Selective Complexation and Reactivity of Metallic Nitride and Oxometallic Fullerenes with Lewis Acids and Use as an Effective Purification Method

Steven Stevenson
University of Southern Mississippi

Mary A. Mackey
University of Southern Mississippi

Jane E. Pickens
University of Southern Mississippi

Melissa A. Stuart
University of Southern Mississippi

Bridget S. Confait
University of Southern Mississippi

See next page for additional authors

Follow this and additional works at: https://aquila.usm.edu/fac_pubs

Part of the *Chemistry Commons*

Recommended Citation
Stevenson, S., Mackey, M., Pickens, J., Stuart, M., Confait, B. S., Phillips, J. P. (2009). Selective Complexation and Reactivity of Metallic Nitride and Oxometallic Fullerenes with Lewis Acids and Use as an Effective Purification Method. *Inorganic Chemistry, 48*(24), 11685-11690. Available at: https://aquila.usm.edu/fac_pubs/8937

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.
Authors
Steven Stevenson, Mary A. Mackey, Jane E. Pickens, Melissa A. Stuart, Bridget S. Confait, and J. Paige Phillips

This article is available at The Aquila Digital Community: https://aquila.usm.edu/fac_pubs/8937
Selective Complexation and Reactivity of Metallic Nitride and OxoMetallic Fullerenes with Lewis Acids and Use as an Effective Purification Method

Steven Stevenson*, Mary A. Mackey, Jane E. Pickens, Melissa A. Stuart, Bridget S. Confait, and J. Paige Phillips

Contribution from the University of Southern Mississippi, Department of Chemistry and Biochemistry, Hattiesburg, MS 39406 USA

Abstract

Metallic nitride fullerenes (MNFs) and oxometallic fullerenes (OMFs) react quickly with an array of Lewis acids. Empty-cage fullerenes are largely unreactive under conditions used in this study. The reactivity order is Sc$_4$O$_2$@I$_h$-C$_{80}$ > Sc$_3$N@C$_{78}$ > Sc$_3$N@C$_{68}$ > Sc$_3$N@D$_{5h}$-C$_{80}$ > Sc$_3$N@I$_h$-C$_{80}$. Manipulations of Lewis acids, molar ratios and kinetic differences within the family of OMF and MNF metallofullerenes are demonstrated in a selective precipitation scheme, which can be used either alone for purifying Sc$_3$N@I$_h$-C$_{80}$ or combined with a final HPLC pass for Sc$_4$O$_2$@I$_h$-C$_{80}$, Sc$_3$N@D$_{5h}$-C$_{80}$, Sc$_3$N@C$_{68}$, or Sc$_3$N@C$_{78}$. The purification process is scalable. Analysis of experimental rate constants versus electrochemical band gap explains the order of reactivity among the OMF and MNFs.

Keywords

Lewis Acid; Metallic Nitride Fullerene; OxoMetallic Fullerene; Endohedral; Metallofullerene

Introduction

Metallic Nitride Fullerenes (MNFs, e.g., Sc$_3$N@I$_h$-C$_{80}$) consist of a trimetallic nitride cluster trapped within the carbon housing of fullerene cages. In contrast, the newly discovered OxoMetallic Fullerenes (OMFs) consist of encapsulated metal oxide clusters within fullerene cages. For the OMFs, little is known with regard to their chemical reactivity. The dominant representatives of MNF and OMF compounds are Sc$_3$N@I$_h$-C$_{80}$ and Sc$_4$O$_2$@I$_h$-C$_{80}$, respectively. Of the former, Sc$_3$N@D$_{5h}$-C$_{80}$ is a structural isomer of minor abundance.

The separation of C$_{60}$ from other empty-cages fullerenes (e.g., C$_{70}$) using Lewis acids has been previously described based on C$_{60}$ being the more inert species. For our metallofullerene system, we hypothesize a dramatic increase in reactivity for MNFs and OMFs based on their cages having formal charges of -6 versus the neutrality of empty-cage fullerenes.

