
School of Computing Sciences and Computer Engineering

Introduction to Computer Engineering
Evidence-Based Inclusive Teaching Practices

Zhaoxian Zhou
‗

November 12, 2024

‗
University of Southern Mississippi

Disclaimer
You can edit this page to suit your needs. For instance, here we have a no copyright statement, a colophon

and some other information. This page is based on the corresponding page of Ken Arroyo Ohori’s thesis, with

minimal changes.

No copyright
cz This book is released into the public domain using the CC0 code. To the extent possible under law, I waive

all copyright and related or neighbouring rights to this work.

To view a copy of the CC0 code, visit:

http://creativecommons.org/publicdomain/zero/1.0/

Colophon
This document was typeset with the help of KOMA-Script and LAT

E
X using the kaobook class.

The source code of this book is available at:

https://github.com/fmarotta/kaobook

(You are welcome to contribute!)

Publisher
First printed in August 2023 by

http://creativecommons.org/publicdomain/zero/1.0/
https://sourceforge.net/projects/koma-script/
https://www.latex-project.org/
https://github.com/fmarotta/kaobook/
https://github.com/fmarotta/kaobook

In life sciences, we find a reasonable balance between men and women. In

engineering and computer science, we have a major problem. A very small

percentage of women will be in computer science.

– Freeman A. Hrabowski III.

Preface

1 Evidence-based instruction

Here are top 10 evidence based teaching strategies [1]

1. State Clear Learning Goals repeatedly, so students have a clear idea of where they are going and what it

will look like when they get there. This is a practice that creates transparency in learning and teaching.

2. Share and Model concepts to explain and then demonstrate how students will do a task, whether a physical

or thinking task. Sharing and modeling looks different in each discipline. For some, that may be “thinking

out loud" to show students how experts process or it may be doing a physical demonstration.

3. Check for Student Understanding by asking for feedback from students in various ways, regularly. Research

shows that this habit of asking for student feedback has more impact for learning than giving students

feedback. Ask what students what they understand. and how the course and class sessions are structured

helps them learn. Resources that you can import into Canvas are available for Clemson instructors. Search

"clemson teaching" in the Commons.

4. Give Feedback to Students regularly - on work that is a low stakes grade - in a feedback loop. Think

“homework", classwork and quizzes. Encourage students to evaluate their own assessment results (see

below).

5. Record information in graphical ways by both instructor and students for visual learning and deeper

processing. This area includes adding key, clear visuals to powerpoints (visuals are easier to remember),

creating graphs, charts, and diagrams - and having students create their own.

6. Allow Repeat and Spaced Practice through assigned work out of class & work during class with

opportunities for feedback to & from students. See number four above. Repeat practice spaced over time -

such as having students recall information from earlier in the course - helps solidify their learning.

7. Create Opportunities for Peer-to-Peer Learning so that students assist each other in understanding concepts.

The basis of excellent “group work" is work that is meaningful for students, in which they can all contribute

to each others’ learning. In large classes, this can be accomplished by “pair-share" questions they discuss

with their immediate neighbors.

8. Build in Time to Succeed by allowing varying time per unit, in particular to account for learning difficult

concepts. While difficult to accomplish “on the fly," instructors who have taught the content before can

provide students more time on difficult concepts. Consider examining the “threshold concepts" in your

content area.

9. Teach Strategies for Learning with general resources and techniques specific to a discipline. Encourage

students to us resources from the Academic Success Center and the libraries and provide information on

ways to learn in the particular content area that you are teaching. Students today often have gaps in their

knowledge of study techniques, such as effective note-taking, approaches to time management, and test

preparation.

10. Nurture Metacognition by prompting students to ask how they are thinking about a subject. This area is

getting a lot of attention in higher education currently. Encouraging students to assess their own learning

through activities and homework helps them take responsibility for their learning–and balances out the

“teaching and learning" responsibilities.

2 Active learning

Active learning strategies in the college classroom refer to techniques that promote student engagement and

active participation in the learning process. Rather than simply listening to lectures and taking notes, active

learning strategies encourage students to interact with the material, think about what they are doing, ask

questions, collaborate with peers, and apply their knowledge in real-world scenarios.

Examples of active learning strategies in the college classroom include:

▶ Group discussions and peer-to-peer learning

▶ Problem-based learning and case studies

▶ Interactive lectures and demonstrations

▶ Flipped classroom model, where students review materials before class and engage in discussions and

activities in the classroom

▶ In-class exercises, such as debates, brainstorming sessions, and simulations

▶ Use of technology, such as online polls and quizzes, to encourage participation and engagement

The goal of active learning strategies is to create a dynamic learning environment that promotes critical thinking,

problem-solving, and engagement. By encouraging students to actively participate in the learning process, active

learning strategies can help improve learning outcomes and better prepare students for success in their future

careers.

Active learning is a global trend, and many universities across the world are incorporating these methodologies

into their teaching practices. The effectiveness of active learning often depends on the specific courses, instructors,

and the overall institutional culture. Many universites, such MIT and standford Univeristy, support faculty

development, pedagogical research, technology integration, and provide student support services.

3 Inclusive teaching

Inclusive teaching refers to the practice of creating a learning environment that values and respects the diversity

of all students. It is a pedagogical approach that recognizes and addresses the unique backgrounds, experiences,

and perspectives of students, with the goal of ensuring that all students feel supported, engaged, and empowered

to learn.

Inclusive teaching strategies can include a variety of practices, such as:

▶ Creating a welcoming and respectful classroom environment that values diversity and encourages open

discussion and active participation from all students.

▶ Using a variety of teaching methods and materials that reflect and respect the diversity of the student

body.

▶ Providing multiple means of representation, expression, and engagement to accommodate different

learning styles and abilities.

▶ Incorporating inclusive language and images in course materials, assignments, and discussions.

▶ Being aware of and addressing potential biases and stereotypes that may affect student learning and

engagement.

▶ Encouraging and promoting collaborative and cooperative learning among students of different back-

grounds and experiences.

▶ Providing opportunities for feedback and reflection to continually improve teaching practices and support

student learning.

Overall, inclusive teaching seeks to create a learning environment where all students feel seen, heard, and

valued, and where diversity is celebrated as a strength.

There are some resources that help inclusive teaching:

▶ The Association of College and University Educators (ACUE) [2]

▶ American Society for Engineering Education (ASEE) [3]

Although Computing Engineering might not be assumed to be inclusive traditionally, the proposed project tries

to change it. It is expected that all students in CE 101 will be impacted by either improvement in their learning

outcomes directly, or awareness of the necessity of diversity, equity, and inclusion, or both. It is also expected

that underrepresented minority, first-generation, and woman students will benefit the most. The project aligns

well with the School’s mission and USM’s value to support “an inclusive community that embraces the diversity

of people and ideas".

Zhaoxian Zhou

Contents

Preface v
1 Evidence-based instruction . v

2 Active learning . vi

3 Inclusive teaching . vi

Contents ix

1 Overview of Computer Engineering 1
1.1 What is Computer Engineering? . 1

1.2 History of Computer Engineering . 2

1.3 Computer Science, Computer Engineering, and Electrical Engineering 3

1.4 Fields and Subfields in Computer Engineering . 4

1.5 The Role of Computer Engineers in Society . 5

1.6 Ethical Issues . 6

1.7 Diversity and Inclusion . 7

2 Binary Systems and Number-base Conversions 9
2.1 Number Systems . 9

2.2 Number Conversion . 10

2.3 Complements of Numbers . 14

2.3.1 Complements of Decimal Numbers . 14

2.3.2 Complements of Binary Numbers . 14

2.4 Unsigned and Signed Binary Numbers . 15

2.4.1 Unsigned binary numbers . 15

2.4.2 Signed binary numbers . 16

2.4.3 How does a computer do arithmetic addition? . 17

2.4.4 How does a computer do arithmetic subtraction? . 19

2.5 Binary Codes . 20

2.5.1 BCD code . 20

2.5.2 Gray Code . 24

2.5.3 ASCII Character Code . 26

2.5.4 Error Detection Code . 26

2.5.5 Error Correction Code . 29

2.6 Representation of data . 30

2.6.1 Data in Computers . 31

2.6.2 Data on Hard Disks . 31

2.6.3 Data in Wireless Communication Systems . 32

3 Boolean Algebra and Logic Gates 33
3.1 Introduction . 33

3.1.1 Two-valued Boolean Algebra . 33

3.1.2 Logic Operations . 33

3.1.3 Logic Gates . 34

3.2 Boolean Functions . 37

3.2.1 Represent Boolean Functions with Truth Table . 39

3.2.2 Represent Boolean Functions with Logic Circuits . 40

3.3 Fundamentals in Boolean Algebra . 41

3.3.1 Operator Precedence . 41

3.3.2 Basic Postulates and Theorems . 41

3.3.3 Complement of Boolean Functions . 42

4 Gate-Level Minimization 45
4.1 Introduction . 45

4.2 Simplifying Boolean Functions with Boolean Algebra . 46

4.3 Minterms and Maxterms . 50

4.3.1 Definitions . 50

4.3.2 Designations . 50

4.4 Canonical Forms . 51

4.4.1 Canonical sum-of-products (SOP) form . 51

4.4.2 Canonical product-of-sums (POS) form . 53

4.4.3 Conversion between SOP and POS forms . 54

4.5 Standard Forms and Non Standard Forms . 56

4.6 Digital Logic Gates . 58

4.7 Karnaugh Maps . 59

4.7.1 Two-Variable K-Map . 59

4.7.2 Three-Variable K-Map . 60

4.7.3 Four-Variable K-Map . 61

4.8 Design Example: a Clock with 7-Segment Display . 66

5 Hardware 71
5.1 Computer Systems . 71

5.2 Hardware in Computer Architecture . 74

5.3 Hardware in Computer Networks and Cyber Security . 79

5.4 Hardware in Embedded Systems and Robotics . 83

6 Software 87
6.1 Operating Systems . 87

6.2 Application Software . 88

6.3 Programming Software . 91

6.4 Database Software . 92

6.5 Security Software . 93

6.6 AI-related Software . 94

7 Network 97
7.1 Network Architecture . 97

7.2 Network Protocols . 98

7.3 Wireless Networking . 99

7.4 Network Security . 100

7.5 Network Management . 100

7.6 Cloud Networking . 101

7.7 Summary . 102

8 Embedded Systems 103
8.1 Introduction . 103

8.2 History of Embedded Systems . 103

8.3 Characteristics of Embedded Systems . 104

8.4 Design Principles of Embedded Systems . 104

8.5 Applications of Embedded Systems . 105

8.6 Challenges and Opportunities . 106

8.7 Summary . 107

9 Artificial Intelligence 109
9.1 Introduction . 109

9.2 AI Algorithms . 110

9.3 Design Optimization . 124

9.4 Quality Control . 125

9.5 Predictive Maintenance . 126

9.6 Cybersecurity . 127

9.7 Intelligent Automation . 128

9.8 AI in Education . 128

9.9 Summary . 129

10 Cybersecurity 131
10.1 Introduction . 131

10.2 Types of Cyber Threats . 131

10.3 Impact of Cyber Threats . 132

10.4 Preventing Cyber Threats . 133

10.5 Challenges in Cybersecurity . 133

10.6 Summary . 134

11 Engineering Standards and Constraints 135
11.1 Introduction . 135

11.2 Engineering Standards . 135

11.3 Contraints . 138

12 Future of Computer Engineering 141

Appendix 143

A About AAAA 145
A.1 aaaa . 145

A.2 bbbb . 145

B About BBBB 147
B.1 aaaa . 147

B.2 bbbb . 147

Bibliography 149

Alphabetical Index 157

List of Figures

2.1 Generating 4-bit Gray Codes . 25

2.2 Example of ISBN . 28

3.1 Logic Gates . 35

3.3 Diode Circuit for AND Gate . 35

3.4 Diode Circuit for OR Gate . 35

3.2 A diode . 35

3.5 Transistors: NPN and PNP . 36

3.6 Transistor as a switch . 36

3.7 Transistor Circuit for AND Gate . 37

3.8 Transistor Circuit for OR Gate . 37

3.9 Transistor Circuit for NOT Gate . 37

3.10 A Logic Circuit . 40

3.11 A Logic Circuit . 40

3.12 A Logic Circuit . 41

4.1 Two-Level Logic in SOP Form . 56

4.2 Two-Level Logic in POS Form . 57

4.3 Three-Level Implementation . 57

4.4 Two-Variable K-Map . 60

4.5 An example . 60

4.6 Three-Variable K-Map . 61

4.7 Example . 62

4.8 Example . 63

4.9 Example . 63

4.10 Example . 63

4.11 Four-Variable K-Map . 64

4.12 Example . 64

4.13 Example . 64

4.14 Example . 65

4.15 Two Types of 7-Segment Display . 66

4.16 Hex Symbols . 69

4.17 74HC393 . 69

4.18 K-Map for Pin a . 70

5.1 Block diagram of a basic CPU . 76

5.2 DRAM cell . 77

5.3 SRAM cell . 78

5.4 Logic Gates . 79

9.1 Linear Regression . 111

9.2 Logistic Regression . 112

9.3 Decision Tree . 114

9.4 Random Forrest . 115

9.5 Support Vector Machine for 2D Data Set . 117

9.6 Support Vector Machine for 3D Data Set . 118

9.7 Convolutional Neural Networks . 119

9.8 K-Nearest Neighbors . 120

9.9 K Means . 122

9.10 Gradient Boosting . 123

List of Tables

2.1 Ranges for Signed Magnitude Numbers . 16

2.2 Signed Decimal Numbers and their 1’s Complement Representation 16

2.3 Ranges for Signed 1’s Complement Numbers . 17

2.4 Signed Decimal Numbers and their 2’s Complement Representation 17

2.5 Ranges for Signed 2’s Complement Numbers . 17

2.6 BCD Codes for Decimal Digits . 21

2.7 Gray Code for Decimal Digits . 24

2.8 ASCII Codes for Some Characters . 26

3.1 Truth Table of XOR Function . 38

3.2 Truth Table of NAND Function . 38

3.3 Truth Table of NOR Function . 39

3.4 Basic Postulates and Theorems in Boolean Algebra . 42

4.1 Designations of Minterms and Maxterms . 51

4.2 Truth Table for the Clock . 67

1 Overview of Computer Engineering

1.1 What is Computer Engineer-
ing? 1

1.2 History of Computer Engi-
neering 2

1.3 Computer Science, Computer
Engineering, and Electrical
Engineering 3

1.4 Fields and Subfields in
Computer Engineering 4

1.5 The Role of Computer Engi-
neers in Society 5

1.6 Ethical Issues 6
1.7 Diversity and Inclusion . . . 7

1.1 What is Computer Engineering?

Computer engineering is an interdisciplinary field of study that combines

principles from computer science and electrical engineering to design,

develop, and test computer systems. It encompasses a wide range of tech-

nologies and applications, from microprocessors and embedded systems

to computer networks and information systems. Computer engineering is

a vital field, as it provides the foundation for the development of modern

computing systems, including personal computers, smartphones, and the

internet.

The field of computer engineering focuses on the design and analysis of

digital systems, including microprocessors, memory systems, and commu-

nication networks. This involves understanding the underlying principles of

computer hardware and software, as well as the algorithms and data struc-

tures that underlie modern computing systems. Computer engineers must

also be familiar with the various programming languages and software

tools used to develop and test computer systems.

1
1: List some computer engineering topics

you know before enrolling in this class.

One of the primary areas of focus in computer engineering is the devel-

opment of new computer hardware. This includes designing and testing

microprocessors, memory systems, and other components that form the

building blocks of modern computers. Computer engineers may also work

on the development of new types of computer hardware, such as wearable

devices or specialized sensors.

Another area of focus in computer engineering is the design of computer

networks. This involves developing protocols for transmitting data between

different devices, as well as designing the hardware and software that

2 1 Overview of Computer Engineering

enable these networks to function. Computer engineers may work on the

development of both local area networks (LANs) and wide area networks

(WANs), which are used to connect computers and other devices over large

distances.

In addition to hardware and network design, computer engineering also

involves the development of software applications. Computer engineers

may work on developing software that runs on a single device, such as a

personal computer or smartphone, or they may work on the development of

complex software systems that run on multiple devices and platforms. This

requires a deep understanding of programming languages, software tools,

and the various platforms on which software is developed and deployed.

Another important area of focus in computer engineering is user interface

design. This involves designing the visual and interactive elements of

software applications and other computer systems, including graphical

user interfaces (GUIs), touchscreens, and other input devices. User interface

design is critical to the success of computer systems, as it can greatly impact

the user experience and usability of a system.

In addition to these specific areas of focus, computer engineering also

involves a wide range of general skills and knowledge. Computer engineers

must be able to work in a team environment, as they often collaborate with

other engineers and professionals from different disciplines. They must also

be able to communicate effectively with non-technical stakeholders, such as

managers and clients. Computer engineers must also stay up-to-date with

the latest technologies and trends in the field, as computer engineering is a

rapidly evolving discipline.

2
2: List some computer engineering topics

you know after enrolling in this class.

Overall, computer engineering is a vital field that plays a critical role in the

development of modern computing systems. It combines principles from

computer science and electrical engineering to design, develop, and test

computer systems, including hardware and software components. Com-

puter engineers work in a wide range of industries, including technology,

healthcare, finance, and entertainment, and play an essential role in driving

innovation and progress in these industries. As the field of computing

continues to evolve and expand, the need for skilled and knowledgeable

computer engineers will only continue to grow.

1.2 History of Computer Engineering

The history of computer engineering can be traced back to the early

days of computing, when the first digital computers were developed.

During the 1940s and 1950s, computer systems were large, expensive, and

highly specialized machines that were primarily used for scientific and

military applications. These early computers were built using vacuum

tubes and other primitive electronic components, and were programmed

using punched cards and other mechanical devices.

1.3 Computer Science, Computer Engineering, and Electrical Engineering 3

In the 1960s and 1970s, the development of the integrated circuit (IC)

revolutionized the field of computer engineering. The IC allowed for the

miniaturization of electronic components, making it possible to build

smaller and more powerful computer systems. The first commercially

available ICs were developed by companies such as Texas Instruments

and Fairchild Semiconductor, and were used in a wide range of elec-

tronic devices, including calculators, digital watches, and early personal

computers.

During the 1980s and 1990s, computer engineering underwent a period of

rapid growth and innovation. The development of the microprocessor, a

single-chip CPU that integrated all of the functions of a computer’s central

processing unit onto a single chip, was a major milestone in the history

of computer engineering. The microprocessor made it possible to build

powerful and versatile computer systems that were affordable and widely

available to consumers.

The rise of personal computers during the 1980s and 1990s also had a

significant impact on the field of computer engineering. Companies such

as IBM, Apple, and Microsoft developed new software and hardware

technologies that made it possible for ordinary people to use computers

for a wide range of applications, including word processing, gaming, and

communication.

During the 2000s and 2010s, computer engineering continued to evolve and

expand. The development of the internet and other network technologies

enabled the creation of vast digital networks that connected people and com-

puters around the world. The rise of mobile devices such as smartphones

and tablets also had a significant impact on the field of computer engineer-

ing, as these devices required new hardware and software technologies to

enable their small size, portability, and advanced features.

Today, computer engineering is a rapidly evolving field that continues to

drive innovation and progress in a wide range of industries, including

technology, healthcare, finance, and entertainment. Computer engineers

work on a variety of projects, including developing new computer hard-

ware, designing computer networks, creating software applications, and

designing user interfaces. As the field of computing continues to evolve

and expand, the need for skilled and knowledgeable computer engineers

will only continue to grow.

1.3 Computer Science, Computer Engineering,
and Electrical Engineering

3
3: Obtain a copy of the CEBS curriculum

before hand. You can find it online, or re-

quest one from the office or the instructor.

Computer science, computer engineering, and electrical engineering are

three closely related but distinct fields in the realm of technology. Some

key similarities and differences between these fields are discussed below.

4
4: Examine the courses in the CEBS cur-

riculum. Identify the courses in CS, EE,

and CE, respectively.

4 1 Overview of Computer Engineering

Similarities:

▶ All three fields are involved in the design, development, and imple-

mentation of computer-based systems.

▶ They all involve the use of mathematics and logic to solve problems

and create efficient solutions.

▶ They require an understanding of fundamental principles of com-

puter hardware and software.

▶ They are all interdisciplinary fields, with some overlap in coursework

and research areas.

Differences:

▶ Computer science focuses primarily on software and algorithms,

including programming languages, data structures, algorithms, and

computational theory. It involves the study of computer systems

and their applications, but does not typically involve the design of

hardware components.

▶ Computer engineering focuses on the design and development of

computer hardware and systems, including microprocessors, circuit

design, and embedded systems. It combines principles of computer

science and electrical engineering.

▶ Electrical engineering involves the study and application of electricity,

electronics, and electromagnetism. It encompasses a broad range of

subfields, including power systems, signal processing, telecommu-

nications, and control systems. It is not necessarily focused solely

on computers, but can involve the design and implementation of

electronic systems.

5
5: List other courses you would like to see

in our CEBS curriculum.

In summary, computer science, computer engineering, and electrical engi-

neering share some similarities in their focus on technology and problem-

solving, but differ in their specific areas of study and applications. Computer

science focuses on software and algorithms, computer engineering focuses

on hardware and systems, and electrical engineering has a broader range

of applications in electronics and electromagnetism.

1.4 Fields and Subfields in Computer Engineering

Computer engineering is a field of study that involves the design, develop-

ment, and maintenance of computer systems and their components. It is

a broad field that encompasses a wide range of subfields, each of which

focuses on specific aspects of computer engineering.

One of the primary subfields of computer engineering is computer hard-

ware engineering. This subfield involves the design and development of

computer hardware, such as central processing units (CPUs), memory

devices, and input/output (I/O) devices. Computer hardware engineers

also work on the design and development of computer systems, including

desktop and laptop computers, servers, and supercomputers.

1.5 The Role of Computer Engineers in Society 5

Another subfield of computer engineering is computer software engineer-

ing. This subfield focuses on the design, development, and maintenance

of software applications and systems. Computer software engineers are

responsible for creating programs and applications that run on computer

systems, as well as developing software tools and platforms that other

engineers can use to develop new applications.

Computer network engineering is another important subfield of computer

engineering. This subfield focuses on the design and development of com-

puter networks, including local area networks (LANs), wide area networks

(WANs), and the internet. Computer network engineers are responsible for

designing and implementing network architectures, protocols, and security

measures to ensure that computer systems can communicate and share

data securely and efficiently.

Other subfields of computer engineering include computer graphics and

multimedia engineering, which involves the design and development of

graphics and multimedia software and systems, and computer architecture

engineering, which focuses on the design and development of computer

systems and architectures.

In addition to these subfields, computer engineering also intersects with

other fields, such as electrical engineering, software engineering, and

computer science. As such, computer engineering is a multidisciplinary

field that draws on a variety of different disciplines and technologies to

create innovative and effective computer systems and applications.

Overall, computer engineering is a rapidly growing and evolving field that

plays a crucial role in the development of modern technology. As technology

continues to advance, the need for skilled computer engineers who can

design, develop, and maintain computer systems will only continue to

grow.

1.5 The Role of Computer Engineers in Society

Computer engineers play a crucial role in society today, as they are respon-

sible for designing and developing the technology that powers many of

the systems and applications we rely on every day. From smartphones and

laptops to complex computer networks and supercomputers, computer

engineers are the driving force behind much of the modern technology

that enables us to work, communicate, and connect with one another.

One of the primary roles of computer engineers in society is to develop

and maintain computer hardware and software systems. This includes

designing and building computer systems and components, as well as

creating and testing software applications and tools. Computer engineers

also play a crucial role in ensuring that computer systems are secure and

reliable, working to develop new security measures and protocols to protect

against cyber threats and other forms of attack.

Computer engineers are also responsible for developing and implementing

computer networks and communication systems. This includes designing

6 1 Overview of Computer Engineering

and building the hardware and software systems that enable computers to

communicate and share data with one another, as well as developing the

protocols and standards that govern how information is transmitted and

received over these networks.

In addition to these technical responsibilities, computer engineers also play

an important role in society by using their expertise to help solve real-world

problems. For example, computer engineers might work on developing

new technologies and applications that can help address environmental

challenges, such as improving energy efficiency or reducing waste. They

might also work on developing new medical technologies, such as wearable

devices or diagnostic tools, that can help improve health outcomes for

patients.

Computer engineers also play an important role in education and research,

working to develop new theories and methodologies that can help advance

the field of computer engineering. This includes conducting research

into new hardware and software technologies, as well as exploring new

applications and use cases for existing technologies.

Overall, the role of computer engineers in society is multifaceted and

complex. From designing and building computer systems and applications

to developing new technologies and conducting research, computer en-

gineers are responsible for driving much of the technological innovation

that powers modern society. As such, the work of computer engineers is

essential to the continued development and progress of our society, and

will only become more important as technology continues to advance and

evolve.

1.6 Ethical Issues

Ethics in computer engineering refers to the moral principles and values

that guide the development and use of computer systems and technology.

Here are some of the key ethical issues in computer engineering:

▶ Privacy and data security: As technology advances, collecting, storing,

and analyzing data has become easier than ever. However, this has

also led to concerns about data privacy and security. Computer

engineers have a responsibility to design and implement systems

that protect users’ data and maintain their privacy.

▶ Bias and discrimination: Computer systems and algorithms can be

influenced by the biases of their developers, resulting in discrimina-

tion against certain groups of people. Computer engineers should

strive to create systems that are fair and unbiased, and take steps to

identify and address biases in their work.

▶ Intellectual property: Intellectual property rights are an important

consideration in computer engineering. Developers must respect the

intellectual property rights of others and ensure that their own work

is properly protected.

1.7 Diversity and Inclusion 7

▶ Accessibility: Computer systems and technology should be accessible

to everyone, regardless of their physical abilities. Computer engineers

should design systems that are accessible to people with disabilities

and ensure that their work complies with accessibility standards.

▶ Social responsibility: Computer engineers have a responsibility to

consider the impact of their work on society as a whole. This includes

designing systems that do not contribute to harmful practices, such

as environmental damage or social inequality.

In summary, ethics in computer engineering involves considering the

moral implications of one’s work and making decisions that prioritize the

well-being of users, society, and the environment. Computer engineers

have a responsibility to create systems that are secure, unbiased, accessible,

and socially responsible. By prioritizing ethics in their work, computer

engineers can help ensure that technology is used for the greater good.

1.7 Diversity and Inclusion

Diversity and inclusion are crucial for creating a vibrant and innovative

field in computer engineering. Here are some ways in which diversity and

inclusion can be promoted in computer engineering:

▶ Increase diversity in computer engineering programs: Encouraging

a diverse range of students to study computer engineering can

help ensure that a variety of perspectives and ideas are brought

to the field. This can be achieved through targeted recruitment

efforts, scholarships and other financial incentives, and outreach to

underrepresented communities.

6

6: Discuss the diversity and inclusion of

CEBS programs. Discuss ideas to increase

diversity in our CEBS.

▶ Foster an inclusive culture: Creating a welcoming and supportive

culture can help attract and retain a diverse range of individuals

in computer engineering. This can involve providing mentorship

and networking opportunities, promoting work-life balance, and

addressing issues of bias and discrimination in the workplace.

7

7: Compared with other fields, how di-

verse and inclusive is computer engineer-

ing?

▶ Develop diverse teams: Creating teams with diverse backgrounds

and experiences can lead to more innovative and creative solutions.

This can be achieved through inclusive hiring practices, such as

expanding recruitment to a wider range of sources, and providing

training on unconscious bias to hiring managers.

8

8: Which companies are more diverse and

inclusive?▶ Support professional development: Providing resources and opportu-

nities for professional development can help ensure that individuals

from underrepresented groups have the support they need to suc-

ceed in computer engineering. This can include access to training

and mentoring programs, opportunities for networking and career

advancement, and resources for continuing education.

▶ Promote diversity in leadership: Encouraging and supporting indi-

viduals from underrepresented groups to take on leadership roles in

8 1 Overview of Computer Engineering

computer engineering can help create a more inclusive and diverse

field. This can involve providing leadership training and develop-

ment opportunities, creating pathways for advancement, and actively

seeking out and promoting diverse candidates for leadership posi-

tions.

9
9: Discuss any figures who promoted di-

versity and inclusion in engineering?

Overall, promoting diversity and inclusion in computer engineering re-

quires a concerted effort from individuals, organizations, and institutions.

By fostering an inclusive culture and supporting a diverse range of indi-

viduals, the field can become more innovative, responsive, and effective in

meeting the needs of society.

2 Binary Systems and Number-base Conversions

2.1 Number Systems 9
2.2 Number Conversion 10
2.3 Complements of Numbers 14
2.3.1 Complements of Decimal

Numbers 14
2.3.2 Complements of Binary

Numbers 14
2.4 Unsigned and Signed

Binary Numbers 15
2.4.1 Unsigned binary numbers 15
2.4.2 Signed binary numbers . . 16
2.4.3 How does a computer do

arithmetic addition? 17
2.4.4 How does a computer do

arithmetic subtraction? . . 19
2.5 Binary Codes 20
2.5.1 BCD code 20
2.5.2 Gray Code 24
2.5.3 ASCII Character Code . . . 26
2.5.4 Error Detection Code . . . 26
2.5.5 Error Correction Code . . . 29
2.6 Representation of data . . . 30
2.6.1 Data in Computers 31
2.6.2 Data on Hard Disks 31
2.6.3 Data in Wireless Commu-

nication Systems 32

Some fundamental concepts in computer engineering, including bits, data

types, operations, logic operations and elements,

2.1 Number Systems

1. Decimal : The decimal number system is a positional number system

that uses ten digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) to represent numbers.

Each digit has a place value that depends on its position in the

number. The rightmost digit represents the units place, the next digit

to the left represents the tens place, the next digit to the left represents

the hundreds place, and so on.

Example 2.1.1 The number 1234 in the decimal system represents

1234.56 = 1× 10
3 + 2× 10

2 + 3× 10
1 + 4× 10

0 + 5× 10
−1 + 6× 10

−2.

The decimal system is also known as the base-10 system because

it uses ten digits. It is the most commonly used number system in

the world and is used in everyday life for counting, arithmetic, and

measuring quantities.

To specify a number clearly in a base, we write the base as a subscript.

For example: 1234.5610.

1

1: Write your student ID here as a decimal

number N.2. Binary : The binary system is a positional number system that uses

only two digits, 0 and 1, to represent numbers. Each digit in the

binary system has a place value that depends on its position in the

number, just like in the decimal system.

An example of binary number is 101101.1012

10 2 Binary Systems and Number-base Conversions

The binary system is used extensively in digital electronics and

computing because it is easy to represent in electronic devices. In

computing, binary digits are called bits, and groups of 8 bits are

called bytes. All data in a computer is stored and processed in binary

form.

2

2: Convert the decimal number N to bi-

nary number B here. 3. Octal : The octal system is a positional number system that uses eight

digits (0, 1, 2, 3, 4, 5, 6, and 7) to represent numbers. Each digit in

the octal system has a place value that depends on its position in the

number, just like in the decimal and binary systems.

An example of octal number is 7268.

The octal system is sometimes used in computing, particularly in

older computer systems. It was more popular in the past because it

was easier to work with octal numbers when using hardware that had

an 8-bit word length. However, with the advent of more advanced

computing technology, the octal system is less commonly used today.

3

3: Convert the decimal number N to Octal

format O here. 4. Hexadecimal : The hexadecimal system is a positional number system

that uses 16 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F) to

represent numbers. Each digit in the hexadecimal system has a place

value that depends on its position in the number, just like in the

decimal, binary, and octal systems.

An example of hexadecimal number is 𝐴𝐵216.

In the hexadecimal system, the letters A through F are used to

represent the values 10 through 15, respectively. This is done because

it is easier to represent and read hexadecimal numbers when they

are written with fewer digits.

The hexadecimal system is commonly used in computing because it

is easy to convert between hexadecimal and binary numbers. Two

hexadecimal digits can represent exactly one byte (8 bits) of data,

making it easy to represent and manipulate binary data in a more

compact form.

4

4: Convert the decimal number N to hex-

adecimal H here.

2.2 Number Conversion

Numbers with different bases can be converted to each other. Here

we discuss number conversions between decimal, binary, octal, and

hexadecimal.

a) Binary, octal, and hexadecimal numbers converted to decimal

There are two methods: positional notation method and dou-

bling method.

Positional notation method: the value of a digit in a number is

determined by a weight based on its position. As in the decimal

numbers, each digit in binary numbers has its bit values:

· · · , 23 , 22 , 21 , 20 , 2−1 , 2−2 , · · ·

2.2 Number Conversion 11

Similarly for octal numbers, the bit values are

· · · , 83 , 82 , 81 , 80 , 8−1 , 8−2 , · · ·

For hexadecimal numbers, the bit values are

· · · , 16
3 , 16

2 , 16
1 , 16

0 , 16
−1 , 16

−2 , · · ·

Doubling method : for binary numbers converted to decimal,

start from the left-most digit of the binary number, double

the previous number and add the current digit. Repeat until

reaching the last digits.

Example 2.2.1 Positional notation method

The binary number 101101.101 converted to decimal:

101101.1012 = 1×2
5+0×2

4+1×2
3+0×2

2+1×2
1+1×2

−1+0×2
−2+1×2

−3

= 32 + 0 + 8 + 4 + 0 + 1 + 0.5 + 0 + 0.125 = 45.62510

Example 2.2.2 Doubling method

The binary number 101 converted to decimal:

1012 = (1 × 2 + 0) × 2 + 1 = 510

Example 2.2.3 Positional notation method

Octal numbers converted to decimal:

7268 = 7 × 8
2 + 2 × 8

1 + 6 × 8
0 = 448 + 16 + 6 = 47010

Example 2.2.4 “Doubling" method (It no longer can be called

doubling, but it is similar to that for binary numbers.)

Octal numbers converted to decimal:

7268 = (7 × 8 + 2) × 8 + 6 = 47010

Example 2.2.5 Positional notation method

Hexadecimal numbers converted to decimal:

𝐴𝐵216 = 10×16
2+11×16

1+2×16
0 = 2560+176+2 = 273810

Example 2.2.6 “Doubling" method

Hexadecimal numbers converted to decimal:

𝐴𝐵216 = (10 × 16 + 11) × 16 + 2 = 273810

12 2 Binary Systems and Number-base Conversions

b) Decimal numbers converted to binary, octal, and hexadecimal

numbers

To convert a decimal to binary, we simply divide the number by

2 recursively until we get to 0 and note down any remainder.

All remainders in backward is the converted binary number.

Example 2.2.7 Decimal number converted to binary

𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑏𝑖𝑛𝑎𝑟𝑦

2 125

2 62 1 ↑
2 31 0 ↑
2 15 1 ↑
2 7 1 ↑
2 3 1 ↑
2 1 1 ↑

0 1 ↑

The decimal number 125 to be converted is boxed for clarifi-

cation only. All remainders in backward (in the direction of

the arrows) is the converted binary number:

12510 = 11111012

Example 2.2.8 Decimal number converted to octal

𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑜𝑐𝑡𝑎𝑙

470

8 58 6 ↑
8 7 2 ↑

0 7 ↑

Write all remainders in backward (in the direction of the

arrows) we get the converted octal number:

47010 = 7268

Example 2.2.9 Decimal number converted to hexadecimal

𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑖𝑚𝑎𝑙

16 2738

16 171 2 ↑
16 10 11 ↑

0 10 ↑

Write all remainders in backward (in the direction of the

arrows) we get the converted octal number:

273810 = 𝐴𝐵216

c) Conversions between binary, octal, and hexadecimal: we can

2.2 Number Conversion 13

convert one format into decimal and then to another format.

However, there is an easier method through grouping .

Example 2.2.10 Binary to octal: break the binary number into

groups of three digits, from right to left, then convert the

binary number in each group into octal.

100011111110000100002

groups

−−−−−→
of three

10, 001, 111, 111, 000, 010, 0002

= 21770208

Example 2.2.11 Octal to binary: convert each octal digit into

three binary digits ((except possibly the first octal digit).

21770208

groups

−−−−−→
of three

10, 001, 111, 111, 000, 010, 0002

5

5: Convert your binary number B to octal

one here. Is it the same as your previous

O? If not, double check.

Example 2.2.12 Binary to hexadecimal: break the binary

number into groups of four, from right to left, then convert

the binary number in each group into Hex. Hexadecimal to

binary: each hexadecimal digit converts to four binary digits

(except possibly the first hexadecimal digit).

100011111110000100002

groups

−−−−−→
of four

1000, 1111, 1110, 0001, 00002

= 8𝐹𝐸1016

6

6: Convert the binary number B to hex-

adecimal here. Is it the same as the previ-

ous H? If not, ask for help.

d) Discussions: How to convert between octal and hexadecimal

numbers?

7

7: Write steps to convert octal to hexadec-

imal number.

To Do

1. Form a pair with one of your classmates.

2. Discuss your solutions.

3. Make sure all team members are able to perform number-base

conversion.

To read large numbers easily, they can be written in groups of three or four

digits, such as

101, 101, 101, or 1, 0110, 1101

14 2 Binary Systems and Number-base Conversions

2.3 Complements of Numbers

Complements of numbers are used in digital computers to simplify the

subtraction operation and logical manipulation.

Radix complement is a way of representing the complement of a number

with respect to a certain base or radix.

Radix complement also called 𝑟′s complement. In a number system with

a base or radix 𝑟, the radix complement of a non-negative integer

𝑁 is defined as 𝑟𝑛 − 𝑁 , where 𝑛 is the number of digits in the

representation of 𝑁 in the given radix system.

Diminished radix complement also called (𝑟 − 1)′𝑠 complement. The di-

minished radix complement is the complement of a number with

respect to the base or radix minus one. The diminished radix comple-

ment of a number 𝑁 in base b is equal to 𝑟𝑛 − 𝑁 − 1, where 𝑛 is the

number of digits in 𝑁 .

