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ABSTRACT  
 

SEASONAL DIFFERENCES IN DIET OF TWO PREDATORY FISHES IN  
 

RELATION TO REEF TYPE IN THE INSHORE  
 

NORTHERN GULF OF MEXICO 
 

by Brinton Thomas Barnes 
 

May 2014 
 

Relationships of various structural features between reefs and their 

developing benthic and fish communities have an immense biological and 

ecological importance for reef restoration and rehabilitation. Therefore, objectives 

of this study were to establish how abundance (CPUE) and diet composition 

(%IRI) changes seasonally within Spotted Seatrout, Cynoscion nebulosus, and 

Sand Seatrout, Cynoscion arenarius, to view which trophic levels are interacting 

in relation to different reef type (high relief profile vs. low profile relief). A Kruskal-

Wallis one-way ANOVA was performed on non-normal abundance data and 

determined no significant differences for reef type and season for both 

piscivorous species. Both Cynoscion spp. had relatively similar mean ranked 

CPUE across reef type and season suggesting their transient ubiquitous 

distribution may be influenced by prey availability rather than reef profile. Diet 

composition was analyzed by a PERMANOVA, HMD, MDS, and SIMPER 

analysis. Between the main terms, only season was significant for both species 

while the interaction was only significant for Spotted Seatrout. Various fishes and 

crustaceans were the main prey taxa in both species suggest that both species 

are opportunistic foragers where gap limitations on available prey may be the 

ii 



only restriction on diet. Prey availability most likely was driven from seasonal 

changes within the Mississippi Sound and further studies must include prey 

density in relation to diet composition for each species. 
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CHAPTER I 
 

INTRODUCTION 
 

Reefs are the most complex ecosystems in the world with more than twice 

the number of trophic contributors as most other systems (Dunne et al. 2004).  

The intricate interactions between species and the ecological processes make 

reef systems difficult to study (Seaman and Sprague 1991). Riding (2002) 

defined natural reefs as sedentary calcareous deposits created by sessile 

organisms, and they are presently classified as one of the most imperiled 

systems on the planet (Ammar 2009). These complex ecosystems have been 

found to be sensitive to a host of pressures ranging from water quality and 

seasonal changes to SCUBA diving and multiple types of pollution (Peters et 

al.1981; Heyward 1988; Carter 1990; Pittock 1999).  

Artificial reefs may be useful as a restoration tool to improve recruitment 

and reproduction of reef-associated species due to the worldwide loss of natural 

reefs (Bohnsack and Sutherland 1985; Pickering et al. 1998; Sosa-Cordero et al. 

1998; Sponaugle et al. 2012; Bryan et al. 2013).  Artificial reefs are recently 

defined “as objects of natural or human origin deployed to influence physical, 

biological, or socioeconomic processes related to living marine resources” and 

are classified by Seaman and Jensen (2000:5) as primary (planned) or 

secondary (unplanned). Some materials used for planned man-made reefs 

include concrete, stone, FAD (floating artificial devices), tires, stabilized ash 

waste, PVC, wood, trees, steel grids, and netting (Baine 2001) whereas 

unplanned artificial reefs include shipwrecks, tanks, oil jetties, and gas platforms 
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(Bohnsack and Sutherland 1985; Bryan et al. 2013).  Concrete, stone, and rock 

are the most common materials used; however, concrete is highly recommended 

for artificial reef construction due to it being able to be specifically shaped and 

durable in seawater (Baine 2001). In addition, benthic and fish community 

development associated with three artificial reef materials (concrete, cars, and 

painted steel) were compared to coral reefs and found coral reefs were most 

similar to concrete reefs, thus, suggesting artificial reefs should be constructed 

by concrete to closely mimic a natural habitat (Fitshardinge and Baily-Brock 

1989). However, concrete does alter water quality by increasing alkalinity and pH 

due to leaching of calcium hydroxide, thus, affecting organism settlement on 

artificial reefs (Anderson 1996). 

The dominant uses of artificial reefs in coastal management are to 1) 

improve recreational SCUBA diving and fishing (Bortone et al. 1994a), 2) deter 

trawling (Relini 2000), and 3) increase fisheries yield and production (Bohnsack 

and Sutherland 1985; Chua and Chou 1994; Fabi and Fiorentini 1994; 

Sponaugle et al. 2012). Since fishes aggregate near reefs (Grossman et al. 

1997), deployment of well managed man-made reefs may compensate for lost 

marine habitat and result in a decrease of anthropogenic damage by diverting 

pressures away from natural reefs (Rilov and Benayahu 1998; Ammar 2009; 

Sponaugle et al. 2012). The rehabilitation process may well occur after 

anthropogenic stressors are reduced, therefore, conserving biodiversity and 

increasing natural conservation (Wilhelmsson et al. 1998; Seaman and Jensen 

2000; Ammar 2009). Scientifically, artificial reefs can be useful in testing 
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ecological hypothesizes especially when compared to natural reefs (Ammar 

2009).   

Even though artificial reefs have the potential to shelter fish (Bohnsack 

and Sutherland 1985; Bortone et al. 1994a, 1994b), there is no substantial 

scientific data supporting that they significantly increase fish abundance 

(Grossman et al. 1997; Wilson et al. 2001). Difficulties with settling this debate 

rely on poor scientific design (Lindberg and Loftin 1998), complicated fish 

behaviors that are influenced by anthropogenic and environmental factors 

(Grossman et al. 1997), and high environmental variability of marine ecosystems 

(Osenberg et al. 2002). Additionally, observed increases in fish abundance may 

be from attracting fish from other nearby reefs, since most predatory fish are 

highly mobile (Grossman et al. 1997; Lindberg 1997; Powers et al. 2003). Lastly, 

studies lacking comparisons of how artificial habitats influence neighboring 

natural reefs also limit conclusions (Bohnsack et al. 1994; Tupper and Hunte 

1998); hence, Badalamenti et al. (2002) and Perkol-Finkel and Benayahu (2004) 

point to a recent increase of interest in interactions between artificial and natural 

reefs. 

 For example, Perkol-Finkel et al. (2006) determined that artificial reefs will 

mimic adjacent natural reefs when both are constructed of similar structural 

features; conversely, if structurally different, the communities will also differ. 

Some structural features affecting species diversity, size distributions, and 

densities of benthic invertebrate and fish populations include substratum 

composition and texture, spatial orientation, and structural complexity (Duedall 
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and Champ 1991; Perkol-Finkel and Benayahu 2005; Perkol-Finkel et al. 2006). 

According to Guichard et al. (2001), Holbrook et al. (2002), and Werner et al. 

(2011), artificial and natural reefs of complex structure (or additional inhabitable 

space) and substratum tend to attract more invertebrates and fishes than 

structures which are simple. Therefore, the relationship of various structural 

features between reefs and their developing benthic and fish communities have 

an immense biological and ecological importance for reef restoration and 

rehabilitation (Perkol-Finkel and Benayahu 2004, 2005).  

Piscivorous fishes that have been recognized as top opportunistic 

carnivores (Perret et al. 1980; Hettler 1989; Rakocinski et al. 2002), and thus 

selected for this study, are Spotted Seatrout (Cynoscion nebulosus Cuvier 1830) 

and Sand Seatrout (Cynoscion arenarius Ginsburg 1930). Both species 

represent highly valuable sport fishes and may significantly affect the structure of 

estuarine communities (Lassuy et al. 1983; Ditty et al. 1991; Purtlebaugh and 

Rogers 2007). Moffett et al. (1979) and Lassuy et al. (1983) describe the 

distribution of each species to be similar throughout estuarine habitats of the Gulf 

of Mexico. Spotted Seatrout spend considerable amount of time within a single 

estuary (Helser et al. 1993) around grassy areas or salt marshes (Peterson and 

Turner 1994), whereas Sand Seatrout inhabit unvegetated mud substrates with 

mesohaline salinities near tidal creeks, small rivers, and at the mouths of large 

rivers (Purtlebaugh and Rogers 2007). Younger individuals of both species feed 

on mysids, amphipods, copepods, and polychaetes then become more 

piscivorous during adulthood, although penaeids get more common in the diet 
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throughout both species’ life spans (Darnell 1958; Moffet et al. 1979; Sheridan 

and Trimm 1983). Feeding habits and diet composition are highly variable, in 

part, because prey availability changes seasonally (Tabb 1961; Coma et al. 

2000), with geographic location, type of estuary (Darnell 1958; Overstreet and 

Heard 1982), water circulation, sediment type, surrounding vegetation (Hettler 

1989) and water quality (Knapp and Purtlebaugh 2008). 

In this study, abundances and predator-diet relationships were quantified 

for two dominant piscivorous species on two different artificial reef types: high 

profile rubble reefs and low profile oyster beds. The main objectives in this study 

were to 1) determine if there were differences in catch-per-unit-effort (CPUE, 

fish/hr) of these two common inshore piscivorous fishes by season and reef type, 

separately, and 2) determine if there was a difference in diet composition (%IRI) 

by reef type and season.  

