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ABSTRACT 

 

EXPLORING THE GLUCOCORTICOID ACTIONS OF 

 

1α-HYDROXYCORTICOSTERONE (1α-OH-B) IN THE ELASMOBRANCH FISHES 

 

by Faith Nichole Lambert 

December 2014 

The corticosteroid 1α-hydroxycorticosterone (1α-OH-B) is unique to the 

 

elasmobranch fishes. It is thought that 1α-OH-B acts as both the primary glucocorticoid 

(GC) and mineralocorticoid (MC) in these fishes, a dual role analogous to that of cortisol 

in the teleost fishes. The MC characteristics of 1α-OH-B are well supported, but data 

supporting its GC functions are lacking. In this study, the putative GC actions of 1α-OH- 

B were examined. The first experiment characterized the physiological stress response of 

the Atlantic stingray (Dasyatis sabina) to air exposure, with particular regards to the roles 

of corticosteroids and metabolic fuels. Results demonstrate that corticosteroids increase 

in a corresponding manner to glucose, supporting a GC role for 1α-OH-B. Also, to 

determine the ability of 1α-OH-B to regulate the transcription of genes classically 

regulated by GCs, I isolated and sequenced the mRNA encoding serum- and 

glucocorticoid- inducible kinase 1 (SGK1). SGK1 mRNA abundance was upregulated in 

red blood cells incubated with 1α-OH-B. The results of these studies support the putative 

GC actions of 1α-OH-B, including the correlation of 1α-OH-B with basal glucose in vivo 

and the first report of direct mRNA regulation by this unique corticosteroid. Future 

studies should focus on the characterization of transcriptional regulation by 1α-OH-B, 

including the identification of GC response elements in the promoter of SGK1 and other 

genes, and also the development of a specific antibody for the quantification of 1α-OH-B. 
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CHAPTER I 

INTRODUCTION 

Steroid hormones are a class of biological chemicals produced from cholesterol 

precursors in the adrenal/interrenal and gonadal tissues of vertebrates. Corticosteroids are 

a type of steroid hormone that are further divided into two groups: the mineralocorticoids 

(MC) and glucocorticoids (GC). MCs play a central role in the control of hydromineral 

balance, regulating ion balances through varying mechanisms including the control of 

membranous ion transporters. GCs regulate multiple metabolic processes, including 

glucose metabolism, and are especially important in mobilizing energy stores during the 

stress response. Both of these molecules play a significant role in many physiological 

functions. 

MC and GC molecules are lipophillic and therefore cannot be readily stored by 

cells. They are produced as they are needed and immediately released into circulation. 

These steroid hormones readily pass through cellular membranes, where they bind to 

intracellular mineralocorticoid receptors (MR) or glucocorticoid receptors (GR), 

respectively. MRs and GRs form dimers that then activate processes downstream, 

including transcriptional regulation of genes containing hormone response elements 

(HRE) in their promoter regions. 

In mammalian, amphibious, reptilian, and avian species mineralocorticoid and 

glucocorticoid functions are carried out by separate molecules. Either cortisol or 

corticosterone acts as the main glucocorticoid while aldosterone mainly performs 

mineralocorticoid functions. In teleosts, however, cortisol is the dominant corticosteroid 

hormone, and aldosterone is absent. Cortisol functions as both a mineralocorticoid and 
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glucocorticoid in these fish by binding to both the MR and GR with high and low 

affinity, respectively (Mommsen et al., 1999). If bound to the MR, cortisol elicits MC 

functions. If bound to the GR, cortisol elicits GC functions. In some respects, this can be 

considered a more simplified system. 

A unique situation is present in the elasmobranch fishes, where 1α- 

hydroxycorticosterone (1α-OH-B) is the predominant corticosteroid. 1α-OH-B is only 

found in these taxa, where it is the major product of the interrenal tissue (Idler et al., 

1967a; Klesch and Sage, 1975; Nunez and Trant, 1998). Previous publications have 

indicated that it likely possesses a dual role as a mineralocorticoid and glucocorticoid, 

similar to cortisol in the teleost fishes (for review, see Anderson, 2012). The MC 

properties of 1α-OH-B have been well documented, but evidence supporting the GC 

functions of this molecule are almost entirely lacking. Elucidating the potential GC 

functions of this ancient steroid is vital to our understanding of the elasmobranch stress 

response, which has important implications for the conservation of these species. 

Traditionally, cortisol is utilized as a stress indicator in teleost fishes. Understanding the 

role of 1α-OH-B would provide a similar tool for the elasmobranch fishes, allowing 

researchers to more readily evaluate the elasmobranch stress response. Additionally, 

elucidating the role of this corticosteroid will help aid in understanding the evolution of 

the HPA/HPI axis among different taxa. 

Until recently, the lack of synthetic 1α-OH-B availability and the need for 

accurate measurement techniques significantly limited progress in this field. There is no 

specific antibody for 1α-OH-B, which has made developing a specific assay for this 

corticosteroid complicated. However, the validation of a corticosterone enzyme linked 
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immunosorbant assay (ELISA) for the quantification of 1α-OH-B (Evans et al., 2010) 

and availability of synthetic 1α-OH-B (University of Mississippi) are now allowing for 

further advances in its study. 

The Physiological Stress Response and Corticosteroids 

 

The stress response is an organism’s reaction to a perceived threat and is 

composed of three parts (primary, secondary, and tertiary responses) (Barton, 2002). 

During the primary response, the endocrine system is activated. Catecholamines 

(epinephrine and norepinephrine) are released from storage almost immediately and 

facilitate the “fight or flight” response (Reid et al., 1998). This consists of energy store 

releases, improved cardiovascular tone, enhanced cognition, and the suppression of 

processes not necessary for immediate survival (Romero and Butler, 2007). These factors 

allow the animal to respond quickly by either fleeing the threat or fighting it off. 

The primary stress response also stimulates the hypothalamic-pituitary-interrenal 

(HPI) axis (Figure 1), which initiates a cascade of hormones culminating in 

glucocorticoid release (Barton, 2002; Sapolsky et al., 2000). Initially, the hypothalamus 

releases corticotrophin releasing hormone (CRH), which stimulates the pituitary to 

release adrenocorticotropic hormone (ACTH) (Romero and Butler, 2007). ACTH then 

activates production of glucocorticoids in the adrenal or interrenal tissue (Romero and 

Butler, 2007). The course of these actions takes a significantly longer time than the 

release of catecholamines. Initial effects of glucocorticoids may not be detected until 

approximately 3-5 minutes or more after the initiation of a stressor (Sapolsky et al., 

2000). These effects also last for an extended period of time (from hours to days). 
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Figure 1. Hypothalamic-Pituitary-Interrenal Axis. Corticotropin releasing hormone 

(CRH) is released from the hypothalamus after perception of a stressor. CRH 

stimulates release of adrenocorticotropic hormone (ACTH) from the pituitary, which 

in turn stimulates glucocorticoid (GC) release from the interrenal gland. GCs then act 

in a negative feedback loop on the hypothalamus and pituitary to shut-down the 

hormonal cascade. 
 

The secondary stress response consists of changes caused by catecholamines and 

glucocorticoids. These include changes in blood constituents and occur in order to 

maximally aid in survival (Barton, 2002). The affected organism will experience the 

release of energy stores such as glucose, accumulation of lactate from anaerobic 

glycolysis, respiratory acidosis (increased pCO2), blood acidosis (decreased pH), 

increases in plasma electrolytes, changes in hematocrit levels, and upregulation of genes 

involved in combating cell-level stress including transcription factors and other 

regulatory proteins, e.g., the serum- and glucocorticoid-inducible kinases (SGK) (Barton, 

2002; Romero and Butler, 2007; Sapolsky et al., 2000; Webster et al., 1993a, 1993b). 

Persistent stressors may cause secondary response effects to become chronic, 

resulting in a tertiary response (Barton, 2002). Short-term allocation of energy stores 

towards combating stress can provide the necessary means for immediate survival. 

However, extended states of disturbed homeostasis result in long-term deprivation of 

metabolic fuels in processes that include growth, immune function, and reproduction. 

Insufficient maintenance of these systems results in the degradation of the organism’s 
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overall health and fitness (Romero and Butler, 2007). Persistent issues can result in a 

population level crisis (Barton, 2002). 