The major hurdle to MNF and OMF experimentation is poor availability of isomerically pure samples. This paucity of materials is due to inefficient separation technologies which...
historically include classical HPLC methods. Recent reports of non-chromatographic methods for isolating MNFs are based on their resistance to reaction with solid supports such as cyclopentadiene immobilized on Merrifield resin or aminocapped silica. A support free method of separating MNFs from empty-cage fullerenes has been achieved using molten 9-methylantracene. Another approach to separate MNFs is an electrochemical, oxidation-based differentiation between I₅h and D₅h isomers of Sc₃N@C₈₀. An alternative method to isolate non-MNF metallofullerenes (e.g., Gd@C₇₀, Gd@C₈₂) from empty-cage fullerenes exploits differences in solubility and redox reactivity. Herein we report the reactivity of OMF and MNF as new Lewis bases and their selective complexation with Lewis acids. Subsequent manipulation of kinetic differences between these species can be used in development of a new separation scheme, which permits isolation of individual OMF and MNF compounds.

Experimental Section

Synthesis and characterization of soot extracts containing OMF and MNFs
Soots containing OMF and MNFs were prepared using a cylindrical electric-arc reactor as previously described. Cored rods were then packed with Cu (Cerac) or Cu(NO₃)₂·2.5 H₂O (Aldrich) and vaporized using the CAPTEAR process for enhanced yield of OMF and MNF compounds. The soot was extracted with CS₂ or o-xylene, filtered, and the solvent was removed under reduced pressure to furnish a dried extract, which was washed with diethyl ether or acetone. Soot extracts were weighed and characterized by HPLC to determine the type and amount of fullerene material present. HPLC peak areas were obtained using standard chromatographic integration software (Vernier, Logger Pro). HPLC separations were as follows: PYE column (4.6 mm × 250 mm), flow rates of 0.3 mL/min toluene or 0.5 mL/min xylenes as the mobile phase, and UV detection at 360 nm.

A. Reaction of Metallofullerenes with Lewis Acids
For comparison of C₆₀, C₇₀, and Sc₃N@I₅h-C₈₀ reactivities, 1.0 mg of each fullerene type was dissolved in 3 mL of carbon disulfide. To each solution was added 40 mg of AlCl₃. Time lapse photography was used to monitor and compare the loss of color (i.e., removal of fullerene from solution via precipitation of the fullerene-Lewis acid complex). After 2 min of reaction time the solution in the vial containing Sc₃N@I₅h-C₈₀ was colorless.

B. Array of Lewis Acids
7.1 mg MgCl₂, 10 mg AlCl₃, 12 mg FeCl₃ or 20 mg AlBr₃ were added to four stirring solutions containing 15 mg each of fullerene extract dissolved in 150 mL carbon disulfide. Equimolar amounts of Lewis acids were used to compare the speeds of reactions, which were allowed to proceed for a minimum of 3 minutes. Reaction mixtures having slower kinetics were monitored for longer times.

C. Metallofullerene Selectivity and Kinetic Study
C.1 Sc₃N@D₅h-C₈₀ versus Sc₃N@I₅h-C₈₀—A 1 g sample of extract (∼1.2 mmol fullerenes) was dissolved in 1 L of carbon disulfide. While stirring, 217 mg FeCl₃ was added to the fullerene solution. Aliquots of the reaction mixture were taken and analyzed via HPLC, whose conditions were 0.3 mL/min toluene mobile phase, 360 nm UV detection, and 10 μL injection onto a 4.6 mm × 10 mm PYE column. Conversion from peak area to molarity was performed via use of extinction coefficients and standardized samples of purified fullerenes as previously described.
C.2 Reactivity of OMF versus MNFs—To a 2 mg fullerene sample enriched in OMF and MNFs was added 15 mL CS2. While stirring, 10 mg of AlCl3 was added to generate a reaction mixture, from which aliquots were analyzed as described in experimental section C.1.