Objectives of Study   

Objective 1: Does CPUE (fish/hr) of Spotted Seatrout and Sand Seatrout 

change seasonally by reef type or their interaction. 	
  

Objective 2: Determine if diet composition of Spotted Seatrout and Sand 

Seatrout changes seasonally by reef types or their interaction.  
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CHAPTER II 
 

METHODS 
 

  Study Sites 
 
 Spotted Seatrout and Sand Seatrout were collected near the Mississippi 

coastline at Katrina and Square Handkerchief (both high profile reefs) and USM 

and Legacy reefs (both low profile reefs) (Figure 1).  All four sample sites were  

 

Figure 1. Map of Mississippi coastline displaying reef sites. USM and Legacy are 
low profile reliefs, and Katrina and Square Handkerchief are high profile reefs. 
 

created by the Mississippi Department of Marine Resources (MDMR) to improve 

finfish habitat and are maintained sporadically throughout their history when 

funds are available. The largest concrete high profile reef was Square 

Handkerchief reef (19,526.1 m2) followed by Katrina reef (11,900.1 m2) whereas 

the low profile reefs (USM and Legacy) are smaller: 4,034.8 m2 and 3,199.1 m2, 

respectively. The oldest site was USM reef (deployed in 1993) followed by 
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Square Handkerchief (2002) and then the newest were Legacy (deployed in 

2007) and Katrina reefs (2007). Additional background information for the reef 

sites is included in Table 1.  

Table 1  
 
Latitude/longitude, distance from offshore, and distance from nearest major river 
for all four artificial reefs. (Sq. Hand. = Square Handkerchief) 

     

     

Reef Characteristic  Sq. Hand. Katrina Legacy USM 

 

Longitude 89 18.901 88 50.369 89 00.201 89 08.019 

Distance offshore (km) 3.06 3.5 0.457 0.343 

Distance from river (km)  23.3 21.7 32.2 40.2 

 
Sample Collection  

            Spotted Seatrout and Sand Seatrout were collected seasonally from 

August 2011 through August 2013. A gill net (228.6 m by 1.83 m) was deployed 

at each reef and allowed to soak for one hour.  The gill net had 5 mesh sections 

each 45.7 m long with increasing mesh sizes: 5.1 cm, 6.4 cm, 7.6 cm, 8.9 cm 

and 10.2 cm. Salinity, dissolved oxygen (mg/L), and water temperature (°C) were 

recorded at the center of the net at the surface and bottom. Sampling occurred 

three times per season at each reef type during periods of tidal changes to obtain 

additional samples.  
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Diet Methods 
 

Spotted Seatrout and Sand Seatrout were collected and placed on ice in 

the field. Each individual fish was returned to the lab and measured (TL, mm) 

and weighed (kg) before stomachs were removed from the body cavity. Each 

digestive tract was removed based on Bowen (1990) with the exception that only 

stomachs were placed in 0.47 L plastic jar with 10% formalin for at least a week. 

Once stomachs were fixed, each was blotted with a paper towel and allowed to 

dry in a desiccator. A summer 2011 subsample for both species (3 stomachs/ 

reef) was used to determine a final desiccator drying time (hrs) by taking an initial 

weight (nearest 0.001 g) and reweighing every 24 hrs thereafter until the 

stomach weights stabilized. The final desiccation times for stomachs were 

established to be 48 hrs, at which time weight loss (percent loss of the initial 

weight) was relatively uniform among weighing periods. Gut contents were then 

emptied into a Petri dish to be separated, categorized, and identified to the 

lowest taxonomic resolution using Needham and Needham (1962), Heard 

(1982), and Hoese and Moore (1998). Afterwards, contents were weighed to the 

nearest 0.001 g and stored in 70% ethanol. As performed by Lindquist et al. 

(1994), gut contents were dried at 40°C for 5 hrs or until a constant weight was 

achieved. 

Statistical Analysis  

Spotted Seatrout and Sand Seatrout CPUE data were skewed and did not 

meet the assumption of normality. Homoscedasticity of CPUE for reef type and 

season was reached for Spotted Seatrout (p> 0.05); however, for Sand Seatrout 
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reef type was homogenous (p > 0.05) but not for season (p< 0.01). Thus, a non-

parametric Kruskal-Wallis one-way ANOVA (Zar 1999) was used to evaluate 

CPUE differences by reef type and season, separately. The mean catch-per-unit-

effort data was plotted for clarity for both species.  

As defined by Hyslop (1980), frequency of occurrence was calculated by 

counting the number of stomachs containing a prey item and converted to a 

percentage. Percent number was tabulated by determining the number of prey 

items in each category and then expressed as a percent of the total number of 

prey items (Crisp et al. 1978; Lindquist et al. 1994).  Finally, percent dry weight 

(g) was determined by expressing the weight of each prey item as a percent of 

the total ingested prey weight (Bowen 1990). Hyslop (1980) assessed the 

advantages and limitations of these calculations. The measurements were used 

to determine an index of relative importance (IRI), where the sum of percent 

weight and percent number is multiplied by the percent frequency of occurrence 

for each prey category (Cortez 1997). To provide a more accurate description of 

dietary importance and allow for easier comparison among food types, IRI values 

were further manipulated into %IRI for each prey item. Pinkas et al. (1971) 

outlined the equations used in this common analysis and are 

IRI=%Oi(%Wi + %Ni) 

and  

%IRI=100 x IRIi/ Σ IRIi 

where i is one of j different prey types, %O represents frequency of occurrence, 

and %Wi and %Ni characterize the proportion of stomach content by weight and 
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number in which both consists of prey i. However, %IRI is known to 

underestimate the influence of lower taxonomic categories due to a multiplicative 

effect that %O has on the index within a single study (Hansson 1998). 

Additionally, Macdonald and Green (1983) claimed compound indices are 

redundant and offer very little new scientific information. Thus, only %IRI was 

used to directly compare and facilitate comparisons for both species by season 

and reef type as recommended by Cortez (1998).  

Stomachs were binned with a max of 6 stomachs per bin (at least 3 

stomachs per bin) to recalculate %IRI for each prey item and used to test for reef 

type and season (Fall = October-November, Winter = December-February, 

Spring = March –May, and Summer = June-September) effects in diet 

composition of Spotted Seatrout and Sand Seatrout. Ontogenetic effects were 

not considered in this analysis since all but one specimen were <150 mm TL, 

where a diet shift to mainly fish and shrimp occurs for both species (Moody 1950; 

Reid et al. 1956; Darnell 1958; Moffet et al 1979; Perret et al. 1980; McMichael 

and Peters 1989). The main and interactive effects were tested by a two-way 

non-parametric permutation multivariate analysis (PERMANOVA; permutations = 

999; Anderson et al. 2008), where the permutation test creates a distribution of F 

values (Pseudo-F) and obtains a P-value (Pseudo-P) for non-normally distributed 

data (Anderson 2001). Only three seasons were considered for the analysis 

because few stomachs were available during the winter. Pair-wise a posteriori 

comparisons were made using a multivariate analogue of the t-test (pseudo-t) for 

each level of significantly different main effects and interaction terms. If there was 
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significant interaction term, then pseudo-t tests were used to compare levels 

within each term of the interaction (Anderson et al. 2008). Based on the fourth 

root transformed Bray Curtis similarity matrix, Homogeneity of Multivariate 

Dispersion (PERMDISP; hereafter HMD) was estimated and used to describe the 

deviation from centroids in diet composition among reef type and season 

separately (Anderson et al. 2008).  

 Non-metric Multidimensional Scaling (MDS) was used to visually separate 

diet composition of Spotted Seatrout and Sand Seatrout between seasons and 

reef types. These were followed by Similarity Percentages (SIMPER) analysis to 

disaggregate the similarity matrix to identify which diet components were most 

responsible for any dissimilarity between reef and season (Clarke and Warwick 

2001). Kruskal-Wallis one-way ANOVA was conducted with SPSS software 

(version 12.0, SPSS, Inc., Chicago, III) (Green and Salkind 2008) whereas MDS, 

PERMANOVA, and SIMPER similarity analyses were completed with PRIMER 

software (version 6.01.2; PRIMER-E Ltd, Plymouth, UK). 
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CHAPTER III 

RESULTS 

A total of 293 fish were captured from August 2011 through August 2013: 

164 (56%) Spotted Seatrout and 129 (44%) Sand Seatrout. The size of Spotted 

Seatrout ranged from 220 to 535 mm TL with a mean (± STD) length of 327 mm 

TL ± 63.7 mm. The range for Sand Seatrout was from 148 to 365 mm TL with a 

mean (± STD) length of 286 mm TL ± 39.4 mm. On low profile reefs, there were 

94 (57%) Spotted Seatrout and 80 (62%) Sand Seatrout caught, whereas on high 

profile reefs 70 (43%) Spotted Seatrout and 49 (38%) Sand Seatrout were 

caught. Seasonally, there were no fish caught during winter despite effort. During 

the summer, there were 73 (44%) Spotted Seatrout and 55 (43%) Sand Seatrout, 

whereas in spring 83 (51%) Spotted Seatrout and 36 (28%) sand seatrout were 

caught. During the fall there were only 8 (5%) Spotted Seatrout and 38 (29%) 

Sand Seatrout. Total numbers of fish caught by reef type and season are 

presented in Appendix A-C for Spotted Seatrout and Appendix D-F for Sand 

Seatrout.  