1α-hydroxycorticosterone (1α-OH-B) 

 

Unlike its putative role as a glucocorticoid, the role of 1α-OH-B as a 

mineralocorticoid has been well defined. Mineralocorticoid actions have been 

demonstrated by sodium retention as the result of 1α-OH-B injections into rats (Idler et 

al., 1967b) and sodium transport across an isolated toad bladder (Grimm et al., 1969). 1α- 

OH-B increases in dogfish (Squalus acanthias) following stepwise transfers to 50% 

salinity, which is further evidence for a role of 1α-OH-B in ion retention (Hazon and 

Henderson, 1984). However, there is a lack of direct evidence supporting its role as a 

glucocorticoid. Injections of mammalian CRH and ACTH into dogfish (Scyliorhinus 

canicula) increased levels of circulating 1α-OH-B, suggesting its importance in the stress 

response (Hazon and Henderson, 1985). 1α-OH-B has also been shown to bind the 

ligand-binding domain of the putative glucocorticoid receptor of several elasmobranch 

species in vitro (Carroll et al., 2011). Previous studies have reported low levels of 

circulating corticosterone, a possible precursor to 1α-OH-B, in the blood of several 

elasmobranch species (Rasmussen and Crow, 1993; Snelson et al., 1997; Truscott and 

Idler, 1972). However, the elasmobranch interrenal gland has only been shown to 

generate 1α-OH-B in response to stimulation by ACTH (Klesch and Sage, 1975; Nunez 

and Trant, 1998). Furthermore, reported elevations in plasma corticosterone have been 

acknowledged as likely being caused by a low cross-reactivity of corticosterone 

antibodies with 1α-OH-B rather than the presence of corticosterone itself (Manire et al., 

2007). To date there have been no published measurements of circulating 1α-OH-B in 
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elasmobranchs during exposure to stress. Furthermore, while injection of ACTH results 

in increased plasma glucose in S. acanthias (DeRoos and DeRoos, 1973), there are no 

records of direct effects of 1α-OH-B on glucose metabolism, a primary action of 

glucocorticoids and hallmark of the secondary stress response. However, this may be 

complicated by the unusual energy metabolism of the elasmobranch fishes, as discussed 

below. 

Elasmobranch Ketone Body Metabolism 

 

The elasmobranch fishes seem to have a unique dependence on ketone bodies. 

Ketone bodies are metabolic fuels produced by the liver and include acetoacetate, β- 

hydroxybutyrate (βHB), and acetone. These molecules generally circulate in low 

concentrations and are used as metabolic fuels when glucose (the primary oxidative fuel) 

is not readily available (Laffel, 1999; Nordlie et al., 1999). However, multiple studies 

have indicated that the energy metabolism of elasmobranchs has a heavy reliance on 

ketone bodies (primarily βHB; for review, see Speers-Roesch and Treberg, 2010). βHB 

appears to increase the efficiency of multiple physiological functions in these fishes 

including osmoregulation (Walsh et al., 2006) and muscle recovery (Richards et al., 

2003). In addition, the comparatively high activity of D-β-hydroxybutyrate 

dehydrogenase (βHBDH, which is utilized in ketone body metabolism) in elasmobranch 

tissues, as opposed to that of teleosts, suggests that these compounds are of primary 

importance as fuel in elasmobranchs (Zammit and Newsholme, 1979). 

The liver, which is a primary organ for producing oxidative fuels, has been shown 

on multiple occasions to preferentially produce ketone bodies in the elasmobranch fishes. 

The livers of multiple shark species demonstrated high capacities for ketogenesis in a 
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study conducted by Watson and Dickson (2001). Furthermore, hepatocytes from the little 

skate, Raja erinacea, produce ketone bodies in vitro (Mommsen and Moon, 1987). 

Therefore, whereas the glucocorticoids of most taxa stimulate gluconeogenesis in the 

liver, the primary “glucocorticoid” function of 1α-OH-B may instead be to induce 

ketogenesis. 

Experimental Design and Hypotheses 

 

This study provides deeper insight to the physiological stress response of 

elasmobranchs, with emphasis on the role of 1α-OH-B during these changes. The project 

is divided into two main parts that encompass both in vivo and in vitro experiments. The 

first focuses on the role of 1α-OH-B in the endocrine stress response and evaluates 

changes in circulating levels of 1α-OH-B, glucose, βHB, and other relevant blood 

constituents following induced stress. The second set of experiments focuses on a likely 

gene target for direct regulation by 1α-OH-B, serum- and glucocorticoid-inducible kinase 

1 (SGK1). The mRNA encoding SGK1 was isolated and characterized. Its involvement 

during the stress response and regulation at the transcriptional level, after exposure to 1α- 

OH-B in vitro, was also evaluated. 

In the following chapters, experiments will address four main hypotheses: 

 
1. Circulating concentrations of 1α-OH-B in elasmobranchs increase as a part of the 

physiological stress response. 

2. βHB increases as circulating levels of 1α-OH-B increase in vivo. 

 

3. SGK1 mRNA increases in red blood cells in vivo during the stress response of 

elasmobranchs. 

4. When elasmobranch tissues are exposed to 1α-OH-B in vitro, SGK1 mRNA 

transcript abundances increase. 
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Animal Model 

 

Dasyatis sabina, the Atlantic stingray, was the model species for this study. D. 

sabina are accompanied by a wealth of published knowledge regarding their biology, 

physiology, and molecular endocrinology. This species has previously been used to study 

the in vitro regulation of 1α-OH-B synthesis by stress and osmoregulatory hormones 

(Evans et al., 2010). Additionally, mRNA encoding multiple enzymes involved in 1α- 

OH-B steroidogenesis have been isolated and sequenced from this species (Evans and 

Nunez, 2010). 

D. sabina are abundant inhabitants of the Mississippi sound, where they are easily 

attainable by trawling. Captured animals were maintained at The University of Southern 

Mississippi Gulf Coast Research Laboratory and fed a diet of shrimp every other day 

until satiated. All procedures involving D. sabina were approved by The University of 

Southern Mississippi Animal Care and Use Committee (IACUC protocol #13031403, see 

Appendix). 
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CHAPTER II 

 

THE PHYSIOLOGICAL RESPONSE OF THE ATLANTIC STINGRAY, DASYATIS 

SABINA, TO AN ACUTE STRESSOR 

Background 

 

It is well known that the classical endocrine stress response leads to 

glucocorticoid production (Barton, 2002; Sapolsky et al., 2000). Glucocorticoids aid in an 

organism’s fight or flight response through the mobilization of energy stores including 

stimulation of gluconeogenesis (Sapolsky et al., 2000). Although it is presumed that 1α- 

OH-B functions as the main glucocorticoid hormone of elasmobranchs, there has been no 

published data directly indicating the effects of stress on its production or direct effects of 

1α-OH-B on glucose metabolism (Anderson, 2012). 

The elasmobranch stress response is composed of physiological disturbances that 

closely reflect those of stressed teleost species. The secondary stress response has been 

well documented for a variety of elasmobranchs (Brooks et al., 2011; Hoffmayer et al., 

2012; Hoffmayer and Parsons, 2001; Kneebone et al., 2013). Stress levels in these 

species can be assessed by characteristic changes in blood chemistry, such as osmolytes 

imbalance, blood acidosis, and increased metabolic fuel mobilization, as described 

previously. 

Ketogenesis may play a unique and essential role in the elasmobranch stress 

response. The relatively high concentrations of ketone bodies (especially βHB) in 

elasmobranch species may indicate their importance as an energy source for these 

organisms. To date, no measurements of βHB concentration during exposure to stressors 

have been documented in elasmobranchs. The findings of this study therefore provide 
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novel information regarding the role of ketone bodies in elasmobranch energy 

metabolism. 

Air exposure is a common stressor experienced by elasmobranchs caught as 

bycatch in both commercial and recreational fishing (Cicia et al., 2012; Renshaw et al., 

2012) and results in significant departures from physiological homeostasis. Air exposure 

causes collapse of the gill lamellae, thereby inhibiting gas exchange and severely 

reducing oxygen availability (Cicia et al., 2012; Ferguson and Tufts, 1992). Decreased 

oxygen availability for even brief intervals can cause severe disruptions in metabolism 

and blood chemistry (Ferguson and Tufts, 1992; Milston et al., 2006). Air exposure has 

successfully been used as a consistent and repeatable stressor in many experiments on 

both teleosts and elasmobranchs (Acerete et al., 2004; Cicia et al., 2012; Davis and 

Schreck, 2005; Ferguson and Tufts, 1992; Suski et al., 2007). 

In this experiment, D. sabina were assessed for changes in physiology during a 30 

minute air exposure stressor and also 48 hours after the stressor (to examine recovery). 

