top-reduce x1 · f7

by T , which gives us NFJ (x1 · f7,T ) = 0, so update Q = {( f8, f8, /0) ,( f6, f6, /0)}
and T = {( f1, f1,{x2}) ,( f5, f2, /0) ,( f7, f3,{x1})}.

• Loop 3: choose ( f8, f8, /0) ∈ Q and update Q = {( f6, f6, /0)}. Similarly, there does not
exist q ∈ T such that lm(pol( f8)) properly divides lm(pol(q)).

– Now J- tail-reduce f8 by T :

f8− x4× f7 = x2
3x2

4 + x3x3
4−1→ f9

Update T = {( f1, f1,{x2}) ,( f5, f2, /0) ,( f7, f3,{x1}) ,( f9, f8, /0)}.
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– Now we compute the non-multiplicative prolongations of all elements in T .
Since NMJ ( f9,T ) = {x1,x2} and the non-multiplicative variables for f1, f5, f7

are the same as before; add triplet of x1 · f9 and x2 · f9 to Q, then update Q =
{( f6, f6, /0) ,(x1 · f9, f8, /0) ,(x2 · f9, f8, /0)} and nmp( f9) = {x1,x2}.

– Now J-top-reduce Q by T : f6 is irreducible, return f6;

x1 · f9 = x1x2
3x2

4 + x1x3x3
4− x1→ f10.

This new polynomial f10 is J-irreducible modulo G, so return f10;

x2 · f9 = x2x2
3x2

4 + x2x3x3
4− x2.

We see that lm( f7) |J lm(x2 · f9) and lm(x2 · f9) 6= lm(anc(x2 · f9)). Checking
Buchberger’s criteria gives us:

lm(anc(x2 · f9)) · lm(anc( f7)) 6= lm(pol(x2 · f9))

and as lcm(lm(anc(x2 · f9) , lm(anc( f7)))) does not J-divide lm(pol(x2 · f9))
properly, return x2 · f9. Update Q into:

Q = {( f6, f6, /0) ,(x1 · f9, f8, /0) ,(x2 · f9, f8, /0)}

and T = {( f1, f1,{x2}) ,( f5, f2, /0) ,( f7, f3,{x1}) ,( f9, f8,{x1,x2})}.

• Following previous steps until Q = /0, we will have five more triplets of new polyno-
mials added to T , return the set {pol( f ) | f ∈ T}, it results in a minimal involutive
basis of Cyclic-4, that is G = {g1,g2, . . . ,g7} where

g1 = x1 + x2 + x3 + x4;

g2 = x2
2 +2x2x4 + x2

4;

g3 =−x2x2
3− x2

3x4 + x2x2
4 + x3

4;

g4 = x2x3x2
4 + x2

3x2
4− x2x3

4 + x3x3
4− x4

4−1;

g5 = x2x4
4 + x5

4− x2− x4;

g6 = x3
3x2

4 + x2
3x3

4− x3− x4;

g7 = x2
3x4

4 + x2x3− x2x4 + x3x4−2x2
4.
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Chapter 4

AN F4-STYLE INVOLUTIVE BASIS ALGORITHM

Recall that in chapter 3 we used F4 algorithm to compute Gröbner Basis for Cyclic-4
problem in Example 2.0.3 and in the previous chapter we introduced involutive division
which can improve the efficiency of computing the Involutive Basis. In this chapter we
describe another algorithm based on combining these two algorithms in order to obtain a
faster approach.

4.1 Algorithm

Recall the definition of prolongation Definition 3.2.2 on page 24.

Definition 4.1.1. The degree of prolongation x · p is

deg(x · p) = deg(x · lm(p)) .

Using this definition, we compute an F4-style involutive basis by combining F4 algorithm
and basic Involutive Basis algorithm 7 as follows:

• As a modified algorithm from F4, we still pick several polynomials of minimal degree
and process the reduction in a matrix. However, instead of picking critical pairs to
generate S-polynomials, here we apply involutive division to choose non-multiplicative
prolongations of minimal degree for the sparse matrix.