D. Scalability and Recovery of Metallofullerenes

Extract solutions containing ~1.3 g of fullerenes dissolved in 500 mL of carbon disulfide were prepared. To each of these 3 solutions was added separately, while stirring, 1.75 g AlBr3, 240 mg FeCl3, and 198 mg AlCl3. The reactions were allowed to proceed a minimum of 3 hours. The reaction mixtures were filtered, and the precipitate contained primarily OMF and MNF fullerenes complexed to the Lewis acid. Upon addition of ice water, sodium bicarbonate and carbon disulfide to the solid material remaining on the paper filter from a Buchner funnel, these fullerenes were released from the complex and readily dissolved in the CS2 layer (i.e., bottom layer in a separatory funnel). After several washes with deionized water, this CS2 fullerene solution was filtered by membrane filtration. Solvent was removed via rotary evaporation, and the solid material (i.e., recovered fullerenes) was ether-washed, dried and weighed. The filtrate from the reaction mixture was also washed with water and sodium bicarbonate as described above. The masses of dried fullerenes obtained from the filtrate and precipitate were added and compared to the original extract mass for percent recovery calculations.

E. Sc₄O₂@I₃-C₈₀ and Sc₃N@D₅h-C₈₀ enrichment and isolation of isomerically pure Sc₃N@I₃-C₈₀

E.1 Enrichment of Sc₄O₂@I₃-C₈₀—982 mg of Sc fullerene extract was dissolved in 500 mL carbon disulfide. While stirring, 340 mg AlCl3 was added to this solution. Reaction progress was monitored by loss of HPLC peak area for Sc₄O₂@I₃-C₈₀. The reaction was stopped at 44 hours. Upon filtration the precipitate containing Sc₄O₂@I₃-C₈₀ OMF and contaminant MNFs was treated as described in experimental section D. A second step using 45 mg of this OMF and MNF enriched fullerene material dissolved in 250 mL carbon disulfide was used. While stirring, 135 mg of AlCl3 was added. The reaction time was 4 h 40 min, at which time the resulting precipitate was processed as described in experimental section D to recover the enriched Sc₄O₂@I₃-C₈₀ fullerene sample.

E.2 Enrichment of Sc₃N@D₅h-C₈₀—An extract solution was prepared by dissolving ~1 g fullerenes in 500 mL of CS₂. To this extract solution was added 340 mg AlCl₃. The reaction proceeded for 44 h, at which time the collected precipitate was processed as described in experimental section D.

E.3 Isolation of isomerically pure Sc₃N@I₃-C₈₀—This experiment used the filtrate obtained from step 1 (see AlCl₃ chemistry, Figure 6e). To the filtrate, with stirring, was added 150 mg FeCl₃. After 70 minutes of reaction time, the I₃ isomer of Sc₃N@C₈₀ had complexed with the Lewis acid and was precipitated from solution. Upon filtration, the collected precipitate was processed as described in experimental section D to obtain 27 mg of isomerically purified Sc₃N@I₃-C₈₀ (Figure 6f).

F. Isolation of gram quantities of Sc₃N@I₃-C₈₀

An extract solution of 1340 mg fullerenes was dissolved in 500 mL carbon disulfide. While stirring, 245 mg AlCl₃ was added. After 21 h, the reaction mixture was filtered to remove OMF and MNF contaminants of Sc₃N@C₆₈, Sc₃N@C₇₈, and Sc₃N@D₅h-C₈₀. The filtrate, containing 1.072 g fullerenes, of which Sc₃N@I₃-C₈₀ is the primary metallofullerene in addition to empty-cage fullerenes (e.g., C₆₀, C₇₀, C₈₄), was diluted to 1 L with CS₂. To this solution, while stirring, was added 217 mg FeCl₃ to precipitate the I₃ isomer of Sc₃N@I₃-C₈₀. After stirring for 55 minutes, the Sc₃N@I₃-C₈₀ complex was precipitated from solution.
Results and Discussion