Measurements of secondary stress response indicators (pH, lactate, pCO2) were used to 

assess the severity of the stressor over time. Additionally, a large suite of plasma 

osmolytes was quantified to determine any ionic imbalance associated with stress. 

Corticosteroids were assessed during the stressor alongside changes in metabolic fuels 

(glucose and βHB) to determine any potential glucocorticoid effects. Additionally, 

alanine, an intermediate in glucose metabolism, was evaluated to provide potential 

insight about observed changes in plasma glucose concentrations. The combination of 

these measurements provides a complete picture of the physiological changes occurring 

during the stress response of elasmobranchs. 
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Methods 
 

Animal collection and handling 

 

In this study, D. sabina (n = 11) were captured by trawl off the coasts of 

Mississippi and Alabama. Only mature male animals were used in order to minimize 

differences in circulating hormones due to sex or age. Animals were maintained in four 

recirculating 500-gallon tanks at 21 ppt seawater that were monitored regularly for 

nutrient concentrations and dissolved oxygen. Stingrays resided in this facility for no less 

than two weeks prior to experimentation. Tanks were housed in a covered wet lab facility 

with screened-in windows; therefore, stingrays experienced natural temperatures and 

photoperiods. Water temperature on the morning of the stress experiment was 22°C while 

air temperatures were only slightly warmer at 25°C. All stingrays appeared healthy and 

were feeding regularly, on shrimp, before the study was conducted. They were fasted for 

three days prior to experimentation to avoid changes in circulating glucose as a result of 

food intake. 

Stressor and sample collection 

 

All stingrays from a single tank (n = 2-3) were rapidly captured by two 

individuals such that all animals from the tank were sampled within an average of 3 

minutes. Following removal from the water, stingrays were placed on a table atop 

dampened cloths. Air exposure lasted 30 minutes, with blood draws at 0 minutes 

(immediately upon removal from the tank), 15 minutes, and 30 minutes. After the last 

blood draw, stingrays were replaced in their tanks and allowed to reacclimate. Following 

an additional 48 hours, animals were once again briefly removed from the water for a 



final blood draw (representing recovery). Following the 48 hour blood draw, stingrays 

were weighed, and disc width was measured. 

Blood was drawn from the dorsal wing of each animal using a 1 mL syringe and 

22 gauge needles. At each time point, approximately 0.5 mL of blood was taken and 

immediately transferred to a Vacutainer® tube containing lithium heparin.1 Whole blood 

that was not used for immediate analysis (iSTAT VetScan measurements and hematocrit) 

was transferred to 1.5 mL tubes and centrifuged at 4100 x g for 5 minutes. Plasma and 

red blood cells were separated by pipetting into separate tubes and immediately frozen on 

dry ice, followed by long-term storage at -80°C. 

iSTAT VetScan and Hematocrit Measurements 

 

Approximately 95 µL of whole blood was used to measure blood lactate, pH, 

pCO2, and hematocrit. Lactate, pH, and pCO2 analysis was carried out using the Abaxis 

iSTAT VetScan equipped with CG4+ cartridges following the manufacturer’s 

instructions. Hematocrit was measured by filling capillary tubes approximately ¾ full and 

centrifuging for 5 minutes in a microcapillary centrifuge. Measurements were then made 

from tubes using the hematocrit reader rotor. 

Osmolality and osmolytes 

 

Plasma osmolality was measured using a Vapro 5520 osmometer following the 

manufacturer’s instructions with 10 µL of each plasma sample. Plasma chloride was 

measured using a Labconco chloridometer on the low setting with 10 µL of each plasma 

sample. A suite of osmolytes (bromine, sodium, calcium, potassium, ammonium, nitrate, 

sulfate, and trimethylamine oxide (TMAO)) was measured from plasma using ion- 

exchange chromatography (Metrohm-Peak, Herisau, Switzerland) at the University of 

 

 

 

 
1 Vacutainer® is a registered trademark of Becton, Dickinson and Company. 
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Manitoba (Winnipeg, Manitoba, Canada) using methods previously outlined for 

measurement of cations and anions (Anderson et al., 2012). Plasma used for urea 

measurements was diluted 1:25 in dH2O followed by analysis conducted using an end- 

point quantitative colorimetric assay (QuantiChrom urea assay kit, DIUR-500, BioAssay 

Systems, CA, USA), read at 520 nm on a SpectraMax M2 (Molecular Devices) plate 

reader after a room temperature incubation period of 20 minutes. 

β-hydroxybutyrate, glucose, and alanine 

 

β-hydroxybutyrate (βHB), glucose, and alanine were measured with enzymatic 

assays using resazurin and measured on a FLUOstar Omega (BMG Labtech) 96-well 

plate reader. To measure βHB, plasma samples were diluted 1:20 in dH2O and combined 

with 200 µL of reaction buffer (250 µL NAD+ (15 mM), 250 µL diaphorase (40 IU/mL), 

500 µL resazurin (1mM), 25 mL Tris buffer (150 mM)) and 10 µL of β-hydroxybutyrate 

dehydrogenase (βHBDH, 10 IU/mL). The reaction was allowed to run for 30 minutes at 

room temperature during which time fluorescence intensity was measured with an 

excitation wavelength of 544 nm, emission wavelength of 590 nm, and a gain of 1450. 

Samples were evaluated against a βHB standard curve. 

 

To measure glucose, plasma samples were diluted 1:10 in dH2O and combined 

with 200 µL of reaction buffer (250 µL NADP+ (15 mM), 250 µL diaphorase (40 

IU/mL), 500 µL resazurin (1mM), 500 µL ATP (25 mM), 23.5 mL Tris/MgCl2 buffer 

(150 mM/2 mM), followed by addition of 0.2 IU/mL glucose-6-phosphate dehydrogenase 

(G6PDH) and 10 µL of hexokinase (HK, 10 IU/mL). The reaction was allowed to run for 

30 minutes at room temperature during which time fluorescence intensity was measured 

with an excitation wavelength of 544 nm, emission wavelength at 590 nm, and a gain of 
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800. Samples were evaluated against a glucose standard curve ranging from 10 µM to 

100 µM. 

To measure alanine, plasma samples were diluted either 1:40 or 1:20 (depending 

on the volume of plasma remaining for analysis) and combined with 200 µL of reaction 

buffer (250 µL NAD+ (15 mM), 250 µL diaphorase (40 IU/mL), 500 µL resazurin 

(1mM), 25 mL Tris buffer (150 mM)) and 20 µL of alanine dehydrogenase (AlDH, 25 

IU/mL). The reaction was allowed to run for 30 minutes at room temperature during 

which time fluorescence intensity was measured with an excitation wavelength of 544 

nm, emission wavelength at 590 nm, and a gain of 1200. Samples were evaluated against 

a glucose standard curve ranging from 2.5 µM to 25 µM. 

1-alpha-hydroxycorticosterone 

 

There is no specific antibody for 1α-OH-B; therefore, measurements of this 

corticosteroid must be conducted by other means. Initial attempts to quantify 1α-OH-B 

followed the methods of Evans et al. (2010), which were developed for the quantification 

of 1α-OH-B in ex vivo interrenal incubation media using a validated corticosterone assay. 

Steroids were extracted from 100 µL of plasma by vortexing with a 10:1 addition of 

dichloromethane. Samples were then centrifuged at 1000 x g to separate aqueous and 

organic layers. The lower organic layer was transferred to a new vial, and the aqueous 

layer was discarded. Samples were dried down using a constant stream of nitrogen gas, 

and then reconstituted in 175 µL of methanol. 

HPLC was performed with columns and solvents as outlined in Evans et al. 

(2010). Standards of 25 µM 1α-OH-B (provided by Dr. John Rimoldi, University of 

Mississippi) and B (corticosterone; Sigma-Aldrich) were used to determine the 
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appropriate window to collect specific corticosteroid fractions. Although B has never 

been observed as a corticostertoid in the Atlantic stingray using HPLC, TLC, and GC/MS 

methods (Nunez and Trant, 1999; B. Nunez personal communication), HPLC isolation of 

the 1α-OH-B fraction from plasma samples is necessary to ensure specific quantification. 

