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ABSTRACT 

A VEGETATION ANALYSIS ON HORN ISLAND, MISSISSIPPI, CA. 1940 
 

 USING CHARACTERISTIC DIMENSIONS DERIVED FROM  
 

HISTORICAL AERIAL PHOTOGRAPHY 

by Guy Wilburn Jeter Jr. 

December 2014 

 Horn Island is part of the MS/AL barrier island chain in the northern Gulf of 

Mexico located approximately 18kn off the coast of Mississippi. This island’s habitats 

have undergone many transitions over the last several decades. The goal of this study was 

to quantify habitat change over a seventy year period using historical black and white 

photography from 1940. Using present NAIP imagery from the USDA, habitat structure 

was estimated by using geo-statistics, and second order statistics, from a co-occurrence 

matrix, to characterize texture for habitat classification. Percent land cover was then 

calculated to determine overall land cover change over a seventy year period. The geo-

statistic of the horizontal spectral variation (CV) of image textures was used to estimate 

habitat structure using a multi scale approach if any characteristics of habitat texture 

could be delineated from CV histograms. The classification met with a result of an 80% 

habitat map of Horn Island ca. 1940, at 21x21 window size proving, that CV can be used 

successfully to classify text of historical black and white imagery. It was, also proven that 

CV can be used to characterize relative patch size for slash pine woodland habitat types, 

but not for habitats with smaller horizontal variations (i.e., marsh, and dune herbland).      
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CHAPTER I 

INTRODUCTION 

Problem Statement 

 Several studies have successfully characterized regions of interests using hyper-

spectral and multi-spectral imagery (Buddenbaum, Schlerf, & Hill, 2005; Ge, Carruthers, 

Gong, & Herrera, 2006; Hauta-Kasari, Parkkinen, Jaaskelainen, & Lenz, 1999; Lu & 

Weng, 2005). These studies use hyper-spectral and multi-spectral imagery textural 

features as proxy for classifying regions (e.g., habitat types, urban areas). These 

techniques use high spatial and radiometric resolution and allow researchers to devise 

methods with accurate and precise results. Historical black and white imagery, however, 

has less spectral information available compared to modern day satellite and aerial 

imagery, making present day image analysis techniques ineffective when characterizing 

spectral properties with black and white imagery. Black and white imagery is 

underutilized due to present day image analysis techniques that focus on modern hyper-

spectral and multi-spectral image data sets. 

 However, the texture of an image can be used to analyze the spatial distribution of 

brightness values within a panchromatic image and has been successfully employed with 

the combination of spectral information, increasing classification accuracy of vegetation 

(Adam, Mutanga, & Rugege, 2010; Buddenbaum et al., 2005; Ge et al., 2006; Hauta-

Kasari et al., 1999; Lu & Weng, 2005). Very few of these studies focus on the use of 

historical black and white imagery before Landsat (Browning, Archer, Asner, Mitchel, & 

Wessman, 2008; Caridade, Marcal, & Mendonc, 2008; Hudak & Wessman, 1998, 2001). 

Studies that analyze this type of imagery are important for the purpose of understanding 
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landscape change on a decadal scale due to historical aerial photography dates going back 

to the 1930s. Inferences on climate change can be made by analyzing the texture 

characteristics of vegetation. The objectives of this study were to evaluate habitat 

structure by using geo-statistics to represent characteristics indicative of a specific habitat 

type to assess the environmental mechanisms that affect the habitat types such as 

hurricanes and tropical storms events, changes in sediment budget, and relative sea-level 

rise. Other objectives were to create a habitat map of Horn Island, MS ca. 1940 and to 

assess land cover change from 1940 to 2010.  

Barrier Islands and Impacts 

Barrier Island Impacts 

  Along the Atlantic and Gulf coasts of the United States and Mexico exists the 

longest barrier island chain in the world (Figure 1) (Stutz & Pilkey, 2001). This barrier 

island chain makes up approximately 85% of the open ocean shoreline and is an 

important resource to the mainland areas (Lucas & Carter, 2010; Stauble, 1989; Stutz & 

Pilkey, 2001). These islands provide protection from everyday wind and wave energies 

and harbor biologically active areas such as sea grass beds and marine estuaries (Carter, 

Lucas, Biber, Criss, & Blossom, 2011; Peneva, Griffith, & Carter, 2008, 2011).The 

protection from every day wind and wave energies provided by barrier islands is critical 

for these types of environments to exist long term (Carter et al., 2011; Fonseca, 1996; 

Fonesca & Bell, 1998; Koch, 2001; Koch, Ackerman, Verguin, & Keilen, 2006). Barrier 

islands are economically significant with millions of people living and traveling to these 

islands; this promotes tourism and the local economy. Ocean City, Maryland is a 

traditional resort community located on a barrier island that experiences an influx in 
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population of around 8 million people on a yearly basis (Crompton, Lee, & Shuster et al., 

2001). These islands are an important economic and natural resource to mainland areas 

where the geomorphic and ecological changes can be key indicators of climate change. 

 

Figure 1. Map depicting barrier island distribution in the Western Hemisphere (Stutz & 
Pilkey, 2001). The black box indicates the world’s longest barrier island chain along the 
Atlantic and Gulf Coasts of the Unites States and Mexico. The arrows indicate barrier 
islands formed by major river deltas. 

It is important to recognize the harsh and dynamic environment that these islands 

endure. These islands are particularly sensitive to tropical storms and hurricanes, and 

relative sea-level rise (RSLR), and human impact (e.g., changes in sediment budget) (Day 
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et al., 2005; FitzGerald, Penland & Nummedal, 1984; FitzGerald, Fenster, & Argow, 

2008; Morton, 2008; Otvos and Carter, 2008; Penland & Ramesy, 1990; Pilkey, 2003; 

Stutz & Pilkey, 2002, 2011). Depending on the geographic location, the size and strength 

as well as frequency of storms can either promote or degrade the stability of an island 

(Morton & Sallenger, 2003; Stone, Liu, Pepper, & Wang, 2004), playing a vital role in 

the reworking and natural restoration of barrier islands. Tropical storm and hurricane 

events also contribute to significant geomorphic changes resulting in land loss, erosion, 

salt water intrusion, and flooding (Morton, 2008; Otvos & Carter, 2008; Pilkey, 2003). 

Otvos and Carter (2008) reported hurricane effects for the MS/AL barrier chain. They 

reported island fragmentation, a reduction to sub-tidal shoal platforms, erosive, and 

aggradation affects from hurricane Katrina in 2005 for the Mississippi /Alabama 

(MS/AL) barrier island chain. These storm events can also affect vegetation by sand over 

wash, salt water toxicity, and flooding as well as by (Cahoon, Hensel, Spencer, Reed, 

McKee, & Saintilan, 2006; Otvos & Carter, 2008; Wang, Kirby, Haber, Horowitz, Knorr, 

& Krock, 2006; killing off or burying primary species, changing the landscape and in 

some the cases for a given area (Lucas & Carter, 2008). 