• As a modified algorithm from Involutive Basis I, this new approach inherits from
the old approach of reducing a non-multiplicative prolongation in each step and
autoreducing. However, instead of picking one prolongation in each step, we choose
several prolongations and process the reduction by multiplicative prolongations using
the matrix.

See Algorithms 9, 10, and 11 for pseudocode.
We see that algorithm 9 is a modified standard F4 algorithm [5] in which the use of

critical pairs is replaced by non-L-multiplicative prolongations, that is, instead of finding
the set of critical pairs in the traditional way, we select the similar set of fewer pairs by
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Algorithm 9 .
algorithm F4-style algorithm of Involutive Bases

inputs
F , a finite subset of F[x1, . . . ,xn]

outputs
G, a finite subset of F[x1, . . . ,xn]

do
G := F
P := {xi · f | f ∈ G with xi ∈ NML (lm( f ))}∪{u× f | ulm( f ) = lm(g) f 6= g ∈ G}
Done := {}
while P 6= Done do

Let d be the minimal degree of the elements in P\Done
Pd := {xi · p | xi · p ∈ P and deg(xi · p) = d}
Fnew := Reduction(Pd,G)
Done := Done∪Pd
G := G∪Fnew
P := ({xi · f | f ∈ G with xi ∈ NML (lm( f ))}

∪{u× f | ulm( f ) = lm(g) f 6= g ∈ G})\Done
return G

Algorithm 10 .
algorithm Reduction

inputs
Pd , a finite set of prolongations of degree d
G, a finite subset of F[x1, . . . ,xn]

outputs
Fnew, a finite subset of F[x1, . . . ,xn] (possible an empty set)

do
FM,FNM := SymbolicPreprocessing(Pd,G)
Let M (Pd) be the matrix of coefficients of all polynomials in FM and FNM
Triangularize M (Pd) and let F̃ be the set of polynomials resulting
Fnew :=

{
f ∈ F̃ | lm( f ) /∈ 〈lm(F)〉

}
return Fnew

involutive division, since some pairs are forbidden. For the sub-algorithm of Reduction and
SymbolicPreprocessing, see the pseudocode of algorithm 10 and algorithm 11.

We know that each row of the constructed matrix in algorithm 10 is an element of Pd , a
polynomial. But we have to take care that which rows should be reduced and which rows
should not be. In order to reduce the existing non-L-multiplicative pairs of p, (xi, p) for
i ∈ {1,2, . . . ,n} and p ∈ G, so we denote Pd as the set of all these pairs of minimal degree
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and put their products in the last rows of the matrix M (Pd). We call these FNM. Let the set
of the J-multiplicative products which can reduce be FM, then reduce FNM by FM using row
elimination. Remark that here column swaps are not allowed since only row eliminations
reduce the polynomials.

Algorithm 11 .
algorithm SymbolicPreprocessing

inputs
Pd , a finite set of prolongations of degree d
G, a finite subset of F[x1, . . . ,xn]

outputs
FM,FNM, finite sets of prolongations of degree d

do
F := Pd
FNM := F
Done := /0
Let XL be the set of monomials of all polynomials in F .
while XL 6= Done do

Let m ∈ XL \Done
Done := Done∪{m}
if m L-top reducible modulo G then

Let f ∈ G such that lm( f ) |L m
Let m′ = m

lm( f )
F := F ∪{m′× f}
add the monomials of m′× f to XL

return F \FNM,FNM

4.2 Example

Example 4.2.1. Let F = { f1, f2, f3, f4} be the Cyclic-4 system. We compute an Involutive
Basis of F using F4-style involutive method in Janet division. Recall that in Chapter 2 XL

denotes an ordered list of all the monomials required for the construction of matrix M (L),
here we use XintL as the intermediate list of XL and M (Pd) as the matrix of monomials of
degree d.

f1 = x1 + x2 + x3 + x4

f2 = x1x2 + x2x3 + x3x4 + x1x4

f3 = x1x2x3 + x2x3x4 + x1x3x4 + x1x2x4

f4 = x1x2x3x4−1.
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Recall that Table 3.2 has summarized all the non-J-multiplicative variables for f1, f2,
. . . , f4. So we have P = {(x2, f1) ,(x3, f2) ,(x4, f3)} and G = F .