Using standards as described above, 1α-OH-B was eluted from 5.5-8 minutes, and B was 

eluted from 9-12 minutes. 150 µL of each 175 µL extracted steroid sample was injected 

into the machine, and the 1α-OH-B fraction was collected at its respective time. 1α-OH-B 

mobile phase samples were dried down at 42°C with a constant stream of nitrogen and 

reconstituted in 230 µL of assay buffer from a commercial corticosterone assay kit (ADI- 

900-097, Enzo Life Sciences, NY, USA). The assay was conducted following the 

manufacturer’s protocol and measured against a 1 α-OH-B standard curve ranging from 

 

0.042 nM to 1000 nM. Cross reactivity of the corticosterone antibody for 1α-OH-B was 

calculated from 5 standard curves each of B and synthetic 1α-OH-B, with 50% B0 

selected for comparing values. 

To determine percent recovery during extraction, four samples were spiked with 

synthetic 1α-OH-B to a concentration of 100 µM and measured against their non-spiked 

counterparts. Spiked and non-spiked samples were handled throughout all steps (steroid 

extraction, HPLC, assay measurement, etc.) in the same manner as experimental samples. 

Total corticosteroids 

Due to difficulties with the method described above (outlined in Results), a 

second method was utilized to measure total corticosteroids using the previously 

validated corticosterone EIA kit (500655, Cayman Chemical, MI, USA; Evans et al., 

2010). For this method, plasma samples were directly diluted 1:10 in EIA buffer and 
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assayed in duplicate against a corticosterone standard curve ranging from 8.2 pg/mL to 

5000 pg/mL following the manufacturer’s protocol. To validate the direct use of plasma 

in the assay, 6 additional plasma samples from D. sabina were spiked with corticosterone 

to a concentration of 2000 pg/mL prior to dilution and measured against their non-spiked 

counterparts. Only 6 of the 11 stingrays used in the stress study were analyzed for total 

corticosteroids; these individuals were chosen based upon the quantity of plasma 

remaining after all other analyses. 

Plasma Metabolomics 

 

In a separate effort, 100 uL of each plasma sample was sent to St. Boniface 

Hospital in Manitoba, Winnipeg, Canada, for metabolomics analysis using gas 

chromatography / mass spectrometry (GC/MS). 

Data analysis 

 

Blood and plasma parameters were analyzed using a repeated measures one-way 

analysis of variance (ANOVA) over the time series (factors: 0 minutes, 15 minutes, 30 

minutes, and 48 hours). Variables that violated the assumptions of homogeneity and 

normality of variance were transformed by the most appropriate power function. 

Significant trends were followed by a post-hoc paired t-test to separate the significant 

mean values. Data was considered statistically significant at an α level of <0.05. 

Results 

 

Whole blood components 

 

Lactate changed significantly over the course of the experiment (p < 0.001, Figure 

2a). Concentrations increased from 0.406 ± 0.08 mmol/L at 0 minutes to 1.542 ± 0.216 

mmol/L at 15 minutes and 2.654 ± 0.304 mmol/L at 30 minutes. Recovery measurements 
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of lactate (0.348 ± 0.048 mmol/L) were not significantly different from basal 

concentrations. CO2 also changed significantly during the experiment (p < 0.001, Fig. 

2b). pCO2 increased from 10.333 ± 0.485 mmHg at 0 minutes to 12.178 ± 0.427 mmHg 

at 15 minutes and 13.790 ± 0.677 mmHg at 30 minutes. Recovery measurements of CO2 

(9.190 ± 0.398 mmHg) were not significantly different from basal measurements. 

Changes in whole blood pH were also significant (p < 0.001, Fig. 2c). Blood pH 

decreased from 7.095 ± 0.028 at 0 minutes to 6.922 ± 0.024 at 15 minutes and 6.827 ± 

0.030 at 30 minutes (Fig. 2c). Recovery pH (7.203 ± 0.025), although significantly 

different from basal measurements (t-test, p = 0.008), was no longer acidic relative to 

time 0. Hematocrit did not change significantly during the course of the experiment, with 

values ranging from 16.286 ± 1.625 to 18.889 ± 1.401% (Fig. 1d). 

 

Figure 2. Mean (±SEM) (a) blood lactate, (b) blood pCO2, (c) blood pH, and (d) 

hematocrit in the Atlantic stingray during 30-minute air exposure stressor and 

recovery (48 hours). Letters indicate values that are significantly different (p < 0.05) 

from each other. 
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Figure 3. Mean (±SEM) (a) plasma osmolality, (b) plasma urea, (c) plasma TMAO, 

and (d) plasma chloride in the Atlantic stingray during a 30-minute air exposure 

stressor and recovery (48 hours). Letters indicate values that are significantly different 

(p < 0.05) from each other. 
 

Plasma osmolality and osmolytes 

 

Plasma osmolality did not change significantly during the experiment (Fig. 3a). 

Out of all the plasma osmolytes measured (Fig. 3b-d, Fig. 4, Fig. 5), only potassium (p < 

0.01, Fig. 5b) and sulfate (p < 0.01, Fig. 5c) changed significantly. Plasma potassium 

concentrations increased from 3.339 ± 0.303 mM to 4.398 ± 0.213 mM over the 30- 

minute air exposure. At 48 hours, potassium concentrations had decreased to 3.102 ± 

0.377 mM and were not significant from basal measurement. Sulfate increased 

significantly during the experiment (p < 0.01). Sulfate increased significantly from 0.264 

± 0.027 mM at 0 minutes to 0.300 ± 0.039 at 15 minutes. Sulfate continued to increase at 

30 minutes (0.353 ± 0.050 mM) but was not significantly different from measurements at 

15 minutes or 48 hours. The 48 hour increase (0.921 ± 0.322 mM) was significantly 

different from both 0- and 15-minute measurements. Concentrations of plasma chloride, 
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urea, TMAO, ammonium, calcium, sodium, bromine, and nitrate did not change 

significantly during the course of the experiment (Fig. 3b-d, Fig. 4, Fig. 5a). 

 

 
Figure 4. Mean (±SEM) (a) plasma ammonium, (b) plasma bromine, (c) plasma 

calcium, and (d) plasma nitrate in the Atlantic stingray during a 30-minute air 

exposure stressor and recovery (48 hours). Letters indicate values that are significantly 

different (p < 0.05) from each other. 
 

Metabolic fuels 

 

Plasma glucose changed significantly during the course of the experiment (p < 

0.01, Figure 6a). Glucose concentrations decreased significantly from 0.713 ± 0.029 mM 

at 0 minutes to 0.634 ± 0.02 mM at 15 minutes. After 15 minutes, plasma glucose 

increased through 30 minutes and reached a concentration of 0.925 ± 0.057 mM at 48 

hours. Neither plasma alanine nor βHB changed significantly over the course of the 

experiment (Figure 6b-c). 
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Figure 5. Mean (±SEM) (a) plasma sodium, (b) plasma potassium, and (c) plasma 

sulfate in the Atlantic stingray during a 30-minute air exposure stressor and recovery 

(48 hours). Letters indicate values that are significantly different (p < 0.05) from each 

other. 
 

Corticosteroids 

 

Direct measurements of 1α-OH-B were unsuccessful due to a leak in the HPLC 

apparatus leading to significant sample loss. Also, while initial tests indicated that cross 

reactivity of the Enzo ELISA for 1α-OH-B was 8.3% (improving upon the Cayman 

Chemical ELISA used by Evans et al., 2010; 5.5%), it was determined via HPLC that the 

1α-OH-B standard used for this calculation was degraded. A new test for cross reactivity 

using fresh standard revealed a value of only 2.3%, which likely compounded the effects 

of sample loss during HPLC. 

However, measurements of total corticosteroids using the 1:10 direct dilution 

method were successful. Total corticosteroids changed significantly across experimental 

time points (p = 0.004, Fig. 6d). Plasma corticosteroids did not change significantly 
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during the 30-minute air exposure but were significantly elevated at 48 hours (452.22 ± 

 

172.74 pg/mL) vs. all other time points (0 minutes: 179.07 ± 38.26 pg/mL, 15 minutes: 

152.40 ± 24.07 pg/mL, 30 minutes: 164.70 ± 21.94 pg/mL). 

 

 
Figure 6. Mean (±SEM) (a) plasma glucose, (b) plasma alanine, (c) plasma βHB, and 

(d) plasma total corticosteroids in the Atlantic stingray during a 30-minute air 

exposure stressor and recovery (48 hours). Letters indicate values that are significantly 

different (p < 0.05) from each other. 
 

Plasma samples spiked with corticosterone standard had an average concentration 

of 1480.45 ± 47.15 pg/mL (+/- 3.2%). The equivalent standard in ELISA buffer alone 

was 1823.3 pg/mL; therefore spiked samples averaged 81% of the expected 

corticosterone value with excellent repeatability (± 3.2%). The reported corticosteroid 

values are therefore considered to be highly accurate relative to each other using this 

method. Additionally, the relationship between basal measurements of plasma glucose 
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and plasma total corticosteroids were analyzed using a linear regression and were 

significantly different (p < 0.014, Figure 7). 