Sea-level rise also plays an important role in the development of a barrier island 

system. Sea-level rise is a function of the ocean surface controlled by 1) volume of ocean 

water; 2) volume of the ocean basins; and 3) distribution of the water and the land surface 

(FitzGerald et al., 2008; Willis, Chambers, Kou, & Shum, 2010). The rate at which global 

sea levels have been rising is around 1.7 mm yr-1 (Cabanes, Cazenave, & Le Provost, 

2001; Church  & White, 2006; Douglas & Peltier, 2002; Holgate & Woodworth, 2004) 

where sea-level rise trends have been rising for several thousand years on the Atlantic 
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and Gulf coasts of the United States. Several studies have concluded that the sea-level 

has consistently risen for several thousand years and still is rising at a slower rate starting 

approximately 4,000 years ago (Douglas & Peltier, 2002; Hoyt, 1967; Penland et al., 

1990; Penland, McBride, Williams, & Suter, 1991; Pilkey, 2003; Stanley & Warne, 1994; 

Tornqvist et al. (2004). 

Studies have confirmed, because of this change in sea-level, barrier islands along 

the Atlantic and Gulf coasts of the United States have retreated landward, and that 

sediment supply is a key factor in the stability and longevity this coastal environment 

(FitzGerald et al., 2008; Hoyt, 1967; Morton, 2008). Sediment supply plays an important 

role in the support of barrier island and wetland areas allowing for low lying areas to 

accrete at a faster rate than sea-level rise (Brinson, Christoan, & Blum, 1995; FitzGerald 

et al., 2008; Morris, Sundareshwar, Nietch, Kjerfve, & Cahoon, 2002; Mudd, Howell, & 

Morris, 2009). Relative sea level rise (RSLR) is the combined effect in the Northern Gulf 

Coast, and has been consistently climbing four several thousand years (Tornqvists et al., 

2004). The definition of RSLR can be defined, for this study, by including land and sea 

elevation changes over time. For example, barrier islands on the northern Gulf of Mexico 

experience coastal subsidence due to the weight of deposited sediments from river deltas 

compacting (Otvos, 1990). In particular Horn Island, of the Mississippi/Alabama 

(MS/AL) barrier island chain, has a subsidence rate of 5mm yr-1 (Lucas & Carter, 2010). 

 Human impacts such as the channelization of an inlet can cause significant land 

loss and in some cases a reduction in land area up to 60% in the case of East Ship Island 

in the MS/AL barrier chain (Lucas & Carter, 2010; Morton, 2008). Shipping lanes 

developed to the west of Petit Bois, Horn, and East and West Ship Island have caused a 



6 
 

 
 

net loss in land area dating  back 158 years (Morton, 2008). This land loss can be 

exacerbated by relative sea-level rise due to coastal subsidence rates of the surrounding 

area (Lucas & Carter, 2008; Morton, 2008). Morris Island, SC is another example of 

humans impacting the development of barrier islands. In the late 1800s after the Civil 

War, jetties were constructed to boost the economy of Charleston Harbor by the U.S. 

Army Corp of Engineers. With these jetties in place tides could no longer supply the ebb 

tidal delta that was the sediment supply for islands south of Charleston Harbor. This led 

to a major landward retreat to the mainland which was most evident on Morris Island, 

SC. This can be seen due to the Light House that was historically on the island but is now 

sitting 1,550 ft. offshore (Pilkey, 2003).  

Barrier Island Requirements, and Formation 

Barrier islands largely exist, on the North America continent, along the trailing 

edge of the North American tectonic plate (Pilkey, 2003; Stutz & Pilkey 2001, 2011). A 

gentle sloping continental shelf, a consistent sediment supply, rising sea-level, wind and 

wave energies, and tidal influences are five requirements that are the key to barrier island 

development along the Atlantic and Gulf coasts of the United States (Oertel, 1985; 

Pilkey, 2003). Tidal and wave energies affect an Atlantic section of the world’s largest 

barrier island chain known as the Georgia Bight (Davis & Hayes, 1984; Hayes, 1994; 

Pilkey, 2003). The higher wave energy along the North Carolina coast causes barrier 

islands to be longer and thinner with very few inlets spaced far apart; conversely barrier 

islands in Georgia and South Carolina are affected by larger tidal energies causing, many 

inlets between islands spaced closed together (Hayes, 1994; Pilkey, 2003). Islands along 
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the Gulf Coast of the United States receive lower tide and wave energies compared to the 

Atlantic.  

There are several accepted theories of barrier island formation. These theories are 

as follows: submerged offshore bars where sediment is deposited and wave action allows 

for the sand bar to break the water surface, sand spit formation on the mainland is broken 

off by wind and wave energy creating a barrier island, and submergence of ridge 

complexes where water eventually surrounds sand platforms, and finally barrier islands 

formed by deltaic sediment deposits (Hoyt, 1967, 1968; Otvos, 1985; Schwartz, 1971; 

Swift, 1975). It is important to understand that barrier islands form under specific 

conditions unique to each island. These formation theories give a broad geomorphic 

descriptions that are common in a coastal setting.  

Remote Sensing and Image Analysis 

Remote Sensing 

Recent developments in remote sensing technology have given rise to airborne 

and satellite platforms such as hyper-spectral imagery, multi-spectral imagery and 

LIDAR have given rise to new techniques of image analysis (Jensen, 2007). These 

technologies actively and passively use light to measure spectral and distance differences 

within a landscape or area study. Hyper-spectral and multi-spectral imagery passively 

sense variations of spectral reflectance at various wave lengths. These sensors can be 

used for several different ecological and physical applications and present multiple 

advantages to researchers. One key advantage of hyper-spectral and multi-spectral 

imagery is the scale at which spectral data can be collected. Multi-spectral satellite 

sensors such as Landsat TM (Thematic Mapper), MODIS, and SPOT satellites allow 
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researchers global data coverage at a relatively high spatial resolution (10m-80m) 

(meter). Scientists have successfully exploited this advantage in quantifying land changes 

and land use on a regional scale in some instances on a global scale (Carlson & Arthur, 

2000; Stutz & Pilkey, 2001; Shalaby & Tateishi, 2007; Vogelmann, Sohl, & Howard, 

1998).  

 Other benefits include the development of aerial platforms and the capability to 

select specific bandwidths for analysis, particularly vegetation analysis. Airborne 

platforms usually have much higher spectral and spatial resolution than satellite platforms 

(10 - <1m) (meter) and exhibit spectral resolutions as accurate as 10nm (nanometers). 

These platforms can also be deployed faster and give investigators the ability to collect in 

situ data. Hyper-spectral and multi-spectral data give researchers the capability to select 

specific bandwidths for vegetation analysis.  

 Vegetation studies using hyper-spectral spectroscopy chose specific bandwidths 

to measure spectral reflectance differences of different species of plants on a leaf level. 

These studies investigated the spectral characteristics of plants species on, at a leaf level, 

relationships with the red and infrared range of the electromagnetic spectrum and plant 

stress (Carter, 1993; Horler, Dockray, & Barber, 1983a; Jensen, 2007). Studies 

concerning the spectral characteristics of a given leaf, showed an increase in the near 

infrared part of the spectrum where leaves would reflect a 40 to 60% of incident near-

infrared light from the structure of the leaf with the rest being transmitted thought the leaf 

and could be (Jensen, 2007). 

 Understanding the physiology of a given plant is important, particularly the 

characteristics of pigments such as chlorophyll a or b. When a plant is under stress, 
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chlorophyll production decreases thereby increasing the reflectance in the visible 

spectrum of the plant (Jensen, 2007). When chlorophyll production is down, the amount 

of light absorbed in the blue and red absorption bands is decreased (Carter, 1993; Jensen, 

2007). This will make the plant reflect more light in the visible spectrum (Carter, 1993). 

Infrared can detect plant stress only when the plant has severe dehydration (Jensen, 

2007).  