All CPUE data were considered in the analysis for both species by reef 

type or season. The CPUE range for Spotted Seatrout was from 0 to 23.6 fish/hr 

on low profile reefs with a mean (±SEM) CPUE of 3.3 ± 1.2 fish/hr. On high 

profile reefs, Spotted Seatrout CPUE had a smaller range at 0 to 18.0 fish/hr and 

a mean (±SEM) CPUE of 2.7 ± 1.0 fish/hr. The CPUE ranges for Sand Seatrout 

were more variable across reef type than Spotted Seatrout: 0 to 16.8 fish/hr on 

low profile reefs and 0 to 46.0 fish/hr on high profile reefs. On low profile reefs, 
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Sand Seatrout mean (±SEM) CPUE was 2.4 ± 1.0 fish/hr and on high profile 

reefs the mean (±SEM) CPUE was 3.0 ± 1.8 fish/hr (Figure 2). Differences in 

mean ranked CPUE by reef type were not different for Spotted Seatrout (Kruskal-

Wallis test, Chi-square = 0.090, df = 1, p = 0.765) or Sand Seatrout (Kruskal-

Wallis test, Chi-square = 0.012, df = 1, p = 0.911). 

 
 
Figure 2.  Catch-per-unit-effort (fish/hour) for Cynoscion nebulosus and 
Cynoscion arenarius by reef type. Error bars are one standard error of the mean.  
 

Additionally, Spotted Seatrout CPUE was highest during the fall with a 

mean (±SEM) CPUE of 4.6 ± 2.8 fish/hr but a range of 0 to 14.0 fish/hr. Spring 

had the second highest CPUE for Spotted Seatrout with a mean (±SEM) CPUE 

of 3.1 ± 1.4 fish/hr despite a wider range of 0 to 23.6 fish/hr. Summer CPUE had 
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the smallest mean (±SEM) CPUE at 2.5 ± 1.0 fish/hr and a range from 0 to 18.0 

fish/hr. Catch-for-unit-effort of Sand Seatrout was slightly different by season 

than Spotted Seatrout. Fall had the highest CPUE with a mean (±SEM) CPUE of 

10.5 ± 8.9 fish/hr and a range of 0 to 46.0 fish/hr. Finally, summer had a mean 

(±SEM) CPUE of 2.1 ± 0.9 fish/hr with a range of 0 to 16.8 fish/hr whereas spring 

had a mean (±SEM) CPUE of 1.5 ± 0.8 fish/hr and a range from 0 to 12.4 fish/hr 

(Figure 3). Differences in mean ranked CPUE by season were also not significant 

for Spotted Seatrout (Kruskal-Wallis test, Chi-square = 0.736, df = 2, p = 0.692) 

or Sand Seatrout (Kruskal-Wallis Test, Chi-square = 3.587, df = 2, p = 0.166). 

Diet analysis was performed on 183 (62% of total fishes collected) 

stomachs: 101 (62%) Spotted Seatrout and 82 (64%) Sand Seatrout. No fishes 

were caught during the winter, thus it was not included in the diet analysis. There 

was a total of 16 prey taxa among the two predatory species including six 

families of teleosts and four families of crustaceans. The identifiable vertebrate 

prey taxa included Bay Anchovy (Anchoa mitchilli), anchovy (Anchoa spp.), Gulf 

Menhaden (Brevoortia patronus), Atlantic Bumper (Chloroscombrus chrysurus), 

and seatrout (Cynoscion spp). Gastric mills (gizzard-like muscle) and fish otoliths 

were combined with unidentifiable fish prey category for descriptive statistics in 

this study. Identifiable invertebrates were brown shrimp (Farfantepenaeus 

aztecus), grass shrimp (Palaemonetes spp.), mud crab (Eurypanopeus 

depressus), and portunid crabs (Callinectes spp.). A remaining major prey 

category, amorphic debris included detritus, stones, and unidentified material.  
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Regardless of reef type or season (Figure 4), the majority of the diet of 

Spotted Seatrout consisted of fishes, with the addition of other prey categories  

 
Figure 3.  Catch-per-unit-effort (fish/hour) for Cynoscion nebulosus  and 
Cynoscion arenarius  by season. Error bars are one standard error of the mean. 
No fish of either species were caught during the winter months. 
 
in the summer. High profile reefs during the fall had a 100 %IRI but only 2 

stomachs were analyzed (Figure 5) and dominated by unidentifiable fish 

(Appendix B). During summer and spring on both reef types, the %IRI for fish 

taxa was higher than 80%. Spring low profile reefs had a higher %IRI for fish taxa 

(99.57 %) (Figure 4) than on high profile reef (84.62 %IRI) (Figure 5), where 

unidentifiable fish dominated both reef types. However, all three metrics (%F, 
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%N, %W) mainly influence %IRI for low profile reefs, whereas for high profile 

reefs %W was the predominant influence (Appendix C). Summer had revealed 

 
 

Figure 4.   Index of relative importance (percent) for Cynoscion nebulosus of the 
major prey taxa identified in stomachs at low profile reefs across all seasons.  
 
an opposite trend, where the high profile reef %IRI for fish taxa (91.2%) (Figure 

5) was higher than for low profile reefs (82.4%) (Figure 4) and both reefs 

displayed more diversity of fish prey items than for spring (Appendix C). High 

profile reefs during summer months were dominated by unidentifiable fish and 

Cynoscion spp. but driven differently (%F and %W, respectively) (Appendix A). 

Other fish prey taxa on high profile reef during the summer included A. mitchilli, 

unidentified Sciaenidae, and C. chrysurus (in decreasing %IRI). Numerically, and 
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by occurrence, A. mitchilli (55.49 %IRI) dominated the diet of Spotted Seatrout 

on low profile reefs during the summer, while other fish prey taxa included 

unidentifiable fish, Anchoa spp., and B. patronus (Appendix A).  

 
 

Figure 5.   Index of relative importance (percent) for Cynoscion nebulosus of the 
major prey taxa identified in stomachs at high profile reefs across all seasons.  
 

Similar to fish taxa, crustaceans or amorphic debris were not found in any 

stomachs of Spotted Seatrout during the fall on either reef type (Figures 4 and 5; 

Appendix B). Shrimp was the only crustacean consumed during summer and 

spring, but diets in summer months were dominated by F. aztecus where low 

profile reefs (15.51 %IRI) (Figure 4) were influenced by %W and high profile 

reefs (8.52 %IRI) (Figure 5) by %O and %N (Appendix A). In contrast, 
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unidentifiable shrimp were dominate by %O (Appendix C) in the spring on high 

profile reefs (2.21 %IRI) (Figure 5), whereas on low profile reefs, stomachs 

contained a single Palaemonetes spp., where none were found on any other reef 

or season (Appendix C) and the %IRI of this prey was too low to be shown in 

Figure 4. Amorphic debris was higher for Spotted Seatrout, %N and by %O 

(Appendix C), in the spring on high profile reefs (Figure 5); however, low profile 

reefs diets contained very little amorphic debris during summer and spring 

(Figure 4). 

The MDS of the %IRI of the prey taxa for Spotted Seatrout for reef type 

and season indicated the 2-D fit was suitable (stress = 0.12).  The ordination plot 

showed considerable separation across reef type and season (Figure 6). Diet 

(%IRI) differed by season (PERMANOVA; Pseudo-F = 10.65, P (perm) = 0.002) 

and the reef type*season interaction term (Pseudo-F = 4.56, P (perm) = 0.002); 

however, reef type was not significant (Pseudo-F =0.98, P (perm) = 0.464). 