 

 
Figure 7. Linear regression of basal plasma total corticosteroids and basal plasma 

glucose in D. sabina, displaying a significant correlation. 

 

Plasma Metabolomics 

 

Over 2400 metabolites were detected in each plasma sample, 92 of which 

changed significantly over the course of stress and recovery (Figure 8). This data is 

preliminary. More extensive research will need to be conducted in order to identify the 

names of these 92 compounds. However, this information provides insight to the 

dissimilarity between stingray metabolism during homeostasis and an acute stressor. 
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Figure 8. Metabolites from Atlantic stingray plasma exhibiting significant changes (p 

< 0.05) over the course of a 30-minute air exposure and recovery (48 hours). Cool 

colors (blues) indicate low relative levels of metabolites. Warm colors (reds > yellow) 

indicate high relative concentrations of metabolites. Each row indicates a single 

metabolite. 
 

 

Discussion 

 

The primary purposes of this study were to assess changes in 1α-OH-B, βHB, and 

glucose over the course of an acute stressor. While direct measurements of 1α-OH-B 

were not attainable, this study presents the first measurements of corticosteroids in an 

elasmobranch in response to a controlled stressor. Corticosteroids did not increase during 

the 30-minute air exposure, contrary to expectations. However, a significant increase at 

48 hours was observed that corresponded with significant increases in glucose. This may 
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indicate that air exposure has more long-term damaging effects. Plasma concentrations of 

βHB did not significantly change at any point during the experiment, indicating that βHB 

may not play a prominent role in the stress response, at least for aerial exposure. 

D. sabina exposed to air for an extended period of time exhibit a characteristic 

secondary stress response as observed in other vertebrates with regards to changes in 

blood lactate, pCO2, and pH. These changes are commonly associated with increased 

anaerobic metabolism as a result of strenuous physical activity associated with the fight 

or flight response (Skomal and Bernal, 2010). Stingrays in this study were most active 

during the brief period of net capture. They minimized their movements shortly after the 

first blood draw and remained relatively still for the remainder of the 30-minute stressor. 

However, lactate, blood acidosis, and pCO2 continued to climb despite decreased 

physical activity. The collapse of gill lamellae and a resulting decrease in gas exchange 

efficiency are the most likely causes of these departures from homeostasis. The inability 

to shed excess CO2 causes this gas to build-up, resulting in decreased blood pH. This is 

further compounded by the increased lactate produced by anaerobic metabolism resulting 

from reduced O2 uptake. Similar findings have been demonstrated in other studies with 

elasmobranchs and teleosts (Cicia et al., 2012; Ferguson and Tufts, 1992; Milston et al., 

2006). In either case, departures from basal levels in these blood parameters have been 

used in a wide variety of taxa, including elasmobranchs, as clear indicators of an acute 

stress response (Barton, 2002; Skomal, 2007). The continued increases in pCO2, lactate, 

and blood acidosis over the entirety of the 30-minute experimental period indicate that 

longer bouts of aerial exposure produce a more substantial stress response. 
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Despite the severe departures from homeostasis experienced by these animals, 

when whole blood parameters were measured again at 48 hours, they had all returned to 

basal levels, indicating that the acute stress response had subsided. There were no 

mortalities within the 48-hour recovery period, and there was only one mortality within 

the week after experimentation. This high survival rate following such a severe stressor 

supports the use of D. sabina as a model organism for further in vivo research regarding 

the stress response of elasmobranchs. Additionally, the novel blood sampling method, 

i.e., dorsal wing draws, conducted with these animals provides a straightforward way to 

assess an individual animal over time in a relatively non-intrusive manner versus 

traditional phlebotomy techniques requiring extensive handling. 

Hematocrit measurements did not change during the experiment. Multiple studies 

using elasmobranchs have also shown consistency of hematocrit measurements during 

stress (Cicia et al., 2012; Hoffmayer et al., 2012; Hoffmayer and Parsons, 2001). 

However, this is in contrast to what is observed in many teleosts (Suski et al., 2007). As 

previously suggested by Hoffmayer et al. (2012), this may be a unique feature of 

elasmobranch species. 

There were no changes in plasma osmolality or the majority of plasma osmolytes 

(with the exception of K+ and SO4
-2) during the course of this experiment. This is in 

contrast to what is commonly seen in other stress studies. Sharks sampled over the course 

of a 60-minute hook-and-line stressor experienced significant increases in osmolality 

(Hoffmayer et al., 2012; Hoffmayer and Parsons, 2001) and departures from basal levels 

of Na+, Cl-, and Ca+ (Hoffmayer et al., 2012). Departures from osmolality and osmolyte 

homeostasis have also been reported in S. acanthias as a result of capture, transport, and 
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captivity stress (Mandelman and Farrington, 2007). The aforementioned studies were all 

conducted in conditions where fish were maintained in the water for the majority of 

experimental time. The ability to exchange osmolytes with the surrounding water may 

have allowed for changes in these parameters during these experiments. This exchange 

would be unable to occur in animals exposed to air and accounts for the consistent 

osmolytes levels of D. sabina in this study. Cicia et al. (2012), who evaluated the 

physiological stress response to air exposure in the little skate (Raja erinacea), also 

observed no changes in plasma osmolytes in winter, when water and air temperatures did 

not differ significantly. However, changes in plasma osmolytes were observed during the 

summer months, when air temperatures far exceeded holding tank values. It was 

hypothesized that these changes reflected differences in water and ion 

compartmentalization between plasma and cells; however, comparison of the winter and 

summer studies was also confounded by differences in basal levels of osmolytes (Cicia et 

al., 2012). Regardless, the results of Cicia et al. (2012) have interesting implications 

regarding the added effects of temperature differences during the stress of air exposure. 

In this study, air and water temperatures only differed by 3°C. 

 

Plasma K+ concentrations most likely increased due to stress-induced damage at 

the cellular level due to acidosis and have previously been observed in elasmobranchs 

exposed to air (Cicia et al., 2012; Frick et al., 2010). Also, the opening of K+ channels 

during cardiac cellular stress has been described and hypothesized to protect 

mitochondria when conditions become anoxic (Ozcan et al., 2002). As the ability of 

stingrays to obtain O2 during aerial exposure is reduced, this seems a likely mechanism 

for the resultant rise in K+ concentrations. Significant increases in plasma SO4
-2 were also 
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observed throughout the entire 48-hour experiment. However, little research has been 

conducted on changes in divalent ions during stress; therefore, the role of SO4
-2 in the 

stress response warrants further research. 

The surprising lack of change in βHB indicates that this metabolic fuel may not be 

as important during the stress response as hypothesized. βHB circulates at higher 

concentrations in elasmobranch species (~0.2-4.9 mM) as opposed to teleosts where 

concentrations are practically undetectable (Speers-Roesch and Treberg, 2010). Despite 

this apparent importance, the results of the current study suggest that glucose is the 

predominant metabolic fuel mobilized during stress, potentially by corticosteroid actions. 

Patterns of glucose correlated to both physical activity and changes in 

corticosteroids over the entirety of the experiment. The significant decrease in plasma 

glucose at 15 minutes is likely due to usage of this metabolic fuel during activity 

immediately following capture. The subsequent lack of movement after placement on the 

exposure table and hence the decreased need for glucose, along with stable plasma 

corticosteroid concentrations, are both likely contributors to this observed decrease. The 

significant increase in glucose at 30 minutes may then result from continued exposure to 

air, causing extreme physiological changes and the need for energy to maintain 

enantiostasis. The most significant increases in both glucose and corticosteroids, 

however, were observed at the 48-hour mark. These corresponding trends give reason to 

believe that circulating corticosteroids are acting as glucocorticoids. It is most likely that 

the major or only corticosteroid measured in this study is 1-α-OH-B. Previous studies 

have shown that 1α-OH-B is the dominant corticosteroid in elasmobranchs (Anderson, 

2012; Table 1) and the only product of interrenal tissue exposed to mammalian ACTH 
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(Klesch and Sage, 1975; Nunez and Trant, 1998). For these reasons, it is likely that the 

observed changes in glucose are mediated by 1α-OH-B. However, because of the 

difficulties in specifically measuring this steroid, future studies should examine this 

possibility when a specific assay for 1α-OH-B is available. While current suggested 

methods have potential, e.g., Evans et al. (2010), the most desirable scenario is the 

development of an antibody and assay specific to this corticosteroid. This would provide 

the accuracy necessary to establish a thorough understanding of the role 1α-OH-B plays 

in the functioning of the endocrine stress response. 