Advantages of New Remote Sensing Technology 

With the availability of real time data and the ability of satellite and airborne 

platforms to repeatedly collect data accurately and consistently, is yet another advantage 

exploited by researchers. Investigators have been successful in quantifying change over 

time for this very reason. Satellites such as Landsat TM have been in operation since 

1972 which offers consistent coverage of an area of interest for several decades (Jensen, 

2007). This can be useful in determining vegetation response to climate and landscape 

change. Remote sensing aerial platforms can also collect images at a researcher’s chosen 

time and generally have much higher spatial resolution than satellite imagery. With these 

recent developments, advantages in fusion of multiple remote sensing data sets are a 

common approach of analysis. The focus of data fusion is to incorporate different data 

sets to extract more information than can be determined from one sensor (Pohl & Van 

Genderen, 1998). The fusion of hyper-spectral and LIDAR is an excellent example of 

how fusing data sets can provide a better interpretation of vegetation, giving a third 

dimension (canopy height) accurately identifying specific characteristics of, vegetation 

structure (Jensen, 2007). 
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Historical Black and White Imagery 

These advantages of new remote sensing technology are very useful to scientists and 

researchers alike. The stigma of using the newest and best remote sensing equipment has 

caused many investigators to overlook the wealth of spatial information in historical 

black and white aerial photography, leaving few studies involving the texture analysis of 

historical black and white imagery (Hudak & Wessman, 1998, 2001) Historical black and 

white aerial photography can be difficult to interpret for several reasons. 

This type of imagery is often several decades old, and deterioration of the 

physical image is an issue that can affect the outcome of analyses related to classification. 

Access to historical black and white imagery is relatively simple since the United States 

Geological Survey (USGS) has archived over 2 million historical black and white images 

and made them available for purchase (USGS); however, images are limited to the areas 

where they were taken. Historical contextual data for the surrounding area of the image 

may be difficult to acquire. Finally, due to the spectral information available in black and 

white imagery, the methods used to analyze multi-spectral or hyper-spectral imagery 

cannot be employed.  

This study focused on the use of historical black and white imagery to achieve a 

decadal scale view of changes in habitat environments of Horn Island, MS over a seventy 

year period. The main purpose for this research was to devise a geo-statistical method to 

successfully determine and classify habitat types, using image texture black and white 

imagery, and to create a habitat map ca. 1940 of Horn using (USGS) historical black and 

white aerial imagery and 2010 (USDA) (NAIP) imagery at one meter spatial resolution. 

By conducting one of the most common and reliable, texture analysis techniques known 
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as co-occurrence matrix moving window analysis, a method was implemented for the 

classification of the historical 1940 USGS aerial imagery by using the geo-statistics 

calculated for the habitat types determined for the 2010 (NAIP) imagery as a reference 

for past habitat types. 

This island was chosen as a study site for the location and barrier island dynamics 

that cause physical and ecological changes within a relatively short timeline as well as 

access to high resolution, quality imagery. Comparing imagery from 1940 and 2010 gave 

insight to the relationship of climate change and the processes that affect Horn Island 

(e.g., sea level-rise, major storm events, and sediment budget) through habitat changes of 

a barrier island ecosystem on a decadal scale.  

Study Site 

 Horn Island is part of the MS/AL barrier island chain. This island chain formed 

around 4,000 years ago when the rate of sea-level rise slowed allowing for sediment 

coming from Mobile Bay, AL to be deposited on sand platforms. Due to prevailing wind 

and wave direction, these islands drift westward and toward the mainland. Horn Island is 

the largest island in the chain at around 1260 hectares (ha) in area and is located 

approximately 18km off the Mississippi coast (Lucas & Carter, 2008; Morton, 2008; 

Otvos, 1981; Pilkey, 2003) (Figure 2). 

Past Environment 

 For the purpose of this study it is important to understand Horn Island’s past 

habitats. In 1941 Pessin and Burleigh described Horn Island habitats in detail. Pessin and 

Burleigh (1941) described average temperatures in the summer and winter around 80.7◦F 

and 52.9◦F. Mean annual precipitation was estimated at 58 inches, and Horn Island was 
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13 miles long and approximately three quarters of a mile wide. The island consisted of 

ridges and swales with slash pine (Pinus elliottii) dominating the landscape. Pessin and 

Burleigh (1941) go on to describe heavily wooded areas consisting of slash pine (Pinus 

elliottii) along the borders of these ridges confined to the swales. Evidence of fire was 

noted on the western end of the island; however, Pessin and Burleigh determined that the 

island had not been burned in at least 20 years prior to 1941. They surmised this being the 

main reason for the dominance of slash pine over the extent of Horn with some cases 

over 5000 slash pines per acre.  

 

Figure 2. Map of MS/AL barrier island chain (Morton, 2008). The arrows indicate a 
westward drift of the island chain due to prevailing wind and wave direction. 

These slash pines (Pinus elliottii) most likely had a small diameter breast height 

(d.b.h) (dog hair stands). They also describe the south side (Gulf) of the island as being 
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built up by wave action and windblown sediments. They describe the south western end 

of the forested areas of 20 feet wax myrtles being completely buried in windblown 

sediments. Wax Myrtle (Myrica cerifera), Yaupon holly (Ilex vomitoria), and beach 

rosemary (Ceratiola ericoides) are also common to this type of habitat. This type of 

habitat would be considered an estuarine shrub land. Dune habitats that would be 

considered dune herb land are located on the south side of Horn consisting of sedges, 

rushes, and grasses in high saline areas located on the south end of Horn where tides and 

over wash are common.  

Present Day Environment 

 Recent descriptions of Horn Island tell a story of land loss due to sea level rise, 

coastal subsidence, hurricanes, and sediment entrapment including the westward current 

effecting sediment transportation out into the Gulf (Lucas & Carter, 2010; Morton, 2008; 

Otvos & Carter, 2008). Hurricanes such as Andrew and Katrina as well as sediment 

entrapment from shipping channels have significantly altered the land area of Horn Island 

with a reduction of overall area by 23% and estimated at 1245 hectares in area since 2010 

Lucas and Carter 2010, 2012; Otvos and Carter 2008). The mean temperature for Horn 

Island, MS for winter and summer since Pessin and Burleigh (1941) has varied little with 

temperature at 12◦C (53.6◦F) and 27◦C (80.6◦F). As in the past Horn Island has similar 

habitat types of dune herb land, fresh and saltwater marshes, maritime forest (slash pine 

woodlands), lagoons, and freshwater ponds (Lucas & Carter 2010). Annual precipitation 

for present day Horn Island is 140cm (55.1 in).  

Observations, Research Questions, and Objectives 
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 When considering past habitat types on Horn Island, observations were made 

about the island itself and the use of historical black and white imagery. Several 

observations were considered concerning Horn Island 1) Since 1849 Horn Island has lost 

19% of its overall land area. 2) The RSLR on Horn Island is around 7mm yr-1. This gave 

rise to two questions regarding habitat type and change. 1) How has land loss affected the 

habitat types on Horn Island? 2) How has RSLR affected the habitat types on Horn Island 

over a seventy year period?  