A. Reaction of Metallofullerenes with Lewis Acids

For comparing reactivity differences between empty-cage fullerenes and metallofullerenes having a C_{60}^{6-} cage (e.g., OMFs, MNFs), an experiment was performed in which 1.0 mg each of C_{60}(1.4 μmol), C_{70}(1.2 μmol), and Sc$_3$N@I$_h$-C$_{80}$(0.9 μmol) was dissolved in 3 mL carbon disulfide with a large molar excess of AlCl$_3$(40 mg, 300 μmol). Results from Figure 1 demonstrate removal of Sc$_3$N@I$_h$-C$_{80}$ within 2 minutes. In contrast, empty-cage fullerenes C$_{60}$ and C$_{70}$ were more resistant to complexation and precipitation.

B. Array of Lewis Acids

Given this difference in reactivity, we expanded the palette of Lewis acids. Weaker Lewis acids such as MgCl$_2$ were nonresponsive under our experimental conditions, with the stronger Lewis acids of AlCl$_3$, FeCl$_3$ and AlBr$_3$ being much more reactive to MNFs. For these experiments, equimolar ratios of Lewis acids were used for direct comparison. Assuming pseudo-first order kinetics, graphs obtained from the log of fullerene concentration versus time (Figure 2) resulted in linear plots, from which k$_{obs}$ rate data was readily obtained. These rate constants for reaction of Sc$_3$N@I$_h$-C$_{80}$ with Lewis acids were 0.605 min$^{-1}$ (AlBr$_3$), 0.302 min$^{-1}$ (FeCl$_3$), 0.0124 min$^{-1}$ (AlCl$_3$), and ~0 min$^{-1}$ (MgCl$_2$). The data indicate that AlBr$_3$ and FeCl$_3$ react much more quickly with MNFs than does AlCl$_3$.

C. Metallofullerene Selectivity and Kinetic Study

C.1 Sc$_3$N@D$_{5h}$-C$_{80}$ versus Sc$_3$N@I$_h$-C$_{80}$—It is well known that the I$_h$ isomer of Sc$_3$N@C$_{80}$ is less reactive than Sc$_3$N@D$_{5h}$-C$_{80}$ for other types of reactions (i.e., non-Lewis acid reactions) such as cycloadditions. To determine whether a similar trend occurs with Lewis acids, an experiment was performed with a stronger Lewis acid such as FeCl$_3$ to ensure sufficient reaction with both isomers. Aliquots at arbitrary times were collected to monitor loss of peak area for both Sc$_3$N@C$_{80}$ isomers from solution. Using 1st order kinetics of uptake (Figure 3a), the ratio of k$_{obs}$(Sc$_3$N@D$_{5h}$-C$_{80}$) to k$_{obs}$(Sc$_3$N@I$_h$-C$_{80}$) was 1.6. Our finding of Sc$_3$N@D$_{5h}$-C$_{80}$ being more reactive than Sc$_3$N@I$_h$-C$_{80}$ to Lewis acids is consistent with literature reports of Sc$_3$N@D$_{5h}$-C$_{80}$ being more reactive than Sc$_3$N@I$_h$-C$_{80}$. The data in Figure 3b clearly shows isomeric purity can be achieved at only 55 minutes of reaction time. This more rapid removal (55 min) is compared with the 13 h of reaction time for Sc$_3$N@D$_{5h}$-C$_{80}$ removal with the SAFA process, which uses aminosilica to selectively bind reactive fullerene and metallofullerene species.