Square root of the estimates of components of variation indicated season (27.63) 

accounted for more variation in diet (%IRI) than the interaction term (23.74) or 

reef type (-1.10). Pair-wise pseudo-t tests were used to decompose the 

interaction term and indicated %IRI similarity between reef types was significantly 

greater in the spring (Pseudo-t = 3.00, P (perm) = 0.008) than in the summer 

(Pseudo-t = 1.33, P (perm) = 0.198). Mean similarity was 73.71 in spring but only 

a 45.90 between reef types in the summer. However, when only season was 

considered, %IRI was significantly greater during summer and spring on low 

(Pseudo-t = 4.00, P (perm) = 0.001) and high profile reefs (Pseudo-t = 1.88, P 



	
  
	
  

                 

19	
  

(perm) = 0.043) with a 40.7 low profile mean similarity between season and 

42.04 between seasons for high profile reefs. The HMD showed no significant 

difference for reef type (Pseudo-F= 1.80, P (perm) = 0.38) and mean deviation 

from centroids for low profile reefs was 28.29 (± 4.18) and for high profile reefs 

  

Figure 6. MDS ordination plot for diet composition data of Cynoscion nebulosus 
by reef type and season. (ss = spotted seatrout, O = oyster bed (low profile) 
reefs, R = rubble (high profile) reefs, S = summer, SP = spring, B = replicate 1, 
replicate 2, etc.). Fall was not considered for C. nebulosus. 
 
was 35.63 (± 2.23). Conversely, there was a significant difference for season 

(Pseudo-F = 22.20, P (perm) = 0.001) with a mean deviation from centroids of 

35.12 (± 3.83) for summer and 13.81 (± 2.64) for spring. Fall was not considered 

for this analysis of C. nebulosus. Two-way SIMPER comparisons indicated seven 

prey taxa (A. mitchilli, F. aztecus, amorphic debris, unidentified fish, unidentified 

penaeids, Cynoscion spp., B. patronus) contributed 90.87% to the diet 

composition of Spotted Seatrout during the summer whereas in the spring there 



Table 2  
 
Mean pair-wise fourth root transformed diet composition (%IRI) between seasons (summer, spring) of Cynoscion 
nebulosus from the Mississippi Sound based on SIMPER analysis. SD = standard deviation, UID = unidentified. Taxa are 
listed in order of their contribution to the mean dissimilarity between seasons with a cutoff when the cumulative percent 
contribution approaches 90%. Fall was not included in this particular analysis. 
 
Taxa Mean %IRI 

Summer 
Mean %IRI 

Spring 
Mean 

dissimilarity 
Mean 

dissimilarity/SD 
Contribution (%) 

      
Anchoa mitchill 1.33 0.00 14.33 1.16 24.35 
Farfantepenaeus aztecus 1.42 0.00 12.33 1.46 20.95 
Amorphic Debriis 0.45 0.89 9.80 1.62 16.65 
UID Fish 2.32 3.09 7.99 1.03 13.56 
UID Penaeidae Shrimp 0.30 0.22 3.70 0.63 6.28 
Cynoscion spp. 0.57 0.00 2.84 0.37 4.82 
Brevoortia patronus 0.19 0.00 2.50 0.45 4.25 
Total cumulative %     90.87 
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were only three prey taxa (amorphic debris, unidentified fish, unidentified 

penaeids) (Table 2).  

Similar to Spotted Seatrout, the majority of the diet of Sand Seatrout 

comprised fishes but the fish taxa %IRI > 80% in the spring, and fall rather than 

in the summer on both reef types (Figures 7 and 8). By all three metrics, 

unidentifiable fish (95.85 %IRI) dominated low profile reefs (98.75 %IRI) during  

spring and other prey taxa of less importance included B. patronus and 

unidentifiable Sciaenidae. High profile reefs (81.70 %IRI) were dominated 

numerically and by occurrence of unidentifiable fish (55. 84 %IRI), whereas 

unidentifiable Sciaenidae (25.86 %IRI) was mainly influenced by %W (Appendix 

F). During the fall, the reefs had an opposite diet trend from the spring when high 

profile reefs (99.29 %IRI) (Figure 8) had a higher %IRI for fish taxa than low 

profile reefs (82.32 %IRI) (Figure 7). By %W, B. patronus dominated the diet of 

Sand Seatrout on high profile reefs and lesser importance prey taxa consisted of 

unidentifiable fish, Anchoa spp., A. mitchilli, and unidentified Ariidae and 

Gobidae. Conversely, diets during the fall from low profile reefs had less fish prey 

taxa richness and were dominated via %W by unidentified Sciaenidae (60.35 

%IRI) with less important fish prey taxa only included unidentifiable fish 

(Appendix E). The summer months for both reef types had lower fish importance 

than any other season. For both reefs, %N and by %O, were dominated by 

unidentified fish; however, the high profile reefs (52.51 %IRI) showed a lower 

%IRI than low profile reefs (72.31 %IRI) (Figures 7 and 8). Low profile reefs had 

different fish prey taxa than high profile reefs, which included unidentifiable 
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Sciaenidae, Cynoscion spp., and unidentified Clupeidae and Ariidae (Appendix 

D).  

On both reef types, crustaceans were the second most common prey taxa 

for Sand Seatrout during summer and fall months whereas amorphic debris was 

more common in the spring (Figures 7 and 8). Crustaceans were more common 

in the summer (Appendix D), when F. aztecus by %W dominated both reefs  

 
Figure 7.   Index of relative importance (percent) for Cynoscion arenarius of the 
major prey taxa identified in stomachs at low profile reefs across all seasons. 
 
(Figures 7 and 8); however, in the fall, crustaceans were represented by a few 

crab species. For example, stomach contained E. depressus during the fall on 

low profile reefs (17.68 %IRI) (Figure 7), while on high profile reefs (0.071 %IRI) 
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(Figure 8), a single stomach contained Callinectes spp., and both prey taxa were 

mainly influenced by %O and %N (Appendix E). Similar to summer months, 

stomachs from low profile reefs during the spring were dominated via %O by 

unidentifiable Penaeidae but with 0.28 %IRI which was too small to show up on 

Figure 7, whereas no stomachs contained crustaceans on high profile reefs 

(Figure 8). Alternatively, high profile reefs (18.30%IRI) (Figure 8) contained more  

 
Figure 8.   Index of relative importance (percent) for Cynoscion arenarius of the 
major prey taxa identified in stomachs at high profile reefs across all seasons.  
 
amorphic debris than low profile reef (0.98 %IRI) (Figure 7) during the 

spring and both were driven by %O (Appendix F). Comparable to spring, 

amorphic debris during the summer was higher on high profile reefs (19.44 %IRI) 

(Figure 8) than on low profile beds (3.98 %IRI) (Figure7) with both influenced by  
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Figure 9. MDS ordination plot for diet composition data of Cynoscion arenarius 
by reef type and season. (SS = sand seatrout, O = oyster bed (low profile)reefs, 
R = rubble (high profile) reefs, S = summer, SP = spring, F = fall, B = replicate 1, 
replicate 2, etc.)  
 
%N and %O (Appendix D and F). Amorphic debris was not discovered in any 

stomachs during the fall on either reef types (Appendix E).  

The MDS of the %IRI of the prey taxa for Sand Seatrout of low and high 

profile reefs seasonally, indicated the 2-D fit was appropriate (stress = 0.11). 

Similar to Spotted Seatrout, the ordination plot showed separation between reef 

type and season (Figure 9). Diet composition (%IRI) of Sand Seatrout differed by 

season (PERMANOVA; Pseudo-F = 3.42, P (perm) = 0.005) but not by reef type 

(Pseudo-F = 1.15, P (perm) = 0.318) nor the reef type*season interaction term 

(Pseudo-F = 0.83, P (perm) = 0.549). The square root of the estimates of 

components of variation showed season (24.23) accounted for more variation 

than reef type (5.20) and the interaction term (-7.73). Pair-wise pseudo-t test for 

season indicated the summer and fall comparison (Pseudo-t = 1.64, P (perm) = 
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0.027) contributed the most to the variation with a 29.19 mean similarity followed 

by the spring and fall comparison (Pseudo-t = 2.01, P (perm) = 0.03) with a 38.86 

mean similarity. The summer and spring comparison (Pseudo-t = 1.53, P (perm) 

= 0.117) did not significantly contribute to the variation in diet composition (%IRI) 

with a 53.35 mean similarity.  The HDM test showed no significance for reef type 

(Pseudo-F = 4.62, P (perm) = 0.067). The mean deviation of the centroids of low 

profile reefs was 30.37 (± 2.46) and high profile reefs was 38.59 (± 2.92). Similar 

to reef type, there was no significance by season (Pseudo-F = 1.16, P (perm) = 

0.472) with mean deviation from centroids of 28.03 (± 3.76) for summer, 32.72 (± 

5.49) for fall, and 22.29 (± 3.97) for spring. Two-way SIMPER analysis indicated 

seven prey taxa (F. aztecus, unidentified Penaeidae shrimp, amorphic debris, 

unidentified Sciaenidae, B. patronus, unidentified fish, Cynoscion spp.) 

contributed 93.40% during the summer and spring combination (Table 3). In 

addition, during the spring and fall combination there were also seven prey taxa 

(amorphic debris, B. patronus, unidentified Sciaenidae, Anchoa spp., unidentified 

fish, A. mitchilli, unidentified Gobidae) that contributed 90.71% to the diet 

composition of Sand Seatrout (Table 4). 



	
  
	
  

        
        

Table 3  
 
Mean pair-wise fourth root transformed diet composition (%IRI) between seasons (summer, spring) of Cynoscion 
arenarius from the Mississippi Sound based on SIMPER analysis. SD = standard deviation, UID = unidentified. Taxa are 
listed in order of their contribution to the mean dissimilarity between seasons with a cutoff when the cumulative percent 
contribution approaches 90%.  
 