2.3.1 Complements of Decimal Numbers

For decimal system, 𝑟 = 10. The 9
′𝑠 complement of a 𝑛−digit decimal

number 𝑁 also has the 𝑛 digits, with each origianl digit subtracted

from 9 as the digit.

Example 2.3.1 The diminished radix (9
′𝑠) complement of the

number 346 in base 10 is

10
3 − 1 − 346 = 999 − 346 = 653.

8

8: Let decimal number 𝑁 be your student

ID, without leading zeros. Find the 9’s

complement of 𝑁 . The 10
′𝑠 complement of a 𝑛−digit decimal number 𝑁 is the 9

′𝑠 complement

plus 1.

Example 2.3.2 The radix (10
′𝑠) complement of the number 346 in base

10 is

10
3 − 346 = 1000 − 346 = 654, which is 653 + 1.

9
9: Let decimal number 𝑁 be your student

ID, without leading zeros. Find the 10’s

complement of 𝑁 .

2.3.2 Complements of Binary Numbers

In computer science and computer engineering, we use binary system,

where radix 𝑟 = 2. The 1’s complement and 2’s complement are important

because they provide a way to represent signed numbers in binary form

that is both efficient and widely used in digital systems and computer

hardware.

10
10: Group discussion: how to find the 1’s

and 2’s complements of a binary number?

2.4 Unsigned and Signed Binary Numbers 15

The 1’s and 2’s complements simplify arithmetic operations in binary.

For example, in the 1’s complement system, addition and subtraction can

be performed using the same circuits that are used for unsigned binary

numbers. Similarly, in the 2’s complement system, subtraction can be

performed by simply taking the 2’s complement of the subtrahend and

adding it to the minuend.

In addition to simplifying arithmetic operations, both complements also

have other advantages. For example, they can represent a wider range

of numbers than sign-magnitude representation. They also allow for the

representation of negative zero, which can be useful in some applications.

Example 2.3.3 The 1’s complement of binary number 101, 1012 is 010, 0102

We compute 1’s complement of a binary number by changing its 0s into

1s and changing its 1s into 0s.

Example 2.3.4 The 2’s complement of binary number 101, 1012 is

010, 0112.

We compute 2’s complement of a binary number by adding 1 to the last

digit of its 1’s complement.

Exercise 2.3.1 Find the 1’s and 2’s complements of your binary number

B. Let your peer check your answer. If either of you get a wrong answer,

try another one.

The concept of complement of numbers is important. It enables efficiency

in hardware design by allowing addition and subtraction to be handled by

the same circuit

2.4 Unsigned and Signed Binary Numbers

Variables such as integers can be represented in two ways, i.e., signed and

unsigned.

2.4.1 Unsigned binary numbers

Unsigned binary numbers are a way of representing only non-negative

integers using the binary number system. Unsigned binary numbers use a

fixed number of bits to represent each integer, and each bit has a weight

equal to a power of 2 (i.e., 1, 2, 4, 8, 16, etc.). The value of a binary number

is found by adding up the weights of the bits that are set to 1.

Example 2.4.1 The binary number 1011 represents the unsigned integer

11, since 1 × 8 + 0 × 4 + 1 × 2 + 1 × 1 = 11.

16 2 Binary Systems and Number-base Conversions

Table 2.1: Ranges for Signed Magnitude

Numbers

n Range

4 −7 to +7

8 −127 to +127

16 −32767 to +32767

32 −2147483647 to +2147483647

Table 2.2: Signed Decimal Numbers and

their 1’s Complement Representation

Signed Decimal 1’s Complement

+6 0110

−6 1001

+0 0000

−0 1111

+7 0111

−7 1000

2.4.2 Signed binary numbers

Signed binary numbers, on the other hand, are a way of representing both

positive and negative integers using the binary number system. In signed

binary, the leftmost bit, also called the most significant digit (MSD) , is

used as a sign bit, with a value of 0 indicating a positive number and a

value of 1 indicating a negative number.

There are three ways of representing signed numbers in a computer.

Sign and magnitude The sign-magnitude (SM) binary format is the sim-

plest conceptual format.

Example 2.4.2 The binary number 0110 represents the positive

integer 6, while the binary number 1110 represents the negative

integer -6.

Note that both numbers have the same rightmost three bits but differ

in their leftmost sign bit.

Exercise 2.4.1 Group Discussion: for a 8-bit integer variable N,

what is its value range for unsigned and signed (SM) format,

respectively?

If the word size is n bits, the range of numbers that can be represented

is from −(2𝑛−1 − 1) to +(2𝑛−1 − 1).
Table 2.1 shows the range of SM numbers that can be represented by

a word size 𝑛.

Did you do the exercise above correctly? If not, check what happened.

One’s complement One’s complements is one of the methods of repre-

senting signed integers in the computer.

1. If the MSD is a 0, then the other bits indicate the magnitude

(absolute value) of the number, and it is evaluated just as we

would interpret any normal unsigned integer.

2. If the MSD is a 1, the number is negative, and then the other

bits signify the 1’s complement of the magnitude of the number.

For example,

1. a positive decimal number 5 is represented by 0101; because it

is positive, the MSD is 0.

2. A negative decimal number -5 is represented by 1010, where

MSD 1 represents negative, and the remaining bits 010 is the 1’s

complement of 101. We can also see that the whole number 1010

is the 1’s complement of 0101.

Table 2.2 shows some signed decimal numbers and their equivalent

in 1’s complement notations, assuming a word size of n=4 bits.

Exercise 2.4.2 Group Discussion: review Table 2.1. Make a similar

Table 2.3 showing the range of signed decimal numbers (size n)

and their 1’s complement representation. It should prove that if the

2.4 Unsigned and Signed Binary Numbers 17

Table 2.3: Ranges for Signed 1’s Comple-

ment Numbers

n Range

4

8

16

32

Table 2.4: Signed Decimal Numbers and

their 2’s Complement Representation

Signed Decimal 2’s Complement

+6 0110

−6 1010

+0 0000

−0 0000

+7 0111

−7 1001

Table 2.5: Ranges for Signed 2’s Comple-

ment Numbers

n Range

4

8

16

32

word size is n bits, the range of numbers that can be represented is

from −(2𝑛−1 − 1) to +(2𝑛−1 − 1).
Two’s complement Two’s complement is a mathematical operation used

in digital circuits and computer systems to represent negative integers

using binary numbers. In this system, the most significant bit of a

binary number represents the sign of the number, where 0 indicates

a positive number and 1 indicates a negative number.

1. To convert a positive integer to its two’s complement represen-

tation, we can simply represent the number in binary format,

leaving the MSB as 0. For example, the number 7 in binary is

0111.

2. To convert a negative integer to its two’s complement representa-

tion, we first need to represent the absolute value of the number

in binary format. Then, we invert all the bits (0s become 1s and

vice versa) and add 1 to the result. The resulting binary number

is the two’s complement representation of the negative integer.

For example, to represent the number -7 in two’s complement,

we would start with the binary representation of 7 (0111), invert

all the bits to get 1000, and then add 1 to get 1001.

Table 2.5 shows some signed decimal numbers and their equivalent

in 2’s complement notations, assuming a word size of n=4 bits.

For numbers with 8 bits, the range is from -128 to 127.

Exercise 2.4.3 Group Discussion: review Table 2.1. Make a similar

Table 2.5 showing the range of signed decimal numbers (size n)

and their 2’s complement representation. It should prove that if the

word size is n bits, the range of numbers that can be represented

is from −(2𝑛−1) to +(2𝑛−1 − 1). For example, for 𝑛 = 6, the range

should be from 100,000 to 011,111, which is from -32 to +31 in

decimal.

2.4.3 How does a computer do arithmetic addition?

First, we recall the situation for decimal numbers.

In signed-magnitude system, addition of two numbers follows ordinary

arithmetic rules:

1. If the two numbers have same sign: add and then take the common

sign.

Example 2.4.3
(−5) + (−6) = −11

Here we take the common sign - and use 6+5 as the magnitude.

2. If the two numbers have different signs, subtract the magnitude and

then take the sign of the larger magnitude.

18 2 Binary Systems and Number-base Conversions

Example 2.4.4
(−5) + (+6) = +1

Here we take the sign + and use 6-5 as the magnitude.

Next, we consider for binary numbers. In binary system, it is easier: no

comparison and subtraction are needed, but negative numbers need to be

in signed 2’s complement form.

The addition of two signed binary numbers (with negative numbers

represented in signed 2’s complement form) is just addition of the two

numbers, including their sign bits. A carry out of the sign-bit position is

discarded.

Example 2.4.5 Decimal 6+13=19.

In binary, it is then 000,110+001,101=010,011, which is +19.

Here we use 6 binary digits to represent signed numbers 6 and 13,

with the MSD representing signs. If we use less, overflow will occur

in the results. We can use more digits, but it will be less efficient and

unnecessary.

11
11: Can you figure out why we need to

use 6 binary digits to represent signed

numbers 6 and 13?

Example 2.4.6 Decimal (-6)+13=7.

The 2’s complement of -6 is 111,010, so

111, 010 + 001, 101 = 1, 000, 111.

Discarding the leading 1 (carry) gives 000,111, which is 7 in decimal.

Example 2.4.7 Decimal: 6+(-13)=-7.

The 2’s complement of -13 is 110,011, so

000, 110 + 110, 011 = 111, 001.

Because the MSD is 1, it is a negative number, and it is the 2’s complement

of 000,111 (please verify this).

We know 000,111 in binary is 7 in decimal and it is a negative number,

therefore, the result is -7 in decimal format.

Example 2.4.8 Decimal: (-6)+(-13)=-19.

The 2’s complement is -6 is 111,010, the 2’s complement of -13 is 110,011, so

111, 010 + 110, 011 = �1, 101, 101.

Discarding the leading carry, we have 101,101.

2.4 Unsigned and Signed Binary Numbers 19

Because the MSD is 1, this is a negative number. It is the 2’s complement

of 010,011 (please verify this).

We know 010,011 in binary is 19 in decimal and it is a negative number,

therefore, the result is -19 in decimal format.

2.4.4 How does a computer do arithmetic subtraction?

Computers can only to addition, not subtraction. Subtraction is carried out

with addition of complement of subtrahend.

The subtraction of two signed binary numbers (with negative numbers

represented in signed 2’s complement form) is as follows:

1. Take the 2’s complement of the subtrahend (including the sign bit).

2. Add it to the minuend (including the sign bit).

3. A carry out of the sign-bit position is discarded.

4. Keep in mind that if the leading digit is 1, it represents signed 2’s

complement, not the result itself.

Example 2.4.9 In decimal 50-37=13.

In binary,

5010 = 0, 110, 0102; 3710 = 0, 100, 1012

-37 in 2’s complement form is 1, 011, 0112, so

50 − 37 = 0, 110, 0102 + 1, 011, 0112 = 10, 001, 1012

Discarding the first bit gives the number 0,001,101. This is a positive

result, and

001, 1012 = 1310

Example 2.4.10 In decimal 37-50=-13.

In binary,

3710 = 0, 100, 1012; 5010 = 0, 110, 0102

-50 in 2’s complement form is 1, 001, 1102, so

37 − 50 = 0, 100, 1012 + 1, 001, 1102 = 1, 110, 0112

The sign digit is 1, so it is a negative number. It is the 2’s complement

of 0,001,101 (try to verify this). 0,001,101 is 13 in decimal. Therefore, the

result is 13 with negative sign affix at the front. That means

37 − 50 = −13.

To Do

1. Form a pair with one of your classmates.

2. Obtain the two decimal IDs.

20 2 Binary Systems and Number-base Conversions

3. Each of you subtract your partner’s ID from your ID.

4. Cross examine your results to make sure both are correct.

5. Your team together add up your results. Discuss your findings.

12
12: Subtract your partner’s ID from your

ID in decimal.

To Do

1. Form a pair with another of your classmates.

2. Obtain the two binary IDs.

3. Each of you subtract your partner’s ID from your ID.

4. Examine your partner’s result to make sure it is correct.

5. Your team together add up your results. Discuss your findings.

13
13: Subtract your partner’s ID from your

ID in binary.

Class Discussion

What are the differences between signed and unsigned binary numbers?

Subtraction is needed in computing the complements of decimal numbers.

However this is different in computers where binary system is adopted.

The 1’s complement is done using NOT gates that invert each bit. The 2’s

complement is done by combining NOT gates for inversion and adder

circuits to add 1 to the result.

2.5 Binary Codes

Binary code is a system of representing text, computer processor instruc-

tions, or any other data using a two-symbol system, for example, binary

symbols 0 and 1. In binary code, each character or piece of data is repre-

sented using a combination of these two symbols.
14

14: We used two concepts here: digit and

bit. Can you tell the difference between

them?

Computers and digital devices use binary code as their fundamental

language because electronic circuits can easily distinguish between two

states, such as high voltage, representing 1, and low voltage, representing 0.

This binary representation forms the foundation of all digital information

processing.

2.5.1 BCD code

BCD code stands for Binary Coded Decimal. It is a binary encoding scheme

used to represent decimal numbers in a digital system. In BCD, each

decimal digit is represented by a 4-bit binary number. For example, the

decimal number 37 would be represented in BCD as 0011 0111. The first

four bits represent the number 3, and the second four bits represent the

number 7.

2.5 Binary Codes 21

Table 2.6: BCD Codes for Decimal Digits

Decimal digit BCD code

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Note: each decimal digit, not each decimal number, is represented by a

BCD code.

The BCD codes for each decimal digit are listed in Table 2.6.

BCD is often used in digital systems where decimal arithmetic is required,

such as in financial applications, in calculators, or in digital clocks. One

advantage of BCD is that it is easy to convert to and from decimal, as each

digit is represented by a separate set of four bits.

However, BCD requires more storage space than pure binary encoding

since each decimal digit requires four bits instead of just one. Additionally,

BCD operations can be more complex than binary operations, since the

addition or subtraction of BCD numbers may result in a carry or borrow

across multiple digits.

BCD code operations involve performing arithmetic operations on numbers

represented in BCD format. The basic BCD arithmetic operations are

addition and subtraction, which are performed using the same rules as

decimal arithmetic.

BCD code Addition

To perform addition in BCD,

1. The two BCD numbers are added (decimal) digit by digit (in 4-bit

groups), not the (binary) bit, starting from the least significant digit.

2. If the sum of two digits is less than 10 (in BCD), the result is the sum

of the two digits.

3. If the sum is greater than or equal to 10, 6 (in BCD) is added to the

sum.
15

15: Can you figure out why it is 6 that

should be added?4. If there is a carry, it propagates.

5. Repeat until all digits have been added.

Example 2.5.1 Let’s consider the addition of two decimal numbers in

BCD format.

823 + 985 = 1808

1. We know that

823𝐷 = 1000, 0010, 0011𝐵𝐶𝐷 ;

985𝐷 = 1001, 1000, 0101𝐵𝐶𝐷 .

2. We start from the least significant (right most) digits, adding 3 and

5 first:

0011 + 0101 = 1000

which is less than 1010, so that is the correct result. There is no

carry.

3. Next we add 2 and 8:

0010 + 1000 = 1010

22 2 Binary Systems and Number-base Conversions

This is equal to 1010, so we add 0110 to it

1010 + 0110 = 1, 0000

We keep the last 4 bits and there is carry 1 (underlined above)

forwarding to the next addition.

4. Add 8 and 9, with carry (underlined below)

1000 + 1001 + 0001 = 1, 0010

This is greater than 1010, so we need to add 0110:

1, 0010 + 0110 = 1, 1000

5. Therefore, the final results is 1,1000,0000,1000.

6. Please verify that

1, 1000, 0000, 1000𝐵𝐶𝐷 = 1808𝐷

BCD code Subtraction

Subtraction in BCD is performed by adding the ten’s complement negative

of the subtrahend to the minuend. Ten’s complement negative of subtra-

hend is obtained by adding 1 to the nine’s complement negative of the

subtrahend.

Example 2.5.2 Let’s consider the subtraction of two decimal numbers.

1. In decimal format:

For a human being, traditionally (compare to select the sign, then

first, then subtract to calculate the magnitude),

985 − 823 = 162

To use complement method, a 4
𝑡ℎ

digit is needed for the sign. We

know that the ten’s complement negative of the subtrahend 0823

is 9177, then

0985 + 9177 = �10162

Discarding the first digit gives result of 0162, meaning a positive

decimal number 162.

2. Now redo the subtraction in BCD format:

0985𝐷 + 9177𝐷 = 0000, 1001, 1000, 0101𝐵𝐶𝐷

+ 1001, 0001, 0111, 0111𝐵𝐶𝐷

= ��1,0000, 0001, 0110, 0010𝐵𝐶𝐷

= 0000, 0001, 0110, 0010𝐵𝐶𝐷

= 0162𝐷

= 162𝐷

2.5 Binary Codes 23

Note 1: when adding the two BCD numbers (the 3
𝑟𝑑

line above),

do not forget the adding 0110 rule and the carry propagation.

Note 2: When interpreting the result, do not forget the carry

discarding (the 4
𝑡ℎ

line above).

Example 2.5.3 Let’s consider another example of subtraction of two

decimal numbers.

1. In decimal format:

For a human being, traditionally (compare to select the sign,

subtract to calculate the magnitude),

823 − 985 = −162

To use complement method, we know that the ten’s complement

negative of the subtrahend is 9015, then

0823 + 9015 = 9838

This is the ten’s complement of negative number -162.

2. Now redo it in BCD format.

0823𝐷 + 9015𝐷 = 0000, 1000, 0010, 0011𝐵𝐶𝐷

+ 1001, 0000, 0001, 0101𝐵𝐶𝐷

= 1001, 1000, 0011, 1000𝐵𝐶𝐷

= 9838𝐷

This is the ten’s complement of -162.

To Do

1. Form a pair with another of your classmates.

2. Obtain the two decimal IDs (the last four digits only).

3. Objective: In BCD format, each of you subtract your partner’s

ID from your ID by using the ten’s complement negative of the

subtrahend.

4. Examine your partner’s result to make sure it is correct.

5. Your team together add up your results. Discuss your findings.

BCD arithmetic operations can be more complex than binary arithmetic

operations, since carry and borrow propagation across digits is required.

However, BCD allows for easy and efficient manipulation of decimal

numbers using digital circuits.

The BCD code is also called 8421 code . Each decimal digit is represented by

a unique combination of four bits. The four bits are weighted with values

of 8, 4, 2, and 1, respectively, which are added together to give the decimal

value of the digits.

24 2 Binary Systems and Number-base Conversions

2.5.2 Gray Code

Gray code , also known as reflected binary code or Gray binary code, is a

binary numeral system where two consecutive values differ in only one

bit position. It is named after Frank Gray, who patented the binary code in

1953.

In Gray code, the first two values are 0 and 1 (called 1-bit Gray code). The

following values are obtained by reflecting the previous values and adding

a 1 in front of each reflected value for odd positions. For even positions, a 0

is added in front of the reflected value. The following Table 2.7 shows the

Gray code sequence for the first few numbers:

Table 2.7: Gray Code for Decimal Digits
Decimal Binary Gray Code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

Generate Gray Code Recursively

Gray code can be generated recursively. Assume we want to generate 𝑛-bit

Gray codes from (𝑛 − 1)-bit Gray codes.

Steps:

1. Start with 1-bit Gray code:

0

1

2. Generate 𝑛-bit Gray codes from (𝑛 − 1)-bit Gray codes:

a) Prefix ‘0‘ to the existing (𝑛 − 1)-bit Gray codes.

b) Prefix ‘1‘ to the reversed order of the existing (𝑛 − 1)-bit Gray

codes.

c) Combine these two lists to get the 𝑛-bit Gray code.

For example, starting with 1-bit Gray codes (0, 1):

a) Prefix ‘0‘: 00, 01

b) Prefix ‘1‘: 10, 11

Resulting in 2-bit Gray codes:

00

01

11

10

2.5 Binary Codes 25

Starting with the 2-bit Gray codes (00, 01, 11, 10):

a) Prefix ‘0‘: 000, 001, 011, 010

b) Prefix ‘1‘: 110, 111, 101, 100

Resulting in 3-bit Gray codes:

000

001

011

010

110

111

101

100

The detailed steps to generate 4-bit Gray codes are illustrated in Figure

2.1.

Figure 2.1: Generating 4-bit Gray Codes

Generate Gray Code Using Binary Reflected Gray Code Formula

For a given binary number 𝑏, the corresponding Gray code 𝑔 can be

computed using:

𝑔 = 𝑏 ⊕ (𝑏 ≫ 1)

where ⊕ denotes the bitwise XOR operation and ≫ denotes the right shift

operation.

For example, we want to convert decimal 5 (which is 0101 in binary) to

Gray code.

Steps:

1. Binary: 0101

2. Right shift by 1 bit: 0010

3. XOR operation: 0101 ⊕ 0010 = 0111

So, the Gray code for decimal 5 or binary 0101 is 0111.

26 2 Binary Systems and Number-base Conversions

[4]: Doran (2007), ‘The Gray Code’

[5]: Intel (2010), Student Handout: ASCII
Computer Code

Applications of Gray Code

1. Rotary encoders: Gray code is used in rotary encoders to track the

position of a rotating object, ensuring that only one bit changes at a

time, which reduces errors during the transition between position

states.

2. Digital communication: Gray code helps minimize errors in digital

communication systems, where data might be transmitted over noisy

channels.

3. Error correction: Gray code is used in error correction schemes where

the goal is to detect and correct errors that might occur due to the

simultaneous change of multiple bits.

Further investigation can be found in [4].

2.5.3 ASCII Character Code

ASCII (American Standard Code for Information Interchange) is a character

encoding standard used to represent text in computers and other devices.

It assigns a unique numerical value to each character, including letters,

numbers, punctuation marks, and control characters. In table 2.8 are the

ASCII codes for some common characters:

Table 2.8: ASCII Codes for Some Charac-

ters
Character ASCII Code in Decimal ASCII Code in Binary

A 65 100,0001

B 66 100,0010

C 67 100,0011

a 97 110,0001

b 98 110,0010

c 99 110,0011

0 48 011,0000

1 49 011,0001

2 50 011,0010

! 33 010,0001

? 63 011,1111

, 44 010,1100

. 46 010,1110

space 32 010,0000

newline 10 000,1010

To represent a character in ASCII, we can use its decimal value and convert

it to binary using 7 bits (which is the maximum number of bits needed to

represent any ASCII character). For example, the ASCII code for the letter

A is 65, which can be represented in binary as 01000001.

A student handout on ASCII code can be found at IBM [5].

2.5.4 Error Detection Code

Error detection codes are used to ensure the integrity of data transmitted

over a communication channel or stored in a storage medium. These codes

2.5 Binary Codes 27

add redundant information to the data, which can be used to detect errors

that may have occurred during transmission or storage. There are many

error detection codes and variations depending on the specific application

and requirements. Some commonly used error detection codes are

Parity Check In a parity check code, a single bit (called the parity bit)

is added to the data to make the total number of 1’s in the data

(including the parity bit) even or odd. During transmission or storage,

the receiver can check the parity bit and compare it with the expected

parity to detect whether any bit has been flipped.

Example 2.5.4 We want to transmit 6-bit data 101101. We can add

a parity check code at the end.

1. For even parity , the code will be 1011010 to make the total

number of 1s in the data (including the parity bit) even. If we

receive a code whose number of 1s is odd, we know there

must be at least one error during the transmission, but we do

not know which bit is wrong, therefore, we cannot correct

the error.

2. For odd parity check , the code will be 1011011 to make the

total number of 1s in the data (including the parity bit) odd.

Checksum A checksum code adds a sequence of values (usually in binary)

to the data and transmits or stores the sum. The receiver can then

recalculate the sum of the data and compare it with the transmitted

sum to detect whether any bits have been changed.

Example 2.5.5 ISBN (International Standard Book Number) is a

type of checksum code. It uses a check digit to help detect errors

when entering or transmitting the book’s identification number.

An ISBN consists of 10 or 13 digits, depending on the edition of

the book. The last digit of the ISBN is the check digit, which is

calculated based on the other digits in the ISBN.

To calculate the check digit of a 10-digit ISBN, you can use the

following algorithm:

1. Multiply each of the first 9 digits by a weight factor (from 10

to 2).

2. Add up the results of the multiplication.

3. Divide the sum by 11.

4. Subtract the remainder from 11 to get the check digit. If the

remainder is 0, the check digit is 0.

Example 2.5.6 The check digit of the ISBN-10 of a textbook is cov-

ered by a microprocessor chip, as in Figure 2.2. Can we determine

the check digit?

Answer: to calculate the check digit of a 10-digit ISBN, we follow

the following steps:

1. Multiply each of the first 9 digits by a weight factor (from 10

28 2 Binary Systems and Number-base Conversions

to 2), add up the results of the multiplication, we have

10×0+9×1+8×3+7×4+6×5+5×4+4×9+3×8+2×9 = 189

2. Divide the sum 189 by 11 we get a remainder 2.

3. Subtract the remainder 2 from 11 we get the check digit 9.

Therefore, the check digit is 9. The ISBN-10 is 0134549899.

Figure 2.2: Example of ISBN

For a number to be a valid ISBN-10, one of the requirements is that

the sum of the ten digits, each multiplied by its (integer) weight,

descending from 10 to 1, is a multiple of 11. That is,

10∑
𝑖=1

(11 − 𝑖)𝑥𝑖 ≡ 0 (mod 11),

where 𝑥𝑖 is the 𝑖𝑡ℎ digit.

To convert an ISBN-10 to ISBN-13, we just add 978 before in front of

the ISBN-10, and then re-calculate the check digit.

For a number to be a valid ISBN-13, one of the requirements is that

the weighted sum of all the digits, each multiplied by its (integer)

weight, is a multiple of 10. That is,

(𝑥1+3𝑥2+𝑥3+3𝑥4+𝑥5+3𝑥6+𝑥7+3𝑥8+𝑥9+3𝑥10+𝑥11+3𝑥12+𝑥13) ≡ 0 (mod 10),

where 𝑥𝑖 is the 𝑖𝑡ℎ digit.

16

16: Develop an algorithm, similar to the

above example, to determine the check

digit of an ISBN-13, given the first 12 digits.

Steps:

1.

2.

3.

4.

To Do

In Figure 2.2, the last two digits of the ISBN-13 are missing. Try to

recover the two digits.

Cyclic Redundancy Check (CRC) A CRC code adds a fixed number of bits

(called the checksum) to the data based on a mathematical function.

2.5 Binary Codes 29

The receiver can then apply the same function to the received data

and compare the calculated checksum with the transmitted checksum

to detect errors.

Hamming Code A Hamming code adds parity bits to the data in such a

way that any single-bit error can be corrected, and any two-bit error

can be detected.

2.5.5 Error Correction Code

Error correction codes (ECC) are codes that are used to detect and correct

errors that may occur during data transmission or storage. These codes

are commonly used in computing, digital communications, information

theory, coding theory, and data storage systems, where data integrity is

important.

One example of an error correction code is the linear block code.

Suppose we want to transmit 𝑘 bits of data with 𝑛 bits of code, which is

called (𝑛, 𝑘) code.

The data bits are 𝑑1 , 𝑑2 , · · · , 𝑑𝑘 . The code bits are 𝑐1 , 𝑐2 , · · · , 𝑐𝑛 .

In general case, the linear block codes are linear combinations of the data

digits.

For a set of linear block codes to detect up to 𝑡 bit of error, the minimum

Hamming distance between any pair of codes should satisfy 𝑑𝑚𝑖𝑛 = 2𝑡 + 1;

to correct up to 𝑡 bits of error, the minimum Hamming distance should

satisfy 𝑑𝑚𝑖𝑛 = 𝑡 + 1.

A special case is the first 𝑘 digits are data, the last 𝑚 = 𝑛 − 𝑘 digits are

linear combinations of the data.

𝑐1 = 𝑑1

𝑐2 = 𝑑2

...

𝑐𝑘 = 𝑑𝑘
𝑐𝑘+1 = ℎ11𝑑1 ⊕ ℎ12𝑑2 ⊕ · · · ⊕ ℎ1𝑘𝑑𝑘
· · ·
𝑐𝑛 = ℎ𝑚1𝑑1 ⊕ ℎ𝑚2𝑑2 ⊕ · · · ⊕ ℎ𝑚𝑘𝑑𝑘

For example, in a (6, 3) code, assume the data are 𝑑1 , 𝑑2 and 𝑑3, the code

are 𝑐1 , 𝑐2 , · · · , 𝑐6.

We assume the following generator rule:

𝑐1 = 𝑑1

𝑐2 = 𝑑2

𝑐3 = 𝑑3

𝑐4 = 𝑑1 ⊕ 𝑑3

𝑐5 = 𝑑2 ⊕ 𝑑3

𝑐6 = 𝑑1 ⊕ 𝑑2

30 2 Binary Systems and Number-base Conversions

For all the possible data words from 000 to 111, the corresponding code

words are:

Data Word d Code word c Data Word d Code word c
000 000000 100 100101

001 001110 101 101011

010 010011 110 110110

011 011101 111 111000

The minimum Hamming distance between any two code words is 𝑑𝑚𝑖𝑛 = 3,

hence, the code can detect up to two bits of error and correct up to one bit

of error.

We can summarize the generator rule into a generator matrix:

[𝐺] =

1 0 0 1 0 1

0 1 0 0 1 1

0 0 1 1 1 0

 .
In matrix form, the code is represented by the product of the data and

generator matrix:

c = dG =

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1 0 0 1 0 1

0 1 0 0 1 1

0 0 1 1 1 0

 =

0 0 0 0 0 0

0 0 1 1 1 0

0 1 0 0 1 1

0 1 1 1 0 1

1 0 0 1 0 1

1 0 1 0 1 1

1 1 0 1 1 0

1 1 1 0 0 0

Exercise 2.5.1 Hello, here is some text without a meaning. This text

should show what a printed text will look like at this place. If you read

this text, you will get no information. Really? Is there no information? Is

there a difference between this text and some nonsense like “Huardest

gefburn”? Kjift – not at all! A blind text like this gives you information

about the selected font, how the letters are written and an impression

of the look. This text should contain all letters of the alphabet and it

should be written in of the original language. There is no need for special

content, but the length of words should match the language.

2.6 Representation of data

Data refers to the symbols that represent people, events, things, and ideas.

Data can be a name, a number, the colors in a photograph, or the notes in a

musical composition.

Data Representation refers to the form in which data is stored, processed,

and transmitted.

2.6 Representation of data 31

2.6.1 Data in Computers

At the lowest level, a computer is an electronic machine working by

controlling the flow of electrons. Devices such as smartphones, iPods, and

computers store data in digital formats that can be handled by electronic

circuitry.

Computers use binary — the digits 0 and 1 — to store data. A binary digit,

or bit, is the smallest unit of data in computing. It is represented by a 0 or

a 1. Binary numbers are made up of binary digits (bits). For example, the

binary number 1001. The circuits in a computer’s processor are made up

of billions of transistors. A transistor is a tiny switch that is activated by

the electronic signals it receives. The transistor can be turned on to enable

access to the capacitor, either to charge it up and store a 1, discharge it and

store a 0, or read the stored charge. The digits 1 and 0 used in binary reflect

the on and off states of a transistor.

The 0 and 1 numbers are logic levels (0 = logic 0, 1 = logic 1), which are

created by voltages in a circuit. In positive logic, 0 is formed by a low

voltage level, and 1 is formed by a high voltage level. In negative logic, 0 is

formed by a high voltage level, and 1 is formed by a low voltage level. In

general, for a low logic stage, acceptable input signal voltages range from 0

volts to 0.8 volts and for a high logic state, 2 volts to 5 volts.

Computer programs are sets of instructions. Each instruction is translated

into machine code - simple binary codes that activate the CPU. Programmers

write computer code, and this is converted by a translator into binary

instructions that the processor can execute. All software, music, documents,

and any other information that is processed by a computer, is also stored

using binary.

2.6.2 Data on Hard Disks

When data can be stored on hard disks inside computers. Hard disks

represent binary data using magnetic properties. The platters inside a hard

disk drive are coated with a thin layer of magnetic material, usually a form

of iron oxide. This magnetic coating allows the surface to be magnetized in

different directions. The magnetic coating on the disk’s surface is divided

into tiny regions called magnetic domains. Each domain can be magnetized

in different directions. The direction of magnetization of a domain is used

to represent binary data. Typically, one direction of magnetization (e.g.,

north) represents a binary 1, while the opposite direction (e.g., south)

represents a binary 0. When data is written to the disk, a current flows

through the coil in the write head and generates a magnetic field that aligns

the magnetic domains in the desired direction. By altering the direction

of the electric current and thus the magnetic field, the write head sets the

domains to represent either a 1 or a 0.To read data, the read head detects the

magnetization direction of the domains on the disk’s surface. To read the

data from the hard disk, the read head uses a different mechanism called

magnetoresistance to sense the magnetic fields of the domains. Changes in

32 2 Binary Systems and Number-base Conversions

the magnetic field cause changes in electrical resistance, which the read

head detects and converts into binary data.

2.6.3 Data in Wireless Communication Systems

In wireless communication systems, direct voltage signals like high (5

volts) and low (0 volt) cannot transmittd efficiently. Binary 1s and 0s

are represented through a combination of encoding and modulation

techniques. Encoding schemes prepare the binary data for transmission,

while modulation techniques alter the carrier signal to convey the data over

radio waves. For example, binary signals 1 and 0 by can be transmitted by

turning on and off a sinusoidal signal. This is called amplitude modulation

(AM) technique, where the sinusoidal signal is called a carrier. Binary

signals can also be transmitted with a sinusoidal signal with two different

frequencies. This is called frequency modulation (FM) technique.

3 Boolean Algebra and Logic Gates

3.1 Introduction 33
3.1.1 Two-valued Boolean

Algebra 33
3.1.2 Logic Operations 33
3.1.3 Logic Gates 34
3.2 Boolean Functions 37
3.2.1 Represent Boolean Func-

tions with Truth Table . . . 39
3.2.2 Represent Boolean Func-

tions with Logic Circuits . 40
3.3 Fundamentals in Boolean

Algebra 41
3.3.1 Operator Precedence 41
3.3.2 Basic Postulates and Theo-

rems 41
3.3.3 Complement of Boolean

Functions 42

3.1 Introduction

In computer engineering, the circuits implements binary logic in all com-

puters and digital devices.

A mathematical method, called Boolean algebra can be used to simplify

electric ciruits.

3.1.1 Two-valued Boolean Algebra

Two-valued Boolean algebra, also known as binary Boolean algebra, is a

branch of mathematics that deals with the study of two possible values or

states, commonly represented as 0 and 1. It is based on a set of operations

that are defined on these values, which allow for the manipulation and

evaluation of logical expressions.

Two-valued Boolean algebra has many practical applications, particularly

in computer science and digital electronics, where it is used to design and

analyze digital circuits and algorithms. It is also used in propositional

logic, which is the branch of logic that deals with the manipulation of

propositions using logical operations.

3.1.2 Logic Operations

In two-valued Boolean algebra, the two values, 0 and 1, are often used to

represent the truth values of propositions in a logical system. For example,

0 may represent "false" and 1 may represent "true". The basic operations of

two-valued Boolean algebra are:

34 3 Boolean Algebra and Logic Gates

AND The AND operation takes two values as input and produces 1 as

output only if both inputs are 1. Otherwise, it produces 0. AND

operation can be written as · in an expression.

The rules for AND operator are

A B F=A · B

0 0 0

0 1 0

1 0 0

1 1 1

OR The OR operation takes two values as input and produces 0 as output

only if both inputs are 0. Otherwise, it produces 1. OR operation can

be written as + in an expression.

The rules for OR operator are

A B F=A+B

0 0 0

0 1 1

1 0 1

1 1 1

NOT The NOT operation takes a single value as input and produces the

opposite value as output. That is, if the input is 1, the output is 0,

and if the input is 0, the output is 1. Essentially, the operator reverses

the logical value associated with the expression on which it operates.

NOT operation can be written as an apostrophe or a horizontal bar

above a variable or an expression. For example,

𝐹 = NOT 𝐴 = 𝐴′ = 𝐴.

The rules for NOT operator are

A F=A’

0 1

1 0

3.1.3 Logic Gates

Logic gates are fundamental building blocks in digital electronics. They

perform basic logical functions that are essential for digital circuits. Each

gate has a specific function based on Boolean algebra and performs basic

logical operations on one or more binary inputs to produce a single binary

output. Logic gates are used to create complex circuits, including arithmetic

operations, memory, and processors.

The symbols of the three fundamental logic gates (AND, OR, and NOT)

are in Figure 3.1.

Other logic gates include NAND, NOR, XOR, and XNOR.

Logic gates can be implemented in various ways, depending on the tech-

nology and context. We discuss below how to build fundamental logic

gates with diodes and with transistors.

3.1 Introduction 35

Figure 3.1: Logic Gates

Figure 3.3: Diode Circuit for AND Gate

Figure 3.4: Diode Circuit for OR Gate

Logic Gates with Diode

A diode as in Figure 3.2 is a semiconductor device with two terminals:

a positive terminal, called the anode and a negative terminal, called the

cathode. When a positve high voltage is applied to the anode, it is called

forward-biased, and the current follws from positive to negative. If the

diode is reverse-biased, almost no current flows.

A diode acts as a one-way switch for current. When it is forward-biased,

the normal voltage drop on the diode is about 0.5 V to 0.8 V. We can use

this fact in a diode circuit, for example, to calculate the resistance to limit

the current: if the current flowing through an LED is too large, the LED

could be destroyed, but if the current is too small, the LED might not be

bright enough.

Figure 3.2: A diode and its Symbol

Both AND and OR gates can be built with diode circuits, as showed in

Figures 3.3 and 3.4.