Observations concerning black and white imagery are as follows 1) The USGS 

has over 2 million digitally archived historical black and white images available to the 

public. 2) The literature suggests that not much research has been conducted using 

historical black and white imagery’s spatial information for ecological research (Hudak 

& Wessman, 1998, 2001). 3) The spectral availability of historical black and white 

imagery is limited due to the technology accessible in 1940. 4) Only one historical habitat 

map is available for Horn Island but it only based on field observations from the late 

1970s (Eluterius, 1979; Lucas & Carter, 2008). Two questions concerning black and 

white were asked 1) Can historical black and white imagery be used to create a reliable 

habitat classification map? 2) Can habitat characteristics be determined using black and 

white imagery? 
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CHAPTER II 

IMAGE TEXTURE ANALYSIS METHODS 

Image Texture 

Texture 

When determining significant visual patterns, humans easily recognize spectral, 

textural, and contextual features to interpret what one sees inside an image (Haralick & 

Shanmugam, 1973). Contextual features are data derived from information neighboring 

the area of interest (Haralick, 1979). Spectral properties are average tonal differences 

derived from numerous bands of the visible and infrared ranges throughout the 

electromagnetic spectrum where textural properties are the spatial variations of these 

tones (Coburn & Roberts, 2004; Haralick, 1979; Haralick & Shanmugam, 1973). The 

concept of tone is based on varying shades of grey level pixels in a photographic image 

(Haralick & Shanmugam, 1973) and in the case of Horn Island, black and white aerial 

photographs.  

Texture vs. Tone 

These two properties of differences in grey level tones (brightness) between 

pixels and the spatial variations of tone of those pixels are not independent of one 

another. Two key relationships have been observed between tone and texture; if a small 

region or patch of an image has small variations in grey-levels of features, then the 

principal property is tone. Secondly, if a small region in an image has a wide-ranging 

variation within a small region, then the dominant property is texture (Haralick, 1979; 

Haralick & Shanmugam, 1973).These two properties make up the tone and texture 

concept which can be used to describe and characterize textural features. These 
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relationships vary according to the size and structure of a region and the number of 

distinct features within an image (Haralick, 1979; Haralick & Shanumugam, 1973). Tone 

and texture are what humans instinctively notice and interpret everyday by using 

eyesight. Tone and texture can be used in a variety of approaches and applications in 

image analysis.  

Texture Approaches 

 There are several approaches to texture image analysis to consider when 

classifying historical black and white imagery. 1) Structure based, 2) transform- based 

and 3) model based, and 4) statistical based (Bharati, Liu, & Mcgregor, 2004; Materka & 

Strzelecki, 1998; Van Gool, Dewaele, & Oosterlinck, 1985). Structure based approaches 

describe texture as the configuration of distinct primitives (tonal differences between 

pixels) that are regularly pattern. These patterns and texture features are defined by 

placement, as well as property (tonal and spatial) rules (Bharati et al., 2004; Carlucci, 

1972; Haralick, 1979; Materka & Strzelecki, 1998; Zucker, Rosenfeld, & Davis, 1975). 

These rules can be defined by line segments or open or closed polygons (Carlucci, 1972). 

The probability of the chosen tonal and spatial properties and the location of the 

properties can be characterized as strong or weak textures of the properties and location 

in question (Haralick, 1979). Weak textures are textures that have weak spatial 

relationships between tonal pixel values. Strong textures can be defined as having 

systematic relationships and patterns between tonal pixel values (Haralick, 1979). An 

example of a weak texture would be the image texture of the random placement and tonal 

properties of flat bare sand environment, and an example of a strong texture would be the 

crop rows of an agricultural field. 
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 Model based texture analyses develop an empirical model for each pixel based on 

weighted averages of pixel values within adjoining pixels (Baraldi & Parmiggiani, 1995; 

Materka & Strzelecki, 1998). Examples of texture model based analysis are 

autoregressive and fractal models. Autoregressive models assume that neighboring image 

pixel meaning pixel values are a weighted sum of neighboring pixel values (Haralick, 

1979; Materka & Strzelecki, 1998). These types of models are employed in texture 

segmentation (characterization by object identification) applications or texture synthesis 

applications. Autoregressive methods observe the linear dependencies between pixel 

values. These linear dependencies are the parameters of an autoregressive model 

(Haralick, 1979). Fractal models are yet another option to assess the shape and direction 

of image textures. Fractals are mathematical expressions that describe the shape and 

nature of certain natural scenes. These expressions have dimensions which humans 

recognize as the smoothness or roughness of a surface (Pentland, 1984). 

 Transform based texture analysis such as wavelet transform and Gabor transforms 

translate images into to a different form using spatial frequency properties of pixel values 

at multiple resolutions (Arivazhagan & Ganesan, 2003; Bharati et al., 2004). There are 

some disadvantages when using these transforms for texture classification. For example 

when looking at Gabor transforms at different scales, different filters must be used to 

properly characterize textures (Arivazhagan & Ganesan, 2003; Bharati et al., 2004). This 

means that every time this type of transform is implemented at different resolutions it 

must be tuned or adjusted. These transforms such as Gabor and wavelet transforms have 

been used recently for object based texture analysis which is similar to structure based 

texture analysis.  
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 Statistically based texture analyses are used with high order statistics to describe 

specific regions and their spatial frequency distributions. Techniques such as run length 

matrix also use high order statistics to portray coarse textures as having many contiguous 

pixels, having similar grey level tone and fine textures having a small number of 

contiguous pixels with similar grey level tones (Bharati et al., 2004; Van Gool et al., 

1985). This method specifies lengths of pixel with certain grey tone values with in a 

matrix. This matrix determines the number of times a length is present in an image and in 

what direction this length is running (Haralick & Shanmugam, 1973; Van Gool et al., 

1985).  

Co-occurrence Matrix  

One of the most cited and employed methods for statistical texture analysis is the 

Co-occurrence matrix. A co-occurrence matrix is an arrangement of frequencies of pixel 

pair elements. Pixel pair (i , j) can be defined as the number of times that a pixel value I is 

some distance and angle away pixel value j and the occurrence of variation between each 

pixel pair (Bharati et al., 2004; Haralick, 1979; Haralick et al., 1973; Honeycutt & 

Plotnick, 2008; Partio, Cramariuc, Gabbouj, & Visa, 2002). The co-occurrence matrix is 

calculated using angle and distance relations between neighboring pixels, eight neighbors 

for each pixel (Haralick, 1979; Haralick et al., 1973) (Figure 3). This type of statistical 

method implements second order statistics (e.g., Mean, Variance, Entropy, Energy, 

Contrast and Correlation) by assessing pixels at 0, 45, 90, and 135 degrees then moving a 

distance of one or more pixels and repeating the second order statistic calculation 

(Haralick, 1979; Haralick et al., 1973; Narashima et al., 2002) (Figure 3). Each record in 

a co-occurrence matrix relates to the number of occurrences of paired gray levels and can 
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be represented by 14 different second order statistics Bharati et al., 2004; Baraldi & 

Parmiggiani, 1995; Haralick, 1979; Haralick et al., 1973; Narashima et al., 2002; Partio et 

al., 2002).  

 

Figure 3. Co-occurrence matrix moving window analysis. This shows a 5x5 window size 
(outer box) second order statistics being calculated in the red box.  

Texture Measures 

Haralick defined 14 different second order statistics that could be used to estimate 

the similarity between gray level occurrences. The second order statistics that will be 

used for this research can be defined as such. Energy or Angular Second Moment (ASM) 

is a measure of texture homogeneity or uniformity; energy reaches its highest values 

when grey level distributions have a constant or intermittent repeated pattern (Haralick et 

al., 1973; Honeycutt & Plotnick, 2008). A homogenous image has few prevailing grey 

tone changes; therefore, the matrix has fewer values of larger magnitudes making ASM 

value larger. Entropy is measured as the disorder or complexity of an image. Entropy is 

highest when all elements of the co-occurrence matrix are equivalent. When the values of 

ASM and other features of a co-occurrence matrix are very small, this indicates entropy 
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being very large. So Entropy and ASM are inversely related (Baraldi & Parmiggiani, 

1995; Haralick, 1979; Haralick et al., 1973; Partio et al. 2002). 