	
  

	
  

 
 
 
 
 

Taxa Mean %IRI 
Summer 

Mean %IRI 
Spring 

Mean 
dissimilarity 

Mean 
dissimilarity/SD 

Contribution (%) 

      
Farfantepenaeus aztecus 1.61 0.00 12.63 1.58 26.75 
UID Penaeidae Shrimp 1.06 0.22 7.68 1.23 16.28 
Amorphic Debris 1.02 1.19 7.55 1.16 15.99 
UID Sciaenidae 0.54 0.77 6.78 0.84 14.37 
Brevoortia patronus 0.00 0.33 3.24 0.51 6.86 
UID Fish 2.59 2.96 3.19 1.56 6.77 
Cynoscion spp. 0.32 0.00 3.01 0.40 6.37 
Total cumulative %     93.40 
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Table 4  
 
Mean pair-wise fourth root transformed diet composition (%IRI) between seasons (spring, fall) of Cynoscion arenarius 
from the Mississippi Sound based on SIMPER analysis. SD = standard deviation, UID = unidentified. Taxa are listed in 
order of their contribution to the mean dissimilarity between seasons with a cutoff when the cumulative percent 
contribution approaches 90%.  

 

 
 

 
 
 

 
 
 
 

Taxa Mean %IRI 
Spring 

Mean %IRI 
Fall 

Mean 
dissimilarity 

Mean 
dissimilarity/SD 

Contribution (%) 

      
Amorphic Debris 1.19 0.00 16.41 4.01 24.25 
Brevoortia patronus 0.33 2.01 15.41 1.28 22.78 
UID Sciaenidae 0.77 0.00 9.07 0.91 13.40 
Anchoa spp. 0.00 0.88 6.64 1.25 9.82 
UID Fish 2.96 2.19 6.18 2.12 9.13 
Anchoa mitchilli 0.00 0.48 3.87 0.64 5.72 
UID Gobidae 0.00 0.52 3.79 0.64 5.60 
Total cumulative %     90.71 
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CHAPTER IV 
 

DISCUSSION 
 

Catch-Per-Unit-Effort 

Both species showed no differences in mean ranked CPUE among low 

and high profile reefs in the north-central Gulf of Mexico. Only CPUE for Spotted 

Seatrout on low profile reefs during the spring was barely higher than all other 

values from either reef type, suggesting Spotted Seatrout and Sand Seatrout are 

generalist opportunistic foragers and reef type appears not to matter. Generally, 

individual CPUE data varied between season or reef type within this study; 

therefore, both Cynoscion spp. can be considered transient, which has been 

found in other systems (Breitberg et al. 1999; Coen et al. 1999; Harding and 

Mann 2001a, 2001b, 2003; Simonson and Cowan 2008; Simonsen et al. 2013). 

A relatively similar study of diets of transient fishes in Chesapeake Bay reported 

comparable findings (Harding and Mann 2001a). Their study analyzed 

differences between artificial oyster reef and sand bar habitats and suggested 

the ubiquitous distribution among all habitats for both Cynoscion spp. However, 

Harding and Manning (2001b) studying Bluefish and Striped Bass (2003) 

indicated a difference of abundance between artificial reefs vs. mud-bottom 

reference sites. Conflicting patterns among species suggest opportunistic 

predators probably occupy similar habitats and trophic niches (Peterson 2003). 

Their data suggest variations in prey availability (Overstreet and Heard 1982; 

Music and Pafford 1984; Burke 1995; Baltz et al. 1998; Harding and Mann, 

2001a, 2001b, 2003; Knapp and Purtlebaugh 2008) may obscure habitat use 

patterns as observed in this study regarding use of reef types. 
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Reef profiles may not influence relative abundance of transient fishes as 

habitat in this study. For example, physical attributes of artificial reefs can directly 

affect total fish assemblages and indirectly influence CPUE (Bohnsack et al. 

1991). Structural complexity, such as varying inhabitable space and size, can 

change overall fish assemblages (Harman et al. 2003; Garcia-Sais 2010) and 

have a strong association with larger predators (Hixon and Beet 1989). One may 

have expected a difference in CPUE by reef type in this study since the high 

profile reefs would have more and larger inhabitant space than the low profile 

reefs for refuge of larger prey items, thus increasing the availability of more larger 

nutritional prey taxa for Cynoscion spp. and overall affecting their relative 

abundance across reef type. As already mentioned, the two selected species are 

highly transient within an estuary as suggested by similar mean CPUE across 

reef type and season; therefore, a limiting factor of their abundance and indirectly 

diet may only be gap limitation for both Cynoscion spp, than reef profile. In 

addition to vertical profile differences, high profile reefs covered more area than 

the low profile reefs in this study potentially allowing for higher CPUE among 

larger and smaller fishes. Bryan et al. (2013) concluded that low profile artificial 

structures offer habitat for smaller solitary species whereas high profile reefs 

provide highly complex structure for more variety of species, thus altering fish 

abundance. However, the high profile reefs in the previously mentioned study 

was a vessel reef where assemblages may differ greatly compared to inshore 

reefs (Bryan et al. 2013); therefore, structural complexity in some estuaries may 
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not greatly influence fish assemblages and CPUE for the selected inshore reefs 

as observed in the present study.   

One of the possible factors that may have influenced CPUE among reef 

types is age of the reef, which was not controlled for in this study. For example, 

there was a wide range of reef ages recorded in the present study where one of 

each reef type (USM and Square Handkerchief reefs, 21 and 12 years old) was 

older than the other two reefs (Legacy and Katrina reef, both 7 years old). This 

difference of age may influence productivity of the reefs and thus prey 

availability. Other studies comparing species diversity observed a significant 

difference by reef age and indirectly affecting fish abundance (Hasting et al. 

1976; Hastings 1979; Sanders et al. 1985; Bortone et al.1994b). Settlement of 

fishes and the attraction of transient species may be rapid but obtaining an 

equilibrium reef community has been found to take multiple years (Fager 1971; 

Bohnsack and Talbot 1980). Thus, reef age may suggest future differences 

among reef type when all sampled reefs in the present study are at equilibrium. 

However, the Gulf coast states are within Hurricane Alley where tropical storms 

and hurricanes most likely keep succession at an early stage; thus, the selected 

reefs in this study may not ever reach an equilibrium community (Connell 1976; 

Connell and Slatyer 1977), which may create more confounding variables. In 

addition to structural complexity and reef age, construction material, depth, and 

orientation of reef sites (Bryan et al. 2013) may also influence CPUE.  

Selected Cynoscion spp. were not observed during winter months, which 

may have been due to seasonal movements of both species into areas that were 
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not sampled for this study (Gunter 1938, 1945; Tabb 1966; Benefield 1971; 

Perrett and Caillouet 1974; Moffet et al. 1979; Shlossman and Chittenden 1981; 

Helser et al. 1993; Cowan and Shaw 1988). For example, Sand Seatrout migrate 

into the gulf during the summer months probably in response to extreme high 

water temperatures (Simmons 1951; Simmons and Hoese 1959); however, this 

trend was not observed in this study. Similar to Spotted Seatrout, some Sand 

Seatrout remain in the seaward portion of two Florida bays where they may 

occupy deeper water within the bay during winter months (Tabb 1966; Knapp 

and Purtlebaugh 2008) where sampling did not occur in this study (December-

February).  Differences in offshore migration may reflect the age of Sand 

Seatrout where large fish move farther offshore and smaller, immature fish move 

into deeper waters within bays or estuaries (Ditty et al. 1991; Knapp and 

Purtlebaugh 2008). Even though age was not considered during the current 

study, Spotted Seatrout and Sand Seatrout caught were mainly young adults, 

suggesting the lack of occurrence during winter may have been due to 

movement into bays/channels or offshore.  

The mean CPUE was higher during the fall for Sand Seatrout than any 

other season, while Spotted Seatrout CPUE was relatively similar across 

seasons (besides winter). This particular mean CPUE was driven by a single 

high catch of Sand Seatrout during a fall trip; however, all other trips none were 

caught causing a higher variability of CPUE between seasons. The high profile 

reefs were over 3 km away from the coastline, whereas low profile reefs were 

markedly closer to shore (< 0.5 km). Therefore, Sand Seatrout might be moving 
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out of the estuary and utilizing resources on high profile reefs before going 

further offshore during winter months. This may explain the relatively higher 

CPUE and variability observed on high profile reefs for Sand Seatrout during the 

fall compared to CPUE for Spotted Seatrout. Additionally, high profile reefs had 

twice as large CPUE range than low profile reefs further suggesting Sand 

Seatrout may use the seaward high profile reefs during the fall.  In contrast, 

McDonald et al. (2009) conducted seasonal trawl surveys off the coast of Texas 

for Sand Seatrout and found that summer and spring abundances were 

significantly higher than fall; however, the summer and spring trend was not 

observed in this study where CPUE for both Cynoscion spp. for fall was higher 

than summer and spring catches. 