Loop 1: Set d = 2, then P2 = {(x2, f1)} and P = {(x3, f2) ,(x4, f3)}. Before we reduce
P2 by G we first find the set XL using symbolic preprocessing: Set FM = /0 and FNM = P2

XintL =
{

x1x2,x2
2,x2x3,x2x4

}
where x1x2 is J-reducible by lm( f2). So add Pair (1, f2)

to FM and add all the monomials of f2 to XintL;
XintL =

{
x1x2,x2

2,x2x3,x2x4,x1x4,x3x4
}

where x1x4 is J-reducible by lm(x4 · f1) then
update XintL and add Pair (x4, f1) to FM ;

XintL =
{

x1x2,x2
2,x2x3,x2x4,x1x4,x3x4,x2

4
}

, we can check that no element in XintL is
J-reducible by lm( fi) for i = 1,2, . . . ,4. Now we have the ordered list

XL =
{

x1x2,x2
2,x2x3,x2x4,x1x4,x3x4,x2

4
}

and the matrix M3×7 (P2) with FNM = {(x2, f1)} and FM = {(1, f2) ,(x4, f1)}.

M (P2) =


x1x2 x2

2 x2x3 x1x4 x2x4 x3x4 x2
4

f2 1 0 1 1 0 1 0
x4 f1 0 0 0 1 1 1 1
x2 f1 1 1 1 0 1 0 0

 .

Triangularizing M (P2) gives us:

M (P2) =


x1x2 x2

2 x2x3 x1x4 x2x4 x3x4 x2
4

f2 1 0 1 1 0 1 0
x4 f1 0 0 0 1 1 1 1
x2 f1 0 1 0 0 2 0 1

 .

The third row is reduced into a new polynomial, we say it as f5 = x2
2 + 2x2x4 + x2

4 where
lm( f5) /∈ 〈lm(G)〉. So now we add f5 to G and update P into P = {(x3, f2) ,(x4, f3) ,(x1, f5)}.

Loop 2: Set d = 3, now we have P3 = {(x3, f2) ,(x1, f5)} and P = {(x4, f3)}. Let
FNM = P3 and FM = /0. Symbolic preprocessing gives us:

XintL =
{

x1x2x3,x1x3x4,x2x2
3,x

2
3x4,x1x2

2,x1x2x4,x1x2
4

}
We can see that there are five monomials in bold that are J-reducible by {lm(G)}. So

add all the monomials of f3,x3x4 f1,x2 f2,x4 f2,x2
4 f1 to XintL and update FM into:

FM =
{
(1, f3) ,(x3x4, f1) ,(x2, f2) ,(x4, f2) ,

(
x2

4, f2
)}

;

XintL =
{

x1x2x3,x1x3x4,x2x2
3,x2x3x4,x2

3x4,x1x2
2,x1x2x4,x1x2

4,x
2
2x3,x2x2

4,x3x2
4,x

3
4
}

where
x1x4 is J-reducible by lm(x3 · f5) then update XintL and add Pair (x3, f5) to FM. We have the
updated XintL :

XintL =
{

x1x2x3,x1x3x4,x2x2
3,x2x3x4,x2

3x4,x1x2
2,x1x2x4,x1x2

4,x
2
2x3,x2x2

4,x3x2
4,x

3
4
}

;
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Now all the elements in XintL have been checked and no more monomials are necessary
to add to XintL. So we have obtained all the rows needed for the matrix M8×12 (P3).