Alongside corresponding trends during the experiment, a linear regression of 

basal plasma glucose with basal corticosteroids exhibits a significant correlation (Fig. 6). 

Basal level measurements were chosen to evaluate this relationship because stingrays at 

this time were considered to be in the most similar, and hence most comparable, 

physiologic state of homeostasis. The significant relationship between the amount of 

circulating corticosteroids and amount of circulating glucose strongly supports the role of 

1α-OH-B as a glucocorticoid and is also indicative of the natural range in physiological 

function amongst animals. These differences in basal level glucose and total 

corticosteroids suggest that animals do not all function the same way and may have 

variable responses to external stimuli, such as stressors. These individual variations are 

even more apparent in the total corticosteroid trends seen amongst animals, an 

observation that has also been documented in other species (Figure 9; Cockrem, 2013). 

The lack of significant changes in corticosteroids during the 30-minute aerial 

exposure, followed by an increase within the subsequent 48-hour period may be related to 

the type of stressor. When R. erinacea were exposed to air, a similar lack of change in 
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glucose throughout the 50-minute exposure was observed (Cicia et al., 2012). Given the 

lack of physical activity during the course of aerial exposure, it may be that this stressor 

does not require large inputs of metabolic energy. Increases in corticosteroids and 

glucose at a point long delayed after the 30 minute air exposure period may therefore 

indicate that this stressor has more long-term damaging effects than short-term ones. 

Support for this hypothesis is provided by the only fatality observed during the week 

following air exposure in the current study. The individual with the largest corticosteroid 

increase (Stingray 5, Figure 9) died two days following the end of the experiment (96 

hours post-exposure). Further evidence that D. sabina were not fully recovered from 

potential tissue damage and inflammation resulting from air exposure is provided by 

preliminary metabolomics results. While efforts to identify specific metabolites are 

ongoing, 92 entities were identified as significantly affected by stress. The majority of 

these metabolites increased throughout the course of air exposure and either remained 

elevated or continued to increase up to 48 hours later (Fig. 8). This result was unexpected 

and strongly supports the hypothesis that 30-minute air exposure results in long-term 

deleterious effects on elasmobranch physiology. 
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Figure 9. Total plasma corticosteroids in individual Atlantic stingrays during a 30- 

minute air exposure stressor and recovery (48 hours). 
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CHAPTER III 

 

REGULATION OF SERUM- AND GLUCOCORTICOID-INDUCIBLE KINASE 1 

mRNA BY 1α-OH-B 

Background 

 
The steroid hormones elicit most of their effects by regulating gene transcription. 

With this being the case, a highly conserved GC regulated gene was chosen to evaluate 

the potential role of 1α-OH-B in gene regulation. Serum- and glucocorticoid-inducible 

kinase 1 (SGK1) is a member of the family of serine/threonine kinases and plays an 

important role in many cellular response systems (Lang and Cohen, 2001). SGK1 

transcription is upregulated by an integrated system of hormonal and nonhormonal 

signals that include osmotic shock, peptide hormones, glucocorticoids, and 

mineralocorticoids (Lang et al., 2006; Waldegger et al., 1998; Webster et al., 1993a, 

1993b). This kinase plays a role in many cellular response systems, including ion 

regulation and transport mechanisms, cell growth, and apoptosis. 

Since its discovery in rats (Webster et al., 1993a), SGK1 has been cloned in other 

organisms, including amphibians (Chen et al., 1999), humans (Waldegger et al., 1997), 

and sharks (Waldegger et al., 1998). Similar to other protein kinases, it has been highly 

conserved throughout evolutionary history (Lang and Cohen, 2001). This is evidenced by 

the significant homology between the amino acid sequences of species from different 

taxa. 

Research in mammals has shown that SGK1 is present in practically all tissues 

(Lang et al., 2006; Webster et al., 1993a). However, transcript levels between these 

tissues vary greatly. These differences appear to reflect the varying need for SGK1 in 
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tissue specific processes. This is supported by findings observed in tissue suites of the 

spiny dogfish (S. acanthias). While nearly all tissues showed some SGK1 transcripts, the 

highest expression was observed in the liver, heart, kidney, and intestine (Waldegger et 

al., 1998). It is hypothesized that a similar distribution will be present in D. sabina. 

SGK1 transcription is sensitive to increases in circulating levels of glucocorticoids 

as a result of the glucocorticoid response element (GRE) located within its 5’-flanking 

sequence (Webster et al., 1993b). Ligand-bound, dimerized GR-GR complexes bind to 

GREs and act as a transcription factor to promote the production of mRNA (Romero and 

Butler, 2007). Similar to other protein kinases, SGK1 has been highly conserved 

throughout evolutionary history (Lang and Cohen, 2001), and it is therefore hypothesized 

that the D. sabina SGK1 gene sequence also contains a GRE in its promoter region. 

SGK1 is classified as an immediate-early response gene because of the rapid 

increase in its mRNA levels following exposure to glucocorticoids or serum (Webster et 

al., 1993b). Significant changes in its expression have been shown to occur as rapidly as 

30 minutes after stimulation in mammalian and teleost subjects, making it an excellent 

candidate for evaluation during acute stress studies such as air exposure (Baskin and 

Sayeski, 2012; Brennan and Fuller, 2000; Johnstone, 2011; Webster et al., 1993b). 

Unlike mammalian taxa, mature red blood cells in fish retain a nucleus. Since 

steroid hormones travel through blood to reach target tissues, nucleated red blood cells 

may be a prime candidate for first response to stressors at the transcriptional level 

(Boutilier and Ferguson, 1989). Previous studies have investigated the correlation 

between stressors and the transcription of heat shock proteins in teleost red blood cells, 

demonstrating that induced stress increases levels of mRNAs encoding these protective 
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proteins (Currie et al., 1999; Currie and Tufts, 1997; Delaney and Klesius, 2004; Lund et 

al., 2003). SGK1 in red blood cells may therefore exhibit a similar pattern of 

transcriptional upregulation in response to stress. Glucocorticoids produced after the 

detection of a threat would bind to the GRE in the SGK1 promoter, if present in D. 

sabina, inducing transcription of this mRNA. 

It is important to note that SGK1 is also involved in osmoregulatory processes. It 

is particularly important in the control of epithelial ion transport and is known to affect 

the activity of a vast array of membrane transport proteins (e.g., ENaC, ROMK, NKA) 

(for review, see Loffing et al., 2006). The role of this protein in osmoregulation is also 

evidenced by the moderators of its activity. Aldosterone, the main mineralocorticoid of 

many vertebrate species, has been shown to increase SGK1 expression in the nephron of 

the rat kidney (McCormick et al., 2005). Angiotensin II (Ang II), a prominent player in 

the renin-angiotensin system (RAS), has previously been shown to increase transcription 

of SGK1 in fibrosarcoma-derived cell line (Baskin and Sayeski, 2012). The actions of the 

RAS are counteracted by the natriuretic peptides, which may therefore have opposing 

effects on SGK1 transcription. 

The rectal gland is important to hydromineral balance in the elasmobranchs 

(Forrest 1996) and is thus an appropriate model for addressing the function of SGK1 in 

these fishes. Furthermore, there is precedence for regulation of this gene in the 

elasmobranch rectal gland, as tissue of S. acanthias exposed to a hypertonic solution 

resulted in a significant increase of SGK1 transcripts (Waldegger et al., 1998). Exposure 

of this tissue to the primary elasmobranch corticosteroid, 1α-OH-B, may therefore elicit 
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the same result. This is an excellent model for examining the capacity of 1α-OH-B as a 

transcription factor. 

In this experiment, all but a short (~ 75 bp) portion of the D. sabina SGK1 coding 

region was cloned and sequenced. SGK1 mRNA tissue distribution was characterized, 

including the relative prominence of transcripts between tissues. To analyze the 

regulation of SGK1 during the stress response, mRNA was quantified in red blood cells 

collected from the stress series. Two in vitro experiments were also conducted to 

determine if 1a-OH-B was capable of regulating SGK1 transcription. Rectal gland tissue 

was incubated with synthetic 1α-OH-B, Ang II, and C-natriuretic peptide (CNP), and 

fresh whole blood was also incubated with synthetic 1α-OH-B. 