In Figure 3.3, when both input A and B are low (around 0 volt), the two

diodes on the left are forward-biased. The top of the bottom diode is about

0.7 volts, and the diode does not conduct. There is no current flowing

through the bottom diode, and the LCD is not lit. Therefore, the output is

low. That is

0 AND 0 = 0.

When any input to the two left diodes is low, we have the same result. This

is

1 AND 0 = 0; 0 AND 1 = 0.

When both A and B are high (for example 5 volts), the left diodes do not

conduct and the current flows through the bottom one. The light is on and

the output is high. This is

1 AND 1 = 1.

Exercise 3.1.1 Explain how the circuit in Figure 3.4 works as an OR

function.

Logic Gates with Transistor

A transistor is a semiconductor device used to amplify or switch electronic

signals and electrical power. It’s a fundamental component in modern

electronic devices, including computers, smartphones, and radios.

36 3 Boolean Algebra and Logic Gates

Transistors typically have three terminals: the emitter, the base, and the

collector. There are different types of transistors, such as Bipolar Junction

Transistors (BJTs) and Field-Effect Transistors (FETs), each with distinct

characteristics.

NPN and PNP transistors as in Figure 3.5 are the two primary types of

BJTs. Both serve similar purposes but have different configurations and

operate in opposite ways.

Figure 3.5: Transistors: NPN and PNP

Here we discuss NPN type only for example. Basically,

▶ When NPN type transitors are connected in series, they can implement

AND or NAND gates;

▶ When connected in parallel, they can implement OR or NOR gates.

Figure 3.6: Transistor as a switch

In Figure 3.6, when the input voltage at the base is high, the transistor

conducts and the current can flow from the collector to the emitter. When

the input is low, the transistor does not conduct and the current cannot

flow from the collector to the emitter. Therefore, the transistor serves as a

switch with the control of input signal.

In Figure 3.7, both transistors are connected in series. When both input A

and B are high (for example, 5 volts), both transistors conduct. The output

is high. This is

1 AND 1 = 1.

3.2 Boolean Functions 37

Figure 3.7: Transistor Circuit for AND

Gate

Figure 3.8: Transistor Circuit for OR Gate

Figure 3.9: Transistor Circuit for NOT

Gate

If either A or B or both are low, at least one transistor cannot conduct and

no current flows from the voltage source (terminal VCC) to the ground

(terminal GND). The output voltage will be low. This is

1 AND 0 = 0; 0 AND 1 = 0; 0 AND 0 = 0.

Exercise 3.1.2 How do you modify Figure 3.7 to implement the NAND

function?

In Figure 3.8, the two transistors are connected in parallel. When both input

A and B are low (around 0 volt), both transistors do not conduct and thus

there are no currents flowing out of the emitters. The output is low. This

is

0 OR 0 = 0.

If either A or B is high, one transistor conducts and there is current flowing

out from the emitter so the output voltage is high. This is

1 AND 0 = 1; 0 AND 1 = 1.

If both A and B are high, both transistors conduct and the output is high.

This is

1 AND 1 = 1.

Exercise 3.1.3 How do you modify Figure 3.8 to implement the NOR

function?

In Figure 3.9, when input A is high, the transistor conducts and serves as a

closed switch. The output voltage is low. That is

NOT 1 = 0.

when input A is low, the transistor does not conduct and serves as a opened

switch. No current flows into the colector so the output voltage is high.

That is

NOT 0 = 1.

3.2 Boolean Functions

A Boolean function is a mathematical function that takes one or more

Boolean variables as input and produces a single Boolean output value.

Boolean functions are used in digital logic circuits, computer programming,

and many other fields where logical operations are required.

In general, a Boolean function can have any number of input variables, but

the output value can only be one of two possible values: 0 or 1. Boolean

functions are often represented using truth tables or logic diagrams, which

38 3 Boolean Algebra and Logic Gates

show the possible input values and the resulting output value for each

combination of inputs.

There are many different types of Boolean functions, but some of the most

common ones include:

NOT This is a unary function that takes a single Boolean input and

produces the opposite Boolean value as output. For example, if the

input is 0, the output is 1, and if the input is 1, the output is 0.

AND This is a binary function that takes two Boolean inputs and produces

a Boolean value that is true (1) only if both inputs are true. For

example, if the inputs are 1 and 1, the output is 1. If either input is 0,

the output is 0.

OR This is a binary function that takes two Boolean inputs and produces

a Boolean value that is true (1) if at least one of the inputs is true. For

example, if the inputs are 0 and 1, the output is 1. If both inputs are 0,

the output is 0.

XOR This is a binary function that takes two Boolean inputs and produces

a Boolean value that is true (1) only if the inputs are different. For

example, if the inputs are 0 and 1, the output is 1. If the inputs are the

same (both 0 or both 1), the output is 0.

The rules for XOR operator are as in Table 3.1.

Table 3.1: Truth Table of XOR Function
A B F=A ⊕ B

0 0 0

0 1 1

1 0 1

1 1 0

NAND A NAND gate (short for “not-AND") is a logic gate that produces

a false (0) output only when all of its inputs are true (1). A NAND

gate is the logical negation of an AND gate.

NAND gates are also used in computer memory systems, where they

are used to implement dynamic random access memory (DRAM)

cells. In this application, the NAND gate is used to ensure that the

stored data is refreshed periodically to prevent it from decaying over

time.

The rules for NAND operator are as in Table 3.2.

Table 3.2: Truth Table of NAND Function
A B F=(AB)’

0 0 1

0 1 1

1 0 1

1 1 0

NOR A NOR gate (short for “not-OR") is a logic gate that produces a true

(1) output only when all of its inputs are false (0). In other words, a

NOR gate is the logical negation of an OR gate.

NOR gates are also used in computer memory systems, where they

are used to implement static random access memory (SRAM) cells. In

3.2 Boolean Functions 39

this application, the NOR gate is used to store the data in the memory

cell and to control the read and write operations.

The rules for NOR operator are as in Table 3.3.

A B F=(A+B)’

0 0 1

0 1 0

1 0 0

1 1 0

Table 3.3: Truth Table of NOR Function

The binary variables and logic operations are used in Boolean algebra. The

algebraic expression, which is known as Boolean Expression, consists of

the constant value 1 and 0, logical operation symbols, and binary variables,

and is used to describe more complicated Boolean Functions. One example

is

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐴 + 𝐵𝐶′ + 𝐷

3.2.1 Represent Boolean Functions with Truth Table

A truth table is a table used to represent the relationship between the input

and output of a logical expression. It lists all possible combinations of input

values and their corresponding output values, based on the rules of the

logical expression.

For example, truth tables for the logical operators “AND", “OR", and “NOT"

are already given as operation rules in previous sections.

The truth table for XOR, NAND, NOR functions are in Tables 3.1, 3.2, and

3.3.

Class Activity

1. Examine the truth tables above.

2. Can you figure out how to develop a truth table for a given

Boolean function?

3. For a Boolean function with 4 input varialbes (A, B, C, and D)

and one output, how many rows and colums do you expect in the

truth table?

4. Once you are done, discuss your result with your team members.

5. Genealize your conclusion.

6. Create a truth table for the following Boolean function and com-

pare results.

𝐹 = 𝐴′ + (𝐴 + 𝐵)(𝐵′ + 𝐶)

1
1: Write here the steps to develop a truth

table:

1.

2.

3.

4.

5.

40 3 Boolean Algebra and Logic Gates

3.2.2 Represent Boolean Functions with Logic Circuits

Boolean functions can be represented using logic circuits, which are com-

posed of logic gates. Here is anexample to show how to represent Boolean

functions with logic circuits.

Example 3.2.1 Represent Boolean function 𝐹1 = 𝑥 + 𝑦′𝑧 with logic gates.

Solution:

The logic circuit can be implemented as in Figure 3.10. Another example

of an actual project is illustrated in Figure 3.11.

Can you imagine how to connect the circuit on the breadboard to

implement the Boolean function above?

Figure 3.10: A Logic Circuit

Figure 3.11: A Logic Circuit

Exercise 3.2.1 Represent the following Boolean function with logic gates.

Compare your answer with your partner.

𝐹 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧 + 𝑥𝑦′

Exercise 3.2.2 Given the following logic circuit in Figure 3.12, can you

write its output as a Boolean function? Compare your answer with your

partner.

3.3 Fundamentals in Boolean Algebra 41

Figure 3.12: A Logic Circuit

3.3 Fundamentals in Boolean Algebra

3.3.1 Operator Precedence

In logic, operator precedence refers to the order in which logical operations

are performed in a compound expression. The precedence of logical

operators determines the grouping of terms in an expression and the order

in which they are evaluated. Here are the precedence rules for the most

common logical operators, in order from highest to lowest:

1. Negation (NOT)

2. Conjunction (AND)

3. Disjunction (OR)

4. Exclusive disjunction (XOR)

These rules dictate that operations of higher precedence are evaluated first.

For example, in the expression “A AND B OR C", the AND operation is

evaluated first because it has higher precedence than OR.

Parentheses can be used to override the default precedence rules and force

a specific order of evaluation.

3.3.2 Basic Postulates and Theorems

The basic postulates and theorems in Boolean algebra form the foundation

of the field and are essential for understanding and manipulating Boolean

expressions. They provide a set of rules that can be used to simplify

complex Boolean expressions, perform logical operations, and design

digital circuits.

By using the basic postulates and theorems, Boolean expressions can

be simplified and transformed into an equivalent form that is easier

to understand and analyze. This simplification can greatly reduce the

complexity of Boolean expressions, making them more manageable and

easier to work with.

42 3 Boolean Algebra and Logic Gates

Some basic postulates and theorems in Boolean algebra are listed in Table

3.4

2
2: Try to memorize this table.

Table 3.4: Basic Postulates and Theorems

in Boolean Algebra

Postulate or Theorem OR AND

Postulate x+0=x x · 1 = x

Postulate x+x’=1 x x’ = 0

Theorem x+x=x x x = x

Theorem x+1=1 x · 0 = 0

Involution (x’)’=x

Commutative x+y=y+x xy = yx

Associative x+(y+z)=(x+y)+z x(yz) = (xy)z

Distributive x(y+z)=xy+xz x+yz = (x+y)(x+z)

DeMorgan (x+y)’=x’y’ (xy)’ = x’+y’

absorption x+xy=x x(x+y) = x

Class Activity

1. Form a pair with your neighbor.

2. Test each other the formulas in the table.

3. Make sure both of you have understood and memorized all

formulas in the table.

3.3.3 Complement of Boolean Functions

The generalized form of the DeMorgan’s theorems state that the comple-

ment of a function is obtained by interchanging AND and OR operators

and complementing each literals.

1. Complement of OR:

(𝐴 + 𝐵 + 𝐶 + · · · + 𝐹)′ = 𝐴′𝐵′𝐶′ · · · 𝐹′

2. Complement of AND:

(𝐴𝐵𝐶 · · · 𝐹)′ = 𝐴′ + 𝐵′ + 𝐶′ + · · · + 𝐹′

Example 3.3.1 Find the complement of the following Boolean function

𝐹 = 𝑥′𝑦𝑧′ + 𝑥′𝑦′𝑧

Solution:

1. The operator with the lowest preceedence is the OR (+) operator.

Therefore, function 𝐹 is the OR of two expressions. We use the rule

for complement of OR

𝐹′ = (𝑥′𝑦𝑧′)′(𝑥′𝑦′𝑧)′.

3.3 Fundamentals in Boolean Algebra 43

2. Each of the two expressions above is a complement of AND,

therefore,

(𝑥′𝑦𝑧′)′ = 𝑥 + 𝑦′ + 𝑧; (𝑥′𝑦′𝑧)′ = 𝑥 + 𝑦 + 𝑧′.

3. The final result is

𝐹′ = (𝑥 + 𝑦′ + 𝑧)(𝑥 + 𝑦 + 𝑧′).

Example 3.3.2 Find the complement of the following Boolean function

𝐹 = 𝑥(𝑦′𝑧′ + 𝑦𝑧)

Solution:

𝐹′ = 𝑥′ + (𝑦′𝑧′ + 𝑦𝑧)′ = 𝑥′ + (𝑦′𝑧′)′(𝑦𝑧)′

= 𝑥′ + (𝑦 + 𝑧)(𝑦′ + 𝑧′) = 𝑥′ + 𝑦𝑧′ + 𝑦′𝑧

Exercise 3.3.1 Find the complement of Boolean Function

𝐹 = 𝑥′𝑦 + 𝑥𝑦′

Exercise 3.3.2 Find the complement of Boolean Function

𝐹 = (𝑎 + 𝑐)(𝑎 + 𝑏′)(𝑎′ + 𝑏 + 𝑐′)

Exercise 3.3.3 Find the complement of Boolean Function

𝐹 = 𝑧 + 𝑧′(𝑣′𝑤 + 𝑥𝑦)

4 Gate-Level Minimization

4.1 Introduction 45
4.2 Simplifying Boolean

Functions with Boolean
Algebra 46

4.3 Minterms and Maxterms . 50
4.3.1 Definitions 50
4.3.2 Designations 50
4.4 Canonical Forms 51
4.4.1 Canonical sum-of-products

(SOP) form 51
4.4.2 Canonical product-of-sums

(POS) form 53
4.4.3 Conversion between SOP

and POS forms 54
4.5 Standard Forms and Non

Standard Forms 56
4.6 Digital Logic Gates 58
4.7 Karnaugh Maps 59
4.7.1 Two-Variable K-Map 59
4.7.2 Three-Variable K-Map . . . 60
4.7.3 Four-Variable K-Map . . . 61
4.8 Design Example: a Clock

with 7-Segment Display . . 66

4.1 Introduction

Gate-level minimization is a process of reducing the number of logic gates

and simplifying the logic circuit, while maintaining the same functionality.

The goal of gate-level minimization is to reduce the complexity of a logic

circuit, which can improve performance, reduce power consumption, and

decrease the cost of production.

There are several techniques for gate-level minimization. In this class, we

will discuss the two most fundamental methods: Boolean algebra and

Karnaugh maps. Both techniques can be used to simplify a logic circuit by

combining redundant logic gates, eliminating unnecessary logic gates, and

reducing the number of inputs and outputs.

Boolean algebra is a fundamental tool for gate-level minimization. It involves

manipulating logical expressions using Boolean operators such as AND,

OR, and NOT. By applying Boolean algebraic rules, logical expressions can

be simplified and expressed in a more compact form.

Karnaugh maps are another useful tool for gate-level minimization. They

are graphical representations of Boolean functions that allow for easy

identification of redundant logic gates. By grouping adjacent cells in a

Karnaugh map that correspond to 1’s in a Boolean function, the expression

can be simplified.

Gate-level minimization is an important step in digital circuit design that

can improve efficiency and reduce the cost of production. Designers often

use a combination of these methods to achieve the best results.

46 4 Gate-Level Minimization

4.2 Simplifying Boolean Functions with Boolean
Algebra

Some of the most common theorems and postulates that can be used to

simplify Boolean functions are

To Memorize

1. Identity theorem: The identity theorem states that any variable

ANDed with 1 is itself, and any variable ORed with 0 is itself. This

can be expressed as

𝐴 · 1 = 𝐴 and 𝐴 + 0 = 𝐴

2. Complement theorem: The complement theorem states that ev-

ery variable has a complement that is its opposite. This can be

expressed as

𝐴 + 𝐴′ = 1 and 𝐴 · 𝐴′ = 0

3. Commutative theorem: The commutative theorem states that the

order of the operands in an OR or an AND operation does not

matter. This can be expressed as

𝐴 + 𝐵 = 𝐵 + 𝐴 and 𝐴 · 𝐵 = 𝐵 · 𝐴

4. Associative theorem: The associative theorem states that the

grouping of operands in an OR or an AND operation does not

matter. This can be expressed as

𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶 and 𝐴 · (𝐵 · 𝐶) = (𝐴 · 𝐵) · 𝐶

5. Distributive theorem: The distributive theorem states that an OR

operation over a set of operands ANDed with another variable

is equivalent to the OR operation of the operands individually

ANDed with the variable. Similarly, an AND operation over a set

of operands ORed with another variable is equivalent to the AND

operation of the operands individually ORed with the variable.

This can be expressed as

𝐴 · (𝐵 + 𝐶) = 𝐴 · 𝐵 + 𝐴 · 𝐶 and 𝐴 + (𝐵 · 𝐶) = (𝐴 + 𝐵) · (𝐴 + 𝐶)

6. Absorption laws to combine terms or eliminate redundant vari-

ables.

𝐴 · (𝐴 + 𝐵) = 𝐴 and 𝐴 + 𝐴 · 𝐵 = 𝐴

7. De Morgan’s theorem: De Morgan’s theorem states that the com-

plement of a logical expression that is ANDed or ORed is equiva-

lent to the OR or AND of the complements of the operands. This

can be expressed as

(𝐴 + 𝐵)′ = 𝐴′ · 𝐵′
and (𝐴 · 𝐵)′ = 𝐴′ + 𝐵′

4.2 Simplifying Boolean Functions with Boolean Algebra 47

Other Tricks to Memorize

1. Identify Common Sub-expressions: look for common sub-expressions

within the expression. If you find repeating terms, factor them

out. Example:

𝐴𝐵 + 𝐴𝐵𝐶𝐷 = 𝐴𝐵(1 + 𝐶𝐷).

Here AB is the common sub-expression.

2. Use Idempotent Law:

𝐴 · 𝐴 = 𝐴 and 𝐴 + 𝐴 = 𝐴.

If you have repeating variables in the same operation, simplify

them.

3. Apply Null Element: for AND operations, use the null element

𝐴 · 0 = 0;

For OR operations, use the null element

𝐴 + 1 = 1.

4. Consider Double Negation: eliminate double negations by using

the rule: NOT (NOT A) = A.

5. Repeat and Iterate: continue applying these rules and simplifying

sub-expressions until you can’t simplify the expression further.

Example 4.2.1 Using basic theorems and postulates to simplify Boolean

expression

𝐹 = 𝑥′𝑦′𝑧 + 𝑥𝑦𝑧 + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧

Solution:
1

1: Can you identify what property is used

in each step? Discuss with your partner

or ask the class.
𝐹 = 𝑥′𝑦′𝑧 + 𝑥𝑦𝑧 + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧

= 𝑥′𝑦′𝑧 + (𝑥 + 𝑥′)𝑦𝑧 + 𝑥𝑦′𝑧

= 𝑥′𝑦′𝑧 + 𝑦𝑧 + 𝑥𝑦′𝑧 = (𝑥′ + 𝑥)𝑦′𝑧 + 𝑦𝑧

= 𝑦′𝑧 + 𝑦𝑧 = (𝑦′ + 𝑦)𝑧 = 𝑧.

2
2: What is the significance of the above

simplification? Hint: can you implement

the Boolean function with logic circuit?

Example 4.2.2
𝐹 = 𝑥𝑦 + 𝑥𝑦′ = 𝑥(𝑦 + 𝑦′) = 𝑥

Example 4.2.3

𝐹 = (𝑥 + 𝑦)(𝑥 + 𝑦′) = 𝑥𝑥 + 𝑥𝑦′ + 𝑥𝑦 + 𝑦𝑦′

= 𝑥 + 𝑥(𝑦 + 𝑦′) = 𝑥 + 𝑥 = 𝑥

48 4 Gate-Level Minimization

Example 4.2.4

𝐹 = 𝑥𝑦𝑧 + 𝑥′𝑦 + 𝑥𝑦𝑧′ = 𝑥𝑦𝑧 + 𝑥′𝑦 + 𝑥𝑦𝑧′

= 𝑥𝑦(𝑧 + 𝑧′) + 𝑥′𝑦 = 𝑥𝑦 + 𝑥′𝑦 = 𝑦

Example 4.2.5

𝐹 = (𝑥 + 𝑦)′(𝑥′ + 𝑦′)′ = (𝑥′𝑦′)(𝑥𝑦)

= 𝑥′𝑦′𝑥𝑦 = 𝑥′(𝑦′𝑦)𝑥 = 0

Or, consider using 𝐴′ · 𝐵′ = (𝐴 + 𝐵)′,

𝐹 = (𝑥 + 𝑦)′(𝑥′ + 𝑦′)′ = (𝑥 + 𝑦 + 𝑥′ + 𝑦′)′ = (1 + 1)′ = 0

Example 4.2.6

𝐹 = (𝑎 + 𝑏 + 𝑐′)(𝑎′𝑏′ + 𝑐) = 𝑎𝑎′𝑏′ + 𝑎𝑐 + 𝑏𝑎′𝑏′ + 𝑏𝑐 + 𝑐′𝑎′𝑏′ + 𝑐′𝑐

= 0 + 𝑎𝑐 + 0 + 𝑏𝑐 + 𝑎′𝑏′𝑐′ + 0 = 𝑎𝑐 + 𝑏𝑐 + 𝑎′𝑏′𝑐′

Example 4.2.7

𝐹 = 𝑎′𝑏𝑐 + 𝑎𝑏𝑐′ + 𝑎𝑏𝑐 + 𝑎′𝑏𝑐′ = 𝑎′𝑏𝑐 + 𝑎𝑏𝑐′ + 𝑎𝑏𝑐 + 𝑎′𝑏𝑐′

= 𝑏𝑐 + 𝑏𝑐′ = 𝑏(𝑐 + 𝑐′) = 𝑏

Example 4.2.8

𝐹 = 𝑥𝑦𝑧 + 𝑥′𝑦 + 𝑥𝑦𝑧′ = 𝑥𝑦𝑧 + 𝑥′𝑦 + 𝑥𝑦𝑧′ = 𝑥𝑦 + 𝑥′𝑦 = 𝑦

Example 4.2.9

𝐹 = 𝑥′𝑦𝑧 + 𝑥𝑧 = (𝑥′𝑦 + 𝑥)𝑧 = (𝑥 + 𝑥′)(𝑥 + 𝑦)𝑧

= (𝑥 + 𝑦)𝑧
3

3: Use distributive property on the two

underlined terms.

Example 4.2.10

𝐹 = (𝑥 + 𝑦)′(𝑥′ + 𝑦′) = (𝑥′𝑦′)(𝑥′ + 𝑦′)

= 𝑥′𝑦′𝑥′ + 𝑥′𝑦′𝑦′ = 𝑥′𝑦′ + 𝑥′𝑦′ = 𝑥′𝑦′

4.2 Simplifying Boolean Functions with Boolean Algebra 49

Example 4.2.11

𝐹 = 𝑥𝑦 + 𝑥(𝑤𝑧 + 𝑤𝑧′) = 𝑥𝑦 + 𝑥𝑤(𝑧 + 𝑧′) = 𝑥𝑦 + 𝑥𝑤 = 𝑥(𝑦 + 𝑤)

Example 4.2.12

𝐹 = (𝑦𝑧′ + 𝑥′𝑤)(𝑥𝑦′ + 𝑧𝑤′) = 𝑦𝑧′𝑥𝑦′ + 𝑦𝑧′𝑧𝑤′ + 𝑥′𝑤𝑥𝑦′ + 𝑥′𝑤𝑧𝑤′

= 0 + 0 + 0 + 0 = 0

Example 4.2.13

𝐹 = (𝑥′ + 𝑧′)(𝑥 + 𝑦′ + 𝑧′) = 𝑥′𝑥 + 𝑥′𝑦′ + 𝑥′𝑧′ + 𝑥𝑧′ + 𝑦′𝑧′ + 𝑧′𝑧′

= 𝑥′𝑦′ + 𝑥′𝑧′ + 𝑥𝑧′ + 𝑦′𝑧′ + 𝑧′ = 𝑥′𝑦′ + 𝑥′𝑧′ + 𝑥𝑧′ + 𝑦′𝑧′ + 𝑧′

= 𝑥′𝑦′ + 𝑧′ + 𝑦′𝑧′ + 𝑧′ = 𝑥′𝑦′ + 𝑦′𝑧′ + 𝑧′ = 𝑥′𝑦′ + 𝑧′(1 + 𝑦′) = 𝑥′𝑦′ + 𝑧′

Example 4.2.14

𝑥′𝑧′+𝑥𝑦𝑧+𝑥𝑧′ = 𝑥′𝑧′+𝑥𝑦𝑧+𝑥𝑧′ = 𝑧′+𝑥𝑦𝑧 = (𝑧′+𝑥𝑦)(𝑧′+𝑧) = 𝑧′+𝑥𝑦

Pay special attention to the following
4

4: or in general, by using the distributive

property, we have

𝐴 + 𝐴′𝐵𝐶 = 𝐴 + 𝐵𝐶

This is very useful. Can you memorize it?

𝑧′ + 𝑥𝑦𝑧 = 𝑧′ + 𝑥𝑦

Example 4.2.15

(𝑥′𝑦′ + 𝑧)′ + 𝑧 + 𝑥𝑦 + 𝑤𝑧 = (𝑥 + 𝑦)𝑧′ + 𝑧 + 𝑥𝑦 + 𝑤𝑧

= (𝑧 + 𝑥 + 𝑦)(𝑧 + 𝑧′) + 𝑥𝑦 + 𝑤𝑧

= 𝑧 + 𝑥 + 𝑦 + 𝑥𝑦 + 𝑤𝑧 = 𝑥 + 𝑦 + 𝑧.

Example 4.2.16

𝑤′𝑥(𝑧′ + 𝑦′𝑧) + 𝑥(𝑤 + 𝑤′𝑦𝑧) = 𝑤′𝑥(𝑧′ + 𝑦′)(𝑧′ + 𝑧) + 𝑥(𝑤 +𝑤′)(𝑤 + 𝑦𝑧)

= 𝑥[𝑤′(𝑦′ + 𝑧′) + (𝑤 + 𝑦𝑧)] = 𝑥[(𝑤 + 𝑦𝑧)′ + (𝑤 + 𝑦𝑧)] = 𝑥

5
5: Can you try it again with the following

property? Might be easier than the above

method.

𝐴 + 𝐴′𝐵𝐶 = 𝐴 + 𝐵𝐶Example 4.2.17

(𝑤′ + 𝑦)(𝑤′ + 𝑦′)(𝑤 + 𝑥 + 𝑦′𝑧) = 𝑤′(𝑦 + 𝑦′)(𝑤 + 𝑥 + 𝑦′𝑧)

= 𝑤′(𝑤 + 𝑥 + 𝑦′𝑧) = 𝑤′(𝑥 + 𝑦′𝑧)

50 4 Gate-Level Minimization

Example 4.2.18

𝑤𝑥𝑦′𝑧 + 𝑤′𝑥𝑧 + 𝑤𝑥𝑦𝑧 = 𝑤𝑥𝑦′𝑧 + 𝑤′𝑥𝑧 + 𝑤𝑥𝑦𝑧 = 𝑤𝑥𝑧 + 𝑤′𝑥𝑧 = 𝑥𝑧

4.3 Minterms and Maxterms

4.3.1 Definitions

Minterms and maxterms are two important concepts that are used in the

simplification of Boolean expressions.

A minterm is a product term in which each variable appears once, either

in its complemented form or uncomplemented form. For example, in a

two-variable system, there are four minterms: A’B’, AB’, A’B, and AB. A

minterm is also known as a “canonical product term" because it represents

a unique combination of input variables.

A maxterm, on the other hand, is a sum term in which each variable

appears once, either in its complemented form or uncomplemented form.

For example, in a two-variable system, there are four maxterms: A+B, A’+B,

A+B’, and A’+B’. A maxterm is also known as a “canonical sum term"

because it represents a unique combination of input variables.

Both minterms and maxterms are used in the process of simplifying

Boolean expressions using the laws of Boolean algebra. Minterms and

maxterms are related to each other through a duality principle, which

states that a minterm of a Boolean function is equal to the complement of

the corresponding maxterm, and vice versa. This duality principle allows

for the simplification of Boolean expressions using either minterms or

maxterms, depending on which is easier or more convenient to use.

Class Activity

1. Assume three variables are A, B, and C.

2. List all minterms. How many are there?

3. List all maxterms. How many are there?

4. Once you are done, discuss your result with your team members.

6
6: For 𝑛 variables,

▶ The total number of minterms is

▶ The total number of maxterms is

4.3.2 Designations

Minterms and maxterms can be designated using different notations and

symbols depending on the context and the specific application. The desig-

nation of minterms and maxterms is an important step in the simplification

of Boolean expressions and their representation in digital logic circuits.

Minterms are usually designated using a subscripted binary number that

represents the inputs for which the minterm evaluates to true.

4.4 Canonical Forms 51

Example 4.3.1 In a three-variable system, the minterm A’B’C’ would be

designated as 𝑚0, and the minterm ABC would be designated as 𝑚7,

because they correspond to the binary numbers 000 and 111, respectively.

Maxterms, on the other hand, are designated using a subscripted binary

number that represents the inputs for which the maxterm evaluates to

false. The maxterm A+B+C would be designated as 𝑀0, and the maxterm

A’+B’+C’ would be designated as 𝑀7, because they correspond to the

binary numbers 000 and 111, respectively.

All minterm and maxterm designations for three variables are listed in

Table 4.1:

Inputs Minterms Maxterms

A B C minterm designation maxterm designation

0 0 0 A’B’C’ 𝑚0 A+B+C 𝑀0

0 0 1 A’B’C 𝑚1 A+B+C’ 𝑀1

0 1 0 A’BC’ 𝑚2 A+B’+C 𝑀2

0 1 1 A’BC 𝑚3 A+B’+C’ 𝑀3

1 0 0 AB’C’ 𝑚4 A’+B+C 𝑀4

1 0 1 AB’C 𝑚5 A’+B+C’ 𝑀5

1 1 0 ABC’ 𝑚6 A’+B’+C 𝑀6

1 1 1 ABC 𝑚7 A’+B’+C’ 𝑀7

Table 4.1: Designations of Minterms and

Maxterms

Class Activity

1. Examine Table 4.1 carefully.

2. If you are given an input, say 011, can you write out the corre-

sponding minterm? minterm designation? maxterm? maxterm

designation?

3. Can you see the equivalence among the input, minterm, maxterm,

and their designations?

4. Test each other with your teammates.

5. What relationship is there between a pair of corresponding

minterm and maxterm? For example, 𝑚3 and 𝑀3.

4.4 Canonical Forms

In Boolean algebra, a canonical form is a unique expression that represents

a Boolean function. There are two types of canonical forms: form 1 or the

sum-of-products (SOP) and form 2 or the product-of-sums (POS) forms.

4.4.1 Canonical sum-of-products (SOP) form

A Boolean function can be expressed from a truth table by forming a

minterm for each combination of the variables that produces a 1 in the

function and taking the OR of all those terms.

52 4 Gate-Level Minimization

Example 4.4.1 Three Boolean functions 𝐹1 , 𝐹2 and 𝐹3 are given by the

following truth table:

x y z 𝐹1 𝐹2 𝐹3

0 0 0 0 1O 0

0 0 1 1O 0 0

0 1 0 0 1O 1

0 1 1 0 1O 1

1 0 0 1O 0 0

1 0 1 1O 0 0

1 1 0 0 1O 1

1 1 1 1O 0 1

Then function

𝐹1 = 𝑥′𝑦′𝑧 + 𝑥𝑦′𝑧′ + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 = 𝑚1 + 𝑚4 + 𝑚5 + 𝑚7

and function

𝐹2 = 𝑥′𝑦′𝑧′ + 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦𝑧′ = 𝑚0 + 𝑚2 + 𝑚3 + 𝑚6

Exercise 4.4.1 From the above truth table, express Boolean function 𝐹3

in the SOP form.

7
7: Given Boolean function in its SOP form,

can you develop its truth table?

Example 4.4.2 Express Boolean function 𝐹 = 𝐴 + 𝐵′𝐶 as a sum of

minterms.

Solution 1: we can develop a truth table from the Boolean function and

then find its SOP form by following the steps in the above example.

Solution 2: However, we have a second method here.

Hint: we need to have all three variables in each minterm.

The first term can be expressed as (by adding B and C variables)

𝐴 = 𝐴(𝐵 + 𝐵′)(𝐶 + 𝐶′) = 𝐴𝐵𝐶 + 𝐴𝐵𝐶′ + 𝐴𝐵′𝐶 + 𝐴𝐵′𝐶′

The second term needs to add A variable only:

𝐵′𝐶 = (𝐴 + 𝐴′)𝐵′𝐶 = 𝐴𝐵′𝐶 + 𝐴′𝐵′𝐶

So

𝐹 = 𝐴 + 𝐵′𝐶 = 𝐴𝐵𝐶 + 𝐴𝐵𝐶′ + 𝐴𝐵′𝐶 + 𝐴𝐵′𝐶′ + 𝐴𝐵′𝐶 + 𝐴′𝐵′𝐶

= 𝑚1 + 𝑚4 + 𝑚5 + 𝑚6 + 𝑚7

4.4 Canonical Forms 53

Be reminded that there are two terms, underlined above, of 𝐴𝐵′𝐶, or 𝑚5,

but

𝑚5 + 𝑚5 = 𝑚5.

We can write the above result in another short form:

𝐹(𝐴, 𝐵, 𝐶) =
∑

(1, 4, 5, 6, 7)

4.4.2 Canonical product-of-sums (POS) form

A Boolean function can be expressed from a truth table by forming a

maxterm for each combination of the variables that produces a 0 in the

function and taking the AND of all those terms.

Example 4.4.3 Three Boolean functions 𝐹1 , 𝐹2 and 𝐹3 are given by the

following truth table:

x y z 𝐹1 𝐹2 𝐹3

0 0 0 0O 1 0

0 0 1 1 0O 0

0 1 0 0O 1 1

0 1 1 0O 1 1

1 0 0 1 0O 0

1 0 1 1 0O 0

1 1 0 0O 1 1

1 1 1 1 0O 1

Then function

𝐹1 = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦′ + 𝑧)(𝑥 + 𝑦′ + 𝑧′)(𝑥′ + 𝑦′ + 𝑧)

= 𝑀0𝑀2𝑀3𝑀6 =
∏

(0, 2, 3, 6)

and function

𝐹2 = (𝑥 + 𝑦 + 𝑧′)(𝑥′ + 𝑦 + 𝑧)(𝑥′ + 𝑦 + 𝑧′)(𝑥′ + 𝑦′ + 𝑧′)

= 𝑀1𝑀4𝑀5𝑀7 =
∏

(1, 4, 5, 7)

Exercise 4.4.2 From the above truth table, express Boolean function 𝐹3

in the POS form.

8
8: Given Boolean function in its SOP form,

can you develop its truth table?

Example 4.4.4 Express Boolean function 𝐹 = 𝑥𝑦 + 𝑥′𝑧 as a product of

maxterms.

54 4 Gate-Level Minimization

Solution 1: we can develop a truth table first and then find its POS form

by following steps in the above example.

Solution 2: However, we use a second method here.

Using distributive law 𝑥 + 𝑦𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧) repeatedly,

𝐹 = 𝑥𝑦 + 𝑥′𝑧 = (𝑥𝑦 + 𝑥′)(𝑥𝑦 + 𝑧) =����:1(𝑥′ + 𝑥)(𝑥′ + 𝑦)(𝑥 + 𝑧)(𝑦 + 𝑧)

= (𝑥′ + 𝑦)(𝑥 + 𝑧)(𝑦 + 𝑧)

Adding the missing variables for each of the three terms,

𝑥′ + 𝑦 = 𝑥′ + 𝑦 + 𝑧𝑧′ = (𝑥′ + 𝑦 + 𝑧)(𝑥′ + 𝑦 + 𝑧′)

𝑥 + 𝑧 = 𝑥 + 𝑧 + 𝑦𝑦′ = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦′ + 𝑧)

𝑦 + 𝑧 = 𝑦 + 𝑧 + 𝑥𝑥′ = (𝑥 + 𝑦 + 𝑧)(𝑥′ + 𝑦 + 𝑧)

Combing all and removing repeating terms

𝐹 = (𝑥 + 𝑦 + 𝑧)(𝑥′ + 𝑦 + 𝑧)(𝑥 + 𝑦′ + 𝑧)(𝑥′ + 𝑦 + 𝑧′)

or simply

= 𝑀0𝑀2𝑀4𝑀5 =
∏

(0, 2, 4, 5)

4.4.3 Conversion between SOP and POS forms

From the above sections we see that SOP represents a logical expression as

the sum of several product terms, while POS represents a logical expression

as the product of several sum terms. They can be converted to each other

easily with the help of a truth table.

In Example 4.4.1 and Example 4.4.3, the truth tables for function 𝐹1 are

identical. This means, these two 𝐹1 functions are the same. Its SOP form

is

𝐹1 = 𝑚1 + 𝑚4 + 𝑚5 + 𝑚7 =
∑

(1, 4, 5, 7),

and its POS form is

𝐹1 = 𝑀0𝑀2𝑀3𝑀6 =
∏

(0, 2, 3, 6).

By comparing the two, we see that

𝑚1 + 𝑚4 + 𝑚5 + 𝑚7 = 𝑀0𝑀2𝑀3𝑀6 ,

or ∑
(1, 4, 5, 7) =

∏
(0, 2, 3, 6).

This gives us a hint about conversion between SOP and POS forms.

Steps of converting SOP form to POS form:

1. Create the truth table for the function.

2. Identify the rows in the truth table where the output is 0.

4.4 Canonical Forms 55

3. Write a product term for each row identified in step 2, where the

product term includes all of the input variables that are set to 1 in

that row.

4. Write the sum of all of the product terms from step 3 to get the POS

expression.

Converting POS form to SOP form follows the same idea.
9

9: Can you list here the steps of converting

SOP form to POS form?

Example 4.4.5 Convert the following Boolean function from SOP form

to POS form:

𝐹 = 𝑥′𝑦′𝑧 + 𝑥𝑦′𝑧′ + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧

Solution: we write

𝐹 = 𝑥′𝑦′𝑧 + 𝑥𝑦′𝑧′ + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 =
∑

(1, 4, 5, 7)

1. Develop its truth table as

x y z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

Make sure that the rows of F with value 1 correspond to indices 1,

4, 5, and 7.