M (P3) =



f3 0 1 0 0 1 1 1 0 0 0 0 0
x2 f2 1 0 1 0 1 0 1 0 0 0 0 0
x4 f2 0 0 0 0 1 0 1 0 1 0 1 0

x3x4 f1 0 0 0 0 0 1 1 1 0 0 1 0
x2

4 f1 0 0 0 0 0 0 0 0 1 1 1 1
x3 f5 0 0 1 0 0 0 2 0 0 0 1 0
x3 f2 0 1 0 1 0 1 0 1 0 0 0 0
x1 f5 1 0 0 0 2 0 0 0 1 0 0 0


.

Triangularizing M (P3) gives us:

M (P3) =



0 1 0 0 1 1 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 1 1 1 0 0 1 0
0 0 0 0 0 0 0 0 1 1 1 1
0 0 1 0 0 0 2 0 0 0 1 0
0 0 0 1 0 0 0 1 0 −1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0


.

We see that the eighth row has been reduced to zero and the seventh row is reduced into
a new polynomial, we say it as f6 = x2x2

3 + x2
3x4− x2x2

4− x3
4 where lm( f6) /∈ 〈lm(G)〉. So

now we add f6 to G and add (x1, f6) and (x2, f6) to P.
Following the previous steps, loop 3 computes FM for P4 = {(x4, f3) ,(x1, f6) ,(x2, f6)}

which gives us a 12×16 matrix M (P4) whose columns represent monomials of degree four
and trangularizing the matrix will give us a new polynomial f7 = x2x3x2

4 + x2
3x2

4− x2x3
4 +

x3x3
4− x4

4− 1. Then we have the updated basis G = { f1, f2, . . . , f7} and the set of non-
J-multiple pairs P = P5 = {(x1, f7) ,(x2, f7) ,(x3, f7)}. In loop 4, symbolic preprocessing
will give us a 13× 18 matrix M (P5) and trangularizing the matrix will give us two new
polynomials: f8 and f9.

f8 = x3
3x2

4− x2
3x3

4 +2x3 +2x4;

f9 = x2x4
4 + x5

4− x2− x4.

The updated G = { f1, f2, . . . , f9} and P = P6 = {(x1, f8) ,(x2, f8) ,(x1, f9) ,(x2, f9) ,(x3, f9)}
gives us a 20×23 matrix M (P6) , then trangularizing the matrix results in a new polynomial
of degree 6. We say it as f10:

f10 = x2
3x4

4 + x2x3− x2x4 + x3x4−2x2
4.
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Update G = { f1, f2, . . . , f10} and P = P7 = {(x1, f10) ,(x2, f10) ,(x3, f10)}.
In the last loop, symbolic preprocessing and matrix triangularization will give us three

zero rows in the bottom, which means no new polynomial is resulted. Now we have check
all non-J-multiplicative prolongations. So G = { f1, f2, . . . , f10} is an involutive basis of the
Cyclic-4 system. At this point, we have shown the main idea of the algorithm of F4-style
involutive basis.

4.3 Termination and Correctness

Theorem 4.3.1. If Involutive Basis I algorithm 7 on page 25 terminates correctly, then so

does F4-style involutive basis algorithm.

Proof. Assume that Involutive Basis I algorithm terminates on F[x1, . . . ,xn].
Since the F4-style involutive algorithm generates the same polynomials as the involutive

basis I algorithm, but uses a matrix to reduce more than one polynomial in any step,
eventually there will be no new polynomials resulted from the triangularized matrix. This
proves the termination of the algorithm.

For correctness, recall from the definition of Gröbner Basis (Definition 1.2.1) that if
all the S-polynomials in G can be top-reduced to zero by G then G is a Gröbner Basis.
In this algorithm, we do reduction for each prolongation. If one does not reduce to zero,
we add it to the basis. And we can see that every S-polynomial is the first reduction of a
non-multiplicative prolongation or an autoreduction.