Reef sites were all <40 km from a major river basin. The original individual 

unranked CPUE data was highly variable among reef type and season; thus, 

differential fresh water discharge could have created sporadic fish movements of 

transient Cynoscion spp. and indirectly their abundances by altering abiotic and 

biotic characteristics within the estuaries for both species (Rabalais et al. 2002; 

Garcia et al. 2003; Chanton and Lewis 2002; Maes et al. 2004). For example, 

Mazeaud et al. (1977) and Moore (1979) suggested the salinity and temperature 

changes caused by freshwater sources can cause lethal stress in some estuary 

fishes. Knapp and Purtlebaugh (2008) observed reduced relative abundance of 

Sand Seatrout in two Florida estuaries due to an increase in river discharge 

altering salinity and temperature patterns. They also showed that spring catches 

were four times greater than other seasons and catches declined significantly in 
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late summer when water temperature and salinity were too high for essential 

metabolic rates. Wuesnschel et al. (2004) and Vetter (1982), with Spotted 

Seatrout and Sand Seatrout respectively, indicated temperature affected 

metabolic stress rather than salinity; thus, varying temperatures may have 

explained an observed difference of fish abundance during the cooler months 

within this study.  

Diet Composition 

 The number of prey taxa in each study species was generally low (11 for 

Spotted Seatrout and 14 for Sand Seatrout), probably due to focusing only on 

adults. Younger seatrouts consume a variety of small diet items, and as they 

grow, their diet shifts to mainly mysids, fish, and shrimp. However, adult seatrout 

exhibit diets consisting of fewer items of mainly fish and crustaceans (Moody 

1950; Reid et al. 1956; Darnell 1958; Moffet et al. 1979; Sheridan and Livingston 

1979; Perret et al. 1980; McMichael and Peters 1989; Russell 2005; Simonsen 

and Cowan 2008). The diet trend of mainly fish and crustaceans was observed in 

this study and various %IRI values among reef type and season further indicate 

that both species are opportunistic feeders, thus reinforcing findings of previous 

studies (Moody 1950; Darnell 1958; Tabb 1961; Perret et al. 1980; Overstreet 

and Heard 1982; Hettler 1989; Llanso et al. 1998; Simonsen and Cowan 2008). 

Generally, neither fish indicated a strong selectivity or avoidance to a particular 

diet item further indicating their generalist, opportunistic foraging strategy. 

Exploitation of a variety of food resources was represented by the wide 

dispersions in the ordination plots for both species, which is expected by 
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opportunistic feeders (Llanso et al. 1998).  Overall, within the Mississippi Sound, 

the apparent diet restriction for opportunistic foragers for either Cynoscion spp., 

besides seasonal prey availability, may be gap limitations where the size of the 

prey in relation to mouth gape size (or consumer size) could be the only limitation 

on diet preference. Akin and Winemiller (2008:144) suggested consumer and 

prey body size is “a key variable influencing trophic interactions and the structure 

aquatic food webs,” particularly Spotted Seatrout and Sand Seatrout which have 

similar trophic position based on stable isotope analysis. 

Unfortunately, high %IRI values were observed for unidentified fish prey 

taxa in this study for both piscivorous species, limiting the diet analysis when 

determining what prey taxa caused major differences between reef type and 

season. Unidentified fish contributed to the majority of fish prey taxa, which may 

have occurred from the transient behavior of both species allowing them to feed 

in multiple habitats before moving onto the reefs. This may have allowed for 

additional time for further digestion of identifiable fish taxa to become 

unidentified. Previous literature also suggests that fish digest faster than 

crustaceans (Beukers-Stewart and Jones 2004) and even more quickly during 

warmer months because of higher metabolic rates (Savage et al. 2004). In this 

study, these trends were observed from the majority of unidentifiable fish taxa 

occurring more frequently during the warmer months (summer and spring) than 

the fall. Additionally, unidentified fish taxa may have been the result of the 

impossibility of sampling during all periods of tidal changes on all four reefs, 

therefore, resulting in unidentified fish prey taxa being more common with various 
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degrees of digestion. However, the main identifiable fish and crustacean prey 

taxa included pelagic, transient species supporting non-selective feeding and 

suggest that both estuarine species forage within the water column. Preceding 

studies have reported the most common diet items for Spotted Seatrout 

(Overstreet and Heard 1982; Simonsen and Cowan 2008) and Sand Seatrout 

(Darnell 1958; Moffet et al. 1979; Sheridan 1979; Sheridan et al. 1984) were 

engraulids (anchovies) and Gulf Menhaden which both are common pelagic 

foraging, transient prey taxa and were observed in this study.  Based on the 

SIMPER analysis, Bay Anchovy and Brown Shrimp contributed to the most 

differences in Spotted Seatrout diets between summer and spring where the prey 

taxa are common secondary consumers within the Mississippi Sound and are 

dependant upon the detritus food web.  Prey taxa contribution was relatively 

different for Sand Seatrout diet during the summer and fall where amorphic 

debris and Gulf Menhaden contributed to the diet difference where Gulf 

Menhaden is also considered secondary consumers and rely on the detritus food 

web. 

Although this study examined only adult fishes of various sizes and many 

diet items were considerably digested, Overstreet and Heard (1982) compared 

diets of Spotted Seatrout in Mississippi Sound seasonally and reported %O of 

prey items was higher during spring and summer than during fall and winter. This 

was also observed in this study by the PERMANOVA model and HMD indices 

where the only seasons considered in these analyses were spring and summer 

since no stomachs were examined during the fall and winter for Spotted 
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Seatrout. Anchoa mitchilli and F. aztecus contributed the most to Spotted 

Seatrout diet composition in this study during the summer than spring. 

Additionally, Overstreet and Heard (1982) reported that during winter, adult 

Spotted Seatrout consumed quite frequently polychaetes and crustaceans 

compared to penaeids. Polychaetes were not found in this study; however, 

polychaetes have also been reported by McMichael and Peters (1989), Llanso et 

al. (1998), and Russell (2005). Only McMichael and Peters (1989) were studying 

early life history for larval and juvenile Spotted Seatrout suggesting polychaetes 

are consumed throughout Spotted Seatrout life cycle and their importance may 

be due to seasonal prey availability (Blaber and Blaber 1980; Overstreet and 

Heard 1982; Llanso et al. 1998; Coma et al. 2000; Russell 2005) and specific 

habitats used (Franca et al. 2012).   

Spotted Seatrout and Sand Seatrout consumed mainly Brown Shrimp for 

crustacean prey taxa but was more important in the summer than in spring 

(expressed by %IRI and SIMPER analysis) and was consistent with Lorio and 

Schafer (1966) and Overstreet and Heard (1982). The higher summer 

importance of Brown Shrimp in the diets follows previous literature, which 

suggests that Brown Shrimp tend to burrow in the sediment at lower water 

temperatures and prefer warmer temperatures for optimal growth after 

reproduction (Eldred et al. 1961; Aldrich et al. 1968; Zimmerman et al. 1984). 

Therefore, brown shrimp are in higher abundance and more susceptible for 

predation during the summer as observed within the diets of the selected 

generalist species. Vose and Bell (1994) reported a variety of caridean shrimp in 
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larval and juvenile Spotted Seatrout diet occurring around seagrass beds. 

However, in the present study caridean shrimp, such as Palaemonetes spp., 

were scarcely observed, most likely because they are associated with seagrass 

and salt marsh habitat where sampling did not occur as fishes collected for this 

study were adults (>150 mm, TL) and feed on larger prey further suggesting the 

main limiting factor on diet is gap limitation. However, the single grass shrimp 

found in the diet of a Spotted Seatrout was from a low profile reef, which is closer 

to the shore where seagrass and salt marsh habitat dominate the coastline.  

The overall seasonal diet shift I observed was likely due to prey availability 

and because there were fewer fish and shrimp prey in estuaries during the fall 

and winter suggesting an increase of community activity on both reef profiles 

(Tabb 1961; Perry and Boyes 1978; Dietz 1976; Lehnert and Allen 2002; Russell 

2005). Lehnert and Allen (2002) reported fish catches to be two to five times 

greater during the warmer months than in the winter on an intertidal oyster bed in 

the North Inlet estuary, South Carolina. Additionally, they determined that 

juvenile and adult crab and shrimp were more abundant during the spring than 

juvenile and adult fishes; however, in this study there were generally more 

crustaceans observed during summer and spring. Specifically for Spotted 

Seatrout, a diet shift was observed from penaeids during the summer to crabs in 

the spring while Sand Seatrout foraged on shrimp throughout summer and spring 

suggesting that season influenced the differential diet composition for both 

selected generalist species.   
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Diet studies for adult Sand Seatrout are more limited than Spotted 

Seatrout; nevertheless, a comprehensive feeding study in Apalachicola Bay, 

Florida analyzed 79% of 1,545 individuals of various sizes and ages and found 

that 62% fed on fishes (%W), frequently anchovies (A. mitchilli) and 26% 

mysidaceans (Sheridan and Livingston 1979; Sheridan 1979).  The authors 

observed an inverse relationship of mysids to fishes as the size of Sand Seatrout 

increased. Sheridan (1979) and Sheridan and Livingston (1979) suggested that 

Sand Seatrout diets might be driven by a seasonal progression of dominant 

fishes within an estuary. For example, planktivores are abundant in spring and 

fall when Gulf Menhaden and anchovies are in peak abundance in Apalachicola 

estuary, respectively. Further evidence was observed in Moffet et al. (1979) 

where %O of engraulids was 31.1% of the total fish percentage (45.6%) of the 

diet composition for Sand Seatrout in Galveston Bay, Texas. Overstreet and 

Heard (1982) reported a greater %O of crustaceans in Sand Seatrout than 

Spotted Seatrout and Silver Seatrout where diets consisted of penaeids 53 %O 

and caridean shrimp 7 %O. However, Day et al. (1973) and Dierner et al. (1974) 

reported crustaceans (but not penaeids) found in Sand Seatrout caught off of 

Louisiana and Texas waters, further suggesting that diet is mainly influenced by 

gap limitations on the prey availability within a particular habitat. Moffet et al. 