2. Find the rows of function F with value 0. These are 0, 2, 3, and 6.

3. Their maxterms should be x+y+z, x+y’+z, x+y’+z’, and x’+y’+z.

4. The POS form of the function is then

𝐹 = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦′ + 𝑧)(𝑥 + 𝑦′ + 𝑧′)(𝑥′ + 𝑦′ + 𝑧) =
∏

(0, 2, 3, 6)

10
10: In this example, the function

𝐹 =
∑

(1, 4, 5, 7) =
∏

(0, 2, 3, 6)

Do you find anything? Can you explain

the reason?

Class Activity

1. To memorize: Boolean function F can be expressed as a sum of

1-minterms or as a product of 0-maxterms.

2. To test yourself: find another example and apply the skills we

learned above.

3. To discuss: help each other to make sure all in your team can

apply the skills.

56 4 Gate-Level Minimization

4.5 Standard Forms and Non Standard Forms

Canonical forms are not economical, because minterms or maxterms must

contain all variables.

Standard forms are simplified versions of canonical forms. In standard

forms, each term in a function can contain one or more literals. There are

still two types of standard forms:

▶ Sum of products: for example

𝐹 = 𝑦′ + 𝑥𝑦 + 𝑥′𝑦′𝑧′

▶ Product of sums: for example

𝐹 = 𝑥(𝑦′ + 𝑧)(𝑥′ + 𝑦 + 𝑧′)

Boolean functions with standard forms can be implemented with two-level

logic, which refers to a logic design that uses at most two logic gates

between any input and output.

Example 4.5.1 Boolean function

𝐹 = 𝑦′ + 𝑥′𝑦𝑧′ + 𝑥𝑦

can be implemented with a two-level logic as in Figure 4.1.

Figure 4.1: Two-Level Logic in SOP Form

Example 4.5.2 Boolean function

𝐹 = 𝑥(𝑦′ + 𝑧)(𝑥′ + 𝑦 + 𝑧)

can be implemented with a two-level logic as in Figure 4.2.

Nonstandard forms are any forms that are not a sum of products nor a

product of sums. For example

𝐹 = 𝐴𝐵 + 𝐶(𝐷 + 𝐸)

4.5 Standard Forms and Non Standard Forms 57

Figure 4.2: Two-Level Logic in POS Form

Nonstandard form can be converted into standard form. For example

𝐹 = 𝐴𝐵 + 𝐶(𝐷 + 𝐸) = 𝐴𝐵 + 𝐶𝐷 + 𝐶𝐸

The non-standard form can be implemented with a multiple-level logic as

in Figure 4.3.

Figure 4.3: Three-Level Implementation

Exercise 4.5.1 Express Boolean function 𝐹 = 𝐴 + 𝐵′𝐶 + 𝐴𝐷 as sum of

minterms.

Exercise 4.5.2 Express Boolean function 𝐹 = 𝑥′𝑦 + 𝑥𝑧 as product of

maxterms.

Exercise 4.5.3 Draw a two-level logic diagram to implement 𝐹 = 𝐵𝐶′ +
𝐴𝐵 + 𝐴𝐶𝐷.

Advantages of Two-Level Implementation Compared to Three-Level Im-

plementation:

1. Simplified Design: Two-level implementation reduces the complexity

of the design process compared to three-level implementation, as

there are fewer gates and interconnections to manage.

2. Improved Performance: Two-level implementation can result in faster

and more efficient circuits than three-level implementation due to

reduced propagation delays.

3. Reduced Cost: The reduction in gates and interconnections makes

two-level implementation less expensive to produce and maintain

than three-level implementation.

58 4 Gate-Level Minimization

4. Flexibility: Two-level implementation can be more flexible than three-

level implementation, as they can be easily modified or reconfigured

to meet changing design requirements.

5. Simplified Testing: Two-level implementation is easier to test and

debug than three-level implementation due to the simpler circuit

design.

Disadvantages of Two-Level Implementation Compared to Three-Level

Implementation:

1. Limited Expressiveness: Two-level logic circuits are limited in the

types of logic functions they can implement compared to three-level

logic circuits.

2. Size Limitations: Two-level implementation can become impracti-

cal for larger logic functions as the number of required gates and

interconnections can quickly become unmanageable compared to

three-level implementation.

3. Limited Scalability: Two-level implementation can be difficult to

scale up to more complex circuits or designs compared to three-level

implementation.

4. Reduced Flexibility: Three-level implementation can be more flexible

than two-level implementation for some logic functions that require

additional levels of logic gates.

5. Higher Power Consumption: Three-level implementation may con-

sume more power than two-level implementation due to the addi-

tional circuitry and gates required.

Overall, the choice between two-level and three-level implementation of

logic circuits depends on the specific design requirements and trade-offs

between circuit complexity, performance, cost, and power consumption.

Two-level implementation is often preferred for simpler designs with per-

formance and cost considerations, while three-level implementation may

be more appropriate for more complex designs with flexibility require-

ments.

4.6 Digital Logic Gates

In addition to the three types (AND, OR, and NOT) of digital logic gates

discussed above, there are several other types, each with its own unique

functionality:

▶ XOR gate: This gate has two inputs and produces a high output (1)

if the inputs are different, and a low output (0) if the inputs are the

same.

▶ NAND gate: This gate has two or more inputs and produces a low

output (0) only if all of its inputs are high.

▶ NOR gate: This gate has two or more inputs and produces a low

output (0) if any of its inputs are high.

▶ XNOR gate: This gate has two inputs and produces a high output

(1) if the inputs are the same, and a low output (0) if the inputs are

different.

4.7 Karnaugh Maps 59

These logic gates can be combined to form more complex circuits, such as

adders, multiplexers, and flip-flops, which can perform a wide variety of

functions in digital systems.

4.7 Karnaugh Maps

Gate-level minimization is to find an optimal gate-level implementation of

the Boolean functions describing a digital circuit. However, we see that sim-

plifying Boolean functions with Boolean algebra is not easy manually. Some

computer-based logic synthesis tools can be used for simplification, but

discussion of fundamentals in design of simple circuits helps understand

complex modern design tools.

Another effective way is by using Karnaugh Maps, also known as K-

Maps. K-Maps are a graphical method of simplifying Boolean algebra

expressions. They are commonly used in digital electronics to simplify

Boolean expressions and minimize the number of logic gates needed to

implement a particular function.

K-Maps consist of a two-dimensional grid of cells, where each cell represents

a unique combination of input variables. The cells are grouped together in

a way that emphasizes common input patterns, such as adjacent cells that

differ by only one input variable. By identifying these patterns, you can

identify areas of the map that correspond to particular Boolean expressions

and then combine these expressions to simplify the overall logic of the

system.

K-Maps are a powerful tool for simplifying digital circuits, as they allow

designers to quickly and easily visualize complex logic functions and

identify areas where simplification is possible. They are often used in

combination with other methods, such as Boolean algebra and truth tables,

to fully optimize digital circuit design.

In K-maps,

▶ The order of the variables is important.

▶ Each cell represents a minterm or a maxterm of the Boolean function.

▶ Any two adjacent cells differ by only one variable: complemented in

one cell and uncomplemented in the other.

▶ Multiple-cell areas correspond to standard terms.

▶ Because a function can be expressed as a sum of minterms, it is easy

to see all possible expressions of a function.

▶ K-Map produces the simplest SOP or POS expressions (minimum

expression).

4.7.1 Two-Variable K-Map

The Two-Variable K-Map consists of a grid of four cells, each representing a

unique combination of two input variables. The cells are arranged in such

a way that the inputs are arranged in a Gray code sequence, which ensures

60 4 Gate-Level Minimization

that adjacent cells differ by only one variable. A two-variable K-map is

plotted in Figure 4.4.

Figure 4.4: Two-Variable K-Map

To represent Boolean functions in K-Map, mark the cell (with 1) if a minterm

is in the function.

Example 4.7.1 Boolean function 𝐹 = 𝑥𝑦 is marked in (a).

Example 4.7.2 Boolean function 𝐹 = 𝑥 + 𝑦 is marked in (b) because

𝐹 = 𝑚1 + 𝑚2 + 𝑚3 = 𝑥′𝑦 + 𝑥𝑦′ + 𝑥𝑦 = 𝑥 + 𝑦

Figure 4.5: An exmaple

4.7.2 Three-Variable K-Map

A three-variable K-map is plotted in Figure 4.6.

Example 4.7.3 Simplify function with K-Map (Figure 4.7).

Solution: from the K-map, we see that the function𝐹(𝑥, 𝑦, 𝑧) = ∑(2, 3, 4, 5).
Combine adjecent cells, it is simplified to: 𝐹(𝑥, 𝑦, 𝑧) = 𝑥′𝑦 + 𝑥𝑦′.

4.7 Karnaugh Maps 61

Example 4.7.4 Simplify function with K-Map (see Figure 4.8).

Solution:

Function 𝐹(𝑥, 𝑦, 𝑧) = ∑(3, 4, 6, 7) and simplified to 𝐹(𝑥, 𝑦, 𝑧) = 𝑦𝑧 + 𝑥𝑧′.

Example 4.7.5 Simplify function with K-Map (see Figure 4.9).

Solution:

Function 𝐹(𝑥, 𝑦, 𝑧) = ∑(0, 2, 4, 5, 6) simplified to 𝐹(𝑥, 𝑦, 𝑧) = 𝑧′ + 𝑥𝑦′.

Example 4.7.6 Simplify function 𝐹(𝐴, 𝐵, 𝐶) = 𝐴′𝐶 + 𝐴′𝐵 + 𝐴𝐵′𝐶 + 𝐵𝐶

with K-Map.

Solution:

First, implement the truth table for function 𝐹(𝐴, 𝐵, 𝐶) = 𝐴′𝐶 + 𝐴′𝐵 +
𝐴𝐵′𝐶 + 𝐵𝐶, and then draw its K-map (see Figure 4.10. From the K-

map, we see that 𝐹(𝐴, 𝐵, 𝐶) = ∑(1, 2, 3, 5, 7). After combining cells, it is

simplified to: 𝐹(𝐴, 𝐵, 𝐶) = 𝐶 + 𝐴′𝐵.

4.7.3 Four-Variable K-Map

A three-variable K-map is plotted in Figure 4.11.

In a four-variable Karnaugh Map,

▶ One cell ⇐⇒ one minterm ⇐⇒ a term with four literals

eg. F=ABC’D

▶ Two adjacent cells ⇐⇒ a term with three literals

eg. F=A’BC

▶ Four adjacent cells ⇐⇒ a term with two literals

eg. F=AD

▶ Eight adjacent cells ⇐⇒ a term with one literal

eg. F=C’

▶ Sixteen adjacent cells ⇐⇒ 1

Example 4.7.7 Simplify Functions with K-Map

Figure 4.6: Three-Variable K-Map

62 4 Gate-Level Minimization

Solution: Function: 𝐹(𝑤, 𝑥, 𝑦, 𝑧) = ∑(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)
Simplified to: 𝐹(𝑤, 𝑥, 𝑦, 𝑧) = 𝑦′ + 𝑤′𝑧′ + 𝑥𝑧′.

Example 4.7.8 Simplify Functions with K-Map

Solution: Function: 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐴′𝐵′𝐶 + 𝐵′𝐶𝐷′ + 𝐴′𝐵𝐶𝐷′ + 𝐴𝐵′𝐶′

Simplified to: 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵′𝐷′ + 𝐵′𝐶′ + 𝐴′𝐶𝐷′
.

Example 4.7.9 Product-of-Sums Simplification

Solution: Function: 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ∑(0, 1, 2, 5, 8, 9, 10)
Simplified to: 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵𝐷′ + 𝐵′𝐶 + 𝐴′𝐶′𝐷

While 𝐹′(𝐴, 𝐵, 𝐶, 𝐷) = 𝐴𝐵+𝐶𝐷 +𝐵𝐷′
(by considering the cells with 0.)

That is 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = (𝐴′ + 𝐵′)(𝐶′ + 𝐷′)(𝐵′ + 𝐷) (by Demorgan’s).

Figure 4.7: Example

4.7 Karnaugh Maps 63

Figure 4.8: Example

Figure 4.9: Example

Figure 4.10: Example

64 4 Gate-Level Minimization

Figure 4.11: Four-Variable K-Map

Figure 4.12: Example

Figure 4.13: Example

4.7 Karnaugh Maps 65

Figure 4.14: Example

66 4 Gate-Level Minimization

4.8 Design Example: a Clock with 7-Segment
Display

A 7-segment display is a common electronic component used to display

numerical digits and some basic alphanumeric characters. It consists of

seven individual LED (Light Emitting Diode) or LCD (Liquid Crystal

Display) segments arranged in a specific pattern to form each digit from

0 to 9 and a few additional characters like A, B, C, etc. The segments are

typically labeled as a, b, c, d, e, f, and g.

7-segment displays are commonly used in a wide range of electronic

devices like digital clocks, microwave ovens, calculators, and various

digital indicators. They are simple, versatile, and easy to interface with

microcontrollers and other electronic circuits, making them a popular

choice for displaying numerical information.

There are several types of 7-segment displays, primarily categorized based

on their technology, design, and purpose. The two most fundamental types

are common anode and common cathode.

1. Common Anode (CA) 7-Segment Display: In this type, all the an-

odes of the seven segments are connected together and share a

common positive voltage supply, while each segment is controlled

by grounding its respective cathode. When a cathode is grounded,

the corresponding segment lights up.

2. Common Cathode (CC) 7-Segment Display: opposite to CA type,

all the cathodes of the segments are connected together and share

a common ground, while each segment is controlled by applying a

positive voltage to its respective anode.

Figure 4.15: Two Types of 7-Segment Dis-

play

(a) Common Anode (b) Common Cathode

For a commom cathode display, the 16 hexdecimal sybmbols are in Figure

4.16.

Assume we want to implement a clock that displays with a one digit

hexdecimal number.

We use a binary counter IC chip. For example, 74HC393 is a 14 pin dual

binary counter, as in Figure 4.17, Each counter contains a “Clock", a “Reset"

4.8 Design Example: a Clock with 7-Segment Display 67

and four outputs. The first counter involves pin 1-6, the second counter

uses pin 8-13.

Our objective is to design a circuit using logic gates that takes A, B, C, and

D as input variables and delivers 7 output values to control a common

cathode 7-segment display pins a, b, c , d , e, f, and g. Below is our design

process.

1. For all possible displayed symbols (1, 2, 3, ... E, F), we use the 4 bits

(𝑄1 , 𝑄2 , 𝑄3, 𝑄4 in the IC chip) as the input variables A, B, C, and D

of our Boolean functions for pins a, b, c, d, e, f, and g.

2. Implement a truth table. By examining what symbols light up pin a,

we determine the truth table for output funtion for pin a. We see that

for symbols 0, 2, 3, 5, 6, 7, 8, 9, A, C, E, and F, the segment a needs to

be lit. Do the same with all other pins.

The truth talbe is in Table 4.2.

number A B C D a b c d e f g symbol

0 0 0 0 0 1 1 1 1 1 1 0 0

1 0 0 0 1 0 1 1 0 0 0 0 1

2 0 0 1 0 1 1 0 1 1 0 1 2

3 0 0 1 1 1 1 1 1 0 0 1 3

4 0 1 0 0 0 1 1 0 0 1 1 4

5 0 1 0 1 1 0 1 1 0 1 1 5

6 0 1 1 0 1 0 1 1 1 1 1 6

7 0 1 1 1 1 1 1 0 0 0 0 7

8 1 0 0 0 1 1 1 1 1 1 1 8

9 1 0 0 1 1 1 1 1 0 1 1 9

10 1 0 1 0 1 1 1 0 1 1 1 A

11 1 0 1 1 0 0 1 1 1 1 1 B

12 1 1 0 0 1 0 0 1 1 1 0 C

13 1 1 0 1 0 1 1 1 1 0 1 D

14 1 1 1 0 1 0 0 1 1 1 1 E

15 1 1 1 1 1 0 0 0 1 1 1 F

Table 4.2: Truth Table for the Clock

3. Determine the Boolean functions for all pins. For example, by reading

the “a" column in the table, we see that the function for pin a is

𝑎 = 𝐴′𝐵′𝐶′𝐷′ + 𝐴′𝐵′𝐶𝐷′ + 𝐴′𝐵′𝐶𝐷 + 𝐴′𝐵𝐶′𝐷

+ 𝐴′𝐵𝐶𝐷′ + 𝐴′𝐵𝐶𝐷 + 𝐴𝐵′𝐶′𝐷′ + 𝐴𝐵′𝐶′𝐷

+ 𝐴𝐵′𝐶𝐷′ + 𝐴𝐵𝐶′𝐷′ + 𝐴𝐵𝐶𝐷′ + 𝐴𝐵𝐶𝐷

or simply in designations,

𝑎 = 𝑚0 +𝑚2 +𝑚3 +𝑚5 +𝑚6 +𝑚7 +𝑚8 +𝑚9 +𝑚10 +𝑚12 +𝑚14 +𝑚15.

Determine the Boolean functions for other pins.

4. Simplfy all Boolean functions. For examle, we use K-map for function

a as in Figure 4.18.

The simplified function is then

𝑎 = 𝐴′𝐶 + 𝐵𝐶 + 𝐴𝐷′ + 𝐵′𝐷′𝐴𝐵′𝐶′ + 𝐴′𝐵𝐷.

68 4 Gate-Level Minimization

Simplify Boolean functions for other pins.

5. Use logic gates to implement all functions.

4.8 Design Example: a Clock with 7-Segment Display 69

Figure 4.16: Hex Symbols

Figure 4.17: 74HC393

70 4 Gate-Level Minimization

Figure 4.18: K-map for Pin a

[6]: Hosch (2023), supercomputer
[7]: Fernandez et al. (2019), ‘Supercomput-

ers to improve the performance in higher

education: A review of the literature’

[8]: IBM (2023), What is a mainframe?
[9]: Wikipedia contributors (2023), Mini-
computer — Wikipedia, The Free Encyclopedia
[10]: Wikipedia contributors (2023), Micro-
computer — Wikipedia, The Free Encyclopedia

5 Hardware

5.1 Computer Systems 71
5.2 Hardware in Computer

Architecture 74
5.3 Hardware in Computer Net-

works and Cyber Security . . 79
5.4 Hardware in Embedded

Systems and Robotics 83

A computer system is a complex and interconnected collection of compo-

nents that work together to process data, perform tasks, and provide value

to users.

Computer hardware refers to the physical components of a computer

system that enable it to function. For a typical computer, its hardware

includes the following physical parts: the case, central processing unit

(CPU), random access memory (RAM), graphics card (GPU), computer

data storage (hard disk), monitor, mouse, keyboard, sound card, speakers,

and motherboard.

5.1 Computer Systems

Computer systems in computer engineering can be classified based on

many different criteria. For example, based on size, computers can be

classified into super computers[6, 7], mainframe computers[8], mini com-

puters[9], and micro computers[10]. Based on functionality, computers can

be classified into servers, workstations, information devices, and embedded

computers.

Embedded vs. Standalone Systems

Embedded systems and standalone systems are two different types of

computing systems that are designed for different purposes. Here’s a brief

overview of the differences between them:

Embedded Systems 1

1: List and describe two examples of em-

bedded systems.

Embedded systems are specialized computer sys-

tems that are designed to perform a specific task or function. They

are typically found in devices such as cars, medical equipment, and

72 5 Hardware

home appliances. Embedded systems are usually small, low-power

devices that are designed to be integrated into a larger system or

product.

Embedded systems often have dedicated hardware and software

designed specifically for their task. They may not have a user interface

or require user interaction, and may not be easily upgradeable or

modifiable. Examples of embedded systems include GPS systems,

industrial control systems, and smart home devices.

Standalone Systems 2

2: List and describe two examples of stan-

dalone systems.

Standalone systems, on the other hand, are general-

purpose computing systems that are designed to perform a wide

variety of tasks. They are typically larger and more powerful than

embedded systems and are designed to be used by a user. Standalone

systems usually have a graphical user interface (GUI) and can run a

variety of software applications.

Standalone systems can be customized or upgraded by the user, and

can be used for a wide variety of purposes such as office productivity,

gaming, or multimedia. Examples of standalone systems include

desktop computers, laptops, and tablets.

In summary, embedded systems are specialized, task-specific computing

systems that are designed to be integrated into a larger system or product,

while standalone systems are general-purpose computing systems designed

for use by a user.

Real-Time vs. Non-Real-Time Systems

Real-time and non-real-time systems are two different types of computing

systems that are designed for different purposes. Here’s a brief overview

of the differences between them:

Real-Time Systems 3

3: List and describe two examples of real-

time systems.

Real-time systems[11]

[11]: Intel (2023), Real-Time Systems
Overview and Examples

are computing systems that

must respond to events or stimuli within a specified time frame.

These systems are designed to respond to input or events in real-time

or near real-time, meaning they must process data and provide a

response within a specific time limit.

Real-time systems are often used in applications where timing is

critical, such as aviation, medical devices, and industrial automation.

Examples of real-time systems include air traffic control systems,

pacemakers, and robotic manufacturing systems.

Non-Real-Time Systems 4

4: List and describe two examples of non-

real-time systems.

Non-real-time systems[12]

[12]: Dalkiran et al. (2021), ‘Automated

integration of real-time and non-real-time

defense systems’

are computing sys-

tems that do not have specific timing requirements. These systems

are designed to perform tasks without any specific time constraints,

and can take as long as necessary to complete a task.

Non-real-time systems are often used in applications where timing is

not critical, such as office productivity, gaming, and multimedia. Ex-

amples of non-real-time systems include desktop computers, laptops,

and mobile devices.

In summary, real-time systems are designed to respond to input or events

within a specific time frame, while non-real-time systems do not have

5.1 Computer Systems 73

specific timing requirements and can take as long as necessary to complete

a task.

Control Systems vs. Information Systems

Control systems and information systems are two different types of com-

puting systems that are designed for different purposes. Here’s a brief

overview of the differences between them:

Control Systems 5

5: List and describe two examples of con-

trol systems.

Control systems[13]

[13]: Wikipedia contributors (2023), Con-
trol system — Wikipedia, The Free Encyclope-
dia

are computing systems that are

designed to manage and control physical processes or systems.

They use sensors and actuators to measure and manipulate physical

variables, such as temperature, pressure, or speed, to achieve a desired

outcome.

Control systems are often used in industrial automation, robotics, and

manufacturing applications. Examples of control systems include

HVAC (heating, ventilation, and air conditioning) systems, process

control systems, and flight control systems.

Information Systems 6

6: List and describe two examples of in-

formation systems.

Information systems[14]

[14]: Wikipedia contributors (2023), Infor-
mation system — Wikipedia, The Free Ency-
clopedia

are computing systems

that are designed to manage and process data and information. They

are used to collect, store, process, and retrieve data and information,

and to support decision-making and business operations.

Information systems are often used in business, government, and

educational applications. Examples of information systems include

customer relationship management (CRM) systems, human resource

information systems (HRIS), and financial management systems.

In summary, control systems are designed to manage and control physical

processes or systems, while information systems are designed to manage

and process data and information.

Distributed vs. Centralized Systems

Distributed and centralized systems are two different types of computing

systems that are designed for different purposes. Here’s a brief overview

of the differences between them:

Centralized Systems 7

7: List and describe two examples of cen-

tralized systems.

Centralized systems[15]

[15]: Veetil (2017), Coordination in Central-
ized and Decentralized Systems

are computing systems

that are designed to have a single point of control or authority. In a

centralized system, all processing and decision-making occurs at a

central location, and all communication between components occurs

through this central point.

Centralized systems are often used in situations where there is a

clear hierarchy of control, such as in a company or government

organization. Examples of centralized systems include mainframe

computers, centralized databases, and client-server architectures.

Distributed Systems 8

8: List and describe two examples of dis-

tributed systems.

Distributed systems[16]

[16]: van Steen et al. (2017), Distributed
Systems

are computing systems

that are designed to distribute processing and decision-making across

multiple locations or components. In a distributed system, there is no

74 5 Hardware

Select one system classification, list and

explain the hardware components.

central point of control or authority, and components communicate

and collaborate with each other to achieve a desired outcome.

Distributed systems are often used in situations where there is a need

for flexibility, scalability, and fault-tolerance. Examples of distributed

systems include peer-to-peer networks, distributed databases, and

cloud computing.

In summary, centralized systems are designed to have a single point of

control or authority, while distributed systems are designed to distribute

processing and decision-making across multiple locations or components.

Open vs. Closed Systems

Open and closed systems are two different types of computing systems

that are designed for different purposes. Here’s a brief overview of the

differences between them:

Open Systems 9

9: List and describe two examples of open

systems.

Open systems[17]

[17]: Wikipedia contributors (2021), Open
system (computing) — Wikipedia, The Free
Encyclopedia

are computing systems that are de-

signed to be interoperable with other systems and components. In

an open system, components can be added, removed, or replaced

with little or no impact on the overall system. Open systems are often

designed to adhere to industry standards and specifications, and use

open protocols and interfaces.

Open systems are often used in situations where there is a need

for interoperability, flexibility, and vendor neutrality. Examples of

open systems include the Internet, Linux operating system, and

open-source software.

Closed Systems 10

10: List and describe two examples of

closed systems.

Closed systems are computing systems that are de-

signed to be self-contained and tightly controlled. In a closed system,

components are typically proprietary and cannot be easily added,

removed, or replaced. Closed systems often use proprietary protocols

and interfaces, and may be designed to prevent or limit interoper-

ability with other systems.

Closed systems are often used in situations where there is a need for

security, control, and stability. Examples of closed systems include

Apple’s iOS operating system, some gaming consoles, and some

industrial control systems.

In summary, open systems are designed to be interoperable with other

systems and components, while closed systems are designed to be self-

contained and tightly controlled.

For each type of system, the hardware can be classified differently.

5.2 Hardware in Computer Architecture

Engineers in computer architecture will design and develop computer

systems and components, including processors, memory, and input/output

systems.

5.2 Hardware in Computer Architecture 75

[18]: Wikipedia contributors (2023), Cen-
tral processing unit — Wikipedia, The Free
Encyclopedia

[19]: Wikipedia contributors (2023),

Random-access memory — Wikipedia, The
Free Encyclopedia

[18]: Wikipedia contributors (2023), Cen-
tral processing unit — Wikipedia, The Free
Encyclopedia

[20]: Wikipedia contributors (2023), Arith-
metic logic unit — Wikipedia, The Free Ency-
clopedia

Central Processing Unit (CPU) The CPU is the "brain" of the computer

that performs arithmetic and logical operations on data. Further

readings can be found at [18].

Random Access Memory (RAM) RAM is a type of memory that stores

data and instructions temporarily while the computer is running.

Further readings can be found at [19].

Hard Disk Drive (HDD) or Solid State Drive (SSD) HDDs and SSDs are

storage devices that store data on a permanent basis.

Motherboard The motherboard is the main circuit board of a computer

that connects all of the other components together.

Power Supply Unit (PSU) The PSU is responsible for supplying power to

all of the other components in a computer.

Graphics Processing Unit (GPU) The GPU is a specialized processor that

is responsible for rendering graphics and accelerating video playback.

Input/Output Devices These include devices such as the keyboard, mouse,

monitor, printer, sound card, and video card, which allow the user to

input information into the computer and receive output.

Central Processing Unit

The Central Processing Unit (CPU) is responsible for executing instructions

and controlling the operations of the computer’s hardware and software.

Here’s a simplified explanation of how a CPU works:

▶ Fetch: The CPU retrieves an instruction from memory, which contains

the operation to be performed and the data on which to perform it.

▶ Decode: The CPU decodes the instruction and determines what

operation to perform and what data to use.

▶ Execute: The CPU performs the operation, such as adding two

numbers, and stores the result in a register.

▶ Repeat: The CPU repeats this cycle for each instruction in the program.

The block diagram of a basic uniprocessor-CPU computer is illustratd in

Figure 5.1, where black lines indicate data flow; red lines indicate control

flow; and arrows indicate flow directions [18].

The CPU has several components that work together to execute instruc-

tions:

▶ Control Unit: The control unit manages the flow of instructions and

data between the CPU and other components, such as memory and

input/output devices.

▶ Arithmetic Logic Unit (ALU)[20]: The ALU performs arithmetic and

logic operations, such as addition, subtraction, multiplication, and

division. It also performs logical operations, such as AND, OR, and

NOT. It receives data from registers within the CPU, processes it

based on the instructions from the control unit, and produces the

result.

▶ Registers[21]

[21]: Wikipedia contributors (2023), Pro-
cessor register — Wikipedia, The Free Ency-
clopedia

: The registers are high-speed storage areas within the

CPU that hold data and instructions during processing. Registers are

faster than other memory levels like RAM or cache memory. The types

76 5 Hardware

[23]: Rushby (2001), A Comparison of Bus
Architectures for Safety-Critical Embedded
Systems

of registers include general-purpose registers that hold operational

data, instruction registers that hold the current instruction being

processed, and program counter that holds the memory address of

the next instruction to be fetched.

▶ Cache[22]

[22]: Wikipedia contributors (2023), Cache
(computing) — Wikipedia, The Free Encyclo-
pedia

: The cache is a small amount of high-speed memory that

stores frequently used data and instructions to speed up processing.

It improves computer performance by minimizing the frequency

of slower main memory accesses and reduceing latency for data

access. There are three levels of Cache. L1 Cache is the smallest and

fastest, located directly on the CPU chip. It typically stores the most

frequently used data. L2 Cache is larger than L1 but slightly slower.

It can be on the CPU chip or close to it. L3 Cache is even larger and

slower, usually shared among multiple CPU cores.

▶ Bus Interface Unit (BIU): The BIU is responsible for communicating

with other devices in the computer, such as memory and input/output

devices. More details can be found in [23].

▶ Clock: The Clock is a component that synchronizes the operations of

the CPU. It provides a regular signal that controls the timing of the

CPU’s operations.

The performance of a CPU is determined by its clock speed, which is the

rate at which it executes instructions, and the number of cores, which allow

it to perform multiple tasks simultaneously. CPU design is an ongoing area

of research and development, with new technologies such as multicore

processors, hyper-threading, and cache hierarchies being developed to

improve performance and efficiency.

Random Access Memory

Random Access Memory, commonly known as RAM, is a type of computer

memory that allows data to be accessed in any order, without having to

read and discard the data that comes before it. RAM is a volatile memory,

Figure 5.1: Block diagram of a basic CPU

5.2 Hardware in Computer Architecture 77

[19]: Wikipedia contributors (2023),

Random-access memory — Wikipedia, The
Free Encyclopedia

which means that it loses its contents when the power to the computer is

turned off.

RAM is an important component of a computer, as it provides a fast and

efficient way for the computer to access data that it needs to run programs

and operate the operating system. The amount of RAM in a computer

affects its performance, as more RAM allows the computer to run more

programs simultaneously and access data faster.

There are different types of RAM, including dynamic random access

memory (DRAM) and static random access memory (SRAM).

DRAM is the most common type of RAM used in computers, and it is less

expensive to produce and therefore is used for main memory. DRAM stores

a bit of data using a transistor and capacitor pair (typically a MOSFET and

MOS capacitor, respectively),which together comprise a DRAM cell, as in

Figure 5.2. The capacitor holds a high or low charge (1 or 0, respectively),

Figure 5.2: DRAM cell

and the transistor acts as a switch that lets the control circuitry on the chip

read the capacitor’s state of charge or change it.

In SRAM, a bit of data is stored using the state of a six-transistor memory

cell, typically using six MOSFETs, as in Figure 5.3. SRAM is more expensive

to produce, but is generally faster and requires less dynamic power than

DRAM. SRAM is used for cache memory, which provides faster access to

data that is frequently used by the processor [19].

78 5 Hardware

Figure 5.3: SRAM cell

5.3 Hardware in Computer Networks and Cyber Security 79

5.3 Hardware in Computer Networks and Cyber
Security

Computer networks are composed of hardware devices that enable the

communication and transfer of data between different devices connected

to the network.

A basic firewall network diagram is as in Figure 5.4.

Figure 5.4: A Firewall Network Diagram

Network Interface Cards (NICs) NICs are used to connect devices to the

network. They enable communication between the device and the

network by translating the electrical signals from the device into a

format that can be transmitted over the network. NICs can be wired

(Ethernet) or wireless (Wi-Fi).

Switches Switches are used to connect multiple devices to the network.

They enable communication between devices by directing network

traffic between them. Switches can be either managed or unmanaged,

and they vary in the number of ports they have.

Routers Routers are used to connect networks together. They enable

communication between devices on different networks by directing

network traffic between them. Routers use protocols such as IP and

ARP to route data between networks.

Modems Modems are used to connect a computer network to the internet.

They convert digital signals from the computer network into analog

signals that can be transmitted over phone lines or cable lines.

Firewalls Firewalls are used to protect computer networks from unau-

thorized access. They act as a barrier between the network and the

80 5 Hardware

internet and control the flow of network traffic to and from the

network. Firewalls can be either software or hardware-based.

Network Attached Storage (NAS) NAS devices are used to store data on

the network. They provide a centralized storage location for files and

can be accessed by multiple devices on the network.

Hubs Hubs are used to connect multiple devices to the network. They

function as a repeater, transmitting network signals to all devices

connected to the hub. Hubs are less common now as switches have

largely replaced them.

Repeaters Repeaters are used to extend the reach of the network by

boosting network signals. They receive weak signals and amplify

them before retransmitting them to the network.

These hardware components work together to create a computer network

that enables communication and data transfer between devices. They are

connected to each other using cables or wireless signals and are controlled

by software that manages network traffic and enables communication

between devices.

In addition to the hardware components commonly found in computer

networks, there are also specific hardware components used for cyber

security purposes. Here are some examples of hardware used in computer

networks and cyber security:

Intrusion Detection Systems (IDS) IDS hardware is used to monitor net-

work traffic for potential threats. IDS hardware can be placed at

the network edge or on individual devices and can detect and alert

network administrators to potential attacks.

Intrusion Prevention Systems (IPS) IPS hardware is similar to IDS hard-

ware, but it also has the ability to block or stop potential threats. IPS

hardware can be placed at the network edge or on individual devices

and can automatically block malicious traffic.

Firewall Appliances Firewall appliances are hardware devices that act

as a barrier between the network and the internet. They monitor

and control network traffic and can block unauthorized access to the

network.

VPN Concentrators VPN concentrators are hardware devices used to

manage Virtual Private Networks (VPNs). They encrypt and decrypt

network traffic between remote devices and the network, providing a

secure connection.

Secure Routers Secure routers are hardware devices that are designed

with built-in security features. They can encrypt network traffic and

have the ability to block unauthorized access to the network.

Encryption Devices Encryption devices are hardware devices that encrypt

and decrypt network traffic. They are used to protect sensitive data

that is transmitted over the network.

Two-Factor Authentication Devices Two-factor authentication devices are

hardware devices used to provide an additional layer of security to

network logins. They require a user to provide a password and a

physical token such as a USB key or smart card.

5.3 Hardware in Computer Networks and Cyber Security 81

These hardware components work together to provide cyber security for

computer networks. They can be used in combination with software-based

security measures such as anti-virus software and access controls to create

a comprehensive cyber security strategy.

Firewall

One of the most important hardware in computer networks and cyber

security is firewall.

Firewalls work by monitoring and controlling the traffic that flows between

an organization’s internal network and the public internet. The firewall can

be implemented as hardware, software, or a combination of both.

Here’s a simplified overview of how a firewall typically works:

▶ Packet inspection: When data is sent over a network, it’s broken down

into smaller packets. The firewall examines each packet of data to

determine whether it should be allowed or blocked based on the

rules that have been set.

▶ Filtering: Firewalls can filter traffic based on various criteria, such as

the source and destination IP address, port number, and protocol

type. For example, the firewall can be configured to block traffic from

specific IP addresses or to only allow traffic on specific ports.

▶ Access control: Firewalls can also be used to control access to certain

resources within the network. For example, the firewall can be

configured to allow employees to access certain websites but block

access to social media sites.

▶ Logging and reporting: Firewalls can log all traffic that passes through

them, providing administrators with a record of all network activ-

ity. This information can be used to identify security threats and

investigate any potential security incidents.

Firewalls are an important part of network security and are used to protect

against various types of cyber attacks, such as malware, viruses, and

unauthorized access.

Router

Another critical component of computer networks is router. It connects

multiple networks together and directs traffic between them. It determines

the most efficient path for data to travel and can filter and block certain

types of traffic based on specific rules. Routers are also used in conjunction

with VPNs to provide secure remote access to a network.

Here’s a simplified overview of how a router works:

▶ Packet forwarding: When a packet of data is received by the router,

the router examines the destination IP address in the packet header to

determine where the packet should be forwarded. If the destination

is within the same network, the router forwards the packet to the

appropriate device. If the destination is in a different network, the

82 5 Hardware

router forwards the packet to the next router in the path towards the

destination.

▶ Routing table: Routers use a routing table to determine the best path

for data to travel. The routing table contains information about the

network topology, including the IP addresses of other routers and the

networks they connect to. Routers use this information to determine

the most efficient path for data to travel.

▶ Routing protocols: Routers use routing protocols to exchange infor-

mation with other routers and update their routing tables. There are

several different routing protocols, including OSPF, BGP, and RIP.

▶ Security: Routers can also be used to enhance network security. For

example, routers can be configured to filter traffic based on certain

criteria, such as source IP address, destination IP address, or protocol

type. Routers can also be used to implement virtual private networks

(VPNs), which encrypt traffic and provide secure remote access to a

network.

Routers are an essential component of computer networks and are used to

direct data between networks, optimize network performance, and enhance

network security.