Contrast measures the spatial frequency distribution differences between the 

highest and lowest pixel values of an adjoining set of pixels. This parameter is highly 

correlated with variance. Variance is a measure of heterogeneity between pixel 

neighbors. The more the pixels differ from the mean pixel values of, a specific window 

size, the higher the variance of that particular pixel related to its neighbors. Variance is 

highly correlated to the first order statistic of standard deviation (Baraldi & Parmiggiani, 

1995). The mean parameter is the average pixel values of neighboring pixels aggregated 

to the center pixel of a specific a specific window size. The correlation parameter is 

articulated by a coefficient between to random pixel pixels within a co-occurrence 

matrix. This measurement can be expressed as the gray tone linear dependencies with in 

an image (Baraldi & Parmiggiani, 1995). This means high correlation values mean a 

strong linear relationship exists between grey levels of pixel pairs. 

Spectral Information Available in 1940 Imagery 

In order to properly analyze the 1940 and 2010 imagery the spectral information 

available from the historical black and white imagery must be addressed. Assumptions 

must be made about the spectral sensitivity of the film and camera equipment presumably 

used for the 1940 USGS aerial imagery. The film that was most commonly used in the 

time period of 1940 was Super XX and the K-17 vertical cartography camera with a six 

inch focal length (Katz, 1948). The spectral sensitivity of Supper XX only went to 660nm 

just before the infrared spectrum (Cox & Munk, 1954). Assumptions of the use of a 

yellow filter were considered in order to account for atmospheric scattering (Cox & 
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Munk, 1954; Katz, 1948). This type of filter was common practice in 1940. These 

assumptions are limited to the spectral information available for the 1940 imagery. This 

is why a textural approach was chosen for the classification of habitat type on Horn ca. 

1940. Instead of measuring the spectral properties directly, the spatial distributions and 

differences in tone between each pixel were analyzed. In order to make comparisons the 

descriptions must be calibrated to similar spectral reflectance conditions before any 

texture analysis can be employed. It is of no use to conduct an analysis until the images 

are comparable. Devising calibration techniques to allow recent imagery to be 

comparable to historical black and white aerial photography would allow for a more 

accurate comparison to the 1940 imagery. By calibrating the 1940s and 2010 aerial 

imagery to percent reflectance an accurate a comparison can be employed using a textural 

moving window analysis. 

Methods 

Calibrating 1940 and 2010 Imagery 

Historical black and white imagery of Horn Island, Mississippi, from 1940 was 

acquired from the USGS, and 2010 NAIP imagery was obtained from the USDA for 

analysis. Both image data sets are 1 meter in resolution. The 1940 imagery was geo-

rectified to the NAIP 2010 imagery where both sets of imagery were masked by 

developing a region of interest (ROI) around 1940 and 2010 Horn Island shorelines using 

ENVI 4.8, which was used for all analyses in this study. This was done to reduce data 

processing time for any kind of analysis. The 2010 NAIP imagery has 4 bands that can be 

used: red, green, blue, and infrared. The red, green and, blue bands were averaged to 

create a panchromatic image of Horn Island ca. 2010. The infrared band was not used 
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because of the film sensitivity assumption of 660nm. The 2010 imagery was darker than 

the 1940 imagery; therefore, the 2010 image data set was stretched to the range of the 

1940 imagery of BVs (0 to 242) (Figure 4). Thresholds were determined for the brightest 

areas of bare sand for each image data set to select bare sand BVs within a certain range. 

Four separate thresholds were created for each set of imagery. The threshold ranges, on 

an 8bit scale, for the 1940 imagery were as follows: 227-242; 229-242; 230-242, and 

232-242. The threshold ranges for the 2010 imagery were as follows: 223-242; 225-242; 

227-242; and 230-242 (Figure 5). 

 

Figure 4. Imagery used for analysis. Top image: USGS historical aerial photography 
from 1940; Bottom image: USDA 2010 NAIP imagery. Both image data sets are 8 bit 
and have a one meter spatial resolution. 
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Figure 5. Brightest bare sand areas. Top Image: Brightest bare sand areas on Horn Island 
ca. 1940. Bottom Image: Brightest bare sand areas on Horn Island ca. 2010. The highest 
intensity areas are seen in white. 

This allowed for a more accurate and precise measurement of the brightest bare 

sand areas in the image data sets. After the brightest bare sand areas were determined, 

20,000 bare sand BVs were sampled from the concentrated values selected by the 

smallest threshold range for each image. 20,000 BVs were sampled to provide a good 

representation of the mean of the BVs sampled, varying only one decimal point of the 

brightest bare sand areas on Horn Island ca. 2010 (Figure 5). 1940 and 2010 Horn Island 

imagery correction factors were calculated by plotting 20,000 bare sand brightness values 

from each raw image against field mean spectral reflectance data of bare sand from Horn 

Island at a range of 500nm to 660nm (Figure 6). The field spectral data range was 

selected to account for a yellow filter being used as well as film sensitivity when the 1940 
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imagery was taken. The slopes calculated from this linear regression were used to 

calibrate to spectral reflectance. 

 

Figure 6. Mean pixel values for 2010 and 1940. 20,000 raw pixel values were sampled to 
determine the mean BV for bare sand for each image data set. Graph on left mean pixel 
values of 2010 NAIP imagery; Graph on right: Mean pixel values of USGS 1940 
imagery. 

 

Figure 7. 2010 and 1940 linear regression. The slopes for each image data set were used 
to calibrate to percent reflectance. The slopes show precise standardization of the image 
data sets. 

 

220

225

230

235

220

225

230

235

y = 0.2515x - 0.0012

y = 0.2491x - 0.0004

55

56

57

58

59

60

61

220 225 230 235 240 245

S
p

ec
tr

al
 R

ef
le

ct
an

ce
 (

%
)

Pixel Brightness Value (BV)

2010 USDA

1940 USGS



25 
 

 
 

Determining Habitat Types for 2010 and 1940 

Habitat Sampling for 2010 

 A 2010 GPS habitat database was created by the Gulf Coast Geospatial Center, 

using ArcMap 10.0 for the entire MS/AL barrier island chain. Each GPS point had 

information concerning primary and secondary plant species for the corresponding GPS 

points (Figure 7). 

 

Figure 8. 2010 GPS geo-database. This map shows the randomly selected GPS points 
that were used to represent habitat types. 
 

Along with the plant species information, oblique photographs for each cardinal 

direction (N, E, S, and W) were also attached to each point. Six habitat types were 

determined for the 2010 GPS database using the primary and secondary plant species and 

the definition of definitions of barrier island habitat types provided by the Mississippi 

Natural Heritage Program (2006), as a guide (i.e., bare sand, dune herb land, estuarine 

shrub land, marsh, slash pine woodland and water). The sample point density for Horn 

Island is one GPS point for every 7 hectares (ha). Additional sample points were added to 

each habitat type by using the cardinal directional photographs attached to each GPS 

point. This was done to increase the sample point density for each habitat type for the 

2010 NAIP imagery and to increase accuracy for classification purposes. Sample points 

were selected by estimating one meter increments away from a range pole placed in each 
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photograph. One meter increments were chosen due to the spatial resolution of the image 

data sets being one meter. 