(1979) found few Portunidae (1.9 %O), generally similar to this study, which also 

included a single E. depressus and has not been observed in adults in other diet 

studies. Overall, I observed a similar planktivore and crustacean diet trend 

compared to other studies between the seasonal diet differences observed in the 
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PERMANOVA model and HMD indices when each season had a different prey 

item contributions to diets based on SIMPER analysis. In contrast, Pelaez-

Rodriguez et al. (2005) discovered no seasonal difference in diet for Sand 

Seatrout caught offshore at Veracruz, Mexico, suggesting minimal differences in 

only benthic prey across nortes (windy), wet, and dry seasons.  

Spotted Seatrout is a desirable recreational and commercial regulated 

targeted species whereas Sand Seatrout is a recreational species but not 

commercial targeted or regulated despite bycatch in shrimp trawls.  For both 

transient piscivorous fishes, life history has been generally well described but 

there is more datum for Spotted Seatrout in the Gulf of Mexico than Sand 

Seatrout. However, there is a need for additional Mississippi estuarine-specific 

abundance and diet composition for both species while focusing on seasonal and 

habitat type preference (not just reef type). Therefore, to further analyze 

abundance and diet composition future studies should 1) widen the extent of 

sampling to include juvenile fishes, 2) examine and include capture-sites abiotic 

characteristics, 3) obtain spatial and temporal prey abundance estimates, and 4) 

perform analyses considering habitat and prey relationships for individual fish 

species.



	
  

        
        

APPENDIX A 

Prey items found in stomachs of Cynoscion nebulosus collected during summer months (June- August) on low and high 
relief reefs. %O = percentage by frequency of occurrence, %N = percentage by number, %W = percentage by weight, 
%IRI = percentage of index of relative importance, UID= unidentified prey, and Fish = Actinopterygii. (Numbers in 
parenthesis: total number of stomachs/number of stomachs with prey) 

Cynoscion nebulosus	
  
Summer (June- August) 

               

Low Relief (27/21) High Relief (46/23)	
  
Prey Group/Item %O %N %W %IRI %O %N %W %IRI 

UID Amorphic Debris 19.05 5.63 0.41 1.77 0 0 0 0 
Arthropoda (P)         

Malcostraca (C)         
Decapoda (O)         

Penaeidae (F)         
 Farfantepenaeus aztecus  19.05 8.45 44.46 15.51 17.39 13.16 8.64 8.52 
UID Penaeidae Shrimp 9.52 1.41 0.80 0.32 4.35 2.63 0.07 0.26 

Palaemonidae (F)         
 Palaemonetes spp. 0 0 0 0 0 0 0 0 

Panopeidae (F)         
 Eurypanopeus depressus 0 0 0 0 0 0 0 0 

Portunidae (F)         
Callinectes spp. 0 0 0 0 0 0 0 0 

Vertebrata (P)         
Actinopterygii (C)         

Clupeiformes (O)         
Engraulidae (F)         

 Anchoa mitchilli 38.10 64.29 29.89 55.49 8.70 34.21 0.42 6.77 
 Anchoa spp. 4.76 4.23 0.09 0.32 0 0 0 0 
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Appendix A (continued). 
 

Cynoscion nebulosus	
  
Summer (June- August) 

               

Low Relief (27/21) High Relief (46/23)	
  
Prey Group/Item %O %N %W %IRI %O %N %W %IRI 

Clupeidae (F)         
Brevoortia patronus 4.76 1.41 2.54 0.29 0 0 0 0 
UID Clupeidae 0 0 0 0 0 0 0 0 

Siluriformes (O)         
Ariidae (F)         

UID Ariidae    0 0 0 0 0 0 0 0 
Perciformes (O)         

Carangidae (F)         
Chloroscombrus chrysurus 0 0 0 0 4.35 2.63 6.83 0.92 

Sciaenidae (F)         
Cynoscion spp. 0 0 0 0 13.04 7.89 53.57 18.02 
UID Sciaenidae 0 0 0 0 4.35 2.63 17.29 1.95 

Gobidae (F)         
UID Gobidae 0 0 0 0 0 0 0 0 

UID Fish Remains 47.62 14.08 21.81 26.30 56.52 36.84 13.18 63.55 
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APPENDIX B  

Prey items found in stomachs of Cynoscion nebulosus collected during fall months (September-November) on low and 
high relief reefs. %O = percentage by frequency of occurrence, %N = percentage by number, %W = percentage by 
weight, %IRI = percentage of index of relative importance, UID= unidentified prey, and Fish = Actinopterygii. (Numbers in 
parenthesis: total number of stomachs/number of stomachs with prey) 

Cynoscion nebulosus	
  
Fall (September- November) 

               
  

Low Relief (0/0) High Relief (8/2)	
  
Prey Group/Item %O %N %W %IRI %O %N %W %IRI 

UID Amorphic Debris 0 0 0 0 0 0 0 0 
Arthropoda (P)         

Malcostraca (C)         
Decapoda (O)         

Penaeidae (F)         
 Farfantepenaeus aztecus   0 0 0 0 0 0 0 0 
UID Penaeidae Shrimp 0 0 0 0 0 0 0 0 

Palaemonidae (F)         
 Palaemonetes spp. 0 0 0 0 0 0 0 0 

Panopeidae (F)         
 Eurypanopeus depressus 0 0 0 0 0 0 0 0 

Portunidae (F)         
Callinectes spp. 0 0 0 0 0 0 0 0 

Vertebrata (P)         
Actinopterygii (C)         

Clupeiformes (O)         
Engraulidae (F)         

 Anchoa mitchilli 0 0 0 0 0 0 0 0 
 Anchoa spp. 0 0 0 0 0 0 0 0 
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Appendix B (continued). 
 

Cynoscion nebulosus	
  
Fall (September- November) 

               

Low Relief (0/0) High Relief (8/2)	
  
Prey Group/Item %O %N %W %IRI %O %N %W %IRI 

Clupeidae (F)         
Brevoortia patronus 0 0 0 0 0 0 0 0 
UID Clupeidae 0 0 0 0 0 0 0 0 

Siluriformes (O)         
Ariidae (F)         

UID Ariidae    0 0 0 0 0 0 0 0 
Perciformes (O)         

Carangidae (F)         
Chloroscombrus chrysurus 0 0 0 0 0 0 0 0 

Sciaenidae (F)         
Cynoscion spp. 0 0 0 0 0 0 0 0 
UID Sciaenidae 0 0 0 0 0 0 0 0 

Gobidae (F)         
UID Gobidae 0 0 0 0 0 0 0 0 

UID Fish Remains 0 0 0 0 100 100 100 100 
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APPENDIX C 
 

Prey items found in stomachs of Cynoscion nebulosus collected during spring months (March - May) on low and high 
relief reefs. %O = percentage by frequency of occurrence, %N = percentage by number, %W = percentage by weight, 
%IRI = percentage of index of relative importance, UID = unidentified prey, and Fish = Actinopterygii. (Numbers in 
parenthesis: total number of stomachs/number of stomachs with prey) 
 

Cynoscion nebulosus	
  
Spring (March - May) 

               

Low Relief (67/46) High Relief (16/9)	
  
Prey Group/Item %O %N %W %IRI %O %N %W %IRI 

UID Amorphic Debris 8.70 7.27 1.16 0. 4 33.33 33.33 4.00 13.17 
Arthropoda (P)         

Malcostraca (C)         
Decapoda (O)         

Penaeidae (F)         
 Farfantepenaeus aztecus   0 0 0 0 0 0 0 0 
UID Penaeidae Shrimp 0 0 0 0 11.11 11.11 7.67 2.21 

Palaemonidae (F)         
 Palaemonetes spp. 2.17 1.82 0.59 0.03 0 0 0 0 

Panopeidae (F)         
 Eurypanopeus depressus 0 0 0 0 0 0 0 0 

Portunidae (F)         
Callinectes spp. 0 0 0 0 0 0 0 0 

Vertebrata (P)         
Actinopterygii (C)         

Clupeiformes (O)         
Engraulidae (F)         

 Anchoa mitchilli 0 0 0 0 0 0 0 0 
 Anchoa spp. 0 0 0 0 0 0 0 0 
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Appendix C (continued). 