Intrusion Detection Systems (IDS)

An Intrusion Detection System (IDS) is a security technology that monitors

network traffic for signs of malicious activity or policy violations. IDS

can be deployed as hardware or software, and can be implemented as a

network-based or host-based system.

The primary function of an IDS is to detect potential security breaches

by analyzing traffic for indicators of an attack. IDS works by analyzing

network traffic and comparing it to a set of rules or signatures. If the traffic

matches a known attack signature or pattern, the IDS generates an alert.

Here are some common types of IDS:

▶ Network-based IDS (NIDS): A network-based IDS monitors network

traffic for signs of attacks. It analyzes packets as they pass through

the network and can detect attacks that originate from outside the

network.

▶ Host-based IDS (HIDS): A host-based IDS monitors activity on a

specific host or server. It analyzes logs and system events to detect

potential intrusions or policy violations.

▶ Signature-based IDS: A signature-based IDS uses a database of known

attack signatures to detect malicious activity. It compares network

traffic against this database and generates alerts if a match is found.

▶ Behavioral-based IDS: A behavioral-based IDS analyzes network

traffic and system activity to establish a baseline of normal behavior.

It then alerts administrators if it detects activity that deviates from

the established baseline.

IDS is an important part of network security and can help organizations de-

tect and respond to potential security threats. However, IDS is not foolproof

5.4 Hardware in Embedded Systems and Robotics 83

and should be used in conjunction with other security technologies, such as

firewalls and antivirus software, to provide comprehensive protection.

5.4 Hardware in Embedded Systems and Robotics

Hardware in embedded systems and robotics is a crucial component

that enables the system to function effectively. Embedded systems are

designed to perform a specific task, and the hardware is tailored to meet

the requirements of that task. Here are some of the hardware components

commonly found in embedded systems:

Microcontrollers Microcontrollers are small computing devices that are

the heart of most embedded systems and are the brains of the robot.

They are designed to handle input and output operations, process

data, and control the system’s peripherals. Popular microcontroller

families include Arduino, Raspberry Pi, PIC, and STM32.

Sensors Sensors are used to detect and measure physical or environmental

conditions such as temperature, humidity, pressure, and light. Robots

use sensors to measure various physical parameters such as position,

velocity, and force. These measurements are used by the system

to make decisions or to adjust the system’s behavior. Examples of

sensors used in robotics include cameras, accelerometers, gyroscopes,

and force sensors.

Actuators Actuators are used to control mechanical components of the

system. Examples of actuators include motors, solenoids, and relays.

Actuators are used to move things or to control the flow of electricity

or other physical variables.

Communication Interfaces Communication interfaces are used to enable

communication between the embedded system and other devices or

systems. Examples include serial communication interfaces such as

UART, SPI, and I2C, Ethernet, and wireless interfaces such as Wi-Fi

and Bluetooth.

Memory Embedded systems require memory to store program code and

data. Memory can be either internal, such as flash memory, or external,

such as SD cards.

Power Management Embedded systems are often powered by batteries

or other low-power sources, so power management is essential. This

includes hardware components such as voltage regulators and power

switches, as well as software techniques such as power saving modes

and sleep modes.

Real-time Clock Real-time clocks are used to keep track of time in embed-

ded systems. They are used to timestamp data, schedule tasks, and

control the system’s behavior over time.

Display Display components are used to provide visual feedback to the

user. Examples include LED displays, LCD displays, and OLED

displays.

Audio Audio components are used to provide audible feedback or to play

audio files. Examples include speakers, microphones, and audio

codecs.

84 5 Hardware

Frame and Chassis The frame and chassis provide the structure and sup-

port for the robot. They are designed to be durable and rigid to

withstand the forces and stresses of the robot’s movements. The

frame and chassis should also be lightweight to minimize the overall

weight of the robot.

Grippers Grippers are used in robotics to grasp and manipulate objects.

Grippers come in a variety of shapes and sizes and can be designed

to handle different types of objects.

Wheels and Tracks Wheels and tracks are used to provide mobility to the

robot. They enable the robot to move on different types of surfaces

and terrain.

These hardware components are usually interconnected via a printed

circuit board (PCB) and communicate with each other through a variety of

protocols and interfaces.

Microcontroller

A microcontroller is a small computer on a single integrated circuit chip.

It contains a processor, memory, and input/output peripherals, all on a

single chip. Microcontrollers are designed to perform specific functions

and are often used in embedded systems, such as appliances, automobiles,

and medical devices.

Characteristics of Microcontrollers

Here are some common features and characteristics of microcontrollers:

▶ Low power consumption: Microcontrollers are designed to operate

on low power and can run on batteries or other low-power sources.

▶ Real-time processing: Microcontrollers can process data in real-time,

making them suitable for time-critical applications, such as control

systems or robotics.

▶ Small size: Microcontrollers are designed to be small and compact,

making them suitable for use in devices with limited space.

▶ Integrated peripherals: Microcontrollers contain a range of built-

in peripherals, such as timers, serial ports, and analog-to-digital

converters, that are essential for many applications.

▶ Programmability: Microcontrollers can be programmed to perform

specific functions and can be reprogrammed if needed.

Microcontrollers are used in a wide range of applications, including automo-

tive systems, home appliances, medical devices, and consumer electronics.

They are often used to perform specific functions, such as controlling a

motor, measuring temperature, or processing sensor data. Microcontrollers

can be programmed in a variety of programming languages, including C

and Assembly, and there are many development tools available to help

developers create and test microcontroller-based applications.

5.4 Hardware in Embedded Systems and Robotics 85

Types of Microcontrollers

There are many different types of microcontrollers available, each with its

own features and capabilities. Here are some of the most common types of

microcontrollers:

▶ 8-bit microcontrollers: 8-bit microcontrollers are some of the simplest

and most widely used microcontrollers. They are often used in simple

applications, such as controlling a motor or monitoring a sensor.

▶ 16-bit microcontrollers: 16-bit microcontrollers are more powerful

than 8-bit microcontrollers and are often used in applications that

require more processing power or memory.

▶ 32-bit microcontrollers: 32-bit microcontrollers are even more pow-

erful than 16-bit microcontrollers and are used in more complex

applications, such as automotive systems or medical devices.

▶ ARM-based microcontrollers: ARM-based microcontrollers use the

ARM architecture, which is widely used in mobile devices and other

embedded systems. They are often used in applications that require

high processing power and low power consumption.

▶ PIC microcontrollers: PIC microcontrollers are a family of microcon-

trollers developed by Microchip Technology. They are widely used

in industrial control systems, automotive systems, and consumer

electronics.

▶ AVR microcontrollers: AVR microcontrollers are a family of micro-

controllers developed by Atmel. They are widely used in robotics,

home automation, and other embedded systems.

▶ Arduino microcontrollers: Arduino microcontrollers are a type of

microcontroller that is widely used in hobbyist and educational

projects. They are designed to be easy to use and program, making

them a popular choice for beginners.

There are many other types of microcontrollers available, each with its

own strengths and weaknesses. When choosing a microcontroller, it’s

important to consider the specific requirements of the application and

choose a microcontroller that can meet those requirements.

Sensor

A sensor is a device that detects and measures physical, chemical, or

biological quantities and converts them into an electrical or digital signal.

Sensors are used in a wide range of applications, from detecting temperature

and humidity to monitoring the levels of pollutants in the environment.

Here are some common types of sensors:

▶ Temperature sensors: Temperature sensors measure the temperature

of a particular object or environment. They are commonly used in

thermostats, refrigerators, and industrial applications.

One example of a temperature sensor is a thermocouple. A thermo-

couple is a type of temperature sensor that consists of two dissimilar

metals that are joined together at one end. When the joined end is

86 5 Hardware

exposed to a temperature change, it generates a small voltage that

can be measured and used to calculate the temperature.

Thermocouples are widely used in industrial applications to measure

temperature in harsh environments, such as in furnaces or industrial

ovens. They are also used in home appliances, such as stoves and

refrigerators, to regulate temperature and ensure proper operation.

Another example of a temperature sensor is a resistance temperature

detector (RTD). An RTD is a type of temperature sensor that measures

temperature by changing resistance as temperature changes. RTDs

are commonly used in laboratory settings, as well as in industrial

applications that require high accuracy and stability.

In addition to these examples, there are many other types of temper-

ature sensors, including thermistors, infrared sensors, and bimetallic

sensors. The specific type of temperature sensor used will depend on

the requirements of the application, such as the temperature range,

accuracy, and response time needed.

▶ Pressure sensors: Pressure sensors measure the pressure of a fluid or

gas. They are used in a variety of applications, including monitoring

tire pressure in cars, measuring blood pressure, and controlling

hydraulic systems.

▶ Light sensors: Light sensors detect the presence and intensity of light.

They are used in cameras, security systems, and automatic lighting

systems.

▶ Motion sensors: Motion sensors detect movement in a particular area.

They are used in security systems, automatic doors, and video game

controllers.

▶ Proximity sensors: Proximity sensors detect the presence of an object

or person in close proximity. They are used in parking sensors,

automatic faucets, and robotics.

▶ Humidity sensors: Humidity sensors measure the moisture content

in the air. They are used in weather monitoring, home humidifiers,

and industrial applications.

▶ Gas sensors: Gas sensors detect the presence of gases, such as car-

bon monoxide, methane, or oxygen. They are used in industrial

safety systems, home carbon monoxide detectors, and environmental

monitoring.

Sensors are essential components in many modern technologies and are

used to collect data and enable automation. The data collected by sensors

can be analyzed and used to make informed decisions, such as adjusting

temperature settings, detecting security threats, or monitoring environ-

mental conditions.

6 Software

6.1 Operating Systems 87
6.2 Application Software 88
6.3 Programming Software . . . 91
6.4 Database Software 92
6.5 Security Software 93
6.6 AI-related Software 94

In computer engineering, software refers to the programs, applications, and

systems that run on computers and other digital devices. These programs

can be developed to perform a wide range of tasks, from basic functions

like word processing and web browsing, to complex operations like data

analysis, artificial intelligence, and virtual reality. Some common types of

software in computer engineering include operating systems, application

software, programming software, database software, security software,

and AI-related software.

6.1 Operating Systems

Operating systems (OS) are an essential component of computer engi-

neering. They are software programs that manage computer hardware

and provide services for computer programs. The following are some key

aspects of operating systems in computer engineering:

Resource Management

An OS manages computer resources such as memory, CPU, input/out-

put devices, and storage devices. It allocates these resources to different

programs based on their needs and priorities.

Process Management

An OS manages the execution of multiple programs (processes) on a

computer system. It schedules processes and provides mechanisms for

communication and synchronization between them.

88 6 Software

Memory Management

An OS manages the computer’s memory, which is a limited resource.

It allocates memory to processes, tracks memory usage, and provides

mechanisms for memory protection and sharing.

File Management

An OS manages files and directories on the computer’s storage devices. It

provides mechanisms for creating, deleting, and modifying files, as well as

for accessing and sharing files between processes.

Security

An OS provides mechanisms for protecting computer systems and data

from unauthorized access and malicious software. It includes features such

as authentication, encryption, and access control.

Examples of popular operating systems used in computer engineering

include Windows, macOS, Linux, Android, and iOS. Different types of

operating systems are used for different types of devices, such as desk-

top computers, mobile devices, servers, and embedded systems. Overall,

operating systems are critical to the functioning of computer engineering

systems, and their design and implementation are a fundamental aspect of

computer engineering.

6.2 Application Software

Application software refers to the programs or software applications

that are designed to perform specific tasks for end-users. In computer

engineering, application software is developed to meet various needs, from

personal computing to business and industry-specific needs. Here are some

examples of application software used in computer engineering:

Word Processors

Word processors like Microsoft Word, Google Docs, and OpenOffice are

used for creating and editing documents, such as reports, resumes, and

letters.

Spreadsheet Applications

Spreadsheet applications like Microsoft Excel, Google Sheets, and OpenOf-

fice Calc are used for creating and managing spreadsheets, performing

calculations, and analyzing data.

6.2 Application Software 89

Multimedia Applications

Multimedia applications like Adobe Photoshop, Premiere, and InDesign

are used for creating and editing images, videos, and other multimedia

content.

Web Browsers

Web browsers like Google Chrome, Mozilla Firefox, and Safari are used for

accessing the internet and browsing websites.

Email Applications

Email applications like Microsoft Outlook, Gmail, and Apple Mail are used

for managing email communication.

Computer-Aided Design (CAD) software

CAD software like AutoCAD, SolidWorks, and Fusion 360 are used in en-

gineering, architecture, and product design to create 2D and 3D models.

Virtualization software

Virtualization software like VMware, VirtualBox, and Hyper-V is used for

creating virtual machines, which allow multiple operating systems to run

on a single physical computer.

Scrum software

Scrum is an agile framework that is used to manage complex projects. It

was initially developed for software development, but it can be applied

to any project where there is a need to deliver value quickly and adapt to

changing requirements. Scrum is based on a set of values, principles, and

practices that encourage collaboration, communication, and transparency

among team members.

In Scrum, the project is divided into short iterations called sprints, typically

lasting two to four weeks. At the beginning of each sprint, the team meets

to plan the work to be done during the sprint, and at the end of the sprint,

the team meets to review the work that was completed and plan for the

next sprint. The team works together to deliver a potentially releasable

product increment at the end of each sprint.

Scrum emphasizes self-organization and cross-functional teams, with a

product owner responsible for prioritizing and managing the product

backlog, and a Scrum Master responsible for ensuring the team follows

the Scrum process and removing any impediments that may arise. The

90 6 Software

team uses daily stand-up meetings to communicate progress, identify any

obstacles, and plan the day’s work.

Scrum is a popular framework for project management, and it has been

adopted by many organizations around the world.

There are many software tools available to support Scrum processes and

help teams manage their work more effectively. Some popular Scrum

software tools include

1. Jira: A project management tool that allows teams to plan and track

their work using Scrum or other agile methodologies. It includes

features for backlog management, sprint planning, sprint boards,

and reporting.

2. Trello: A visual collaboration tool that helps teams organize their

work using boards, lists, and cards. It can be used to manage Scrum

boards, with features for backlog management, sprint planning, and

team communication.

3. Asana: A project management tool that allows teams to track their

work using lists and tasks. It includes features for sprint planning,

backlog management, and team communication.

4. Monday.com: A team management tool that allows teams to track

their work using boards and timelines. It includes features for backlog

management, sprint planning, and team communication.

5. Agilefant: A web-based tool that provides Scrum support for project

management. It includes features for backlog management, sprint

planning, and reporting.

6. Scrumwise: A web-based tool that provides Scrum support for project

management. It includes features for backlog management, sprint

planning, and team communication.

7. VersionOne: A tool that provides a centralized platform for agile

project management, including Scrum support. It includes features

for backlog management, sprint planning, and reporting.

8. Agile Central: A cloud-based tool that provides agile project man-

agement support, including Scrum. It includes features for backlog

management, sprint planning, and team collaboration.

9. Pivotal Tracker: A tool that provides project management support

for agile teams, including Scrum. It includes features for backlog

management, sprint planning, and team collaboration.

10. Targetprocess: A tool that provides agile project management support,

including Scrum. It includes features for backlog management, sprint

planning, and team collaboration.

11. SprintGround: A tool that provides Scrum support for project manage-

ment. It includes features for backlog management, sprint planning,

and team communication.

12. ScrumDo: A web-based tool that provides Scrum support for project

management. It includes features for backlog management, sprint

planning, and team collaboration.

6.3 Programming Software 91

6.3 Programming Software

Programming software is a set of tools and software applications that

are used by software developers to create, test, and debug computer

programs. In computer engineering, programming software is a critical

component of the software development process. Here are some examples

of programming software used in computer engineering:

Integrated Development Environments (IDEs)

IDEs are software applications that provide a complete development

environment for software developers. Examples include Visual Studio,

Eclipse, and NetBeans. IDEs include tools for writing code, debugging,

version control, and project management.

Text Editors

Text editors are lightweight software applications that allow developers to

write and edit code. Examples include Sublime Text, Atom, and Notepad++.

Text editors are often used in conjunction with other tools like version

control software and compilers.

Compilers

Compilers are software programs that convert high-level programming

language code into machine language code that can be executed by a

computer. Examples include GCC, Clang, and Visual C++.

Debuggers

Debuggers are software tools used to find and fix errors or bugs in software

programs. Examples include GDB, Visual Studio Debugger, and LLDB.

Code Libraries

Code libraries are collections of pre-written code that developers can use

in their own programs. Examples include Boost, jQuery, and NumPy.

92 6 Software

Testing Frameworks

Testing frameworks are software tools that automate the testing of software

programs. Examples include JUnit, NUnit, and PyTest.

Overall, programming software is an essential part of computer engineering,

providing developers with the tools they need to create and test software

programs efficiently and effectively. The development of programming

software requires expertise in software engineering, computer science, and

programming languages.

6.4 Database Software

Database software is used in computer engineering to manage and or-

ganize large amounts of data. Databases are used to store, retrieve, and

manipulate data for various purposes, such as inventory management,

customer relationship management, and financial transactions. Here are

some examples of database software used in computer engineering:

Relational Database Management Systems (RDBMS)

RDBMS is a type of database software that organizes data into tables and

uses SQL (Structured Query Language) to access and manipulate the data.

Examples include MySQL, Oracle Database, and Microsoft SQL Server.

NoSQL Databases

NoSQL databases are used for managing unstructured or semi-structured

data, such as social media data or data from the internet of things (IoT).

Examples include MongoDB, Cassandra, and Couchbase.

Object-Oriented Databases

Object-oriented databases are used to store data in object-oriented pro-

gramming (OOP) languages, such as Java or C++. Examples include db4o,

Versant Object Database, and ObjectStore.

Cloud Databases

Cloud databases are databases that are hosted on cloud platforms, such as

Amazon Web Services (AWS), Microsoft Azure, and Google Cloud. Cloud

databases provide scalability, reliability, and accessibility.

6.5 Security Software 93

In-Memory Databases

In-memory databases store data in computer memory instead of on disk.

They are designed to provide fast access to data for real-time applications,

such as financial trading or fraud detection. Examples include SAP HANA,

Oracle TimesTen, and Redis.

Overall, database software is an essential part of computer engineering,

providing a mechanism for organizing and managing data. The develop-

ment of database software requires expertise in database design, database

management systems, and database programming languages.

6.5 Security Software

Security software is an important part of computer engineering, as it is

used to protect computer systems and networks from various threats, such

as viruses, malware, and hacking attempts. Here are some examples of

security software used in computer engineering:

Antivirus software

Antivirus software is used to detect and remove viruses, spyware, and

other malware from computer systems. Examples include Norton, McAfee,

and Avast.

Firewalls

Firewalls are used to monitor and control incoming and outgoing network

traffic to prevent unauthorized access to a computer system or network.

Examples include Windows Firewall, Cisco ASA, and Fortinet FortiGate.

Intrusion Detection and Prevention Systems (IDPS)

IDPS is used to detect and prevent unauthorized access to computer systems

and networks. Examples include Snort, Suricata, and McAfee Network

Security Platform.

Virtual Private Networks (VPNs)

VPNs are used to create a secure connection between a computer system

and a remote network over the internet. VPNs use encryption to protect

data from interception and hacking attempts. Examples include NordVPN,

ExpressVPN, and OpenVPN.

94 6 Software

Password Managers

Password managers are used to securely store and manage passwords

for multiple online accounts. Password managers use encryption to pro-

tect passwords from unauthorized access. Examples include LastPass,

1Password, and Dashlane.

Encryption Software

Encryption software is used to encrypt data to protect it from unauthorized

access. Examples include VeraCrypt, BitLocker, and OpenSSL.

Summary

Overall, security software is an essential part of computer engineering,

providing protection against various threats to computer systems and

networks. The development of security software requires expertise in secu-

rity protocols, encryption algorithms, network architecture, and software

engineering.

6.6 AI-related Software

AI-related software is adaptive, learning from data to improve over time. It

automates decision-making, processes natural language, recognizes images

and speech, and solves complex problems. Scalable and capable of real-time

processing, it emphasizes explainability, fairness, privacy, and security. AI

software often includes self-learning, correction, and reasoning, enhancing

its performance across diverse applications. AI-related software covers a

broad range of applications and tools, from machine learning frameworks

to AI-driven platforms. Some of such software are included below:

Machine Learning (ML) Frameworks

These are libraries and tools that help in building, training, and deploying

AI models. Some examples are:

▶ TensorFlow [24] : An open-source library. developed by Google for

deep learning and machine learning applications.

▶ PyTorch [25]: Developed by Facebook, it’s another popular deep

learning framework known for its flexibility and ease of use.

▶ Keras [26]: A high-level neural networks API, written in Python,

capable of running on top of TensorFlow.

▶ Scikit-learn [27]: A Python library for classical machine learning

algorithms like classification, regression, and clustering.

6.6 AI-related Software 95

Natural Language Processing (NLP) Tools

NLP focuses on the interaction between computers and human language.

▶ SpaCy [28]: An open-source NLP library in Python for tasks like

tokenization, part-of-speech tagging, and named entity recognition.

▶ NLTK (Natural Language Toolkit) [29]: A suite of libraries and

programs for symbolic and statistical NLP for English.

▶ Hugging Face Transformers [30]: A library for state-of-the-art NLP

models like BERT, GPT, and T5.

▶ OpenAI GPT [31]: This family of language models (e.g., GPT-3,

GPT-4) is used for text generation, question-answering, and language

understanding.

Computer Vision Libraries

Computer vision focuses on the visual perception of computers.

▶ OpenCV [32]: A popular open-source computer vision library for

real-time image processing and computer vision tasks.

▶ TensorFlow Vision [33]: Part of TensorFlow, it’s specialized for deep

learning models in image classification, detection, and segmentation.

▶ Detectron2 [34]: A Facebook AI Research (FAIR) project for object

detection and segmentation.

▶ YOLO (You Only Look Once) [35]: A real-time object detection

system.

Robotic Process Automation (RPA)

RPA automates repetitive tasks.

▶ UiPath [36]: One of the leading platforms for RPA, it allows automat-

ing repetitive tasks in business processes.

▶ Automation Anywhere [37]: Another major RPA tool used for au-

tomating business processes across multiple systems.

▶ Blue Prism [38]: A software platform for robotic process automation

that emphasizes scalability and security.

AI Development Platforms

These platforms offer integrated environments to build and deploy AI

solutions.

▶ Google AI Platform: A suite of cloud-based tools from Google for

building AI models, including AutoML for automating the model

development process.

▶ AWS SageMaker: Amazon’s platform for building, training, and

deploying machine learning models in the cloud.

▶ Microsoft Azure AI: Microsoft’s cloud service offering AI and ma-

chine learning tools, including Azure Machine Learning.

96 6 Software

▶ IBM Watson: An AI platform that provides natural language pro-

cessing, machine learning, and computer vision tools.

AI-driven Analytics Tools

These tools use AI to automate data analysis.

▶ Tableau with AI Extensions: Tableau integrates AI-driven insights

into data visualization through tools like Einstein Analytics.

▶ DataRobot: A platform that automates machine learning model

building and deployment.

▶ H2O.ai: A machine learning platform that allows users to build mod-

els using various algorithms, supporting automatic model selection.

Reinforcement Learning (RL) Libraries

RL is used to train agents to make a sequence of decisions.

▶ OpenAI Gym: A toolkit for developing and comparing reinforcement

learning algorithms.

▶ Stable Baselines: A set of implementations of reinforcement learning

algorithms built on OpenAI Gym and TensorFlow.

▶ RLlib: A scalable RL library built on top of Ray, a framework for

distributed applications.

AI in Edge Computing

These software tools enable AI models to run on edge devices (e.g., IoT

devices).

▶ TensorFlow Lite: TensorFlow’s lightweight version for mobile and

IoT devices.

▶ AWS IoT Greengrass: Allows local execution of machine learning

inference at the edge.

▶ Edge Impulse: A platform focused on creating ML models for em-

bedded devices.

Each of these software tools plays a crucial role in the AI ecosystem,

enabling a wide range of applications from image recognition to language

understanding and automation.

7 Network

7.1 Network Architecture . . . 97
7.2 Network Protocols 98
7.3 Wireless Networking 99
7.4 Network Security 100
7.5 Network Management . . . 100
7.6 Cloud Networking 101
7.7 Summary 102

A computer networking is a process of connecting multiple computers

and/or computing devices with the purpose to communicate: exchange

data and share resources with each other.

Internet is one example where different computer systems, especially

at different locations, are connected through a system of rules, called

communications protocols, to transmit information over physical or wireless

technologies.

The basic components of computer networking are bodes and links. Many

devices such as computers, modems, or switchs are considered as nodes.

Between any nodes are transmission media that are called links. Long

links usually use low-loss optical fibers, while short links usually use metal

cables or free space as in wireless networks.

Class Activity

1. Draw a computer network and label all nodes and links.

2. Compare your network with your team members.

3. Redraw the network with with new types of nodes and links.

1
1: List here

▶ Types of network nodes:

▶ Types of network links:Networking is an important area in computer engineering that deals with

the design, implementation, and management of computer networks. Here

are some topics related to networking in computer engineering.

7.1 Network Architecture

Network architecture refers to the design and structure of a computer

network. It includes the physical layout of network devices, such as routers,

switches, and servers, as well as the logical structure of the network, such as

98 7 Network

the addressing scheme and routing protocols that enable communication

and data exchange between devices.

The most common types of network architecture include:

▶ Client-server architecture: In this architecture, one or more central

servers provide resources or services to client devices that request

them over the network. Examples of client-server architectures in-

clude web servers and email servers.

▶ Peer-to-peer architecture: In this architecture, all devices on the net-

work are considered equal and can share resources and communicate

with each other directly. Peer-to-peer architectures are often used for

file sharing and collaboration.

▶ Hybrid architecture: This architecture combines elements of both

client-server and peer-to-peer architectures. For example, a hybrid

network might use client-server architecture for centralized manage-

ment and control, but also allow peer-to-peer communication for

certain tasks.

2
2: By online searching or other methods,

▶ Identify a new network architec-

ture that is not listed above.

▶ Explain it briefly.

Network architecture is a critical aspect of computer engineering, as it

determines how efficiently and effectively data can be transmitted between

devices. Different network architectures are better suited for different

types of applications and use cases, and must be carefully designed and

implemented to ensure optimal performance and security.

7.2 Network Protocols

Network protocols are a set of rules and standards that govern the exchange

of data between network devices. These protocols define the format and

structure of data packets, as well as the sequence of actions that must be

taken by devices to transmit and receive data.

There are many different network protocols that are used in computer

engineering. Some of the most common ones include:

▶ Transmission Control Protocol (TCP): TCP is a connection-oriented

protocol that provides reliable, ordered data transmission between

devices. It ensures that data is received in the correct order and

retransmits lost packets.

▶ User Datagram Protocol (UDP): UDP is a connectionless protocol that

provides unreliable, unordered data transmission between devices. It

is faster than TCP but does not guarantee the delivery of all packets.

▶ Internet Protocol (IP): IP is a protocol that provides the routing

and addressing functions necessary for data transmission over the

internet. It defines the format and structure of IP packets, which are

used to transmit data between devices on different networks.

▶ Simple Mail Transfer Protocol (SMTP): SMTP is a protocol that is

used for sending email messages between devices on a network. It

defines the format and structure of email messages and specifies the

rules for transferring them between email servers.

7.3 Wireless Networking 99

▶ File Transfer Protocol (FTP): FTP is a protocol that is used for trans-

ferring files between devices on a network. It defines the format and

structure of file transfer commands and data, and specifies the rules

for transferring files between FTP servers and clients.

3
3:

▶ List a network protol that you are

familiar with the most.

▶ Explain it briefly.

Network protocols are essential for enabling communication and data

exchange between devices on a computer network. Different protocols are

designed for different types of applications and use cases, and must be

carefully selected and configured to ensure optimal network performance

and security.

7.3 Wireless Networking

Wireless networking is a technology that enables devices to connect to a

computer network without the need for physical cables or wires. Wireless

networks use radio waves to transmit data between devices, allowing users

to access network resources and the internet from anywhere within range

of the network.

There are several types of wireless networking technologies used in com-

puter engineering:

▶ Wi-Fi: Wi-Fi is the most common type of wireless networking tech-

nology, and is used for connecting devices to local area networks

(LANs) and the internet. Wi-Fi networks use radio waves to transmit

data between devices, and typically operate within a range of a few

hundred feet.

▶ Bluetooth: Bluetooth is a wireless technology that is used for connect-

ing devices within a short range, typically up to 30 feet. Bluetooth

is commonly used for connecting devices such as smartphones,

headphones, and speakers.

▶ Zigbee: Zigbee is a low-power wireless networking technology that

is used for connecting devices in a network. Zigbee networks are

commonly used in home automation and Internet of Things (IoT)

applications.

▶ Cellular: Cellular networks use wireless technology to provide in-

ternet connectivity to devices over large geographic areas. Cellular

networks are commonly used for smartphones, tablets, and other

mobile devices.

4
4:

▶ Do you see any challenges for the

future of wireless networking?

▶ Elaborate with some details.

Wireless networking is a critical component of modern computer engineer-

ing, as it enables users to access network resources and the internet from

anywhere within range of a wireless network. However, wireless networks

also present security challenges, as data transmitted over a wireless net-

work can be intercepted by unauthorized users. As such, it is important to

implement appropriate security measures, such as encryption and strong

passwords, to protect wireless networks and the devices that connect to

them.

100 7 Network

7.4 Network Security

Network security is the practice of implementing measures to protect

computer networks from unauthorized access, theft, damage, or disruption.

Network security is a critical component of computer engineering, as

networks are often vulnerable to a wide range of threats, including malware,

viruses, hacking, and cyber attacks.

There are several techniques used in network security in computer engi-

neering:

▶ Firewalls: Firewalls are hardware or software systems that control

access to a network, and prevent unauthorized access from external

networks. Firewalls can be configured to block certain types of traffic,

and can be used to monitor network traffic for suspicious activity.

▶ Intrusion Detection and Prevention Systems (IDPS): IDPS are systems

that monitor network traffic for signs of a security breach, and can

be configured to automatically respond to detected threats. IDPS

systems can detect a range of attacks, including malware, viruses,

and hacking attempts.

▶ Virtual Private Networks (VPN): VPNs are a technology that enables

users to access a network securely over the internet. VPNs encrypt

network traffic, making it difficult for unauthorized users to intercept

and access data transmitted over the network.

▶ Encryption: Encryption is a technique used to protect data by convert-

ing it into an unreadable format. Encryption can be used to protect

sensitive data transmitted over a network, making it difficult for

unauthorized users to access or read.

▶ User Authentication: User authentication is a technique used to verify

the identity of users accessing a network. User authentication can be

implemented through the use of passwords, biometric identification,

or other techniques.

Network security is a critical aspect of computer engineering, and must be

carefully designed and implemented to protect networks from a wide range

of threats. It is important to regularly update network security measures

and stay up-to-date on emerging threats and vulnerabilities to ensure

optimal network security.

7.5 Network Management

Network management is the process of overseeing and controlling the op-

eration of a computer network. Network management encompasses a wide

range of activities, including network design, deployment, maintenance,

monitoring, and troubleshooting.

Some of the key tasks involved in network management in computer

engineering include:

7.6 Cloud Networking 101

▶ Network planning and design: Network managers are responsible for

planning and designing computer networks that meet the needs of the

organization. This involves assessing the organization’s requirements

for network bandwidth, security, and reliability, and designing a

network architecture that meets those requirements.

▶ Network deployment and configuration: Once a network has been

designed, network managers are responsible for deploying and

configuring the network hardware and software. This includes setting

up network devices such as routers, switches, and firewalls, and

configuring network protocols and services such as DHCP, DNS, and

NAT.

▶ Network monitoring and optimization: Network managers must

monitor network performance to ensure that it is meeting the organi-

zation’s needs. This involves monitoring network traffic, analyzing

network performance data, and identifying and resolving perfor-

mance issues.

▶ Network security: Network managers are responsible for ensuring

that the network is secure and protected from unauthorized access

and other security threats. This involves implementing security

measures such as firewalls, intrusion detection systems, and user

authentication protocols.

▶ Network maintenance and troubleshooting: Network managers must

maintain the network hardware and software, and troubleshoot

and resolve any issues that arise. This includes updating network

devices with the latest firmware and software patches, replacing

faulty hardware, and diagnosing and resolving network connectivity

issues.

Effective network management is critical to the success of any organization

that relies on a computer network. By ensuring that the network is designed,

deployed, and maintained to meet the organization’s needs, network

managers can help to ensure that the network is reliable, secure, and

performing optimally.

7.6 Cloud Networking

Cloud networking refers to the use of cloud computing technology to

deliver network services over the internet. It allows organizations to connect

their on-premises networks to cloud-based networks or services. Cloud

networking enables organizations to extend their network infrastructure

into the cloud, and to take advantage of the scalability, flexibility, and cost

savings offered by cloud computing. It is typically achieved through the use

of virtual private networks (VPNs) or direct connections to cloud service

providers.

Technologies include cloud-based network management, software-defined

networking (SDN), and network function virtualization (NFV).

Some of the key benefits of cloud networking include:

102 7 Network

▶ Scalability: Cloud networking allows organizations to easily scale

their network infrastructure up or down to meet changing demands.

With cloud networking, organizations can quickly provision new re-

sources and services as needed, without the need for costly hardware

upgrades or reconfigurations.

▶ Cost savings: Cloud networking can help organizations reduce their

network infrastructure costs by eliminating the need for expensive

hardware and reducing the need for in-house network management

and maintenance.

▶ Flexibility: Cloud networking allows organizations to access a wide

range of cloud-based services and resources, and to easily integrate

these services with their existing on-premises network infrastructure.

▶ Reliability: Cloud networking services are typically highly reliable,

with robust network redundancy and failover capabilities that help

ensure network uptime and availability.

▶ Security: Cloud networking services typically provide advanced secu-

rity features such as firewalls, intrusion detection and prevention, and

user authentication and access controls, which can help organizations

protect their network infrastructure from security threats.

Cloud networking is a rapidly evolving technology, and new services

and capabilities are being introduced all the time. By leveraging cloud

networking technologies, organizations can take advantage of the scalability,

flexibility, and cost savings offered by cloud computing, while also ensuring

that their network infrastructure remains secure and reliable.

7.7 Summary

Overall, networking is a critical area in computer engineering, enabling

the communication and exchange of data between devices and users. The

development of networking technologies requires expertise in computer

science, electrical engineering, and telecommunications.

8 Embedded Systems

8.1 Introduction 103
8.2 History of Embedded

Systems 103
8.3 Characteristics of Embed-

ded Systems 104
8.4 Design Principles of Em-

bedded Systems 104
8.5 Applications of Embedded

Systems 105
8.6 Challenges and Opportuni-

ties 106
8.7 Summary 107

8.1 Introduction

Embedded systems are specialized computer systems that are designed to

perform specific functions within a larger system or device. They are often

hidden from view, embedded within other products or systems, and are not

typically intended for use as standalone devices. Embedded systems can be

found in a wide range of products and applications, especially applications

with size, weight, power, and cost (SWaP-C) constraints, such as consumer

electronics, automotive systems, medical devices, and industrial control

systems. They are designed to perform a specific set of tasks or functions

and are often optimized for performance, power consumption, and cost-

effectiveness.

8.2 History of Embedded Systems

The origins of embedded systems can be traced back to the early days of

computing, when electronic systems were used to control industrial pro-

cesses and military equipment. In the 1960s, the development of integrated

circuits made it possible to design smaller and more powerful electronic

systems, and the first embedded systems began to appear in consumer

products such as calculators and digital watches.

The 1970s saw the emergence of microcontrollers, which combined a micro-

processor with memory, input/output (I/O) ports, and other peripherals

on a single chip. This made it possible to design highly integrated embed-

ded systems that were smaller, faster, and more cost-effective than earlier

designs.

104 8 Embedded Systems

[39]: Jiménez et al. (2013), Introduction to
embedded systems
[40]: Lee et al. (2013), Introduction to Em-
bedded Systems, A Cyber-Physical Systems
Approach, Second Edition

[41]: Williams (2023), Embedded Systems
Tutorial: What is, History & Characteristics

The 1980s and 1990s saw a rapid expansion in the use of embedded systems,

as they became increasingly important in a wide range of industries and

applications. The development of real-time operating systems (RTOS) and

software development tools made it easier to design and test complex

embedded systems, and the rise of the Internet of Things (IoT) has led to a

new wave of innovation in this field.

More detailed description can be found in books [39] and [40].

8.3 Characteristics of Embedded Systems

Embedded systems have several characteristics that distinguish them from

other types of computer systems. These include:

▶ Real-time operation: Embedded systems are often designed to operate

in real-time, meaning that they must respond to external events or

stimuli within a specific time frame. This is especially important in

safety-critical applications such as medical devices or automotive

systems, where delays or failures can have serious consequences.

▶ Limited resources: Embedded systems are often designed to operate

with limited resources, including memory, processing power, and

power consumption. This requires careful optimization of software

and hardware components to ensure that the system can perform its

intended function without exceeding these limits.

▶ Dedicated functions: Embedded systems are typically designed to

perform a specific set of functions or tasks, rather than being general-

purpose computing devices. This allows for more efficient use of

resources and can lead to faster and more reliable performance.

▶ Integration: Embedded systems are often integrated into larger sys-

tems or devices, such as an engine control unit in a car or a heart

monitor in a hospital. This requires careful coordination with other

hardware and software components to ensure that the system func-

tions correctly and reliably.

A tutorial on the characteristics of embedded systems can be found on

[41].

8.4 Design Principles of Embedded Systems

Designing embedded systems requires a combination of hardware and

software engineering skills, as well as an understanding of the system’s

intended use and environment. Some of the key design principles for

embedded systems include:

▶ System requirements: The first step in designing an embedded system

is to define the system requirements, including the intended function,

performance, power consumption, and cost.