1940 Horn Island habitat assumptions, coefficient of variation (CV), and sampling

 Assumptions had to be made about the habitat structure of each habitat type for 

Horn Island ca. 1940. In order to predict and estimate habitat types for 1940 habitats it 

was presumed that the habitat structure (e.g., canopy size, and patch size) was the same 

for 2010 and 1940 Horn Island habitats. With this assumption a way to compare habitat 

structure that was independent of magnitude was needed in order to achieve comparable 

habitat types. The horizontal variation of the percent spectral reflectance or coefficient of 

variation (CV) images were created for 2010 and 1940 imagery by implementing a co-

occurrence matrix moving window analysis for 5x5, 11x11, 15x15, 21x21, and 31x31 

window sizes that were used to determine the CV values for habitat types. 

CV images were created by running the co-occurrence matrix moving window 

analysis using the mean and variance algorithms for each window size and by 

implementing the band math tool in ENVI 4.8. By squaring the variance image a standard 

deviation image was produced. Then by dividing the standard deviation image by the 

mean image, a CV image can be calculated. By using the sample pixels collected for each 

habitat type from the 2010 GPS database, CV values for each 2010 habitat were 

determined and ranges of CV values were calculated using the minimum and maximum 

values for each habitat type ROI. 2010 CV value ranges were then used to determine 

thresholds for the 1940 imagery. These ranges are as follows: slash pine woodland, 

estuarine shrubland, marsh, and beach dune herbland. Pixel CV values were sampled for 
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the 1940 image data set based on these thresholds at comparable point densities to the 

2010 imagery.  

Maximum likelihoods using Texture Image Analysis and Percent Land Cover 

 Maximum likelihood (ML) classifications were made for each moving window 

size to determine which window size produced the highest overall accuracy using a 

confusion matrix. The Maximum likelihood method is a supervised classification method 

that assumes pixels within image bands are normally distributed and relies on the 

probability that a given pixel is correctly placed into one of the predefined classes 

(Jensen, 2007; Lucas & Carter, 2008; Peneva et al., 2008). This method uses training 

data, along with the pixels sampled, to take into account the variability of each distinct 

ROI or region of interest. This is one of the most reliable and accurate methods of 

classification which is why this method was used to classify each habitat type. A 

confusion matrix was employed to determine overall accuracies for each ML 

classification. Within the confusion matrix, commission and omission errors were used to 

determine how well the pixels were correctly placed in each habitat type. Commission 

error represents pixels that belong to another class that are labeled as belonging to the 

class of interest. Omission error represents pixels that belong to the ground truth class but 

the ML classification classified them as something else. In other words commission 

errors determined the error in the training pixels selected, and the omission error 

determined the error or the sample pixels that represent the GPS points and pixel selected 

using the cardinal directional photos. 

 Four other texture algorithms were employed for the ML classification. Entropy, 

ASM, correlation, and contrast. Overall accuracy for each ML classification was 
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calculated by a confusion matrix accuracy assessment. This matrix calculates overall 

accuracy by summing the number of pixels classified correctly and dividing it by the total 

number of pixels in the image. After determining the highest overall accuracies, the 

21x21 window size ML was used to calculate percent land cover for each habitat type for 

both 2010 and 1940 imagery. Using class statistics in, ENVI 4.8, total land area in 

hectares of all habitat types were computed for Horn Island ca. 1940 and 2010. Then the 

total area of each habitat was divided by the total area of Horn Island for the 

corresponding time period to determine percent land cover for each habitat type. 

Indicative Habitat Structure 

 Habitat structure was determined by using a similar multi scale method by 

employing different window sizes (5x5, 51x51, 101x101, 125x125, 151x151, 175x175 

201x201, 225x225, 251x251, 300x300, and 350x350) using CV values for each habitat 

type to observe changes in horizontal spectral variation. To analyze habitat structure the 

mean CV values were calculated using the sample pixel values collected for each habitat 

type and displayed in bar graphs depicting a standard bell curve of horizontal variation of 

each habitat type. This method was employed to represent characteristics indicative of 

each habitat type at a specific window size. It was determined that analyzing habitat types 

in this matter could assist in revealing characteristics such as patch size or anything that 

may divulge any information concerning the structure of a habitat type by looking at the 

maximum variation of a habitat type at a given window size.  
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CHAPTER III 

HABITAT CHANGE AND STRUCTURE, RESULTS AND DISCUSSION 

Results 

Overall accuracy results of ML classifications 

The least accurate classification for the 1940 imagery was the 7x7 moving 

window analyses with an overall accuracy of 44.50%. The least accurate classification for 

the 2010 imagery was the 5x5 window size at an overall accuracy of 60.10%. A pattern 

developed showing an increase in accuracy with an increase in window size, with 

multiple peaks at the 11x11 and 21x21 window size with an overall accuracy at 80.1% 

for 1940 and 84.4% for 2010 for the 21x21 window size (Table 1). The literature 

suggests smaller window sizes cannot capture the true nature of texture in an image 

(Maenpaa & Pietkainen, 2003; Pacifici, Chini, & Emery, 2009). Several studies have 

seen similar patterns using texture for classification purposes (Coburn & Roberts, 2004; 

Hudak & Wessman, 1998, 2001; Pacifici et al., 2009). 

Change Detection of Habitat Types on Horn Island  

The total land area for Horn Island ca. 1940 was approximately 1550 (ha). The 

overall percent land cover percentage for each habitat type for Horn Island ca. 1940 is as 

follows: Slash Pine Woodland 25%; Estuarine Shrubland 21%; Dune Herbland, 12%; 

Marsh 4%; Bare Sand; 32%, and Water 7%. The total land area for Horn Island ca. 2010 

was approximately 1262 (ha). The overall percentage of land cover for each habitat type 

of Horn Island ca. 2010 is as follows: Slash Pine Woodland, 9%; Estuarine Shrubland, 

24%; Dune Herbland, 23%; Bare Sand, 13%, and Water, 6% (Table 2 and Figure 7 ). 
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Table 1 

Overall Accuracies for 2010 and 1940 Window Sizes (%) 

 
Window Size 2010 Horn Island 1940 Horn Island 

5x5 

7x7 

9x9 

11x11 

13x13 

15x15 

17x17 

19x19 

21x21 

31x31 

75.37% 

82.82% 

86.88% 

88.85% 

83.02% 

80.17% 

80.73% 

82.49% 

84.36% 

67.50% 

60.10% 

44.50% 

66.28% 

77.68% 

74.48% 

75.43% 

73.16% 

70.56% 

80.01% 

61.20% 

 

 

  

 

 

 

 

 

 

 
 
 

 
 

Figure 9. Horn Island 21x21 window size classifications. Top map: Horn island ca. 1940; 
Bottom map: Horn Island ca. 2010. 
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Slash pine woodland decreased in percentage of cover by 16%. Bare sand 

percentage also decreased by 19% where estuarine shrubland, dune herbland, and marsh 

habitats increased: estuarine shrubland by 4%, dune herbland by 11%, and marsh by 

22%. The habitat type water remained fairly consistent, only decreasing in percentage 

land cover by 1%. Based on the observations made during this study it is possible to 

surmise what has caused these changes in habitat type over a seventy year period on Horn 

Island. 