C.2 Reactivity of OMF versus MNFs—For reactivity comparisons among other MNF and OMF metallofullerenes, we selected AlCl$_3$ based on its slower reaction kinetics. Of particular interest was probing the reactivity of the OMF Sc$_3$O$_2$@I$_h$-C$_{80}$ species relative to MNF compounds such as Sc$_3$N@C$_{68}$, Sc$_3$N@C$_{78}$, Sc$_3$N@D$_{5h}$-C$_{80}$, and Sc$_3$N@I$_h$-C$_{80}$. For these experiments, 2 mg of a fullerene sample enriched in these compounds was dissolved in 15 mL of C$_2$S$_2$. While stirring, 10 mg of AlCl$_3$ was added to generate a reaction mixture from which aliquots were taken at arbitrary times to monitor fullerenes remaining in solution (i.e., fullerenes not bound and precipitated by the Lewis acid). The amount of C$_{60}$ and C$_{70}$ remaining in solution is relatively constant. The logarithm of fullerene concentration was plotted as a function of time and 1st order kinetics were observed. Results comparing the reactivities of OMF and MNFs are summarized in Table 1. The significance of these results is the notion that one could manipulate these reactivity differences and develop a new method for purifying these metallofullerenes.
The variation in rate constants among these metallofullerenes may be related to the electrochemical (EC) band gap. When our experimental kinetic data (i.e., k_{obs}) from Table 1 is plotted versus published electrochemical data for C_{78}^{27,28} Sc_{3}N@I_{h}-C_{80}^{9,16,29} Sc_{3}N@D_{5h}-C_{80}^{29} Sc_{3}N@C_{68}^{30} and Sc_{3}N@C_{78}^{31} a correlation can be made as shown in Figure 4. Based on this proportionality between rate constant and band gap, a predicted EC band gap of ~1V for Sc_{4}O_{2}@I_{h}-C_{80} can be made.

D. Scalability and Recovery of Metallofullerenes

Several key issues include the scalability and ability to release the fullerene from the precipitated Lewis acid complex. To address these concerns, several gram scale reactions were performed using three different types of Lewis acids. Solutions of ~1300 mg Sc-fullerene extract in 500 mL CS\textsubscript{2} were prepared for reaction with 1.75 g AlBr\textsubscript{3}, 240 mg FeCl\textsubscript{3}, or 198 mg AlCl\textsubscript{3}. After 3 hours of reaction time, the reaction mixture was filtered to yield a precipitate, to which was added ice water, sodium bicarbonate, and CS\textsubscript{2}. Under these conditions, OMF and MNF fullerenes were released from the Lewis acid-fullerene complexes and dissolved in CS\textsubscript{2}. As a representative example, HPLC chromatograms from the FeCl\textsubscript{3} experiments are shown in Figure 5. The HPLC results indicate selective precipitation and removal of OMF and MNFs from the unreacted empty-cage fullerenes remaining in solution (Figure 5b). The OMF and MNFs are readily recovered from the precipitate (Figure 5c) using the procedure in Experimental section D. Fullerene recoveries were 83-86%, regardless of which Lewis acid was utilized. Results from these scale-up and recovery experiments are provided in Table 2.