8.5 Applications of Embedded Systems 105

[42]: Murti (2021), Design Principles for
Embedded Systems

▶ Hardware design: The hardware design involves selecting appro-

priate microcontrollers or microprocessors, designing and testing

circuits, and integrating them with other hardware components such

as sensors, actuators, and communication interfaces.

▶ Software design: The software design involves programming the

system to perform the desired function, often using low-level pro-

gramming languages such as C or assembly language. This requires

an understanding of the underlying hardware architecture and the

ability to optimize code for performance and efficiency.

▶ Testing and verification: Once the hardware and software have been

designed, the system must be thoroughly tested and verified to

ensure that it meets the system requirements and operates reliably in

the intended environment. This may involve simulation, emulation,

and hardware testing, as well as software testing and verification.

▶ Maintenance and updates: Embedded systems are often designed to

operate for many years without significant maintenance or updates.

However, as technology evolves and new requirements arise, it may

be necessary to update the system to ensure continued performance

and compatibility.

More details can be found in book [42]

8.5 Applications of Embedded Systems

Embedded systems are used in a wide range of applications, from consumer

electronics to industrial automation. Some of the most common applications

include:

▶ Automotive systems: Embedded systems are used extensively in

modern automobiles to control various functions, such as engine

control units (ECUs) to infotainment systems and advanced driver

assistance systems (ADAS), anti-lock braking systems (ABS), airbags,

and navigation. These systems require real-time operation, high

reliability, and integration with other systems in the vehicle.

▶ Medical devices: Many medical devices, such as patient monitors,

insulin pumps, and pacemakers, use embedded systems to control

their operation. These systems require real-time operation, high

reliability, and strict adherence to safety standards.

▶ Consumer electronics: Embedded systems are used in a variety of

consumer electronics devices, such as digital cameras, smart TVs,

mobile phones, and smart home devices. These systems often rely on

real-time operation and require low power consumption to ensure

long battery life.

▶ Industrial control systems: Embedded systems are used in indus-

trial automation and control systems, such as programmable logic

controllers (PLCs), process control systems, robotics, and sensors,

to control manufacturing processes and other industrial applica-

tions. These systems require real-time operation, high reliability, and

integration with other systems in the manufacturing process.

106 8 Embedded Systems

▶ Aerospace and defense: Embedded systems are used in aerospace

and defense applications, such as avionics systems, missile guidance

systems, and satellite control systems.

▶ Robotics: Embedded systems are used extensively in robotics appli-

cations, such as in the control of robot arms, sensor systems, and

autonomous vehicles.

▶ Home appliances: Embedded systems are used in home appliances,

such as refrigerators, washing machines, and dishwashers, to control

their operation and provide user interfaces.

▶ Security systems: Embedded systems are used in security systems,

such as access control systems, surveillance cameras, and alarms, to

control and monitor access to buildings and properties.

8.6 Challenges and Opportunities

The rapid evolution of technology and the increasing complexity of embed-

ded systems present both challenges and opportunities in this field. Some

of the key challenges include:

▶ Security: As embedded systems become more connected and inte-

grated with other systems, they become more vulnerable to cyber

attacks and other security threats. Ensuring the security of these

systems is a critical challenge for designers and developers.

▶ Complexity: Embedded systems are becoming increasingly complex,

with more powerful processors, larger memory, and more sophisti-

cated software. This complexity can make it more difficult to design,

test, and maintain these systems.

▶ Standards: As the use of embedded systems grows, the need for

standards and interoperability becomes more important. Developing

and adhering to standards can help ensure that embedded systems

work together reliably and efficiently.

At the same time, there are also many opportunities in the field of embedded

systems. Some of the key opportunities include:

▶ IoT: The rise of the Internet of Things (IoT) has led to a new wave of

innovation in embedded systems. As more devices become connected,

there is a growing need for embedded systems that can collect,

analyze, and act on data in real-time.

▶ Machine learning: The growing availability of machine learning

tools and algorithms is opening up new opportunities for embedded

systems, such as predictive maintenance and autonomous decision-

making.

▶ Sustainability: Embedded systems can play an important role in pro-

moting sustainability, by optimizing energy consumption, reducing

waste, and improving efficiency in a wide range of applications.

8.7 Summary 107

[43]: Keller (2023), The future of high-
performance embedded computing
[44]: Beningo (2023), Will AI take embedded
software jobs?

8.7 Summary

Embedded systems are an important and rapidly evolving area of computer

science and engineering, with applications in a wide range of industries

and domains. They are designed to perform specific functions within a

larger system or device, and are often optimized for performance, power

consumption, and cost-effectiveness. As technology continues to evolve,

the opportunities and challenges in this field will continue to grow, making

it an exciting and dynamic area for research and innovation.

Further readings can be found at the follows [43, 44].

[45]: Turing (1950), ‘Computing Machin-

ery and Intelligence’

9 Artificial Intelligence

9.1 Introduction 109
9.2 AI Algorithms 110
9.3 Design Optimization 124
9.4 Quality Control 125
9.5 Predictive Maintenance . . 126
9.6 Cybersecurity 127
9.7 Intelligent Automation . . 128
9.8 AI in Education 128
9.9 Summary 129

9.1 Introduction

Artificial Intelligence (AI) refers to the simulation of human intelligence

in machines that are programmed to think and act like humans. It is a

branch of computer science that focuses on creating intelligent machines

that can perform tasks that normally require human intelligence, such

as visual perception, speech recognition, decision-making, and language

translation.

Although the groundwork for AI can be traced much earlier back, the

biggest breakthrough weren’t made until the 1950s. The most commenly

agreed start of artifical intelligce is 1950, when Alan Turing published

“Computer Machinery and Intelligence" [45]. The Turing Test has since then

been used to measure computer intelligence.

AI can be classified into two categories: narrow or weak AI, and general or

strong AI. Narrow AI is designed to perform a specific task or set of tasks,

such as image recognition or speech recognition. General AI, on the other

hand, is capable of performing any intellectual task that a human can do.

There are several subfields of AI, including machine learning, natural

language processing, computer vision, and robotics. Machine learning is

the process of training algorithms to recognize patterns in data, while

natural language processing involves analyzing and understanding human

language. Computer vision involves teaching machines to interpret and

understand images and video, and robotics involves designing and building

machines that can perform tasks autonomously.

AI has the potential to revolutionize many industries and fields, from

healthcare and transportation to finance and education. AI has become

an increasingly important topic in the field of computer engineering in

recent years. This is because AI has the potential to revolutionize the way

computer systems are designed, developed, and maintained. Bill Gates

110 9 Artificial Intelligence

[46]: Gates (2023), AI is about to completely
change how you use computers

[47]: Felten et al. (2023), How will Language
Modelers like ChatGPT Affect Occupations
and Industries?
[48]: Eloundou et al. (2023), GPTs are GPTs:
An Early Look at the Labor Market Impact
Potential of Large Language Models

[49]: Stojiljkovic (2023), Linear Regression
in Python

noted that “AI is about to completely change how you use computers"

[46].

Artificial intelligence is changing the business landscape and redefining

the workforce as well. In the near future, many human workers need to

help computers to get the job done. Further discussions on the potential

impact of large language models (LLMs) can be found at [47, 48].

In this chapter, we will explore the various applications of AI in computer

engineering, including design optimization, quality control, predictive

maintenance, cybersecurity, and intelligent automation.

9.2 AI Algorithms

There are many common AI algorithms that are used in machine learning

and other applications of artificial intelligence.

There are different ways to classify AI algorithms. For exmaple, they can

be

▶ Supervised learning: from labeled data, to learn patterns and rela-

tionships between input and output data.

▶ Unsupervised learning: with unlabeled data, to learn patterns and

insights between input and output without explicit guidance.

▶ Reinforcement learning: interacts with the environment, without

labelled data pairs, to learn optimal actions based on rewarding or

punishing behaviors.

They can also be

▶ Classification algorithms: to categorize data into a class or category.

▶ Regression algorithms: to predict numerical values based on input

data.

▶ Clustering algorithms: to group objects into clusters where objects

are more similar in one cluster but are not similar between clusters.

Some algorithms can be both supervised and unsupervised, or ensemble

learning algorithm, which are a combination of several models in a single

problem.

Here are a few examples:

Linear Regression A statistical technique that is used to find the best fit

line that describes the relationship between two or more continuoous

variables. It is considered one of the simplest AI algoritms.

Figure 9.1 is a graphical explanation of linear regression algorithm.

A more detailed explanation of linear regression with Python can be

found on web [49].

Example 9.2.1 Suppose we have a dataset of house prices and the

corresponding square footage of each house.

Objective: we want to use this data to create a model that can predict

9.2 AI Algorithms 111

Figure 9.1: Linear Regression

[50]: Sharma et al. (2020), ‘Linear Regres-

sion Model for Agile Software Develop-

ment Effort Estimation’

[51]: Ulanowicz et al. (2023), ‘Combining

Random Forest and Linear Regression to

Improve Network Traffic Prediction’

the price of a house given its square footage.

Procedure: to do this,

1. We use linear regression to find the best-fit line that describes

the relationship between house prices and square footage.

This line will be of the form:

𝑦 = 𝑚𝑥 + 𝑏

where y is the predicted house price, x is the square footage,

m is the slope of the line, and b is the intercept.

Using the dataset, the linear regression algorithm will de-

termine the values of 𝑚 and 𝑏 that minimize the difference

between the predicted values and the actual values in the

dataset.

2. Once the model is trained, we can use it to predict the price

of a new house based on its square footage.

For example, if the model determines that the best-fit line is:

𝑦 = 100𝑥 + 50

then a house with a square footage of 1500 would have a

predicted price of

𝑦 = 100 × 1500 + 50 = $150, 050

1

1: Have you ever used linear regression

algorithm before you even know AI?Linear regression can be used in computer engineering:

▶ Software development effort estimation [50]: Linear regression

can be used to estimate the amount of effort required for soft-

ware development tasks. By using historical data on software

development tasks and their associated effort, a linear regres-

sion model can be trained to predict the effort required for new

tasks based on their characteristics.

▶ Network traffic prediction [51]: Linear regression can be used

to predict network traffic, which can help in network capacity

planning and management. By using historical data on network

traffic and associated factors such as time of day and day of the

112 9 Artificial Intelligence

[52]: Joseph et al. (2006), ‘Construction

and use of linear regression models for

processor performance analysis’

[53]: Latocha (2018), ‘Robust fault detec-

tion, location, and recovery of damaged

data using linear regression and mathe-

matical models’

[54]: Banoula (2023), An Introduction to
Logistic Regression in Python

week, a linear regression model can be trained to predict future

traffic levels.

▶ Hardware performance analysis [52]: Linear regression can be

used to analyze the performance of hardware components, such

as processors and storage devices. By using data on hardware

specifications and performance benchmarks, a linear regres-

sion model can be trained to predict the performance of new

hardware components.

▶ Fault detection in industrial systems [53]: Linear regression

can be used to detect faults in industrial systems, such as

manufacturing plants and power grids. By using sensor data

and historical fault data, a linear regression model can be

trained to detect deviations from normal operating conditions,

indicating the presence of faults.

Logistic Regression A statistical method used to model the probability of

a certain event or outcome based on input variables.

Compared to linear regression, which are used for regression prob-

lems, logistic regression algorithms are used for classification prob-

lems. The output is continuous for linear regression while it is discreet

for logistic regressions.

Figure 9.2 is a graphical explanation of logistic regression algorithm.

Figure 9.2: Logistic Regression

2

2: Can you summarize the difference be-

tween linear regression and logistic re-

gression?

As logistic regression is widly used, we can easily find many ref-

erences of logistic regression in literature. A detailed and useful

explanation with Python coding can be found on web [54].

Example 9.2.2 Suppose we have a dataset of medical records.

Objective: we want to create a model that can predict whether a

patient has a certain medical condition based on their age and

other health metrics.

9.2 AI Algorithms 113

[55]: Dedeturk et al. (2020), ‘Spam filtering

using a logistic regression model trained

by an artificial bee colony algorithm’

[56]: Song et al. (2023), ‘Doubly robust

logistic regression for image classification’

[57]: Yang (2022), ‘Prediction of Credit

Risk Based on Logistic Regression and

Random Forest Technique’

[58]: Kazemi-Arpanahi et al. (2022), ‘Us-

ing logistic regression to develop a di-

agnostic model for COVID-19: A single-

center study’

Proceedure: to do this,

1. We can use logistic regression to model the probability of

the patient having the condition as a function of their age

and other health metrics. The logistic regression model will

output a probability value between 0 and 1, where values

closer to 1 indicate a higher probability of the patient having

the condition.

3

3: Logistic Regression is a statistical

method used for binary classification,

which is the task of categorizing items

into two classes. It uses the logistic func-

tion (also known as the sigmoid function)

to model the probability of a binary out-

come. Can you explain how this works?

2. Once the model is trained, we can use it to predict the proba-

bility of a new patient having the condition based on their

age and health metrics. If the predicted probability is above a

certain threshold, we can classify the patient as having the

condition.

3. For example, suppose the logistic regression model deter-

mines that the probability of a patient having the condition

is:

𝑝 =
1

1 + 𝑒−𝑧
,

where 𝑧 is a linear combination of the input variables. If the

threshold for classifying a patient as having the condition is

0.5, then we can classify a patient as having the condition if:

𝑝 ≥ 0.5

Overall, logistic regression is a useful AI algorithm for predicting

binary outcomes and can be applied in a wide range of applications,

such as healthcare, finance, and marketing.

Logistic regression can be used in computer engineering:

▶ Spam detection [55]: Logistic regression can be used to classify

emails as spam or not spam. By using features such as the

email content, sender information, and email headers, a logistic

regression model can be trained to predict whether an email is

spam or not.

▶ Image classification [56]: Logistic regression can be used to

classify images into different categories. By using features such

as pixel values and image attributes, a logistic regression model

can be trained to predict the category of an image.

▶ Credit risk analysis [57]: Logistic regression can be used to

predict credit risk, which can help in making lending decisions.

By using historical data on credit applications and associated

risk factors, a logistic regression model can be trained to predict

the likelihood of default for new credit applications.

▶ Medical diagnosis [58]: Logistic regression can be used to di-

agnose medical conditions based on patient symptoms and

other factors. By using data on patient symptoms and medical

history, a logistic regression model can be trained to predict the

likelihood of different medical conditions.

Decision Trees A tree-like model of decisions and their possible conse-

quences, used to generate a classification or regression model.

Figure 9.3 is a graphical explanation of decision tree algorithm.

114 9 Artificial Intelligence

Figure 9.3: Decision Tree

[59]: Tiwari et al. (2022), ‘A Decision Tree-

Based Algorithm for Fault Detection and

Section Identification of DC Microgrid’

4

4: Can you list the problem domains

where Decision Trees are most suitable?

Example 9.2.3 Suppose we have a dataset of customer information,

including their age, income, and purchase history.

Objective: We want to create a model that can predict whether a

new customer will purchase a certain product based on their age

and income.

Proceedure: to do this,

1. We use a decision tree to model the decision-making pro-

cess of a customer. The decision tree will split the data into

branches based on the most important factors that influence

the customer’s decision to purchase the product.

2. For example, the decision tree might first split the data based

on the customer’s age, with one branch for customers under 40

and another branch for customers 40 and over. Each branch of

the tree will then continue to split the data based on additional

factors, such as income or purchase history, until a prediction

is made.

3. Once the decision tree is trained, we can use it to predict

whether a new customer will purchase the product based

on their age and income. To make a prediction, we start at

the root node of the decision tree and follow the branches

down until we reach a leaf node, which contains the predicted

outcome.

4. For example, if the decision tree determines that customers

under 40 with an income over $50,000 are likely to purchase

the product, then a new customer who is 35 years old and

has an income of $60,000 would be predicted to purchase the

product.

Decision tree algorithm can be used in various ways in computer

engineering. Here are some examples:

▶ Fault diagnosis [59]: Decision trees can be used to diagnose

faults in computer hardware or software. The decision tree can

be trained on a dataset of known faults and their symptoms.

9.2 AI Algorithms 115

[60]: Khanli et al. (2011), ‘Active rule learn-

ing using decision tree for resource man-

agement in Grid computing’

[61]: Ullah et al. (2020), ‘Modified Decision

Tree Technique for Ransomware Detection

at Runtime through API Calls’

[62]: Matzavela et al. (2021), ‘Decision tree

learning through a Predictive Model for

Student Academic Performance in Intelli-

gent M-Learning environments’

Once trained, the decision tree can be used to predict the fault

based on the symptoms observed.

▶ Software testing: Decision trees can be used to guide software

testing. The decision tree can be trained on a dataset of inputs

and expected outputs. Once trained, the decision tree can be

used to guide testing by suggesting inputs that are likely to

reveal faults.

▶ Resource allocation [60]: Decision trees can be used to allocate

resources in computer systems. For example, a decision tree can

be trained to allocate processing power or memory based on

the current load and other factors.

▶ Malware detection [61]: Decision trees can be used to detect

malware on a computer. The decision tree can be trained on

a dataset of known malware and their characteristics. Once

trained, the decision tree can be used to identify new malware

based on its characteristics.

▶ Prediction of system performance [62]: Decision trees can be

used to predict the performance of a computer system based

on its hardware and software configuration. The decision tree

can be trained on a dataset of system configurations and their

performance characteristics. Once trained, the decision tree can

be used to predict the performance of new configurations.

Random Forest An ensemble learning method that constructs multiple

decision trees and combines their predictions to produce a final

result.

5

5: Why do we prefer a forest (collection

of trees) rather than a single tree to make

predictions?

Figure 9.4 is a graphical explanation of random forrest algorithm.

Figure 9.4: Random Forrest

Example 9.2.4 Suppose we have a dataset of customer information,

including their age, income, purchase history, and other features.

Objective: we want to create a model that can predict whether a new

customer will purchase a certain product based on these features.

Proceedure: to do this,

1. We use random forest to build multiple decision trees, where

each decision tree is trained on a different subset of the data

116 9 Artificial Intelligence

[63]: Bosch et al. (2007), ‘Image Classifica-

tion using Random Forests and Ferns’

[64]: Prashanth et al. (2008), ‘Using Ran-

dom Forests for Network-based Anomaly

detection at Active routers’

[65]: Kopp et al. (2020), ‘Anomaly expla-

nation with random forests’

[66]: Chen et al. (2020), ‘Selecting critical

features for data classification based on

machine learning methods’

[67]: Zhang et al. (2016), ‘Three-way recom-

mender systems based on random forests’

[68]: Kizito et al. (2018), ‘The Application

of Random Forest to Predictive Mainte-

nance’

and a random subset of the features. This helps to reduce

overfitting and improve the accuracy of the model.

2. Once the random forest is trained, we can use it to predict

whether a new customer will purchase the product based on

their features. To make a prediction, we input the customer’s

features into each decision tree in the random forest and

aggregate the results. The final prediction is then based on

the majority vote of the decision trees.

3. For example, suppose the random forest contains 100 decision

trees, and 70 of the trees predict that a new customer will

purchase the product. Then the final prediction would be that

the customer is likely to purchase the product.

The random forest algorithm can be applied to a wide range of

problems in computer engineering where accurate predictions or

classifications are required. Here are some examples:

▶ Image recognition [63]: Random forest algorithm can be used to

classify images by training on a large dataset of labeled images.

Once trained, the algorithm can classify new images with high

accuracy.

▶ Anomaly detection [64, 65]: Random forest algorithm can be

used to detect anomalies in system logs, network traffic, or

other data sources. The algorithm can be trained on a dataset of

normal behavior and can identify unusual patterns or outliers.

▶ Feature selection [66]: Random forest algorithm can be used

to select the most important features in a large dataset. The

algorithm ranks features based on their importance in predicting

the target variable, allowing engineers to focus on the most

relevant features for a particular application.

▶ Recommender systems [67]: Random forest algorithm can be

used to build personalized recommender systems by training

on a large dataset of user preferences and item characteristics.

Once trained, the algorithm can recommend items to users

based on their preferences.

▶ Predictive maintenance [68]: Random forest algorithm can be

used to predict failures in hardware components or systems.

The algorithm can be trained on a dataset of sensor data and

failure events to identify patterns that lead to failure and predict

when failures are likely to occur.

Support Vector Machines (SVMs) A set of algorithms used for classifica-

tion, regression, and outlier detection. SVMs are particularly useful

in high-dimensional spaces and can handle non-linear data.

Figures 9.5 and 9.6 are graphical explanations of support vector

machines for two-dimensional and three-dimensional data sets.

Example 9.2.5 Suppose we have a dataset of customer information,

including their age, income, and purchase history.

Objective: we want to create a model that can predict whether a

new customer will purchase a certain product based on their age

and income.

9.2 AI Algorithms 117

Figure 9.5: Support Vector Machine for

2D Data Set

[69]: Chandra et al. (2021), ‘Survey on SVM

and their application in imageclassifica-

tion’

[70]: Torabi et al. (2015), ‘Efficient Support

Vector Machines for Spam Detection: A

Survey’

Proceedure: to do this,

1. We use SVMs to find a hyperplane that maximally separates

the data into two classes: customers who are likely to purchase

the product and customers who are not likely to purchase the

product. The hyperplane is defined by a set of weights that

are learned during training.

2. Once the SVM is trained, we can use it to predict whether a

new customer will purchase the product based on their age

and income. To make a prediction, we input the customer’s

age and income into the SVM and calculate the hyperplane’s

distance to the customer’s data point. If the distance is positive,

the customer is classified as likely to purchase the product.

If the distance is negative, the customer is classified as not

likely to purchase the product.

3. For example, suppose the SVM determines that customers

with an income above $50,000 and age below 40 are likely

to purchase the product. Then a new customer who is 35

years old and has an income of $60,000 would be predicted

to purchase the product.

SVM is a versatile algorithm that can be applied to a wide range of

classification and regression tasks in computer engineering, where

accurate predictions or classifications are required. Here are some

examples of how SVM can be applied in computer engineering:

▶ Image classification [69]: SVM can be used for image classifica-

tion tasks, such as identifying objects or recognizing faces. The

algorithm can be trained on a large dataset of images, where

each image is labeled with the object it contains or the person it

depicts. Once trained, the SVM can classify new images with

high accuracy.

▶ Spam filtering [70]: SVM can be used to filter spam emails

by training on a dataset of labeled emails. The algorithm can

classify incoming emails as spam or not spam based on their

118 9 Artificial Intelligence

Figure 9.6: Support Vector Machine for

3D Data Set

[71]: Li et al. (2012), ‘An efficient intrusion

detection system based on support vector

machines and gradually feature removal

method’

[72]: Ahlawat et al. (2020), ‘Hybrid CNN-

SVM Classifier for Handwritten Digit

Recognition’

[73]: Ran et al. (2019), A Survey of Pre-
dictive Maintenance: Systems, Purposes and
Approaches

content, subject, and other features.

▶ Intrusion detection [71]: SVM can be used to detect intrusions in

computer networks by training on a dataset of network traffic.

The algorithm can identify patterns in the traffic that indicate a

potential intrusion and alert the system administrator.

▶ Handwriting recognition [72]: SVM can be used for handwriting

recognition tasks, such as recognizing handwritten digits or

letters. The algorithm can be trained on a large dataset of labeled

handwriting samples and can recognize new samples with high

accuracy.

▶ Predictive maintenance [73]: SVM can be used for predictive

maintenance tasks, such as predicting when a hardware compo-

nent or system is likely to fail. The algorithm can be trained on

a dataset of sensor data and failure events to identify patterns

that lead to failure and predict when failures are likely to occur.

Neural Networks A set of algorithms that are modeled after the structure

of the human brain and can be used for tasks such as image recogni-

tion, speech recognition, and natural language processing.

Example 9.2.6 Suppose we have a dataset of images of handwritten

digits, such as the MNIST dataset. Each image is a 28 × 28 pixel

grayscale image of a handwritten digit (0-9).

Objective: we want to create a model that can classify the images

into their respective digits.

Proceedure: to do this,

1. We use a neural network with multiple layers of artificial

neurons. Each neuron in the network receives inputs from

the neurons in the previous layer, performs a computation,

9.2 AI Algorithms 119

[74]: Shastri (2020), 5 Neural network archi-
tectures you must know for Computer Vision

[75]: Davydova (2017), 7 types of Artificial
Neural Networks for Natural Language Pro-
cessing

and passes its output to the neurons in the next layer. The

neurons in the final layer of the network represent the output

classes (0-9), and the values of these neurons represent the

predicted probabilities of each class.

2. During training, the neural network adjusts the weights and

biases of each neuron to minimize the difference between the

predicted outputs and the true labels of the training data. This

is done using a loss function and an optimization algorithm,

such as stochastic gradient descent.

3. Once the neural network is trained, we can use it to classify

new images of handwritten digits. To make a prediction, we

input the image into the neural network, and the output of the

final layer represents the predicted probabilities of each digit

class. The class with the highest probability is then selected

as the predicted digit.

4. For example, if the neural network predicts that an image of

a handwritten digit has a high probability of being a 5, then

the digit is classified as a 5.

NN are a versatile tool for solving a wide range of problems in

computer engineering, especially when the input data is high-

dimensional, noisy, and complex. NN are capable of learning complex

relationships between input and output variables and can be used to

make accurate predictions and classifications.

▶ Computer Vision [74]: NN can be used for object recognition,

face recognition, image and video processing, and other com-

puter vision tasks. Convolutional Neural Networks (CNN) are

a popular type of NN for computer vision tasks.

Figure 9.7 is a graphical explanation of Convolutional Neural

Networks.

Figure 9.7: Convolutional Neural Network

▶ Natural Language Processing [75]: NN can be used for natural

language processing tasks, such as language translation, text

summarization, and sentiment analysis. Recurrent Neural Net-

works (RNN) and Long Short-Term Memory (LSTM) networks

are popular types of NN for natural language processing tasks.

120 9 Artificial Intelligence

[76]: Papastratis (2021), Speech Recognition:
a review of the different deep learning ap-
proaches

[77]: Pierson et al. (2017), ‘Deep learning

in robotics: a review of recent research’

[78]: Hassan et al. (2017), ‘A Neural Net-

works Approach for Improving the Ac-

curacy of Multi-Criteria Recommender

Systems’

[79]: Bampoula et al. (2021), ‘A Deep Learn-

ing Model for Predictive Maintenance in

Cyber-Physical Production Systems Using

LSTM Autoencoders’

▶ Speech Recognition [76]: NN can be used for speech recognition

tasks, such as speech-to-text conversion and speaker identifi-

cation. Convolutional Neural Networks (CNN) and Recurrent

Neural Networks (RNN) are popular types of NN for speech

recognition tasks.

▶ Robotics [77]: NN can be used for robot control, navigation, and

vision tasks. NN can learn to recognize objects, navigate through

environments, and perform tasks in a way that is similar to

human-like decision making.

▶ Recommender Systems [78]: NN can be used for building per-

sonalized recommender systems by training on a large dataset

of user preferences and item characteristics. Once trained, the

algorithm can recommend items to users based on their prefer-

ences.

▶ Predictive Maintenance [79]: NN can be used to predict when

a hardware component or system is likely to fail. NN can be

trained on a dataset of sensor data and failure events to identify

patterns that lead to failure and predict when failures are likely

to occur.

K-Nearest Neighbors (KNN) A classification algorithm that compares an

unknown data point to the k-nearest known data points to determine

its classification.

Figure 9.8 is a graphical explanation of K-Nearest Neighbors algo-

rithm.

Figure 9.8: K-Nearest Neighbors

Example 9.2.7 Suppose we have a dataset of customer information,

including their age, income, and purchase history.

Objective: we want to create a model that can predict whether a

new customer will purchase a certain product based on their age

and income.

Proceedure: to do this,

9.2 AI Algorithms 121

[80]: Wang et al. (2020), ‘A Log-Based

Anomaly Detection Method with Effi-

cient Neighbor Searching and Automatic

K Neighbor Selection’

[81]: Elshenawy et al. (2022), ‘Fault de-

tection and diagnosis strategy based on

k-nearest neighbors and fuzzy C-means

clustering algorithm for industrial pro-

cesses’

[82]: Mazzuto et al. (2021), ‘Health Indica-

tor for Predictive Maintenance Based on

Fuzzy Cognitive Maps, Grey Wolf, and

K-Nearest Neighbors Algorithms’

[83]: Chatzigeorgakidis et al. (2018), ‘FML-

kNN: scalable machine learning on Big

Data using k-nearest neighbor joins’

1. We use KNN to find the K nearest neighbors of the new

customer in the training data, where K is a user-defined pa-

rameter. The nearest neighbors are determined by calculating

the Euclidean distance between the new customer’s data point

and the data points in the training data.

2. Once the nearest neighbors are found, we can use their labels

(i.e., whether they purchased the product or not) to predict

the label of the new customer. One common approach is to use

majority voting, where the label with the most occurrences

among the K nearest neighbors is selected as the predicted

label for the new customer.

3. For example, suppose the KNN algorithm determines that

the 5 nearest neighbors of a new customer are all customers

who have purchased the product in the past. Then the KNN

algorithm would predict that the new customer is likely to

purchase the product.

KNN can be used in computer engineering for a variety of tasks,

such as:

▶ Anomaly detection [80]: KNN can be used to detect anomalies

in computer systems, such as network traffic or system logs. By

comparing the new data points with the K nearest neighbors

in the training data, KNN can detect anomalies that deviate

significantly from the normal patterns.

▶ Fault diagnosis [81]: KNN can be used to diagnose faults in

computer hardware or software systems. By analyzing the

patterns in the data, KNN can identify the root cause of the

faults and suggest possible solutions.

▶ Predictive maintenance [82]: KNN can be used to predict when

computer systems are likely to fail, based on their historical

performance data. By identifying the K nearest neighbors that

have similar performance patterns, KNN can predict when a

system is likely to fail and alert the maintenance team.

▶ Resource allocation [83]: KNN can be used to allocate resources

in computer systems, such as CPU time or memory. By analyzing

the workload patterns of the K nearest neighbors, KNN can

optimize the resource allocation to minimize the response time

or maximize the throughput.

Clustering A family of algorithms used to group similar data points

together based on certain criteria.

One example is K means. It is an unsupervised machine learning

algorithm used for clustering data points. K means organizes the data

into clusters with similar characteristics without making predictions.

Figure 9.9 is a graphical explanation of K means algorithm.

Example 9.2.8 Suppose we have a dataset of customer transactions,

including the amount spent, the date of the transaction, and the

type of product purchased.

Objective: we want to group the customers into clusters based on

122 9 Artificial Intelligence

Figure 9.9: K Means

[84]: Zhang et al. (2022), ‘Cluster analysis

of day-to-day traffic data in networks’

[85]: Panapakidis et al. (2018), ‘Optimal Se-

lection of Clustering Algorithm via Multi-

Criteria Decision Analysis (MCDA) for

Load Profiling Applications’

their purchasing behavior, so that we can target them with more

personalized marketing campaigns.

Proceedure: to do this,

1. We use clustering algorithms such as K-Means or Hierarchical

Clustering. These algorithms work by iteratively grouping

data points together based on their similarity, until the clusters

are formed.

2. In the case of customer transactions, we can use clustering to

group customers based on their purchasing behavior, such as

those who purchase similar products or those who purchase

at similar times. By clustering the customers, we can identify

patterns and segment them into different groups, each with a

distinct profile and behavior.

3. For example, we might find that one cluster consists of cus-

tomers who purchase mostly high-end products, while an-

other cluster consists of customers who purchase mostly

low-end products. we can then target each cluster with differ-

ent marketing campaigns that appeal to their specific interests

and preferences.

Clustering can be used in various ways in computer engineering,

including:

▶ Network traffic analysis [84]: Clustering can be used to identify

patterns and anomalies in network traffic. By clustering network

traffic based on its flow features, such as source IP address,

destination IP address, port numbers, and protocols, it is possible

to identify network clusters that share similar communication

patterns. This can help in detecting network attacks, traffic

congestion, and performance issues.

▶ Hardware and software profiling [85]: Clustering can be used to

identify the usage patterns of hardware and software systems.

By clustering system data, such as CPU usage, memory usage,

9.2 AI Algorithms 123

[86]: Mittal et al. (2022), ‘A comprehensive

survey of image segmentation: clustering

methods, performance parameters, and

benchmark datasets’

[87]: Wu et al. (2020), ‘FATOC: Bug Iso-

lation Based Multi-Fault Localization by

Using OPTICS Clustering’

disk I/O, and network traffic, it is possible to identify clusters

that share similar performance characteristics. This can help

in optimizing system resource usage, diagnosing performance

issues, and predicting system failures.

▶ Image and video analysis [86]: Clustering can be used to segment

images and videos into meaningful regions. By clustering pixels

or regions based on their color, texture, and spatial features, it

is possible to identify objects, scenes, and activities in images

and videos. This can help in tasks such as object recognition,

image segmentation, and video summarization.

▶ Software fault localization [87]: Clustering can be used to iden-

tify the root cause of software faults. By clustering program

execution traces based on their features, such as function calls,

variable values, and execution paths, it is possible to identify

clusters of traces that share similar error patterns. This can

help in localizing the fault to specific parts of the program and

suggesting possible fixes.

Gradient Boosting A machine learning technique that involves combining

multiple weak models to create a single, more accurate predictive

model.

Figure 9.10 is a graphical explanation of gradient boosting algorithm.

Figure 9.10: Gradient Boosting

Example 9.2.9 Suppose we have a dataset of customer transactions,

including the amount spent, the date of the transaction, and the

type of product purchased.

Objective: we want to predict which customers are likely to make a

repeat purchase in the next month, based on their past transaction

history.

Proceedure: to do this,

1. We use Gradient Boosting algorithms such as XGBoost [88]

[88]: Wikipedia contributors (2023), XG-
Boost — Wikipedia, The Free Encyclopedia

or

LightGBM [89]

[89]: Wikipedia contributors (2023), Light-
GBM — Wikipedia, The Free Encyclopedia

. These algorithms work by iteratively adding

decision trees to the model, each of which predicts the residual

124 9 Artificial Intelligence

[90]: Louk et al. (2022), ‘Revisiting Gradi-

ent Boosting-Based Approaches for Learn-

ing Imbalanced Data: A Case of Anomaly

Detection on Power Grids’

[91]: Roque et al. (2022), ‘An analysis of

machine learning algorithms in rotating

machines maintenance’

[92]: Douiba et al. (2022), ‘Anomaly de-

tection model based on gradient boosting

and decision tree for IoT environments

security’

[93]: Dash et al. (2022), ‘Gradient boost-

ing machine and efficient combination

of features for speech-based detection of

COVID-19’

errors of the previous tree.

2. In the case of customer transactions, we can use Gradient

Boosting to create a model that predicts the likelihood of

a customer making a repeat purchase based on their past

transaction history. By using features such as the amount

spent, the date of the transaction, and the type of product

purchased, the model can learn patterns in the data and make

accurate predictions.

3. For example, the model might learn that customers who made

a purchase within the last week are more likely to make a

repeat purchase in the next month, or that customers who

purchased high-end products are more loyal than those who

purchased low-end products.

Gradient Boosting can be used in various ways in computer engineer-

ing, including:

▶ Anomaly detection in system logs [90]: Gradient Boosting can

be used to detect anomalies in system log data, such as event

logs and error logs. By using Gradient Boosting to learn the

patterns in the log data, it is possible to identify anomalous log

entries that indicate system failures, security breaches, or other

issues.

▶ Predictive maintenance in industrial equipment [91]: Gradient

Boosting can be used to predict when industrial equipment is

likely to fail. By using Gradient Boosting to learn the patterns in

sensor data from the equipment, it is possible to predict when

maintenance is needed, reducing downtime and maintenance

costs.

▶ Network intrusion detection [92]: Gradient Boosting can be used

to detect network intrusions by learning the patterns of normal

network traffic and identifying deviations from those patterns.

By using Gradient Boosting to analyze network traffic data, it is

possible to detect anomalies that indicate potential intrusions.

▶ Image and speech recognition [93]: Gradient Boosting can be

used to recognize images and speech. By using Gradient Boost-

ing to learn the patterns in images or speech data, it is possible

to recognize objects, faces, and speech patterns.

These are just a few examples of the many AI algorithms that are used

in various applications of artificial intelligence. Different algorithms are

suitable for different tasks and datasets, and researchers and develop-

ers continue to explore new algorithms and techniques to improve the

capabilities of AI systems.

9.3 Design Optimization

One of the primary applications of AI in computer engineering is design

optimization. Design optimization is the process of finding the most efficient

design for a particular component or system. This is an important process

9.4 Quality Control 125

[94]: Brown (2023), AI for Circuit Design
Quality, Productivity, and Advanced-Node
Mapping

[95]: Jenis et al. (2023), ‘Engineering Ap-

plications of Artificial Intelligence in Me-

chanical Design and Optimization’

[96]: Castro Pena et al. (2021), ‘Artificial

intelligence applied to conceptual design.

A review of its use in architecture’

[97]: Meyes et al. (2021), ‘Transparent and

Interpretable Failure Prediction of Sen-

sor Time Series Data with Convolutional

Neural Networks’

[98]: Habeeb et al. (2023), ‘Design Opti-

mization Method Based on Artificial Intel-

ligence (Hybrid Method) for Repair and

Restoration Using Additive Manufactur-

ing Technology’

because it can significantly reduce the cost and time required to develop

new computer systems.

AI can be used to optimize the design of computer chips and other hardware

components. Machine learning algorithms can be used to analyze large

amounts of data to identify the most efficient designs. These algorithms

can learn from previous designs and identify patterns that indicate areas

where improvements can be made.

For example, AI can be used to optimize the design of computer processors.

By analyzing the performance of different processor architectures and

identifying patterns in the data, machine learning algorithms can identify

the most efficient design. This can lead to significant improvements in

performance, power consumption, and cost.