 
 
 
 
 
 
 
 
 

 
Cynoscion nebulosus	
  
Spring (March - May) 

               

Low Relief (67/42) High Relief (16/9)	
  
Prey Group/Item %O %N %W %IRI %O %N %W %IRI 

Clupeidae (F)         
Brevoortia patronus 0 0 0 0 0 0 0 0 
UID Clupeidae 0 0 0 0 0 0 0 0 

Siluriformes (O)         
Ariidae (F)         

UID Ariidae    0 0 0 0 0 0 0 0 
Perciformes (O)         

Carangidae (F)         
Chloroscombrus chrysurus 0 0 0 0 0 0 0 0 

Sciaenidae (F)         
Cynoscion spp. 0 0 0 0 0 0 0 0 
UID Sciaenidae 0 0 0 0 0 0 0 0 

Gobidae (F)         
UID Gobidae 0 0 0 0 0 0 0 0 

UID Fish Remains 95.65 90.91 98.24 99.57 55.56 55.56 88.34 84.62 
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APPENDIX D  

Prey items found in stomachs of Cynoscion arenarius collected during summer months (June- August) on low and high 
relief reefs. %O = percentage by frequency of occurrence, %N = percentage by number, %W = percentage by weight, 
%IRI = percentage of index of relative importance, UID = unidentified prey, and Fish = Actinopterygii. (Numbers in 
parenthesis: total number of stomachs/ number of stomachs with prey). 

Cynoscion arenarius 
Summer (June- August) 

               

Low Relief (42/33) High Relief (13/6) 
Prey Group/Item %O %N %W %IRI %O %N %W %IRI 

UID Amorphic Debris 18.18 10.87 0.83 3.98 33.33 33.33 1.85 19.44 
Arthropoda (P)         

Malcostraca (C)         
Decapoda (O)         

Penaeidae (F)         
 Farfantepenaeus aztecus  21.21 17.39 25.03 16.85 16.67 16.67 84.81 28.04 
UID Penaeidae Shrimp 21.21 15.22 2.02 6.85 0 0 0 0 

Palaemonidae (F)         
 Palaemonetes spp. 0 0 0 0 0 0 0 0 

Panopeidae (F)         
 Eurypanopeus depressus 0 0 0 0 0 0 0 0 

Portunidae (F)         
Callinectes spp. 0 0 0 0 0 0 0 0 

Vertebrata (P)         
Actinopterygii (C)         

Clupeiformes (O)         
Engraulidae (F)         

 Anchoa mitchilli 0 0 0 0 0 0 0 0 
Anchoa spp. 0 0 0 0 0 0 0 0 

 

46 



	
  

        
        

Appendix D (continued). 

 
 
 
 
 
 
 
 
 

 
Cynoscion arenarius	
  

Summer (June- August) 
               

Low Relief (42/33) High Relief (13/6)	
  
Prey Group/Item %O %N %W %IRI %O %N %W %IRI 

Clupeidae (F)         
Brevoortia patronus 0 0 0 0 0 0 0 0 
UID Clupeidae 3.03 2.17 8.43 0.60 0 0 0 0 

Siluriformes (O)         
Ariidae (F)         

UID Ariidae    3.03 2.17 0.21 0.14 0 0 0 0 
Perciformes (O)         

Carangidae (F)         
Chloroscombrus chrysurus 0 0 0 0 0 0 0 0 

Sciaenidae (F)         
Cynoscion spp. 6.06 4.35 13.10 1.98 0 0 0 0 
UID Sciaenidae 6.06 4.35 36.65 4.65 0 0 0 0 

Gobidae (F)         
UID Gobidae 0 0 0 0 0 0 0 0 

UID Fish Remains 60.61 43.48 13.73 64.94 50.00 50.00 13.34 52.51 
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APPENDIX E 

Prey items found in stomachs of Cynoscion arenarius collected during fall months (September-November) on low and 
high reliefs. %O = percentage by frequency of occurrence, %N = percentage by number, %W = percentage by weight, 
%IRI = percentage of index of relative importance, UID = unidentified prey, and Fish = Actinopterygii. (Numbers in 
parenthesis: total number of stomachs/ number of stomachs with prey). 

Cynoscion arenarius	
  
Fall (September- November) 

               

Low Relief (7/3) High Relief (31/16)	
  
Prey Group/Item %O %N %W %IRI %O %N %W %IRI 

UID Amorphic Debris 0 0 0 0 0 0 0 0 
Arthropoda (P)         

Malcostraca (C)         
Decapoda (O)         

Penaeidae (F)         
 Farfantepenaeus aztecus   0 0 0 0 0 0 0 0 
UID Penaeidae Shrimp 0 0 0 0 0 0 0 0 

Palaemonidae (F)         
 Palaemonetes spp. 0 0 0 0 0 0 0 0 

Panopeidae (F)         
 Eurypanopeus depressus 33.33 33.33 2.03 17.68 0 0 0 0 

Portunidae (F)         
Callinectes spp. 0 0 0 0 6.25 6.25 0.01 0.71 

Vertebrata (P)         
Actinopterygii (C)         

Clupeiformes (O)         
Engraulidae (F)         

 Anchoa mitchilli 0 0 0 0 6.25 5.26 2.71 1.01 
 Anchoa spp. 0 0 0 0 12.5 10.3 0.11 2.85 
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Appendix E (continued). 
 

Cynoscion arenarius	
  
Fall (September- November) 

               

Low Relief (7/3) High Relief (31/16)	
  
Prey Group/Item %O %N %W %IRI %O %N %W %IRI 

Clupeidae (F)         
Brevoortia patronus 0 0 0 0 31.25 26.32 83.46 64.97 
UID Clupeidae 0 0 0 0 0 0 0 0 

Siluriformes (O)         
Ariidae (F)         

UID Ariidae    0 0 0 0 6.25 5.26 2.0 0.93 
Perciformes (O)         

Carangidae (F)         
Chloroscombrus chrysurus 0 0 0 0 0 0 0 0 

Sciaenidae (F)         
Cynoscion spp. 0 0 0 0 0 0 0 0 
UID Sciaenidae 33.33 33.33 87.36 60.35 0 0 0 0 

Gobidae (F)         
UID Gobidae 0 0 0 0 6.25 5.26 0.10 0.72 

UID Fish Remains 33.33 33.33 10.62 21.97 56.25 42.11 11.61 28.81 
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APPENDIX F  

Prey items found in stomachs of Cynoscion arenarius collected during spring months (March - May) on low and high relief 
reefs. %O = percentage by frequency of occurrence, %N = percentage by number, %W = percentage by weight, %IRI = 
percentage of index of relative importance, UID = unidentified prey, and Fish = Actinopterygii. (Numbers in parenthesis: 
total number of stomachs/ number of stomachs with prey). 

Cynoscion arenarius	
  
Spring (March - May) 

               

Low Relief (31/19) High Relief (5/5)	
  
Prey Group/Item %O %N %W %IRI %O %N %W %IRI 

UID Amorphic Debris 10.53 9.52 0.21 0.98 40.00 33.33 0.78 18.30 
Arthropoda (P)         

Malcostraca (C)         
Decapoda (O)         

Penaeidae (F)         
 Farfantepenaeus aztecus   0 0 0 0 0 0 0 0 
UID Penaeidae Shrimp 5.26 4.76 0.73 0.28 0 0 0 0 

Palaemonidae (F)         
 Palaemonetes spp. 0 0 0 0 0 0 0 0 

Panopeidae (F)         
 Eurypanopeus depressus 0 0 0 0 0 0 0 0 

Portunidae (F)         
Callinectes spp. 0 0 0 0 0 0 0 0 

Vertebrata (P)         
Actinopterygii (C)         

Clupeiformes (O)         
Engraulidae (F)         

Anchoa mitchilli 0 0 0 0 0 0 0 0 
Anchoa spp. 0 0 0 0 0 0 0 0 
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Appendix F (continued). 
 

Cynoscion arenarius	
  
Spring (March - May) 

               

Low Relief (31/19) High Relief (5/5)	
  
Prey Group/Item %O %N %W %IRI %O %N %W %IRI 

Clupeidae (F)         
Brevoortia patronus 5.26 4.76 33.60 1.93 0 0 0 0 
UID Clupeidae 0 0 0 0 0 0 0 0 

Siluriformes (O)         
Ariidae (F)         

UID Ariidae    0 0 0 0 0 0 0 0 
Perciformes (O)         

Carangidae (F)         
Chloroscombrus chrysurus 0 0 0 0 0 0 0 0 

Sciaenidae (F)         
Cynoscion spp. 0 0 0 0 0 0 0 0 
UID Sciaenidae 5.26 4.76 14.56 0.97 20.00 16.67 79.79 25.86 

Gobidae (F)         
UID Gobidae 0 0 0 0 0 0 0 0 

UID Fish Remains 78.95 76.19 50.91 95.85 60.00 50.00 19.42 55.84 
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APPENDIX G  

IACUC APPROVAL FORM 
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