E. Sc_{4}O_{2}@I_{h}-C_{80} and Sc_{3}N@D_{5h}-C_{80} enrichment and isolation of Sc_{3}N@I_{h}-C_{80}

E.1 Enrichment of Sc_{4}O_{2}@I_{h}-C_{80}—Moving to other species beyond the more chemically inert Sc_{3}N@I_{h}-C_{80}, it would be advantageous to develop and optimize this new method of selective Lewis acid precipitation toward the more reactive MNFs and OMFs. The advantage of determining the reactivity order of OMF and MNFs is the ability to subsequently manipulate the kinetics such that the more reactive species can be precipitated, at which time the reaction can be stopped, thereby leaving the majority of the more chemically inert species still in solution (Figure 6a). To demonstrate this concept, 982 mg of fullerene extract obtained from the vaporization of Sc_{3}O_{3} packed graphite rods were dissolved in 500 mL CS\textsubscript{2}. While stirring, 340 mg of AlCl\textsubscript{3} were added. Reaction progress (i.e., fullerene loss from solution) was monitored at arbitrary times. Mass spectral data (supporting information) indicates Sc_{4}O_{2}@I_{h}-C_{80} is the first of the OMF and MNF species to be precipitated from solution (t = 20 h). This result is consistent with the reactivity comparisons described above (e.g., Sc_{4}O_{2}@I_{h}-C_{80} > Sc_{3}N@C_{78} > Sc_{3}N@C_{68} > Sc_{3}N@D_{5h}-C_{80} > Sc_{3}N@I_{h}-C_{80}). Reaction beyond 20 h to 44 h results in further precipitation of Sc_{3}N@C_{78}, Sc_{3}N@C_{68}, Sc_{3}N@D_{5h}-C_{80}, and a small quantity of Sc_{3}N@I_{h}-C_{80} as shown in Figure 6b. A 2nd step with Lewis acid chemistry to enrich this sample in Sc_{4}O_{2}@I_{h}-C_{80} also utilizes AlCl\textsubscript{3}. Shown in Figures 6c, 6d are the HPLC and MALDI mass spectrum for the fullerene recovered precipitate obtained after 4 h 40 min for a reaction mixture of a 45 mg of the sample from Figure 6b, 250 mL CS\textsubscript{2} and 135 mg AlCl\textsubscript{3}. Based on the MALDI data (Figure 6d), Sc_{4}O_{2}@I_{h}-C_{80} is the dominant species.

E.2 Enrichment of D_{5h} isomer of Sc_{3}N@C_{80}—Reaction conditions for isolating enriched samples of Sc_{3}N@D_{5h}-C_{80} involve stirring a fullerene solution of ~1 g fullerene extract in 500 mL CS\textsubscript{2} with 340 mg AlCl\textsubscript{3} for 44 h. The data in Figure 6b clearly indicate isolation of an enriched fraction of Sc_{3}N@D_{5h}-C_{80} (50 mg sample). Note that the dominant peak in the HPLC chromatogram (Figure 6b) is the D_{5h} isomer of Sc_{3}N@C_{80}. With the overwhelming majority of fundamental science focusing on the I_{h} isomer, a benefit of this Lewis acid approach is the ability to obtain samples in which the dominant species is Sc_{3}N@D_{5h}-C_{80}. If desired, a final HPLC pass of this sample would yield a purified sample of

Inorg Chem. Author manuscript; available in PMC 2010 December 21.
Conclusions

OxoMetallic fullerene (OMF) and metallic nitride fullerene (MNF) endohedral metallofullerenes react quickly with Lewis acids. The empty-cage fullerenes are largely unreactive under the molar ratios used in this study. The reactivity order is Sc$_4$O$_2$@I$_h$-C$_{80}$$>$ Sc$_3$N@C$_{78}$$>$ Sc$_3$N@D$_{5h}$-C$_{80}$$>$ Sc$_3$N@I$_h$-C$_{80}$. Graphical analysis of experimental rate constants versus electrochemical band gap explains the order of reactivity among the OMF and MNFs. Manipulation of Lewis acids and kinetic differences result in a selective precipitation scheme, which can be used alone for Sc$_3$N@I$_h$-C$_{80}$ or combined with a final HPLC pass for Sc$_4$O$_2$@I$_h$-C$_{80}$, Sc$_3$N@D$_{5h}$-C$_{80}$, Sc$_3$N@C$_{68}$, and Sc$_3$N@C$_{78}$. The purification process is scalable. Efforts to expand this approach to other homometallic nitride
fullerenes (e.g., Gd$_2$N@C$_{80}$) and mixed-metal nitride fullerenes (e.g., LaSc$_2$N@C$_{80}$) are underway.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Prof. Stevenson thanks the NSF CAREER (CHE-0547988), Lucas Research Foundation, and MALDI instrumentation grant NSF 0619455 for financial assistance. Prof. Phillips thanks the NSF CAREER (CHE-0847481) and NIH R15AG028408. MAM thanks the NSF GRFP program.