Here are some ways AI is used in design optimization in computer engi-

neering:

▶ Parameter tuning [94]: AI algorithms can be used to automatically ad-

just the values of system parameters, such as clock speeds or memory

timings, to optimize performance or reduce power consumption.

▶ Prediction and simulation [95]: AI can be used to predict the behavior

of complex systems, such as integrated circuits or networks, and to

simulate the effects of different design choices.

▶ Design synthesis [96]: AI can be used to generate new design solutions

based on performance criteria and design constraints.

▶ Failure prediction [97]: AI can be used to predict potential system

failures based on patterns in data from sensors or other sources.

▶ System optimization [98]: AI can be used to optimize the overall

system design, taking into account interactions between different

components and subsystems.

9.4 Quality Control

Another important application of AI in computer engineering is quality

control. Quality control is the process of ensuring that computer com-

ponents and systems are free of defects or other quality issues. This is

important because defects or quality issues can lead to system failures or

other problems.

AI can be used to monitor the manufacturing process for computer com-

ponents and identify defects or other quality issues. Machine learning

algorithms can analyze data from sensors and other sources to detect

patterns that indicate problems. This can help engineers identify the root

cause of quality issues and take corrective action to address them.

For example, AI can be used to monitor the manufacturing process for

computer chips. By analyzing data from sensors that monitor tempera-

ture, humidity, and other factors, machine learning algorithms can detect

patterns that indicate defects in the manufacturing process. This can help

engineers identify the root cause of defects and take corrective action to

prevent them from occurring in the future.

126 9 Artificial Intelligence

[99]: Trajkova et al. (2021), ‘Active Learn-

ing for Automated Visual Inspection of

Manufactured Products’

[100]: Westphal et al. (2021), ‘A machine

learning method for defect detection and

visualization in selective laser sintering

based on convolutional neural networks’

[101]: Kamel (2022), ‘Artificial intelligence

for predictive maintenance’

[102]: Boaventura et al. (2022), ‘On flexible

Statistical Process Control with Artificial

Intelligence: Classification control charts’

[103]: Dataquest (2022), Using Machine
Learning and Natural Language Processing
Tools for Text Analysis

[104]: Walas Mateo et al. (2021), ‘Artificial

Intelligence and Machine Learning as a

Process Optimization driver under Indus-

try 4.0 framework, the role of the people

in the process’

[105]: Pournader et al. (2021), ‘Artificial

intelligence applications in supply chain

management’

[106]: Fatima et al. (2022), ‘Automated Test-

ing with Machine Learning Frameworks:

A Critical Analysis’

[107]: Hussain et al. (2023), ‘Robotics and

Automation with Artificial Intelligence:

Improving Efficiency and Quality’

[108]: Rayhan (2023), ‘Artificial Intelli-

gence In Robotics: From Automation To

Autonomous Systems’

[109]: Ciora et al. (2016), ‘Quality Improve-

ment Based on Big Data Analysis’

Here are some ways in which AI is commonly used in quality control:

▶ Automated Visual Inspection [99]: AI-powered computer vision sys-

tems can analyze images and videos to identify defects or anomalies in

products. This is particularly useful in industries like manufacturing,

where products are visually inspected for flaws.

▶ Defect Detection and Classification [100]: AI algorithms can be trained

to detect and classify defects in products based on visual inspection.

This includes identifying scratches, dents, color variations, and other

imperfections.

▶ Predictive Maintenance [101]: AI can analyze data from sensors and

equipment to predict when machines or components are likely to fail.

This proactive approach helps in scheduling maintenance activities

before a failure occurs, reducing downtime and improving overall

product quality.

▶ Statistical Process Control (SPC) [102]: AI can be applied to analyze

data from various stages of the production process, helping to identify

patterns and trends that may indicate potential quality issues. This

enables real-time adjustments to maintain consistent quality.

▶ Natural Language Processing (NLP) for Text Analysis [103]: In in-

dustries where quality control involves analyzing textual data, such

as customer feedback or product specifications, NLP can be used to

extract valuable insights and identify areas for improvement.

▶ Machine Learning for Process Optimization [104]: Machine learning

algorithms can analyze historical data to optimize manufacturing pro-

cesses for better quality outcomes. This includes adjusting parameters

to minimize defects and enhance overall efficiency.

▶ Supply Chain Monitoring [105]: AI can be used to monitor and assess

the quality of raw materials and components in the supply chain. This

ensures that only high-quality inputs are used in the manufacturing

process.

▶ Automated Testing [106]: AI-driven automated testing processes can

rapidly and accurately test software applications, ensuring that they

meet quality standards and perform as expected.

▶ Robotics in Quality Inspection [107, 108]: Robots equipped with AI

systems can perform precise and repetitive inspection tasks, ensuring

that products meet specific quality criteria without human error.

▶ Data Analytics for Quality Improvement [109]: AI tools can analyze

large datasets to identify patterns and correlations that may not be

immediately apparent. This information can be used to continuously

improve processes and enhance product quality.

9.5 Predictive Maintenance

Predictive maintenance is another important application of AI in computer

engineering. Predictive maintenance is the process of predicting when

computer systems are likely to fail or need maintenance. This is important

because it can help prevent system failures and reduce downtime.

9.6 Cybersecurity 127

AI can be used to predict when computer systems are likely to fail or need

maintenance. Machine learning algorithms can analyze data from sensors

and other sources to identify patterns that indicate potential problems.

This can help technicians take preventive action before a failure occurs.

For example, AI can be used to predict when hard drives are likely to fail. By

analyzing data from sensors that monitor temperature, vibration, and other

factors, machine learning algorithms can identify patterns that indicate

when a hard drive is likely to fail. This can help technicians replace the

hard drive before it fails, reducing the risk of data loss and downtime.

9.6 Cybersecurity

AI is also an important tool for cybersecurity in computer engineering.

Cybersecurity is the process of protecting computer systems from cyber

threats, such as malware, viruses, and hackers. This is important because

cyber threats can lead to data breaches, system failures, and other prob-

lems.

AI can be used to detect and respond to cyber threats. Machine learning

algorithms can analyze network traffic, identify patterns that indicate

malicious activity, and take action to block or contain the threat. This can

help prevent cyber attacks and reduce the impact of those that do occur.

Below are some research topics that can be found in literature:

▶ Threat Detection and Prevention, including anomaly detection (iden-

tify anomalies that may indicate a potential security threat), signature-

based detection (recognize known malware and malicious patterns

in code or network traffic), and heuristic-based detection (recognize

new and previously unknown threats by identifying patterns that

deviate from normal behavior).

▶ Behavioral Analysis: to monitor and analyze user and entity behavior

to identify deviations from normal patterns, helping to detect insider

threats and compromised accounts.

▶ Endpoint Security: to identify and block malicious activities on

individual devices, offering real-time protection against malware and

other threats.

▶ Phishing Detection: to analyze emails and messages to detect phishing

attempts by identifying suspicious links, content, or patterns in

communication.

▶ Vulnerability Management: to scan systems for vulnerabilities and

prioritizing them based on the level of risk, helping organizations

address critical issues first.

▶ Incident Response and Forensics: to automate and improve incident

response by quickly analyzing vast amounts of data to identify the

source and extent of a security incident.

▶ User Authentication: to enhance user authentication processes through

biometrics, behavioral analysis, and multi-factor authentication, mak-

ing it more difficult for unauthorized users to gain access.

128 9 Artificial Intelligence

[110]: Ingraham et al. (2023), ‘Illuminat-

ing protein space with a programmable

generative model’

[111]: Bhutoria (2022), ‘Personalized ed-

ucation and Artificial Intelligence in the

United States, China, and India: A system-

atic review using a Human-In-The-Loop

model’

[112]: Small (2023), The Top 10 Adaptive
Learning Platforms of 2023

▶ Security Analytics: to process and analyze large datasets to identify

patterns, trends, and potential security threats that may be challeng-

ing for humans to discern.

▶ Security Information and Event Management (SIEM): to enhance

SIEM systems by automating the analysis of security alerts, helping

organizations respond to incidents more efficiently.

▶ Network Security: to identify and respond to abnormal network

traffic, helping to prevent and mitigate cyberattacks.

▶ Machine Learning in Antivirus Software: to adapt and learn from

new threats over time, improving their effectiveness.

▶ Automated Threat Hunting: to continuously scan networks for po-

tential threats and vulnerabilities.

▶ Deep Packet Inspection: to analyze network traffic at a granular level,

helping to identify and block malicious activities.

9.7 Intelligent Automation

Finally, AI can be used to automate many routine tasks in computer

engineering. Intelligent automation is the process of automating routine

tasks using AI and machine learning. This is important because it can

reduce the workload on engineers and technicians and allow them to focus

on more complex tasks.

AI can be used to automate many routine tasks in computer engineering,

such as software testing and system monitoring. Machine learning algo-

rithms can analyze data from sensors and other sources to identify patterns

that indicate potential problems or opportunities for optimization. This can

help engineers and technicians focus on more complex tasks and improve

the efficiency and reliability of computer systems.

For example, AI can be used to automate software testing. Machine learning

algorithms can analyze data from previous software tests to identify

patterns that indicate potential problems. This can help engineers identify

potential problems before they occur and take corrective action to prevent

them from occurring in the future.

The use of AI seems unlimited. A generative model for protein design has

been published [110] recently.

9.8 AI in Education

ALthough there are ethical considerations and data privacy concerns, AI is

able to enhance learning experience for students, support instructors, and

improve overall educational outcomes. AI has the potential to revolutionize

education in the following areas: personalized learning [111], adaptive

learning platforms [112], intelligent tutoring systems, automated grading

and assessment, language processing and translation, virtual reality (VR)

and augmented reality (AR), predictive analytics, automated administrative

tasks, education chatbots, and professional development for educators.

9.9 Summary 129

[113]: Kosslyn (2023), Active Learning with
AI: A Practical Guide
[114]: Ghai et al. (2021), ‘Explainable Active

Learning (XAL): Toward AI Explanations

as Interfaces for Machine Teachers’

[115]: Agarwal et al. (2021), Addressing prac-
tical challenges in Active Learning via a hybrid
query strategy
[116]: Cardona et al. (2023), Artificial Intelli-
gence and the Future of Teaching and Learning
[117]: Gifford (2023), Educators Roundtable:
Demystify AI With Transparency and Practice
[118]: Keelor (2023), The power of AI in the
classroom

For further reading, here are some interesting references, including books

[113], articles [114, 115], report [116], and websites [117, 118].

9.9 Summary

In conclusion, AI has become an increasingly important tool for computer

engineering. It has the potential to revolutionize the way computer systems

are designed, developed, and maintained. The various applications of AI

in computer engineering, including design optimization, quality control,

predictive maintenance, cybersecurity, and intelligent automation, can help

engineers and technicians work more efficiently and effectively. As AI

continues to develop and evolve, it is likely that it will become an even

more integral part of the field of computer engineering.

[119]: Dodson et al. (2021), Securing Small-
Business and Home Internet of Things
(IoT) Devices: Mitigating Network-Based At-
tacks Using Manufacturer Usage Description
(MUD)

[120]: Cisco (2023), What is malware?

10 Cybersecurity

10.1 Introduction 131
10.2 Types of Cyber Threats . . 131
10.3 Impact of Cyber Threats . 132
10.4 Preventing Cyber Threats 133
10.5 Challenges in Cybersecu-

rity 133
10.6 Summary 134

10.1 Introduction

Cybersecurity is a complex and rapidly evolving field that encompasses

various aspects of protecting computer systems, networks, and electronic

devices from unauthorized access, attack, or damage. The importance of

cybersecurity has become more critical than ever before as technology

continues to advance, and cybercriminals become increasingly sophisticated

in their attacks. In this chapter, we will discuss the different types of cyber

threats, their impact on individuals and organizations, the measures that

can be taken to prevent them, and the challenges faced in the cybersecurity

field.

10.2 Types of Cyber Threats

The National Institute of Standards and Technology (NIST) defines cyber

threats in its NIST Secial Publication 1800-15 [119] as “any circumstance

or event with the potential to adversely impact organizational operations

(including mission, functions, image, or reputation), organizational assets,

or individuals through an information system via unauthorized access,

destruction, disclosure, modification of information, and/or denial of

service. Also, the potential for a threat-source to successfully exploit a

particular information system vulnerability".

Cyber threats can be classified into various types, including the following:

1. Malware: malicious software designed to damage, disrupt, or gain

unauthorized access to a computer system or network. Malware

includes viruses, worms, Trojan horses, and ransomware. Malware

is usually spread through email attachments, infected websites, or

software downloads. Explore more details, including vieos, at Cisco

[120].

132 10 Cybersecurity

[121]: Phishing.org (2023), What Is Phish-
ing?

[122]: NCSC (2023), Denial of Service (DoS)
guidance

[123]: Cisco (2023), Understanding SQL In-
jection

[124]: IBM (2023), What is Social Engineer-
ing?

[125]: CISA (2023), Advanced Persistent
Threats and Nation-State Actors

2. Phishing: a type of cyber-attack that involves tricking individuals

into revealing sensitive information such as usernames, passwords,

or credit card numbers. Phishing attacks usually involve an email or

a text message that appears to be from a legitimate source, but in

reality, it is a fake message designed to steal information. Explore

more details at Phishing.org [121].

3. DoS attack: an attempt to overwhelm a computer system or network

with traffic, rendering it inaccessible to users. The attacker achieves

this by flooding the network with traffic from multiple sources,

thereby causing the system to crash or become unavailable. Read

the Denial of Service (DoS) guidance from National Cyber Security

Centre[122].

4. SQL injection attacks: attacks that exploit vulnerabilities in web

applications to gain unauthorized access to databases. The attacker

enters malicious code into a web form or query string, which the

application processes and executes, allowing the attacker to extract

data from the database or modify it. Further reading can be found

on Cisco Security [123].

5. Social engineering: a technique used by cybercriminals to trick indi-

viduals into revealing sensitive information or performing actions

that are not in their best interests. Social engineering attacks can

involve phishing, pretexting, baiting, or tailgating. Find more reading

from IBM [124].

6. APTs: attacks that involve a long-term and targeted approach to

gain unauthorized access to a computer system or network. APTs

are usually carried out by sophisticated attackers who aim to steal

sensitive information or intellectual property. Refer to Cybersecurity

& Infrastructure Security Agency (CISA) [125] for further understand-

ing.

10.3 Impact of Cyber Threats

Cyber threats have a significant impact on individuals and organizations.

Some of the impacts of cyber threats include:

▶ Financial Losses

Cybercriminals can steal money from individuals or organizations

through fraudulent activities, such as phishing or hacking into bank

accounts.

▶ Damage to Reputation

A cyber-attack can damage an organization’s reputation, resulting in

a loss of trust from customers or stakeholders.

▶ Data Loss or Theft

Data loss or theft can occur when cybercriminals gain unauthorized

access to a computer system or network, resulting in the loss of

sensitive information.

▶ Disruption of Business Operations

A cyber-attack can disrupt an organization’s business operations,

leading to loss of productivity, revenue, or customer trust.

10.4 Preventing Cyber Threats 133

▶ Legal Liability

An organization can be held legally liable for any data breaches or

cyber-attacks that occur, resulting in legal fees, fines, or penalties.

10.4 Preventing Cyber Threats

Preventing cyber threats requires a combination of technical and non-

technical measures. Some of the measures that can be taken to prevent

cyber threats include:

▶ Regular Software Updates

Regular software updates can help protect against known vulnerabil-

ities and reduce the risk of cyber-attacks.

▶ Use of Strong Passwords

Strong passwords that are difficult to guess or crack can help protect

against unauthorized access to computer systems or networks.

▶ Use of Encryption Encryption is the process of converting plain

text into ciphertext, which is unreadable without a key or password.

Encryption can help protect sensitive information from being accessed

or intercepted by unauthorized parties.

▶ Implementation of Firewalls and Antivirus Software

Firewalls and antivirus software can help detect and prevent mali-

cious activities from entering a computer system or network.

▶ Training and Awareness Programs

Training and awareness programs can help individuals and organi-

zations recognize and respond to cyber threats effectively.

▶ Implementing Multi-Factor Authentication

Multi-factor authentication (MFA) adds an additional layer of security

by requiring users to provide two or more forms of identification

before gaining access to a computer system or network.

10.5 Challenges in Cybersecurity

The cybersecurity field faces various challenges that make it difficult to

protect against cyber threats effectively. Some of the challenges include:

▶ Rapidly Evolving Threat Landscape

The threat landscape is constantly evolving, and cybercriminals

are becoming more sophisticated in their attacks. This makes it

challenging to keep up with the latest threats and implement effective

security measures.

▶ Shortage of Skilled Cybersecurity Professionals

There is a shortage of skilled cybersecurity professionals, making it

challenging for organizations to find and hire individuals with the

necessary skills and expertise to protect against cyber threats.

134 10 Cybersecurity

▶ Lack of Standardization

There is a lack of standardization in the cybersecurity field, making

it challenging to ensure that security measures are implemented

consistently across different organizations and industries.

▶ Legacy Systems

Many organizations continue to use legacy systems that are not

designed to handle modern security threats. Upgrading these systems

can be expensive and time-consuming, making it challenging for

organizations to keep up with the latest security standards.

▶ Human Error

Human error remains one of the most significant challenges in

cybersecurity. Employees may inadvertently click on malicious links

or disclose sensitive information, leaving organizations vulnerable to

cyber-attacks.

10.6 Summary

In conclusion, cybersecurity is an essential aspect of protecting computer

systems, networks, and electronic devices from cyber threats. The different

types of cyber threats include malware, phishing, denial of service attacks,

SQL injection attacks, social engineering, and advanced persistent threats.

Cyber threats have a significant impact on individuals and organizations,

including financial losses, damage to reputation, data loss or theft, disrup-

tion of business operations, and legal liability. Preventing cyber threats

requires a combination of technical and non-technical measures, including

regular software updates, use of strong passwords, implementation of

firewalls and antivirus software, training and awareness programs, and

multi-factor authentication. However, the cybersecurity field faces various

challenges, including a rapidly evolving threat landscape, shortage of

skilled cybersecurity professionals, lack of standardization, legacy systems,

and human error. Addressing these challenges will be crucial in ensuring

effective cybersecurity measures are implemented to protect against cyber

threats.

11 Engineering Standards and Constraints

11.1 Introduction 135
11.2 Engineering Standards . . 135
11.3 Contraints 138

11.1 Introduction

Students in computer engineering must demonstrate that they have con-

sidered various constraints in the design portion of the curriculum. These

include, in part, the following:

▶ Engineering Codes and Standards

▶ Economic Factors

▶ Environmental Effects

▶ Sustainability

▶ Manufacturability (Constructability)

▶ Ethical Considerations

▶ Health and Safety Issues

▶ Social Ramifications

▶ Political Factors

▶ Legal Issues

11.2 Engineering Standards

Engineering standards are a set of guidelines and specifications that define

best practices, quality requirements, and safety measures for engineering

activities. These standards are developed by international, national, and

regional organizations, and they provide a framework for engineers to

design, build, and operate safe and reliable products and systems. Here

are some examples of engineering standards:

▶ IEEE Standards: The Institute of Electrical and Electronics Engineers

(IEEE) develops and publishes standards for electrical and electronics

engineering, including standards for software engineering, telecom-

munications, and power systems.

136 11 Engineering Standards and Constraints

▶ IEC standards: The International Electrotechnical Commission (IEC)

develops and publishes international standards for a wide range of

topics related to electrical, electronic, and related technologies. These

standards are used by engineers, manufacturers, and regulators

around the world to ensure that products and systems are safe,

reliable, and effective.

▶ ISO Standards: The International Organization for Standardization

(ISO) develops and publishes international standards for a wide

range of industries, including engineering. ISO standards cover

topics such as quality management, environmental management,

and occupational health and safety.

▶ ANSI Standards: The American National Standards Institute (ANSI)

develops and publishes national standards for various industries,

including engineering. ANSI standards cover topics such as electrical

safety, building codes, and engineering drawings.

▶ ASME Standards: The American Society of Mechanical Engineers

(ASME) develops and publishes standards for mechanical engineer-

ing, including codes and standards for pressure vessels, boilers, and

piping systems.

▶ ASTM Standards: The American Society for Testing and Materials

(ASTM) develops and publishes standards for materials testing and

engineering, including standards for metals, plastics, and construc-

tion materials.

Adhering to engineering standards is important for ensuring the safety,

reliability, and quality of engineering products and systems. Standards

provide a common language and framework for engineers to communicate

and collaborate, and they help to promote innovation and improve efficiency

in engineering practices.

Engineering standards play an important role in computer engineering

by providing guidelines for the design, implementation, and testing of

hardware and software systems. These standards help to ensure that

computer systems are safe, reliable, and effective, and that they can be

used in a wide range of applications and environments. There are several

engineering standards that are relevant to computer engineering. Here are

a few examples:

▶ IEEE 488 - General Purpose Interface Bus (GPIB): This standard

specifies the electrical and mechanical characteristics of a digital

communications bus that allows communication between various

electronic devices. GPIB is commonly used in laboratory and indus-

trial environments for controlling instrumentation and measurement

equipment.

▶ IEEE 802 - LAN/MAN Standards: This family of standards cov-

ers a wide range of topics related to local area networks (LANs)

and metropolitan area networks (MANs), including wireless LANs,

Ethernet, and broadband access. These standards provide guide-

lines for the design, implementation, and interoperability of network

equipment and protocols.

▶ IEEE 754: This standard defines the floating-point arithmetic used by

most modern computers. It specifies how numbers are represented

11.2 Engineering Standards 137

in binary and how arithmetic operations should be performed.

▶ IEEE 1394: This standard, also known as FireWire, specifies a high-

speed serial bus for connecting devices such as cameras and hard

drives to computers.

▶ IEEE 1588: This standard defines a protocol for synchronizing clocks

in a computer network. It is commonly used in industrial automation

and control systems.

▶ IEEE 1687: This standard, also known as the Internal JTAG (IEEE

1149.1) Extension for Embedded Cores, defines a standard for access-

ing and testing embedded cores in integrated circuits.

▶ IEEE 1800: This standard defines the SystemVerilog hardware de-

scription language, which is widely used for designing and verifying

digital systems.

▶ IEEE 1901: This standard defines a high-speed powerline communi-

cation (PLC) system for home networking.

▶ ISO/IEC 27001 - Information Security Management: This standard

specifies a framework for establishing, implementing, maintaining,

and continually improving an information security management

system. It provides a systematic approach to managing sensitive

company information and mitigating security risks.

▶ ISO/IEC 12207 - Software Lifecycle Processes: This standard defines

a framework for software development processes. It provides a

systematic approach to managing the development, testing, and

maintenance of software systems.

▶ IEC 62304 - Medical Device Software: This standard specifies re-

quirements for the software lifecycle processes of medical devices.

It provides a framework for developing safe and effective software

for medical devices, including requirements for design, testing, and

documentation.

▶ IEC 60601 - Medical electrical equipment: This standard specifies

general safety and performance requirements for medical electrical

equipment.

▶ IEC 61850 - Communication networks and systems for power utility

automation: This standard specifies the communication protocols

and data models for power utility automation systems.

▶ IEC 61508 - Functional safety of electrical, electronic, programmable

electronic safety-related systems. This standard specifies the require-

ments for ensuring the functional safety of electrical, electronic, and

programmable electronic safety-related systems.

▶ NIST SP 800-53: This is a standard for information security that

provides a catalog of security controls for federal information systems

and organizations.

▶ NIST SP 800-171: This is a set of guidelines for protecting Controlled

Unclassified Information (CUI) in nonfederal information systems

and organizations.

▶ NIST SP 800-88: This is a standard for media sanitization that provides

guidelines for securely erasing data from storage devices such as

hard drives and flash drives.

▶ NIST SP 800-30: This is a standard for risk management that pro-

vides guidelines for identifying, assessing, and mitigating risks to

138 11 Engineering Standards and Constraints

information and information systems.

▶ NIST SP 800-37: This is a standard for the Risk Management Frame-

work (RMF) that provides guidelines for managing cybersecurity

risk in federal information systems.

▶ NIST SP 800-171A: This is a companion document to NIST SP 800-171

that provides guidelines for assessing compliance with the security

requirements outlined in that standard.

▶ NIST SP 800-63: This is a set of guidelines for digital identity and

authentication that provides recommendations for identity proofing,

registration, and authentication.

▶ PCI DSS (Payment Card Industry Data Security Standard): This

standard specifies the requirements for securing credit card data.

It is intended to protect the privacy and security of cardholder

information and ensure that merchants and service providers comply

with industry standards.

▶ Common Criteria: This is an international standard for evaluating

and certifying the security of information technology products. It

provides a framework for evaluating the security features of software

and hardware products.

▶ DO-178C: This is a software engineering standard for the development

of safety-critical avionics systems. It specifies the requirements for

software development, verification, and validation for systems that

are critical to flight safety.

11.3 Contraints

Design constraints in computer engineering projects are limitations or

requirements that affect the design and development of the project. They

may include technical, financial, environmental, or social constraints that

must be considered during the design process.

Design constraints play a critical role in shaping the design and develop-

ment of computer engineering projects. Computer engineers must carefully

consider these constraints and balance them against the project’s goals and

objectives to ensure a successful outcome.

Here are some common design constraints in computer engineering

projects:

▶ Technical constraints: These are limitations related to the technology

used in the project, such as hardware and software limitations,

compatibility issues, and performance requirements.

▶ Time constraints: These are limitations related to the timeline of the

project, such as deadlines for completion, project milestones, and

delivery schedules.

▶ Budget constraints: These are limitations related to the financial

resources available for the project, such as the cost of materials,

equipment, and labor.

11.3 Contraints 139

▶ Environmental constraints: These are limitations related to the physi-

cal environment in which the project will be used, such as temperature,

humidity, and electromagnetic interference.

▶ Physical constraints: These include factors such as the size, weight,

and power consumption of the product, as well as the available space

for installation.

▶ Scalability constraints: These include factors such as the ability to

expand and scale the system as the needs of the user or market

change.

▶ Legal and regulatory constraints: These are limitations related to laws

and regulations that govern the design and use of the project, such as

safety standards, privacy regulations, and intellectual property laws.

▶ Usability constraints: These are limitations related to the user experi-

ence and user interface of the project, such as ease of use, accessibility,

and user feedback.

▶ Social and cultural constraints: These are limitations related to the

social and cultural context in which the project will be used, such as

language barriers, cultural norms, and ethical considerations.

The constraints can be very versatile. For example, in a particular computer

engineering senior design project, the floowing constraints might be applied:

potential design constraints that could apply to a computer engineering

project:

▶ Processor speed and performance requirements

▶ Memory and storage limitations

▶ Compatibility with existing systems and protocols

▶ Required input/output interfaces and connectivity options

▶ User interface design and usability requirements

▶ Power consumption and battery life limitations

▶ Temperature and environmental operating range constraints

▶ Regulatory and safety compliance requirements

▶ Physical size, weight, and form factor limitations

▶ Cost of components and materials

▶ Budget constraints and resource availability

▶ Development timeline and time-to-market requirements

▶ Software and firmware development constraints

▶ Network bandwidth and latency limitations

▶ Security and encryption requirements

▶ Availability and reliability requirements

▶ Durability and resistance to physical damage or environmental stress

▶ Scalability and future-proofing considerations

▶ Noise and electromagnetic interference requirements

▶ Localization and language support requirements

12 Future of Computer Engineering

In general, it is likely that computer engineering will continue to grow and

evolve as technology advances. Here are some specific areas that may see

significant developments in the coming years:

Artificial intelligence: AI is already transforming many industries, and it is

likely to continue to do so in the future. Computer engineers will play a

critical role in developing and improving AI algorithms, as well as building

the hardware and software infrastructure needed to support AI systems.

Quantum computing: Quantum computing is a rapidly developing field

that has the potential to revolutionize computing by solving problems that

are currently intractable with classical computers. Computer engineers

will be instrumental in developing the hardware and software needed to

build practical quantum computers.

Internet of Things (IoT): The IoT refers to the growing network of inter-

connected devices, sensors, and machines that are becoming increasingly

prevalent in our homes, workplaces, and communities. Computer engineers

will be needed to design and develop the hardware and software necessary

to connect and manage these devices.

Cybersecurity: As more of our lives move online, cybersecurity will become

an increasingly critical concern. Computer engineers will play a vital role

in developing secure systems and technologies to protect against cyber

threats.

Overall, the future of computer engineering is likely to be exciting and full

of opportunities for innovation and growth.

Appendix

A
About AAAA

A.1 aaaa

A.2 bbbb

B
About BBBB

B.1 aaaa

B.2 bbbb

Bibliography

Here are the references in citation order.

[1] Clemson University. Evidence Based Teaching Strategies. [Online; accessed 08-April-2023]. 2023. url:

https://www.clemson.edu/otei/evidence-based.html (cited on page v).

[2] ACUE. Inclusive Online Teaching Webinars. [Online; accessed 13-November-2023]. 2023. url: https:

//acue.org/inclusive-online-teaching-webinars/ (cited on page vii).

[3] ASEE. Webinar Series. [Online; accessed 13-November-2023]. 2023. url: https://edge.asee.org/

webinar-series/ (cited on page vii).

[4] Robert W. Doran. ‘The Gray Code’. In: J. Univers. Comput. Sci. 13 (2007), pp. 1573–1597 (cited on page 26).

[5] Intel. Student Handout: ASCII Computer Code. [Online; accessed 30-November-2023]. 2010. url: https:

//www.intel.com/content/dam/www/program/education/us/en/documents/the- journery-

inside/digital/tji-digital-info-handout4.pdf (cited on page 26).

[6] William L. Hosch. supercomputer. [Online; accessed 21-November-2023]. Oct. 2023. url: https://www.

britannica.com/technology/supercomputer (cited on page 71).

[7] Alvaro Fernandez et al. ‘Supercomputers to improve the performance in higher education: A review of

the literature’. In: Computers & Education 128 (2019), pp. 353–364. doi: https://doi.org/10.1016/j.

compedu.2018.10.004 (cited on page 71).

[8] IBM. What is a mainframe? [Online; accessed 21-November-2023]. 2023. url: https://www.ibm.com/

topics/mainframe (cited on page 71).

[9] Wikipedia contributors. Minicomputer — Wikipedia, The Free Encyclopedia. [Online; accessed 22-November-

2023]. 2023. url: https://en.wikipedia.org/w/index.php?title=Minicomputer&oldid=1184910564

(cited on page 71).

[10] Wikipedia contributors. Microcomputer — Wikipedia, The Free Encyclopedia. [Online; accessed 22-November-

2023]. 2023. url: https : / / en . wikipedia . org / w / index . php ? title = Microcomputer & oldid =

1181658852 (cited on page 71).

[11] Intel. Real-Time Systems Overview and Examples. [Online; accessed 21-November-2023]. 2023. url: https:

//www.intel.com/content/www/us/en/robotics/real-time-systems.html (cited on page 72).

[12] Emre Dalkiran et al. ‘Automated integration of real-time and non-real-time defense systems’. In: Defence
Technology 17.2 (2021), pp. 657–670. doi: https://doi.org/10.1016/j.dt.2020.01.005 (cited on

page 72).

[13] Wikipedia contributors. Control system — Wikipedia, The Free Encyclopedia. [Online; accessed 23-November-

2023]. 2023. url: https://en.wikipedia.org/w/index.php?title=Control_system&oldid=

1144002131 (cited on page 73).

[14] Wikipedia contributors. Information system — Wikipedia, The Free Encyclopedia. [Online; accessed 23-

November-2023]. 2023. url: https://en.wikipedia.org/w/index.php?title=Information_system&

oldid=1181776236 (cited on page 73).

[15] Vipin P. Veetil. Coordination in Centralized and Decentralized Systems. Mar. 2017. url: https://en.

wikipedia.org/w/index.php?title=Information_system&oldid=1181776236 (cited on page 73).

[16] Martinus Richardus van Steen and Andrew S. Tanenbaum. Distributed Systems. English. 3rd. Self-published,

open publication. Feb. 2017 (cited on page 73).

https://www.clemson.edu/otei/evidence-based.html
https://acue.org/inclusive-online-teaching-webinars/
https://acue.org/inclusive-online-teaching-webinars/
https://edge.asee.org/webinar-series/
https://edge.asee.org/webinar-series/
https://www.intel.com/content/dam/www/program/education/us/en/documents/the-journery-inside/digital/tji-digital-info-handout4.pdf
https://www.intel.com/content/dam/www/program/education/us/en/documents/the-journery-inside/digital/tji-digital-info-handout4.pdf
https://www.intel.com/content/dam/www/program/education/us/en/documents/the-journery-inside/digital/tji-digital-info-handout4.pdf
https://www.britannica.com/technology/supercomputer
https://www.britannica.com/technology/supercomputer
https://doi.org/https://doi.org/10.1016/j.compedu.2018.10.004
https://doi.org/https://doi.org/10.1016/j.compedu.2018.10.004
https://www.ibm.com/topics/mainframe
https://www.ibm.com/topics/mainframe
https://en.wikipedia.org/w/index.php?title=Minicomputer&oldid=1184910564
https://en.wikipedia.org/w/index.php?title=Microcomputer&oldid=1181658852
https://en.wikipedia.org/w/index.php?title=Microcomputer&oldid=1181658852
https://www.intel.com/content/www/us/en/robotics/real-time-systems.html
https://www.intel.com/content/www/us/en/robotics/real-time-systems.html
https://doi.org/https://doi.org/10.1016/j.dt.2020.01.005
https://en.wikipedia.org/w/index.php?title=Control_system&oldid=1144002131
https://en.wikipedia.org/w/index.php?title=Control_system&oldid=1144002131
https://en.wikipedia.org/w/index.php?title=Information_system&oldid=1181776236
https://en.wikipedia.org/w/index.php?title=Information_system&oldid=1181776236
https://en.wikipedia.org/w/index.php?title=Information_system&oldid=1181776236
https://en.wikipedia.org/w/index.php?title=Information_system&oldid=1181776236

[17] Wikipedia contributors. Open system (computing) — Wikipedia, The Free Encyclopedia. [Online; accessed

23-November-2023]. 2021. url: https://en.wikipedia.org/w/index.php?title=Open_system_

(computing) (cited on page 74).

[18] Wikipedia contributors. Central processing unit — Wikipedia, The Free Encyclopedia. https://en.wikipedia.

org/w/index.php?title=Central_processing_unit. [Online; accessed 23-November-2023]. 2023

(cited on page 75).

[19] Wikipedia contributors. Random-access memory — Wikipedia, The Free Encyclopedia. [Online; accessed

23-November-2023]. 2023. url: https://en.wikipedia.org/w/index.php?title=Random-access_

memory (cited on pages 75, 77).

[20] Wikipedia contributors. Arithmetic logic unit — Wikipedia, The Free Encyclopedia. [Online; accessed 23-

November-2023]. 2023. url: https://en.wikipedia.org/w/index.php?title=Arithmetic_logic_

unit (cited on page 75).

[21] Wikipedia contributors. Processor register — Wikipedia, The Free Encyclopedia. [Online; accessed 23-

November-2023]. 2023. url: https://en.wikipedia.org/w/index.php?title=Processor_register

(cited on page 75).

[22] Wikipedia contributors. Cache (computing) — Wikipedia, The Free Encyclopedia. [Online; accessed 23-

November-2023]. 2023. url: https://en.wikipedia.org/w/index.php?title=Cache_(computing)

(cited on page 76).

[23] John Rushby. A Comparison of Bus Architectures for Safety-Critical Embedded Systems. [Online; accessed

October, 03, 2024]. 2001. url: https://www.csl.sri.com/papers/buscompare/buscompare.pdf (cited

on page 76).

[24] TensorFlow. Accessed: 2024-10-07. url: https://www.tensorflow.org/ (cited on page 94).

[25] PyTorch. Accessed: 2024-10-07. url: https://pytorch.org/ (cited on page 94).

[26] Keras. Accessed: 2024-10-07. url: https://keras.io/ (cited on page 94).

[27] scikit-learn. Accessed: 2024-10-07. url: https://scikit-learn.org/stable/ (cited on page 94).

[28] SpaCy. Accessed: 2024-10-07. url: https://spacy.io/ (cited on page 95).

[29] NLTK. Accessed: 2024-10-07. url: https://www.nltk.org/ (cited on page 95).

[30] Hugging Face. Accessed: 2024-10-07. url: https://huggingface.co/ (cited on page 95).

[31] ChatGPT. Accessed: 2024-10-07. url: https://openai.com/chatgpt/ (cited on page 95).

[32] OpenCV. Accessed: 2024-10-07. url: https://opencv.org/ (cited on page 95).

[33] TensorFlow Vision. Accessed: 2024-10-07. url: https://www.tensorflow.org/tutorials/images (cited

on page 95).

[34] Detectron2. Accessed: 2024-10-07. url: https://github.com/facebookresearch/detectron2 (cited on

page 95).

[35] YOLO. Accessed: 2024-10-07. url: https://yolov8.com/ (cited on page 95).

[36] UiPath. Accessed: 2024-10-07. url: https://www.uipath.com/ (cited on page 95).

[37] Automation Anywhere. Accessed: 2024-10-07. url: https://www.automationanywhere.com/ (cited on

page 95).

[38] blueprism. Accessed: 2024-10-07. url: https://www.blueprism.com/ (cited on page 95).

[39] Manuel Jiménez, Rogelio Palomera, and Isidoro Couvertier. Introduction to embedded systems. Springer,

2013 (cited on page 104).