Table 2 

Percent Land Cover for 1940 and 2010  

Habitat Types 1940 % Land Cover 2010 % Land Cover 

Bare Sand 
Slash Pine Woodland
Estuarine Shrub Land
Dune Herb Land 
Marsh 
Water 

32 
25 
21 
12 
4 
7 

13 
9 
24 
23 
26 
6 

 

Note. This table shows the 21x21 window size percent land cover results over a seventy year period. Notice the decrease in slash pine 

woodland and the increase in marsh habitats. 

Habitat Structure  

 The slash pine woodland bell curve shows a maximum horizontal variation at a 

window size of 45x45 with a CV of 18.8 (Figure 8). Marsh and dune herbland habitats 

could not be successfully characterized (Figure 9 & 10). The estuarine shrubland CV 

histogram responded similarly as the marsh and dune herbland habitats (Figure 11). Bare 

sand characteristics were not developed due to CV values being constant throughout all 
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windows sizes. These curves were distinct provide spatial variation indicative of each 

habitat type. 

Discussion 

Calibration and Classification Method for Black and White Imagery 

 The goal to develop a method to classify the 1940 USGS Horn Island imagery 

was met with success. Given the results of the linear regression used to calibrate, the 

imagery reveals the importance of calibrating the 2010 imagery to the image conditions 

(i.e., film sensitivity, yellow filter, and difference in overall brightness) to the 1940 

imagery (Figure 5). Replicating of the image conditions of the 1940 imagery to the 2010 

imagery and calibrating the imagery to spectral reflectance, allowed for the comparison 

of image data sets for analysis. This step standardized the spectral reflectance range in 

intensity for both sets of imagery. Validation of these assumptions can be seen by 

observing the slope correction factors calculated for each image (Figure 5). The 

correction factors were within 3/1000 of one another showing that the image conditions 

for the 2010 imagery were almost identical to the 1940 imagery. The assumptions made 

in this study concerning the film sensitivity and yellow filter use for the 1940 imagery 

limited the spectral information available for analysis; however, they were necessary for 

comparison of habitat types both image data sets. 

Classification Method 

 CV pixel values proved to be an effective reference for determining habitat types 

for Horn Island ca. 1940. Overall accuracies for the 2010 and 1940 imagery were 84.4% 

and 80.1%, successfully classifying six habitat types for a 21x21 window size. This 

suggests that the assumption that habitat structure has not changed over this 70 year 
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period is valid. If the overall accuracies had a greater difference it could be assumed that 

habitat structure has changed over a 70 year period. This would mean that the ranges of 

2010 CV values used as reference for habitat types would have less of a chance of 

existing in 1940, making it apparent that certain habitat types do not exist anymore or 

have structural changed over time. The objective of creating a reliable, with at least an 

80% accuracy, habitat map of Horn Island ca. 1940 is possible with only present day CV 

values and the spatial information. 

ML Classification Overall Accuracies 

The multi scale approach taken to analyze the 1940 imagery raises certain issues 

when considering accuracy at different window sizes. The data suggested multiple peaks 

in accuracies can occur with increasing window size. The peaks reveal the effects edge 

misclassification along transition areas between habitats. Research has shown that when 

using a multi scale texture approach issues arise with edges of textures transitioning into 

another texture; as the window crosses these boundaries, it analyzes the combination of 

the two different textures (Csillag & Kabos, 1996; Franklin, Wulder, & Gerylo, 2001; 

Coburn & Roberts, 2004; Kim, Warner, Madden, & Atkinson, 2011). Coburn and 

Roberts (2004) state that this edge effect is most apparent with increasing window size 

and can lead to the misclassification of the edges of texture features, particularly at the 

edges of spatially homogenous areas such as a body of water or bare sand. The peaks 

shown in the overall accuracy data show the effects of this phenomenon with decreasing 

accuracy as window size increases. This problem was addressed by looking at the 

commission and omission errors for each habitat at each different window size.  
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Analyzing the omission and commission errors within the confusion matrix was 

helpful in understanding why the 21x21 window size had the highest accuracies for both 

2010 and 1940 (Table 3). Coburn and Roberts’ (2004) research also observed local 

variance of an image at different window sizes and determined that smaller window sizes 

provided higher accuracies, to more homogenous areas, whereas larger window sizes 

provided higher accuracies for more heterogeneous areas. With this information it can be 

said that there is no optimal window size to classify habitat types for Horn Island. 

 Since smaller window sizes are better at representing more homogenous areas 

such as bare sand, water, and marsh habitats, lower commission and omission errors were 

expected for the smaller window sizes (i.e., 5x5, 11x11). This was particularly apparent 

in the bare sand habitat types for 1940 and 2010. However, the other habitat types (i.e., 

slash pine woodland, estuarine shrubland, dune herbland) are not homogenous and are 

better represented by the larger window sizes (i.e., 21x21, 31x31). The 31x31 window 

size was not used for classification due to the given lower accuracies (Table 3). 

Percent Land Cover Change 

 Slash Pine Woodland, Estuarine Shrubland, and Dune Herbland Percent Land 

Cover Change. Slash pine woodland decreased in land cover by 16%. This would most 

likely be primarily due to Hurricane Katrina. A senior honors thesis at The University of 

Southern Mississippi concluded that there was an 80% slash pine mortality rate after 

Katrina (Hughes, 2008). Effects from the hurricane such as salt water intrusion and wind 

damage were the main causes of mortality. It is important to note that the 2010 imagery 

had large areas that were classified as estuarine shrubland that were formerly slash pine 

woodland. These areas had suffered severe wind damage evident in the cardinal 
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directional photos used for 2010 classification purposes. The land cover of the estuarine 

shrubland habitat type before Katrina is unknown; therefore, the 4% increase could be 

somewhat misleading since the amount of land cover for estuarine shrubland before 

Katina is not known. The dune herbland habitat has increased in land cover due to major 

storm events that cause the over wash of sand into the interior of the islands, covering 

habitats behind the primary dunes. These over washed areas eventually are populated by 

plant species that are in line with the successional patterns of barrier islands (Fahrig, 

Hayden, & Dolan, 1993; Stallins & Parker, 2003).  

 Bare Sand and Marsh. The reduction of the bare sand habitat type can be 

associated with land loss over the past century due to shipping channels being elongated, 

widened, and deepened, causing sediment to be trapped within the augmented channels. 

This sediment was then dredged and transported to offshore sights away from the barrier 

island chain, effectively starving the islands of sediment supply (Lucas & Carter, 2008; 

Morton, 2008; Otvos & Carter, 2008). The increase in marsh habitat can be attributed to 

the RSLR. The RSLR for Horn Island is around 7 mm yr-1 (Lucas & Carter, 2008). This 

means the sea-level has risen approximately 490 mm, just under half a meter. With this 

rise in sea-level the water table of the island has been pushed up making drier habitats 

wet and at a lower elevation with respect to the water table and the shore line (Brinson et 

al., 1995; Lucas & Carter, 2008).  

RSLR and Hurricane effects on Horn Island’s Ecosystem  

 The effects of RSLR and Hurricanes have caused major alterations to the 

ecosystem of Horn Island. Effects have led to changes in climax communities (i.e., slash 

pine woodland to estuarine shrubland) and changes in dominate habitat types (i.e., slash 
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pine woodland to marsh). Hurricane alterations are intermittent and have a direct effect 

on habitat types causing physical damage such as wind damage and over wash areas. 