References

Inorg Chem. Author manuscript; available in PMC 2010 December 21.
Figure 1.
Selective complexation of MNF with Lewis acid (AlCl₃)
Figure 2.
Effect of Lewis acid on Sc$_3$N@I$_8$-C$_{80}$ complexation rate
Figure 3.
(a) semi-log plot comparing loss of D_{5h} and I_{h} Sc$_3$N@C$_{80}$ from solution and (b) increase in isomeric purity for Sc$_3$N@I$_h$-C$_{80}$ with reaction time.
Figure 4.
Correlation of rate constants from metallofullerene reactions with Lewis acids versus electrochemical band gap
Figure 5
HPLC of (a) starting fullerene extract, (b) the resulting filtrate after 3 h of reaction with FeCl₃ and (c) fullerenes recovered from the precipitate. HPLC conditions are 0.5 mL/min Xylenes, 360 nm, 4.6 × 250 mm PYE column, and 50μL injection.
Figure 6.
(a-d) scheme, HPLC, and MALDI data demonstrating isolation of enriched samples of Sc$_4$O$_2$@I$_h$-C$_{80}$, Sc$_3$N@C$_{68}$, Sc$_3$N@C$_{78}$, and Sc$_3$N@D$_{5h}$-C$_{80}$ using complexation with AlCl$_3$ and subsequent decomplexation via addition of water. (e,f,g) isolation scheme, HPLC and MALDI mass spectrum of isomerically purified Sc$_3$N@I$_h$-C$_{80}$ using the complexation/decomplexation approach. HPLC flow rates are (b) 0.3 mL/min Toluene and (c) 0.5 mL/min Xylenes with 360 nm detection, a 4.6 × 250 mm PYE column, and injections volumes of 50μL.
Scheme 1.
Removal of non-Sc$_3$N@I$_h$-C$_{80}$ metallocfullerene with AlCl$_3$ (Stage 1) and subsequent isolation of isomerically purified Sc$_3$N@I$_h$-C$_{80}$ with FeCl$_3$ (Stage 2)
Table 1

Kinetic data for Lewis acid reactions with OMF and MNFs

<table>
<thead>
<tr>
<th>Compound</th>
<th>k_{obs} (min$^{-1}$)</th>
<th>$t_{1/2}$ (min)</th>
<th>R^2</th>
<th>Relative Rate (D_{5a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc$_4$O$_2$@I8-C${80}$</td>
<td>0.035 ± 0.004</td>
<td>20</td>
<td>0.989</td>
<td>3.5</td>
</tr>
<tr>
<td>Sc3N@C${78}$</td>
<td>0.029 ± 0.003</td>
<td>24</td>
<td>0.971</td>
<td>2.9</td>
</tr>
<tr>
<td>Sc3N@C${68}$</td>
<td>0.019 ± 0.002</td>
<td>36</td>
<td>0.967</td>
<td>1.9</td>
</tr>
<tr>
<td>Sc3N@D${58}$-C$_{80}$</td>
<td>0.016 ± 0.002</td>
<td>43</td>
<td>0.952</td>
<td>1.6</td>
</tr>
<tr>
<td>Sc$_3$N@I8-C${80}$</td>
<td>0.010 ± 0.001</td>
<td>69</td>
<td>0.993</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 2
Summary of data from fullerene recovery experiments

<table>
<thead>
<tr>
<th>Lewis Acid</th>
<th>mg fullerenes (filtrate)</th>
<th>mg fullerenes (from precipitate)</th>
<th>Fullerene Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlBr$_3$</td>
<td>883</td>
<td>205</td>
<td>83 %</td>
</tr>
<tr>
<td>FeCl$_3$</td>
<td>1040</td>
<td>76</td>
<td>86 %</td>
</tr>
<tr>
<td>AlCl$_3$</td>
<td>973</td>
<td>56</td>
<td>83 %</td>
</tr>
</tbody>
</table>