Let 1 6 i < j 6 #G, where #G means the size of the set G. Let S = S
(
gi,g j

)
for gi,g j ∈G.

Since S is a first reduction of a non-multiplicative prolongation and every prolongation
reduces to zero then S reduces to zero. Therefore, output of this algorithm is a Gröbner
Basis of input G.

Remark 4.3.1. Not all involutive divisions lead the algorithm terminates but Janet division
does[8, 7]. So Janet division is an involutive division which can make this algorithm
terminate.
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Chapter 5

SOURCE CODE

def monomial_cmp(t,u):

if (t+u).lm()==t:

result = int(-1)

elif t==u:

result = int(0)

else:

result = int(1)

return result

def determine_non_multiplicatives(xi,S):

# expects S to be a set of leading monomials such that

# for all j < i, for all t in S, deg(t,xj) is constant

# modifies rules so that if deg(t,xi) is not maximal,

# xi is non-multiplicative for t

# first find maximal degree of xi in S

di = 0

for t in S:

if t.degree(xi) > di:

di = t.degree(xi)

# now assign xi non-mult for each t such that

# deg(t,xi) < di

for t in S:

if not (xi in rules[t]):

if t.degree(xi) < di and t != 0:

rules[t].add(xi)

elif t == 0:

rules[t] = set()

return
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def setup_rules_Janet(T):

global rules

# initialize rules to no non-mult vars

#rules = {}

for p in T:

if not rules.has_key(p):

rules[p.lm()] = set([])

# get variables of poly ring

vars = T[0].parent().gens()

# get lms of T

lms = [each.lm() for each in T]

# determine for which terms x1 is non-multiplicative

determine_non_multiplicatives(vars[0], lms)

# determine for which terms

# the rest of the vars are non-multiplicative

for i in range(len(vars)-1):

lms_tmp = copy(lms)

vars_i = vars[0:i+1]

while len(lms_tmp) != 0:

t = lms_tmp.pop()

S = [t]

j = 0

while j < len(lms_tmp):

u = lms_tmp[j]

if all(u.degree(xk) == t.degree(xk) for xk in vars_i):

S.append(u)

lms_tmp.pop(j)

else:

j += 1

determine_non_multiplicatives(vars[i+1], S)

return

def J_NM(f):

return rules[f.lm()]

L_NM = J_NM
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setup_rules = setup_rules_Janet

def L_divisible(u,f):

t = f.lm()

if (t.divides(u)):

q = (u/f.lm()).numerator().variables()

if len(set(q).intersection(L_NM(f))) != 0:

return False

else:

return True

else:

return False

def Prolongation(F):

P = set()

for f in F:

if L_NM(f) != set():

for xi in L_NM(f):

P.add((xi,f))

#add autoreduction to P

for f in F:

for g in F:

if (f != g) and (L_divisible(g.lm(), f)):

u=(g.lm()/f.lm()).numerator()

P.add((u,f))

return P

def minimum_deg(P):

di = infinity

for (u,f) in P:

if f.lm().degree()+1 < di:

di = f.lm().degree()+1

return di

def F4_matrix(polys):

# modify this so that it recognizes pairs (u,f)
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# instead of polynomials: polys = { (u1,f1), (u2,f2), .}

L=[]

mons=set()

for (u,f) in polys:

p = u*f

mons.update(p.monomials())

L.append(p)

mons = list(mons)

mons.sort(lambda t,w: monomial_cmp(t,w))

mons_dict={}

for each in range(len(mons)):

mons_dict.update({mons[each]:each})

M = matrix(mons[0].parent(),len(L),len(mons))

for i in range(len(L)):

p=L[i]

pmons=p.monomials()

pcoeffs=p.coefficients()

for j in range(len(pmons)):

M[i,mons_dict[pmons[j]]]=pcoeffs[j]

return M,mons

def triangularize_matrix(M):