Methods 

 

Isolating the SGK1 sequence 

 

5’ and 3’ RACE and Genome Walker reactions 

 

The sequence of a 483 nt fragment of the D. sabina SGK1 coding region (CDS), 

isolated using degenerate PCR, was kindly provided by Dr. Scott Nunez of Wake Tech 

Community College, Raleigh, NC. To isolate the remainder of the CDS and 5’ and 3’ 

untranslated regions (UTRs), total RNA was prepared from freshly isolated D. sabina 

interrenal glands using the Directzol RNA Miniprep kit (Zymo Research, USA) 

following the kit protocol. 10 µg of total RNA was then prepared for 5’ and 3' RACE 

PCR using the FirstChoice RLM-RACE kit (AM1700, Ambion Inc., USA) following the 

manufacturer’s instructions. 5’ and 3’ rapid amplification of cDNA ends (RACE) 

reactions were each conducted using two gene-specific primers (Table 1) in addition to 

the primers provided by the RLM-RACE kit. The first round of 5’ RACE reactions 
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amplified a partial sequence that does not extend fully to the upstream start codon relative 

to dogfish SGK1 (CAA11527.1). Additional RACE reactions attempting to extend 5’ 

sequence were unsuccessful;therefore, upstream genomic DNA sequence was isolated 

using a commercial kit (Universal Genome Walker 2.0, Clontech Laboratories Inc., CA, 

USA). Four libraries of genomic DNA from D. sabina interrenal gland were prepared by 

enzyme digests (DraI, EcoRV, PvuII, and StuI) as outlined in the kit’s protocol. Both 

inner and outer reactions for each digest were carried out following the manufacturer’s 

instructions and gene specific primers (Table 1). Exonic regions of DNA sequences 

obtained using genome walking methods were identified via alignment to the dogfish 

SGK1 nucleotide sequence (AJ223715.1). 

cDNA cloning and sequencing 

 

5’ and 3’ RACE PCR products, as well as Genome Walker PCR products, were 

ligated into the PGEM T-vector following the PGEM T-Vector System I kit protocol with 

T4 DNA ligase (A3600, Promega Corporation, WI, USA). Ligation reactions were then 

used to transform premade Z-competent Escherichia coli cells (Zymo Research, USA), 

which were subsequently spread onto isopropylthio-β-galactoside (IPTG) and x- 

galactosidase (x-gal) coated Luria Burtani (LB) medium plates with ampicillin. Plates 

were incubated overnight at 37°C, and a subset of white colonies were selected for PCR 

screening for insert size using vector-specific primers. Colonies containing the 

appropriate sized inserts were then isolated and incubated overnight in 2 mL of LB broth 

with ampicillin at 37°C with shaking at 250 rpm. Plasmids were isolated the following 

day using the Zyppy plasmid Miniprep kit (R2052, Zymo Research, USA). Plasmids 

were then sent out for sequencing (Genewiz, Inc.). 
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Sequence alignments and molecular phylogenetic analysis 

 
NCBI BLAST was used to align protein sequences to the one translated from the 

isolated nucleotide sequence. To determine the conservation of critical amino acid 

residues within the sequence, D. sabina SGK1 was aligned using the Clustal W algorithm 

in CLC workbench with protein sequences of diverse taxa representing all major 

vertebrate groups. These included one elasmobranch (S. acanthias CAA11527.1), one 

holocephalan (Callorhinchus milii XP_007901699.1), one teleost (Danio rerio 

NP_954682.1), one amphibian (Xenopus laevis NP_001083809.1), one avian (Gallus 

gallus NP_989807.1), and two mammals (Mus musculus NP_035491.1, Homo sapiens 

NP_005618.2). These protein sequences, combined with an additional two teleost 

species (Oryzias latipes XP_004083751.1, Fundulus heteroclitus Q5Q0U5.1), were also 

used in a phylogenetic analysis to determine the evolutionary relationship of D. sabina 

SGK1 to that of other taxa. Amino acid sequences were aligned using the Clustal W 

algorithm (Thompson et al., 1994), and phylogenetic relationships were inferred using the 

Neighbor-Joining method in Mega version 6 (Tamura et al., 2007) and 2000 iterations to 

generate a bootstrap consensus tree. 

Regulation of SGK1 by 1α-OH-B and tissue specific distribution of SGK1 

 

Tissues for distribution analysis 

 

Tissues for analysis of SGK1 distribution were collected from two male and one 

female D. sabina as part of a previous experiment in which animals were sacrificed by 

cervical dislocation and tissues rapidly collected and stored in RNALater until RNA 

isolation. Tissues collected included heart, gill lamellae, liver, spiral valve, rectal gland, 

interrenal gland, red blood cells, muscle, testes, and gonad. 
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In vitro rectal gland incubations 

 

To determine if 1α-OH-B plays a role in the regulation of SGK1, D. sabina rectal 

gland tissue was incubated in the presence of multiple concentrations of this 

corticosteroid. Additional incubations were conducted with homologous angiotensin II 

and C-natriuretic peptide (custom synthesis by Biomatik), two key components of the 

osmoregulatory system in elasmobranchs. Rectal glands were collected from 5 mature 

male D. sabina and rapidly divided into 6 equal pieces. Each piece of tissue was briefly 

transferred to the laboratory and then incubated for 6 hours with gentle shaking at room 

temperature in 1 mL of elasmobranch Ringer’s solution (240 mM NaCl, 7 mM KCl, 10 

mM CaCl2, 4.9 mM MgCl2, 8 mM NaHCO3, 0.5 mM Na2HPO4•(2H2O), 0.5 mM 

Na2SO4, 360 mM urea, 60 mM trimethylamine oxide (TMAO) and 1% glucose) with 

one of the following treatments: control, 100 nM 1α-OH-B, 250 nM 1α-OH-B, 500 nM 

1α-OH-B, 100 nM AngII, or 100 nM CNP. At the end of the incubation, tissues were 

removed from media and stored at -80°C until RNA extraction. 

In vitro blood incubations 

 

1 mL of blood was collected from 5 mature male stingrays and immediately 

transferred to a heparinized Vacutainer® tube. Blood was transferred to the laboratory 

and then incubated for 2 hours with gentle shaking at room temperature under one of the 

following treatments: control, 100 nM 1α-OH-B, or 500 nM 1α-OH-B. At the end of the 

incubation period, blood was transferred to microcentrifuge tubes and spun at 4100 x g 

for 5 minutes. The plasma was discarded, and red blood cells were stored at -80°C until 

RNA extraction. 
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Blood from stress series 

 

Red blood cells from the stress series experiment were also used for analyzing 

changes in SGK1 over the course of stress. 

RNA isolation and cDNA synthesis 

 

RNA was isolated using the Directzol RNA Miniprep kit (Zymo Research, USA) 

following the manufacturer’s protocol including on-column DNase treatment. cDNA was 

then generated in a 20 µl reaction using random primers and the GoScript reverse 

transcription system (A5000, Promega Corp.) with 1 µg of total RNA per sample. 

qPCR 

 

Quantitative real-time PCR (qPCR) was performed on a 7500 Fast Real-Time 

PCR System (Applied Biosystems) using SYBR Green as a fluorescent marker. 2 µl of 

each cDNA sample was used in 20 µl reactions with SYBR Select Master Mix (4473369, 

Applied Biosystems) as outlined in the manufacturer’s protocol. Reactions were run in 

duplicate on MicroAmp Fast Optical 96-well reaction plates (Applied Biosystems) 

covered with adhesive film for PCR plates (VWR). Samples were run through one 2 

minute cycle at 50°C, one 2 minute cycle at 95°C, and then 40 consecutive cycles of 15 

seconds at 95°C and 1 minute at 60°C. A dissociation curve was conducted at the end of 

all cycles to assess the purity of products. 

The forward and reverse primers used in qPCR for the gene of interest (SGK1) 

and a housekeeping gene (18S) are listed in Table 1. Primer efficiencies for SGK1 

primers were estimated using five serial dilutions (1:10) of rectal gland cDNA and the 

qPCR protocol described above. The SGK1 primers’ efficiency was 99.73%. 18S primer 
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efficiencies for this species and instrument have been previously determined in our 

laboratory. The 18S primers’ efficiency was 100.21%. 