[40] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems, A Cyber-Physical Systems Approach,
Second Edition. MIT Press, 2013 (cited on page 104).

https://en.wikipedia.org/w/index.php?title=Open_system_(computing)
https://en.wikipedia.org/w/index.php?title=Open_system_(computing)
https://en.wikipedia.org/w/index.php?title=Central_processing_unit
https://en.wikipedia.org/w/index.php?title=Central_processing_unit
https://en.wikipedia.org/w/index.php?title=Random-access_memory
https://en.wikipedia.org/w/index.php?title=Random-access_memory
https://en.wikipedia.org/w/index.php?title=Arithmetic_logic_unit
https://en.wikipedia.org/w/index.php?title=Arithmetic_logic_unit
https://en.wikipedia.org/w/index.php?title=Processor_register
https://en.wikipedia.org/w/index.php?title=Cache_(computing)
https://www.csl.sri.com/papers/buscompare/buscompare.pdf
https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://scikit-learn.org/stable/
https://spacy.io/
https://www.nltk.org/
https://huggingface.co/
https://openai.com/chatgpt/
https://opencv.org/
https://www.tensorflow.org/tutorials/images
https://github.com/facebookresearch/detectron2
https://yolov8.com/
https://www.uipath.com/
https://www.automationanywhere.com/
https://www.blueprism.com/

[41] Lawrence Williams. Embedded Systems Tutorial: What is, History & Characteristics. [Online; accessed 12-

November-2023]. 2023. url: https://www.guru99.com/embedded-systems-tutorial.html (cited on

page 104).

[42] KCS Murti. Design Principles for Embedded Systems. Springer Nature Singapore, 2021 (cited on page 105).

[43] John Keller. The future of high-performance embedded computing. [Online; accessed 15-November-2023]. Oct.

2023. url: https://www.militaryaerospace.com/computers/article/14299053/the-future-of-

highperformance-embedded-computing (cited on page 107).

[44] Jacob Beningo. Will AI take embedded software jobs? [Online; accessed 15-November-2023]. Oct. 2023. url:

https://www.embedded.com/will-ai-take-embedded-software-jobs/ (cited on page 107).

[45] A. M. Turing. ‘Computing Machinery and Intelligence’. In: Mind LIX.236 (Oct. 1950), pp. 433–460. doi:

10.1093/mind/LIX.236.433 (cited on page 109).

[46] Bill Gates. AI is about to completely change how you use computers. [Online; accessed 13-November-2023].

Nov. 2023. url: https://www.gatesnotes.com/AI-agents (cited on page 110).

[47] Edward W. Felten, Manav Raj, and Robert Seamans. How will Language Modelers like ChatGPT Affect
Occupations and Industries? Mar. 2023. doi: http : / / dx . doi . org / 10 . 2139 / ssrn . 4375268. url:

https://ssrn.com/abstract=4375268 (cited on page 110).

[48] Tyna Eloundou et al. GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language
Models. 2023. url: https://arxiv.org/abs/2303.10130 (cited on page 110).

[49] Mirko Stojiljkovic. Linear Regression in Python. [Online; accessed 13-November-2023]. 2023. url: https:

//realpython.com/linear-regression-in-python/ (cited on page 110).

[50] Amrita Sharma and Neha Chaudhary. ‘Linear Regression Model for Agile Software Development Effort

Estimation’. In: 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering
(ICRAIE). 2020, pp. 1–4. doi: 10.1109/ICRAIE51050.2020.9358309 (cited on page 111).

[51] Blazej Ulanowicz et al. ‘Combining Random Forest and Linear Regression to Improve Network Traffic

Prediction’. In: 2023 23rd International Conference on Transparent Optical Networks (ICTON). 2023, pp. 1–4.

doi: 10.1109/ICTON59386.2023.10207506 (cited on page 111).

[52] P.J. Joseph, Kapil Vaswani, and M.J. Thazhuthaveetil. ‘Construction and use of linear regression models

for processor performance analysis’. In: The Twelfth International Symposium on High-Performance Computer
Architecture, 2006. 2006, pp. 99–108. doi: 10.1109/HPCA.2006.1598116 (cited on page 112).

[53] A. Latocha. ‘Robust fault detection, location, and recovery of damaged data using linear regression and

mathematical models’. In: IFAC-PapersOnLine 51.24 (2018). 10th IFAC Symposium on Fault Detection,

Supervision and Safety for Technical Processes SAFEPROCESS 2018, pp. 300–306. doi: https://doi.

org/10.1016/j.ifacol.2018.09.593 (cited on page 112).

[54] Mayank Banoula. An Introduction to Logistic Regression in Python. [Online; accessed 13-November-2023].

2023. url: https://www.simplilearn.com/tutorials/machine-learning-tutorial/logistic-

regression-in-python (cited on page 112).

[55] Bilge Kagan Dedeturk and Bahriye Akay. ‘Spam filtering using a logistic regression model trained

by an artificial bee colony algorithm’. In: Applied Soft Computing 91 (2020), p. 106229. doi: https:

//doi.org/10.1016/j.asoc.2020.106229 (cited on page 113).

[56] Zihao Song et al. ‘Doubly robust logistic regression for image classification’. In: Applied Mathematical
Modelling 123 (2023), pp. 430–446. doi: https://doi.org/10.1016/j.apm.2023.06.039 (cited on

page 113).

[57] Xinyi Yang. ‘Prediction of Credit Risk Based on Logistic Regression and Random Forest Technique’. In:

ICCSIE ’22. Brisbane, QLD, Australia: Association for Computing Machinery, 2022, pp. 531–535. doi:

10.1145/3558819.3565138 (cited on page 113).

https://www.guru99.com/embedded-systems-tutorial.html
https://www.militaryaerospace.com/computers/article/14299053/the-future-of-highperformance-embedded-computing
https://www.militaryaerospace.com/computers/article/14299053/the-future-of-highperformance-embedded-computing
https://www.embedded.com/will-ai-take-embedded-software-jobs/
https://doi.org/10.1093/mind/LIX.236.433
https://www.gatesnotes.com/AI-agents
https://doi.org/http://dx.doi.org/10.2139/ssrn.4375268
https://ssrn.com/abstract=4375268
https://arxiv.org/abs/2303.10130
https://realpython.com/linear-regression-in-python/
https://realpython.com/linear-regression-in-python/
https://doi.org/10.1109/ICRAIE51050.2020.9358309
https://doi.org/10.1109/ICTON59386.2023.10207506
https://doi.org/10.1109/HPCA.2006.1598116
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.09.593
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.09.593
https://www.simplilearn.com/tutorials/machine-learning-tutorial/logistic-regression-in-python
https://www.simplilearn.com/tutorials/machine-learning-tutorial/logistic-regression-in-python
https://doi.org/https://doi.org/10.1016/j.asoc.2020.106229
https://doi.org/https://doi.org/10.1016/j.asoc.2020.106229
https://doi.org/https://doi.org/10.1016/j.apm.2023.06.039
https://doi.org/10.1145/3558819.3565138

[58] Hadi Kazemi-Arpanahi, Raoof Nopour, and Mostafa Shanbehzadeh. ‘Using logistic regression to develop

a diagnostic model for COVID-19: A single-center study’. en. In: J. Educ. Health Promot. 11.1 (2022), p. 153

(cited on page 113).

[59] Shankarshan Prasad Tiwari and Ebha Koley. ‘A Decision Tree-Based Algorithm for Fault Detection

and Section Identification of DC Microgrid’. In: DC Microgrids. John Wiley & Sons, Ltd, 2022. Chap. 13,

pp. 397–420. doi: https://doi.org/10.1002/9781119777618.ch13 (cited on page 114).

[60] Leyli Mohammad Khanli, Farnaz Mahan, and Ayaz Isazadeh. ‘Active rule learning using decision tree for

resource management in Grid computing’. In: Future Generation Computer Systems 27.6 (2011), pp. 703–710.

doi: https://doi.org/10.1016/j.future.2010.12.016 (cited on page 115).

[61] Faizan Ullah et al. ‘Modified Decision Tree Technique for Ransomware Detection at Runtime through

API Calls’. In: Scientific Programming 2020 (Aug. 2020), p. 8845833. doi: 10.1155/2020/8845833 (cited on

page 115).

[62] Vasiliki Matzavela and Efthimios Alepis. ‘Decision tree learning through a Predictive Model for Student

Academic Performance in Intelligent M-Learning environments’. In: Computers and Education: Artificial
Intelligence 2 (2021), p. 100035. doi: https://doi.org/10.1016/j.caeai.2021.100035 (cited on

page 115).

[63] Anna Bosch, Andrew Zisserman, and Xavier Munoz. ‘Image Classification using Random Forests and

Ferns’. In: 2007 IEEE 11th International Conference on Computer Vision. 2007, pp. 1–8. doi: 10.1109/ICCV.

2007.4409066 (cited on page 116).

[64] G. Prashanth et al. ‘Using Random Forests for Network-based Anomaly detection at Active routers’. In:

Feb. 2008, pp. 93–96. doi: 10.1109/ICSCN.2008.4447167 (cited on page 116).

[65] Martin Kopp, Tomas Pevny, and Martin Holena. ‘Anomaly explanation with random forests’. In: Expert
Systems with Applications 149 (2020), p. 113187. doi: https://doi.org/10.1016/j.eswa.2020.113187

(cited on page 116).

[66] Rung-Ching Chen et al. ‘Selecting critical features for data classification based on machine learning

methods’. In: Journal of Big Data 7.1 (July 2020), p. 52. doi: 10.1186/s40537-020-00327-4 (cited on

page 116).

[67] Heng-Ru Zhang and Fan Min. ‘Three-way recommender systems based on random forests’. In: Knowledge-
Based Systems 91 (2016). Three-way Decisions and Granular Computing, pp. 275–286. doi: https:

//doi.org/10.1016/j.knosys.2015.06.019 (cited on page 116).

[68] Rodney Kizito et al. ‘The Application of Random Forest to Predictive Maintenance’. In: May 2018 (cited

on page 116).

[69] Mayank Arya Chandra and S. S. Bedi. ‘Survey on SVM and their application in imageclassification’. In:

International Journal of Information Technology 13.5 (Oct. 2021), pp. 1–11. doi: 10.1007/s41870-017-0080-1

(cited on page 117).

[70] Zahra Torabi, Mohammad H. Nadimi-Shahraki, and Akbar Nabiollahi. ‘Efficient Support Vector Machines

for Spam Detection: A Survey’. In: (ĲCSIS) International Journal of Computer Science and Information Security,
Vol. 13, No. 1, January 2015 13 (Jan. 2015) (cited on page 117).

[71] Yinhui Li et al. ‘An efficient intrusion detection system based on support vector machines and gradually

feature removal method’. In: Expert Syst. Appl. 39 (2012), pp. 424–430 (cited on page 118).

[72] Savita Ahlawat and Amit Choudhary. ‘Hybrid CNN-SVM Classifier for Handwritten Digit Recognition’.

In: Procedia Computer Science 167 (2020). International Conference on Computational Intelligence and Data

Science, pp. 2554–2560. doi: https://doi.org/10.1016/j.procs.2020.03.309 (cited on page 118).

[73] Yongyi Ran et al. A Survey of Predictive Maintenance: Systems, Purposes and Approaches. 2019 (cited on

page 118).

https://doi.org/https://doi.org/10.1002/9781119777618.ch13
https://doi.org/https://doi.org/10.1016/j.future.2010.12.016
https://doi.org/10.1155/2020/8845833
https://doi.org/https://doi.org/10.1016/j.caeai.2021.100035
https://doi.org/10.1109/ICCV.2007.4409066
https://doi.org/10.1109/ICCV.2007.4409066
https://doi.org/10.1109/ICSCN.2008.4447167
https://doi.org/https://doi.org/10.1016/j.eswa.2020.113187
https://doi.org/10.1186/s40537-020-00327-4
https://doi.org/https://doi.org/10.1016/j.knosys.2015.06.019
https://doi.org/https://doi.org/10.1016/j.knosys.2015.06.019
https://doi.org/10.1007/s41870-017-0080-1
https://doi.org/https://doi.org/10.1016/j.procs.2020.03.309

[74] Akash Shastri. 5 Neural network architectures you must know for Computer Vision. [Online; accessed

19-November-2023]. Nov. 2020. url: https : / / towardsdatascience . com / 5 - neural - network -

architectures-you-must-know-for-computer-vision-31d2991fe24e (cited on page 119).

[75] Olga Davydova. 7 types of Artificial Neural Networks for Natural Language Processing. [Online; accessed 19-

November-2023]. Sept. 2017. url: https://medium.com/datamonsters/artificial-neural-networks-

for-natural-language-processing-part-1-64ca9ebfa3b2 (cited on page 119).

[76] Ilias Papastratis. Speech Recognition: a review of the different deep learning approaches. [Online; accessed

19-November-2023]. July 2021. url: https://theaisummer.com/speech- recognition/ (cited on

page 120).

[77] Harry A. Pierson and Michael S. Gashler. ‘Deep learning in robotics: a review of recent research’. In:

Advanced Robotics 31.16 (2017), pp. 821–835. doi: 10.1080/01691864.2017.1365009 (cited on page 120).

[78] Mohammed Hassan and Mohamed Hamada. ‘A Neural Networks Approach for Improving the Accuracy

of Multi-Criteria Recommender Systems’. In: Applied Sciences 7.9 (2017). doi: 10.3390/app7090868 (cited

on page 120).

[79] Xanthi Bampoula et al. ‘A Deep Learning Model for Predictive Maintenance in Cyber-Physical Production

Systems Using LSTM Autoencoders’. In: Sensors (Basel) 21.3 (Feb. 2021) (cited on page 120).

[80] Bingming Wang, Shi Ying, and Zhe Yang. ‘A Log-Based Anomaly Detection Method with Efficient

Neighbor Searching and Automatic K Neighbor Selection’. In: Scientific Programming 2020 (June 2020),

p. 4365356. doi: 10.1155/2020/4365356 (cited on page 121).

[81] Lamiaa M. Elshenawy, Chouaib Chakour, and Tarek A. Mahmoud. ‘Fault detection and diagnosis strategy

based on k-nearest neighbors and fuzzy C-means clustering algorithm for industrial processes’. In: Journal
of the Franklin Institute 359.13 (2022), pp. 7115–7139. doi: https://doi.org/10.1016/j.jfranklin.2022.

06.022 (cited on page 121).

[82] G. Mazzuto et al. ‘Health Indicator for Predictive Maintenance Based on Fuzzy Cognitive Maps, Grey

Wolf, and K-Nearest Neighbors Algorithms’. In: Mathematical Problems in Engineering 2021 (Feb. 2021),

p. 8832011. doi: 10.1155/2021/8832011 (cited on page 121).

[83] Georgios Chatzigeorgakidis et al. ‘FML-kNN: scalable machine learning on Big Data using k-nearest

neighbor joins’. In: Journal of Big Data 5.1 (Feb. 2018), p. 4. doi: 10.1186/s40537-018-0115-x (cited on

page 121).

[84] Pengji Zhang, Wei Ma, and Sean Qian. ‘Cluster analysis of day-to-day traffic data in networks’. In:

Transportation Research Part C: Emerging Technologies 144 (2022), p. 103882. doi: https://doi.org/10.

1016/j.trc.2022.103882 (cited on page 122).

[85] Ioannis P. Panapakidis and Georgios C. Christoforidis. ‘Optimal Selection of Clustering Algorithm via

Multi-Criteria Decision Analysis (MCDA) for Load Profiling Applications’. In: Applied Sciences 8.2 (2018).

doi: 10.3390/app8020237 (cited on page 122).

[86] Himanshu Mittal et al. ‘A comprehensive survey of image segmentation: clustering methods, performance

parameters, and benchmark datasets’. In: Multimedia Tools and Applications 81.24 (Oct. 2022), pp. 35001–

35026. doi: 10.1007/s11042-021-10594-9 (cited on page 123).

[87] Yong-Hao Wu et al. ‘FATOC: Bug Isolation Based Multi-Fault Localization by Using OPTICS Clustering’. In:

Journal of Computer Science and Technology 35.5 (Oct. 2020), pp. 979–998. doi: 10.1007/s11390-020-0549-4

(cited on page 123).

[88] Wikipedia contributors. XGBoost — Wikipedia, The Free Encyclopedia. [Online; accessed 20-November-2023].

2023. url: https://en.wikipedia.org/w/index.php?title=XGBoost (cited on page 123).

[89] Wikipedia contributors. LightGBM — Wikipedia, The Free Encyclopedia. [Online; accessed 20-November-

2023]. 2023. url: https://en.wikipedia.org/w/index.php?title=LightGBM (cited on page 123).

https://towardsdatascience.com/5-neural-network-architectures-you-must-know-for-computer-vision-31d2991fe24e
https://towardsdatascience.com/5-neural-network-architectures-you-must-know-for-computer-vision-31d2991fe24e
https://medium.com/datamonsters/artificial-neural-networks-for-natural-language-processing-part-1-64ca9ebfa3b2
https://medium.com/datamonsters/artificial-neural-networks-for-natural-language-processing-part-1-64ca9ebfa3b2
https://theaisummer.com/speech-recognition/
https://doi.org/10.1080/01691864.2017.1365009
https://doi.org/10.3390/app7090868
https://doi.org/10.1155/2020/4365356
https://doi.org/https://doi.org/10.1016/j.jfranklin.2022.06.022
https://doi.org/https://doi.org/10.1016/j.jfranklin.2022.06.022
https://doi.org/10.1155/2021/8832011
https://doi.org/10.1186/s40537-018-0115-x
https://doi.org/https://doi.org/10.1016/j.trc.2022.103882
https://doi.org/https://doi.org/10.1016/j.trc.2022.103882
https://doi.org/10.3390/app8020237
https://doi.org/10.1007/s11042-021-10594-9
https://doi.org/10.1007/s11390-020-0549-4
https://en.wikipedia.org/w/index.php?title=XGBoost
https://en.wikipedia.org/w/index.php?title=LightGBM

[90] Maya Hilda Lestari Louk and Bayu Adhi Tama. ‘Revisiting Gradient Boosting-Based Approaches for

Learning Imbalanced Data: A Case of Anomaly Detection on Power Grids’. In: Big Data and Cognitive
Computing 6.2 (2022). doi: 10.3390/bdcc6020041 (cited on page 124).

[91] Alexandre S. Roque et al. ‘An analysis of machine learning algorithms in rotating machines maintenance’.

In: IFAC-PapersOnLine 55.2 (2022). 14th IFAC Workshop on Intelligent Manufacturing Systems IMS 2022,

pp. 252–257. doi: https://doi.org/10.1016/j.ifacol.2022.04.202 (cited on page 124).

[92] Maryam Douiba et al. ‘Anomaly detection model based on gradient boosting and decision tree for IoT

environments security’. In: Journal of Reliable Intelligent Environments 9 (July 2022). doi: 10.1007/s40860-

022-00184-3 (cited on page 124).

[93] Tusar Kanti Dash et al. ‘Gradient boosting machine and efficient combination of features for speech-based

detection of COVID-19’. In: IEEE J. Biomed. Health Inform. 26.11 (Nov. 2022), pp. 5364–5371 (cited on

page 124).

[94] Steve Brown. AI for Circuit Design Quality, Productivity, and Advanced-Node Mapping. [Online; accessed 17-

November-2023]. Oct. 2023. url: https://community.cadence.com/cadence_blogs_8/b/artificial-

intelligence/posts/ai- for- circuit- design- quality- productivity- and- advanced- node-

mapping (cited on page 125).

[95] Jozef Jenis et al. ‘Engineering Applications of Artificial Intelligence in Mechanical Design and Optimiza-

tion’. In: Machines 11.6 (2023). doi: 10.3390/machines11060577 (cited on page 125).

[96] M. Luz Castro Pena et al. ‘Artificial intelligence applied to conceptual design. A review of its use in

architecture’. In: Automation in Construction 124 (2021), p. 103550. doi: https://doi.org/10.1016/j.

autcon.2021.103550 (cited on page 125).

[97] Richard Meyes, Nils Hutten, and Tobias Meisen. ‘Transparent and Interpretable Failure Prediction of

Sensor Time Series Data with Convolutional Neural Networks’. In: Procedia CIRP 104 (2021). 54th CIRP

CMS 2021 - Towards Digitalized Manufacturing 4.0, pp. 1446–1451. doi: https://doi.org/10.1016/j.

procir.2021.11.244 (cited on page 125).

[98] Hiyam Adil Habeeb et al. ‘Design Optimization Method Based on Artificial Intelligence (Hybrid Method)

for Repair and Restoration Using Additive Manufacturing Technology’. In: Metals 13.3 (2023). doi:

10.3390/met13030490 (cited on page 125).

[99] Elena Trajkova et al. ‘Active Learning for Automated Visual Inspection of Manufactured Products’. In:

CoRR abs/2109.02469 (2021) (cited on page 126).

[100] Erik Westphal and Hermann Seitz. ‘A machine learning method for defect detection and visualization in

selective laser sintering based on convolutional neural networks’. In: Additive Manufacturing 41 (2021),

p. 101965. doi: https://doi.org/10.1016/j.addma.2021.101965 (cited on page 126).

[101] H Kamel. ‘Artificial intelligence for predictive maintenance’. In: Journal of Physics: Conference Series 2299.1

(2022), p. 012001. doi: 10.1088/1742-6596/2299/1/012001 (cited on page 126).

[102] Laion Lima Boaventura, Paulo Henrique Ferreira, and Rosemeire Leovigildo Fiaccone. ‘On flexible

Statistical Process Control with Artificial Intelligence: Classification control charts’. In: Expert Systems
with Applications 194 (2022), p. 116492. doi: https://doi.org/10.1016/j.eswa.2021.116492 (cited on

page 126).

[103] Dataquest. Using Machine Learning and Natural Language Processing Tools for Text Analysis. [Online; accessed

19-November-2023]. Feb. 2022. url: https://www.dataquest.io/blog/using-machine-learning-

and-natural-language-processing-tools-for-text-analysis/ (cited on page 126).

[104] Federico Walas Mateo and Andres Redchuk. ‘Artificial Intelligence and Machine Learning as a Process

Optimization driver under Industry 4.0 framework, the role of the people in the process’. In: June 2021

(cited on page 126).

https://doi.org/10.3390/bdcc6020041
https://doi.org/https://doi.org/10.1016/j.ifacol.2022.04.202
https://doi.org/10.1007/s40860-022-00184-3
https://doi.org/10.1007/s40860-022-00184-3
https://community.cadence.com/cadence_blogs_8/b/artificial-intelligence/posts/ai-for-circuit-design-quality-productivity-and-advanced-node-mapping
https://community.cadence.com/cadence_blogs_8/b/artificial-intelligence/posts/ai-for-circuit-design-quality-productivity-and-advanced-node-mapping
https://community.cadence.com/cadence_blogs_8/b/artificial-intelligence/posts/ai-for-circuit-design-quality-productivity-and-advanced-node-mapping
https://doi.org/10.3390/machines11060577
https://doi.org/https://doi.org/10.1016/j.autcon.2021.103550
https://doi.org/https://doi.org/10.1016/j.autcon.2021.103550
https://doi.org/https://doi.org/10.1016/j.procir.2021.11.244
https://doi.org/https://doi.org/10.1016/j.procir.2021.11.244
https://doi.org/10.3390/met13030490
https://doi.org/https://doi.org/10.1016/j.addma.2021.101965
https://doi.org/10.1088/1742-6596/2299/1/012001
https://doi.org/https://doi.org/10.1016/j.eswa.2021.116492
https://www.dataquest.io/blog/using-machine-learning-and-natural-language-processing-tools-for-text-analysis/
https://www.dataquest.io/blog/using-machine-learning-and-natural-language-processing-tools-for-text-analysis/

[105] Mehrdokht Pournader et al. ‘Artificial intelligence applications in supply chain management’. In:

International Journal of Production Economics 241 (2021), p. 108250. doi: https://doi.org/10.1016/j.

ijpe.2021.108250 (cited on page 126).

[106] Sana Fatima et al. ‘Automated Testing with Machine Learning Frameworks: A Critical Analysis’. In:

Engineering Proceedings 20.1 (2022). doi: 10.3390/engproc2022020012 (cited on page 126).

[107] Nazim Hussain and Greian Pangilinan. ‘Robotics and Automation with Artificial Intelligence: Improving

Efficiency and Quality’. In: Aptisi Transactions on Technopreneurship (ATT) 5 (May 2023), pp. 176–189. doi:

10.34306/att.v5i2.252 (cited on page 126).

[108] Abu Rayhan. ‘Artificial Intelligence In Robotics: From Automation To Autonomous Systems’. PhD thesis.

July 2023. doi: 10.13140/RG.2.2.15540.42889 (cited on page 126).

[109] Radu Ciora, Carmen Simion, and Marius Cioca. ‘Quality Improvement Based on Big Data Analysis’. In:

Apr. 2016, pp. 101–109. doi: 10.1007/978-3-319-32942-0_7 (cited on page 126).

[110] John B. Ingraham et al. ‘Illuminating protein space with a programmable generative model’. In: Nature
(Nov. 2023). doi: 10.1038/s41586-023-06728-8 (cited on page 128).

[111] Aditi Bhutoria. ‘Personalized education and Artificial Intelligence in the United States, China, and India:

A systematic review using a Human-In-The-Loop model’. In: Computers and Education: Artificial Intelligence
3 (2022), p. 100068. doi: https://doi.org/10.1016/j.caeai.2022.100068 (cited on page 128).

[112] Gavoy Small. The Top 10 Adaptive Learning Platforms of 2023. [Online; accessed 13-November-2023]. Aug.

2023. url: https://www.edapp.com/blog/adaptive-learning-platforms/ (cited on page 128).

[113] Stephen Kosslyn. Active Learning with AI: A Practical Guide. Alinea Learning, Nov. 2023 (cited on page 129).

[114] Bhavya Ghai et al. ‘Explainable Active Learning (XAL): Toward AI Explanations as Interfaces for Machine

Teachers’. In: Proc. ACM Hum.-Comput. Interact. 4.CSCW3 (2021). doi: 10.1145/3432934 (cited on

page 129).

[115] Deepesh Agarwal et al. Addressing practical challenges in Active Learning via a hybrid query strategy. 2021

(cited on page 129).

[116] Miguel Cardona, Roberto Rodriguez, and Kristina Ishmael. Artificial Intelligence and the Future of Teaching
and Learning. [Online; accessed 13-November-2023]. May 2023. url: https://www2.ed.gov/documents/

ai-report/ai-report.pdf (cited on page 129).

[117] Aaron Gifford. Educators Roundtable: Demystify AI With Transparency and Practice. [Online; accessed

12-November-2023]. Sept. 2023. url: https://www.govtech.com/education/higher-ed/educators-

roundtable-demystify-ai-with-transparency-and-practice (cited on page 129).

[118] Josette Keelor. The power of AI in the classroom. [Online; accessed 12-November-2023]. Nov. 2023. url:

https://www.jmu.edu/news/2023/10/24-ai-in-the-classroom.shtml (cited on page 129).

[119] Donna Dodson et al. Securing Small-Business and Home Internet of Things (IoT) Devices: Mitigating
Network-Based Attacks Using Manufacturer Usage Description (MUD). Accessed: 11-20-2023. May 2021. doi:

https://doi.org/10.6028/NIST.SP.1800-15 (cited on page 131).

[120] Cisco. What is malware? [Online; accessed 21-November-2023]. 2023. url: https://www.cisco.com/

site/us/en/learn/topics/security/what-is-malware.html (cited on page 131).

[121] Phishing.org. What Is Phishing? [Online; accessed 21-November-2023]. 2023. url: https://www.phishing.

org/what-is-phishing (cited on page 132).

[122] NCSC. Denial of Service (DoS) guidance. [Online; accessed 21-November-2023]. 2023. url: https://www.

ncsc.gov.uk/collection/denial-service-dos-guidance-collection (cited on page 132).

[123] Cisco. Understanding SQL Injection. [Online; accessed 21-November-2023]. 2023. url: https://sec.

cloudapps.cisco.com/security/center/resources/sql_injection.html (cited on page 132).

https://doi.org/https://doi.org/10.1016/j.ijpe.2021.108250
https://doi.org/https://doi.org/10.1016/j.ijpe.2021.108250
https://doi.org/10.3390/engproc2022020012
https://doi.org/10.34306/att.v5i2.252
https://doi.org/10.13140/RG.2.2.15540.42889
https://doi.org/10.1007/978-3-319-32942-0_7
https://doi.org/10.1038/s41586-023-06728-8
https://doi.org/https://doi.org/10.1016/j.caeai.2022.100068
https://www.edapp.com/blog/adaptive-learning-platforms/
https://doi.org/10.1145/3432934
https://www2.ed.gov/documents/ai-report/ai-report.pdf
https://www2.ed.gov/documents/ai-report/ai-report.pdf
https://www.govtech.com/education/higher-ed/educators-roundtable-demystify-ai-with-transparency-and-practice
https://www.govtech.com/education/higher-ed/educators-roundtable-demystify-ai-with-transparency-and-practice
https://www.jmu.edu/news/2023/10/24-ai-in-the-classroom.shtml
https://doi.org/https://doi.org/10.6028/NIST.SP.1800-15
https://www.cisco.com/site/us/en/learn/topics/security/what-is-malware.html
https://www.cisco.com/site/us/en/learn/topics/security/what-is-malware.html
https://www.phishing.org/what-is-phishing
https://www.phishing.org/what-is-phishing
https://www.ncsc.gov.uk/collection/denial-service-dos-guidance-collection
https://www.ncsc.gov.uk/collection/denial-service-dos-guidance-collection
https://sec.cloudapps.cisco.com/security/center/resources/sql_injection.html
https://sec.cloudapps.cisco.com/security/center/resources/sql_injection.html

[124] IBM. What is Social Engineering? [Online; accessed 21-November-2023]. 2023. url: https://www.ibm.

com/topics/social-engineering (cited on page 132).

[125] CISA. Advanced Persistent Threats and Nation-State Actors. [Online; accessed 21-November-2023]. 2023. url:

https://www.cisa.gov/topics/cyber-threats-and-advisories/advanced-persistent-threats-

and-nation-state-actors (cited on page 132).

https://www.ibm.com/topics/social-engineering
https://www.ibm.com/topics/social-engineering
https://www.cisa.gov/topics/cyber-threats-and-advisories/advanced-persistent-threats-and-nation-state-actors
https://www.cisa.gov/topics/cyber-threats-and-advisories/advanced-persistent-threats-and-nation-state-actors

Alphabetical Index

8421 code, 23

actuator, 83

Advanced Persistent Threats

(APTs), 132

ALU, 75

AND, 34, 38

ASCII code, 26

BCD code, 20

binary, 9

Binary code, 20

BIU, 76

Boolean algebra, 33

Boolean function, 37

Cache, 76

centralized system, 73

checksum code, 27

classification algorithm, 110

closed system, 74

cloud networking, 101

clustering algorithm, 110

Communication interface, 83

complement, 14

computer hardware, 71

computer networking, 97

computer system, 71

control system, 73

CPU, 75

cyclic redundancy check, 28

decimal, 9

decision tree, 113

DeMorgan’s theorem, 42

Denial of Service (DoS) Attack,

132

diminished radix complement,

14

diode, 35

distributed system, 73

doubling method, 11

DRAM, 77

embedded system, 71, 103

ensemble learning , 110

error correction code, 29

Error detection code, 26

even parity, 27

firewall, 79

GPU, 75

gradient boosting, 123

Gray code, 24

grouping method, 13

Hamming code, 29

HDD, 75

hexadecimal, 10

HUB, 80

information system, 73

intrusion detection, 80

intrusion prevention, 80

K-nearest neighbors, 120

linear regression, 110

logic circuit, 40

logic gates, 34

logistic regression, 112

Malware, 131

microcontroller, 83

modem, 79

most significant bit (MSD), 16

motherboard, 75

NAND, 38

NAS, 80

network architecture, 97

network management, 100

network protocol, 98

network security, 100

neural network, 118

NIC, 79

non-real-time-system, 72

NOR, 38

NOT, 34, 38

octal, 10

odd parity, 27

open system, 74

operator precedence, 41

OR, 34, 38

parity check, 27

Phishing, 132

positional notation method,

11

power management, 83

preface, vii

PSU, 75

radix complement, 14

RAM, 75

random forest, 115

real-time clock, 83

real-time system, 72

Register, 75

regression algorithm, 110

reinforcement learning, 110

repeater, 80

router, 79

sensor, 83

signed binary number, 16

Social Engineering, 132

Software: antivirus, 93

Software: application, 88

Software: CAD, 89

Software: Compiler, 91

Software: database, 92

Software: debugger, 91

Software: encryption, 94

Software: firewall, 93

Software: IDE, 91

Software: IDPS, 93

Software: multimedia, 89

Software: operating system,

87

Software: programming, 91

Software: Scrum, 89

Software: security, 93

Software: spreadsheet, 88

Software: text editor, 91

Software: Virtualization, 89

Software: VPN, 93

Software: web browser, 89

Software: word processor, 88

SQL Injection Attacks, 132

SRAM, 77

SSD, 75

standalone system, 72

supervised learning, 110

support vector machine (SVM),

116

switch, 79

transistor, 35

truth table, 39

unsigned binary number, 15

unsupervised learning, 110

VPN, 80

wireless networking, 99

XOR, 38

	Introduction to Computer Engineering
	Preface
	Evidence-based instruction

	Evidence-based instruction
	Active learning

	Active learning
	Inclusive teaching

	Inclusive teaching
	Contents
	Overview of Computer Engineering
	What is Computer Engineering?

	What is Computer Engineering?
	History of Computer Engineering

	History of Computer Engineering
	Computer Science, Computer Engineering, and Electrical Engineering

	Computer Science, Computer Engineering, and Electrical Engineering
	Fields and Subfields in Computer Engineering

	Fields and Subfields in Computer Engineering
	The Role of Computer Engineers in Society

	The Role of Computer Engineers in Society
	Ethical Issues

	Ethical Issues
	Diversity and Inclusion

	Diversity and Inclusion
	Binary Systems and Number-base Conversions
	Number Systems

	Number Systems
	Number Conversion

	Number Conversion
	Complements of Numbers

	Complements of Numbers
	Complements of Decimal Numbers
	Complements of Binary Numbers
	Unsigned and Signed Binary Numbers

	Unsigned and Signed Binary Numbers
	Unsigned binary numbers
	Signed binary numbers
	How does a computer do arithmetic addition?
	How does a computer do arithmetic subtraction?
	Binary Codes

	Binary Codes
	BCD code
	Gray Code
	ASCII Character Code
	Error Detection Code
	Error Correction Code
	Representation of data

	Representation of data
	Data in Computers
	Data on Hard Disks
	Data in Wireless Communication Systems
	Boolean Algebra and Logic Gates
	Introduction

	Introduction
	Two-valued Boolean Algebra
	Logic Operations
	Logic Gates
	Boolean Functions

	Boolean Functions
	Represent Boolean Functions with Truth Table
	Represent Boolean Functions with Logic Circuits
	Fundamentals in Boolean Algebra

	Fundamentals in Boolean Algebra
	Operator Precedence
	Basic Postulates and Theorems
	Complement of Boolean Functions
	Gate-Level Minimization
	Introduction

	Introduction
	Simplifying Boolean Functions with Boolean Algebra

	Simplifying Boolean Functions with Boolean Algebra
	Minterms and Maxterms

	Minterms and Maxterms
	Definitions
	Designations
	Canonical Forms

	Canonical Forms
	Canonical sum-of-products (SOP) form
	Canonical product-of-sums (POS) form
	Conversion between SOP and POS forms
	Standard Forms and Non Standard Forms

	Standard Forms and Non Standard Forms
	Digital Logic Gates

	Digital Logic Gates
	Karnaugh Maps

	Karnaugh Maps
	Two-Variable K-Map
	Three-Variable K-Map
	Four-Variable K-Map
	Design Example: a Clock with 7-Segment Display

	Design Example: a Clock with 7-Segment Display
	Hardware
	Computer Systems

	Computer Systems
	Hardware in Computer Architecture

	Hardware in Computer Architecture
	Hardware in Computer Networks and Cyber Security

	Hardware in Computer Networks and Cyber Security
	Hardware in Embedded Systems and Robotics

	Hardware in Embedded Systems and Robotics
	Software
	Operating Systems

	Operating Systems
	Application Software

	Application Software
	Programming Software

	Programming Software
	Database Software

	Database Software
	Security Software

	Security Software
	AI-related Software

	AI-related Software
	Network
	Network Architecture

	Network Architecture
	Network Protocols

	Network Protocols
	Wireless Networking

	Wireless Networking
	Network Security

	Network Security
	Network Management

	Network Management
	Cloud Networking

	Cloud Networking
	Summary

	Summary
	Embedded Systems
	Introduction

	Introduction
	History of Embedded Systems

	History of Embedded Systems
	Characteristics of Embedded Systems

	Characteristics of Embedded Systems
	Design Principles of Embedded Systems

	Design Principles of Embedded Systems
	Applications of Embedded Systems

	Applications of Embedded Systems
	Challenges and Opportunities

	Challenges and Opportunities
	Summary

	Summary
	Artificial Intelligence
	Introduction

	Introduction
	AI Algorithms

	AI Algorithms
	Design Optimization

	Design Optimization
	Quality Control

	Quality Control
	Predictive Maintenance

	Predictive Maintenance
	Cybersecurity

	Cybersecurity
	Intelligent Automation

	Intelligent Automation
	AI in Education

	AI in Education
	Summary

	Summary
	Cybersecurity
	Introduction

	Introduction
	Types of Cyber Threats

	Types of Cyber Threats
	Impact of Cyber Threats

	Impact of Cyber Threats
	Preventing Cyber Threats

	Preventing Cyber Threats
	Challenges in Cybersecurity

	Challenges in Cybersecurity
	Summary

	Summary
	Engineering Standards and Constraints
	Introduction

	Introduction
	Engineering Standards

	Engineering Standards
	Contraints

	Contraints
	Future of Computer Engineering
	Appendix
	About AAAA
	aaaa

	aaaa
	bbbb

	bbbb
	About BBBB
	aaaa

	aaaa
	bbbb

	bbbb

	Bibliography
	Alphabetical Index