Hurricane Katrina played a significant role in shifting climax communities based on the 

80% slash pine mortality rate calculated (Hughes, 2008). A climax community species 

can be defined, for this study, as a habitat type that is the highest level of plant succession 

on Horn Island. This type of alteration is immediate and happens over a short time period 

unlike the effects of RSLR which are gradual and continuous. With the increase in land 

cover of marsh, it can be inferred that RSLR is changing the dynamics of Horn Island’s 

fresh water lens, and the elevation of habitat types causing drier habitat types, which exist 

at higher in elevations, to transition in to habitat types found at lower elevations (Brinson 

et al., 1995). 

Habitat Type Characteristics  

  In order to understand the meaning of these CV curves, it is necessary to realize 

what each habitat types’ texture composition (i.e., texture properties). Texture properties 

are the elements that make up the spatial pattern presented by the pixels in the image i.e. 

(background, shadows, and, canopy). The background consists of mainly the soil type 

and any organic matter that may be on the ground at the time of the image being taken. 

The spatial variability between these texture properties can be seen by noting the CV 

histograms for a habitat type. 

 When analyzing the shape and peak of these histograms, it is important to 

understand that the variance and mean values at different window sizes is being used to 

represent a habitat type. The shape of the histogram is dependent on the size of the object 

or texture feature (Zucker et al., 1975). Zucker et al. (1975) give three examples of this 
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relationship: 1) When the window size is smaller than the object measured the larger 

consistent regions are detected resulting in a steep, narrow curve; 2) When the window 

size is comparable to the object or texture feature being measured the shape is more 

Gaussian like, and is centered on increasingly higher values; and 3) When the window 

size is much larger than the objects measured than the histogram decreases in size and 

becomes inconsistent (Zucker et al., 1975). The variance (sum of the squares) second 

order statistic calculated by the co-occurrence matrix show the local variation of 

occurrences within a given window size (Haralick & Shanmugam, 1973). So this texture 

measure determines the characteristic variation between texture properties. Regions with 

high CV values show areas of high variability between texture properties. These highly 

variable areas are characteristics that define the texture for a given habitat. When the 

differences in variation are considerably unalike, it means that texture properties are 

similar considering a brightness range of 0 to 242, meaning it takes more pixels (space) to 

reach the maximum mean CV. Therefore, a larger window size is needed to represent the 

texture of said habitat because areas of high variation are spatially spread out. When 

mean CV value differences are small, it means the texture properties are noticeably 

different, when considering a brightness range of 0 to 242 CV, and have higher 

variability between texture properties are spatially clustered, meaning less pixels (space) 

are needed to characterize the texture of said habitat type. Therefore, a smaller window is 

needed to denote the texture of said habitat type. When the texture is fully represented by 

the peak window size it can then be inferred that the peak window size is a distinct 

relative patch size of a habitat.  
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 Slash Pine Woodland. When interpreting this type of habitat, shadows from tree 

canopies were a regular pattern, as well as the canopy itself with the dead pine needles 

and debris on the ground as a background were associated with the habitat. Causal 

observations show, when considering a brightness scale of 0 to 242, that these properties 

are considerably different. The shadows of the canopy are very dark, black. The tree 

canopies themselves are shades of grey layered with darker shades of grey with a 

somewhat rough texture that resembles clouds. The background of dead pine needles and 

debris are a very dark grey. A different scale is needed to determine the characteristic 

curve of the slash pine woodland due to the curve being so small. This habitat type, 

(Figure 10) shows a broad, more rounded, curve which peaks at the 45x45 window size. 

So texture properties for slash pine woodland are clustered. This texture composition 

causes a similar clumping of the slash pine woodland community on a habitat type scale. 

 

Figure 10. Slash pine woodland CV histogram. It can be seen that the 45x45 moving 
window is centered on the peak CV value. 
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 Bare Sand. The bare sand habitat type showed little to know variation between 

window sizes. This was expected due to the composition of the sand on Horn Island. The 

sand is made of quartz, small amounts of black minerals. This is proof that using bare 

sand raw pixel values as a spectral reference to calibrate the image data sets works well 

for the standardization of BVs. The fact that there is little to no variation between 

windows sizes shows a regular, smooth, and evenly reflective surface allowing for well 

identified end members for the linear regression calibration. 

Dune Herbland and Marsh. The CV curves for dune herbland and marsh are 

inconsistent with other habitat types (Figure 11 and 12). When calculating the larger 

window sizes, these habitat CV values were erratic and could not be calculated past the 

101x101 window size. This is most likely due to window sizes analyzed being too large 

for texture properties such as habitat types to be characterized (Zucker et al., 1975). 

However, the CV values were not low and did not start to behave unpredictably until 

much larger window sizes. With this understanding it was realized that in order to 

characterize texture for marsh and dune herbland, imagery with a higher spatial 

resolution than one meter is needed.  
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Figure 11. Dune herbland CV curve. Characterization was not possible due texture 
objects or highly variable area being smaller than one meter. 

 
Figure 12. Marsh CV curve. The variations are too large to go any larger in window size 
and could not be calculated.  
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because the thresholds selected to represent the habitat were not precise and accurate 

enough to determine a characteristic texture. It is proposed that a tighter threshold be 

created to better represent this habitat type (Figure 13). Issues arise with estuarine 

3.9 5.7 6.4 7.5 8.1 8.8 9.3 9.8 10.0 10.2 10.5 12.3
15.9

24.8

0
5

10
15
20
25
30
35
40
45
50

C
oe

ff
ic

ie
n

t 
of

 V
ar

ia
ti

on
s 

(C
V

)

Window Size 

4.3 6.7 8.1 9.8 10.8 11.9 12.5 13.2 14.0 15.8 17.1
20.2

23.3

45.7

0
5

10
15
20
25
30
35
40
45
50

C
oe

ff
ic

ie
n

t 
of

 V
ar

ia
ti

on
 (

C
V

)

Window Size 



41 
 

 
 

shrubland, because of the similarity in objects, or highly variable areas, to the marsh 

habitat types. The marsh habitat is actually two marsh habitat types low and high marsh. 

Low marsh is very homogenous with Spartina alterniflora, and high marsh is dominated 

by Juncus roemerianus which has a rougher more pronounced texture than low marsh 

resembling estuarine shrubland highly variable areas. These two habitat types were 

combined for classification purposes. If the range of CV values were smaller for this 

habitat type it could be suggested that the estuarine shrubland’s curve would be a better 

representation of the characteristic dimension of relative patch size.  

 

Figure 13. Estuarine shrubland CV curve. Variations were too large and could not be 
calculated. This is a function of the thresholds used not being precise enough for 
characterizing texture.  
 
Summary 

This study has proven the value of the spatial information available in historical 

black and white aerial photography. The characterization of past habitat types through 

image texture and geo-statistics (CV) were successful for Horn Island ca. 1940. A major 

factor in the success of this textural method was the calibration of the 2010 NAIP 
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imagery to the image conditions of the USGS 1940 image data set. By calibrating the 

2010 imagery to the 1940 imagery comparisons could be made knowing that the image 

conditions of both image datasets were similar. By standardizing the brightness values of 

each image data set, the pixel values were normalized to spectral reflectance; therefore, 

statistics could be employed and an accurate texture analysis could be run. This research 

provided the earliest known habitat map of Horn Island ca. 1940. This habitat map gives 

insight to how vegetation has responded to rising sea-levels, as well as hurricanes over a 

seventy year period, revealing a small portion of Horn Island’s life history.    
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