# M is a matrix

# triangularization does not swap columns

N=M.copy()

m=N.nrows()

n=N.ncols()

print "triangularizing", m, "x", n, "matrix"

for j in range(n):

pivot=0

while pivot < m and (N[pivot,j] == 0 or\

any(N[pivot,k] != 0 for k in range(j))):

pivot = pivot+1

if pivot < m:

a = N[pivot,j]

for i in range(m):
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if i != pivot:

if N[i,j] != 0:

b = N[i,j]

for k in range(j):

N[i,k] *= a

for k in range(j,n):

N[i,k] = a*N[i,k] - b*N[pivot,k]

return N

def extract_polys(M,mons,F):

# M is a matrix

# mons is a list of monomials corresponding to the columns

# F is an old basis of the ideal

# returns polynomials of M * mons whose leading terms

# are not in <lt(F)>

L=[]

for i in range(M.nrows()):

if not M.row(i).is_zero():

j=0

while(M[i,j]==0):

j=j+1

if(not any(f.lm().divides(mons[j]) for f in F)):

p=0

for j in range(M.ncols()):

if M[i,j]!=0:

p=p+M[i,j]*mons[j]

L.append(p)

return L

def Triangularize(Fnm,Fm,G):

FF = Fm.union(Fnm)

M, mons = F4_matrix(FF)

N = triangularize_matrix(M)

new_polys = extract_polys(N,mons,G)

return new_polys
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def Symbolic_Preprocessing(Pd,G):

F = copy(Pd)

Fnm = F

Done = set()

XL = set()

for (u,f) in F:

for t in f.monomials():

XL.add(t*u)

while XL != Done:

for m in XL.difference(Done):

Done.add(m)

for g in G:

if L_divisible(m,g):

mm = (m/g.lm()).numerator()

F.add((mm,g))

for t in g.monomials():

XL.add(t*mm)

Fm = F.difference(Fnm)

print "XL =", XL

return Fm,Fnm

def Reduction(Pd,G):

Fm,Fnm = Symbolic_Preprocessing(Pd,G)

Fnew = Triangularize(Fnm,Fm,G)

return Fnew

def F4_involutive_basis (F):

# call update rules

global rules

rules = {}

setup_rules_Janet(F)

G = copy(F)

P = Prolongation(G)

Done = set()

while len(P)!=0:

Pd = set()
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di= minimum_deg(P)

print "degree", di

for (u,f) in P:

if f.lm().degree()+1 == di and f.lm() != 0:

Pd.add((u,f))

P.difference_update(Pd)

Fnew = Reduction(Pd,G)

Done.update(Pd)

G.extend(Fnew)

# call update rules

setup_rules_Janet(G)

P = Prolongation(G).difference(Done)

return G
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Chapter 6

FUTURE DIRECTION

As a new presented algorithm for computing Gröbner Bases, F4-involutive algorithm
provides a new approach to generate matrices for reduction as inheriting the idea of F4; on the
other hand, it also avoids lots of useless computations by involutive division. However, we
still need to testify the efficiency of F4-involutive algorithm. By comparing the computations
in Example 2.0.3 and Example 4.2.1, we can see that in F4-involutive algorithm the matrix
used to reduce prolongations of degree 3 is a 8×12 matrix which is larger than the 6×11
matrix used in F4 algorithm. Furthermore we can observe that the size of matrices generated
in F4-involutive algorithm are all larger than the matrices in F4 algorithm except the one
generated in the first loop as Table 6.1 shows below.

Table 6.1: Comparison of Matrices.
degree F4-involutive algorithm F4 algorithm

2 3×7 3×7
3 8×12 6×11
4 15×19 12×17
5 13×18 8×14
6 21×26 17×23

The reason is F4-involutive algorithm does not implement Buchberger’s criteria when it
chooses the prolongation pairs in each step. So our future work would be to reformulate the
Involutive Basis II algorithm in an F4-style, but that is beyond the scope of the current work.
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