 

Table 1   

RACE, Genome Walker, and qPCR Primers 

Gene Primer Oligonucleotide Sequence 

SGK1 3’ RACE Outer Reaction 5’-ATGTGAGTGGACCTTCTGACCTGC-3’ 

SGK1 3’ RACE Inner Reaction 5’-AGCACTTTGACCCCGAGTTCACAG-3’ 

SGK1 5’ RACE Outer Reaction 5’-GTGCACGTTGTGTCATTTGATTCA-3’ 

SGK1 5’ RACE Inner Reaction 5’-CACAATATGGCCCTGGCGGTCAA-3’ 

SGK1 5’ Genome Walker Outer 5’-CGAAGCTTCCTTTGCCGATGACTTTG-3’ 

SGK1 5’ Genome Walker Inner 5’-GTTGAAGTCACTTGGTTTGGCTTGAG-3’ 

SGK1 qPCR Forward 5’-AGCAGGAACACGGCGGAA-3’ 

SGK1 qPCR Reverse 5’-ATCCGCTTTGTTCTGTCCTTT-3’ 

18S qPCR Forward 5’-GTTAATTCCGATAACGAACGAGACTC-3’ 

18S qPCR Reverse 5’-ACAGACCTGTTATTGCTCAATCTCGTG-3’ 

 
 

Data Analysis 

 

Real-time data for tissue incubations and the stress experiment was analyzed 

using a t-test on ΔCt values as outlined by Yuan et al. (2006) after being assessed for 

normality and equality of variances. For significant changes in SGK1, fold changes of 
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transcripts were calculated by calculating 2-ΔΔCt. Data for tissue distribution was analyzed 

using the equation described by Fink et al. (1998), which provides relative expression 

values without the use of a standard curve. 

Results 

 
RACE and Genome Walker sequence 

 
While genome walking successfully extended the 5’ CDS sequence that was 

obtained using RACE, the final sequence lacks approximately 26 amino acids of the 5’ 

CDS based on alignment to dogfish SGK1 (CAA11527.1). A total of 2187 nucleotides 

were obtained for SGK1 in this study, including 1100 nt of 3’ untranslated region (UTR) 

and the polyadenylated tail. Translation of the isolated, 5’-partial coding sequence results 

in a 726 amino acid protein sequence. Aligning the protein sequence from D. sabina with 

SGK1 proteins of other taxa using NCBI BLAST shows very high homology (Fig. 10). 

D. sabina SGK1 shares 91% identity with S. acanthias and 83% identity to H. sapiens. 

 

Residues important for SGK1 function are conserved. These include residues 

corresponding to Thr256 and Ser422 phosphorylation sites known in mammals (Lang and 

Cohen, 2001). Phylogenetic analysis groups D. sabina SGK1 with that of another 

elasmobranch species and also separates it from other taxonomic groups (Figure 11). 
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Figure 10. Amino acid alignment of D. sabina SGK1 with that of S. acanthias 

(CAA11527.1), C. milii (XP_007901699.1), D. rerio (NP_954682.1), X. laevis 

(NP_001083809.1), G. gallus (NP_989807.1), M. musculus (NP_035491.1), and H. 

sapiens (NP_005618.2). 
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Figure 11. Phylogenetic analysis of D. sabina SGK1 with that of S. acanthias 

(CAA11527.1), C. milii (XP_007901699.1), D. rerio (NP_954682.1), O. latipes 

(XP_004083751.1), F. heteroclitus (Q5Q0U5.1), X. laevis (NP_001083809.1), G. 

gallus (NP_989807.1), M. musculus (NP_035491.1), and H. sapiens (NP_005618.2). 
 

 

Tissue distribution of SGK1 

 

SGK1 was present in all tissues tested. Although graphing the relative 

concentrations of SGK shows apparent differences in transcript concentrations between 

tissue types (Figure 12), there were no significant differences based upon the Wilcoxon 

analysis. Keeping this in mind, the tissues with highest transcript concentrations were 

blood, gill lamellae, and spiral valve. These concentrations appeared two-fold higher than 

those of muscle, heart ventricle, liver, and rectal gland tissues. The interrenal gland, 

gonad, and blood showed relatively low concentrations of transcripts, and kidney tissue 

had the lowest concentration. 
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Figure 12. Mean (±SEM ) relative abundances of SGK1 mRNA in D. sabina tissues. 
 

 

SGK1 transcript measurements from in vitro tissue incubations and stress series RBCs 

 
Incubation of whole blood with 100 nM 1α-OH-B resulted in significant increases 

in SGK1 transcripts (p < 0.05) (Figure 13). The two-hour incubation resulted in 

approximately a two-fold increase of SGK1 transcripts. Whole blood incubated with a 

concentration of 500 nM 1α-OH-B did not show any significant changes in SGK1. None 

of the treatments used in the rectal gland incubations resulted in significantly different 

levels of SGK1 transcripts from the control treatment (Figure 14). Additionally, there 

were no significant changes in SGK1 mRNA levels in red blood cells at any point during 

the stress series (Figure 15). 
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Figure 13. Fold-changes in SGK1 mRNA abundances in D. sabina red blood cells 

exposed to 100 nM and 500 nM 1α-OH-B in vitro. Asterisk indicates a significant 

difference from control conditions (p < 0.05). 
 

 

 

 

 

Figure 14. Fold-changes in SGK1 mRNA abundances in D. sabina rectal gland tissue 

exposed to 100 nM 1α-OH-B, 250 nM 1α-OH-B, 500 nM 1α-OH-B, 100 nM Ang II, 

and 100 nM CNP in vitro. 
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Figure 15. Fold-changes in SGK1 mRNA abundances in D. sabina red blood cells 

over the course of a 30-minute air exposure stressor and recovery (48 hours). 

 

Discussion 

 

This study reports, for the first time, direct regulation of gene expression by the 

unique elasmobranch corticosteroid 1α-OH-B. The selected target gene, SGK1, was 

chosen due to the significant body of literature describing the regulation of this gene by 

corticosteroids as well as the critical function of the encoded protein in the cellular stress 

response. Multiple lines of evidence support the identification and characterization of D. 

sabina SGK1 in the current study. Alignment of the D. sabina SGK1 protein sequence 

with those of other vertebrate taxa demonstrates the prominent homology and 

conservation of residues important for function. The high degree of sequence identity 

across diverse taxa supports a conserved function for SGK1 in vertebrate physiology and 

also the hypothesis that mechanisms regulating SGK1 gene expression will be conserved 

in elasmobranchs. Additional support for positive identification of SGK1 is provided by 
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phylogenetic analysis, which groups the D. sabina protein with the only other available 

elasmobranch sequence (S. acanthias) and separates it from more distant taxonomic 

groups. 

SGK1 is ubiquitously expressed in the tissues of D. sabina, as in other vertebrates. 

There is a lack of significant differences in SGK1 transcript concentrations between tissue 

types, but this is likely an artifact of small sample size as large differences seem to be 

apparent based on average values. A previous study in S. acanthias demonstrated 

significantly higher concentrations of SGK1 in tissues involved in glucose metabolism 

(liver) and some ion transport (intestine and kidney) versus other tissues (Waldegger et 

al., 1998). Although not significantly different from other tissue types in this study, 

average concentrations of SGK1 in gill lamellae and spiral valve, which are actively 

involved in ion transport, were much higher than in other tissues. With this being the 

case, it is curious that the salt secreting rectal gland does not show higher concentrations. 

However, low concentrations of SGK1 in rectal gland were also found in S. acanthias 

(Waldegger et al., 1998) using Northern blot. 

Contrary to my hypothesis, none of the treatments in rectal gland incubations with 

1α-OH-B elicited significant changes in SGK1 mRNA expression. This could be caused 

by several factors. As discussed above, SGK1 mRNA expression in tissue suites showed 

a relatively low amount of this gene in rectal gland. These low levels could indicate that 

SGK1 does not play a significant role in the functioning of the rectal gland. It is also 

possible that this SGK1 function is regulated at the protein level rather than the 

transcriptional level. This occurs by phosphorylation of Ser422 and Thr256, rather than 

binding to a GRE element in the SGK1 promoter by corticosteroids (Lang and Cohen, 
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2001). In the rectal gland of S. acanthias, SGK1 mRNA was upregulated when tissue was 

incubated in vitro with hypertonic solutions or the osmoregulatory hormone vasoactive 

intestinal polypeptide, the latter of which acts to regulate blood pressure (Waldegger et 

al., 1998). Therefore, the activity of the rectal gland may be more responsive to changes 

in extracellular tonicity or altered blood flow rather than stimulation by corticosteroids. 

Given the significant increase in SGK1 mRNA in red blood cells exposed to 100 

nM 1α-OH-B for 2 hours, it is clear that this corticosteroid does regulate cellular 

processes at the gene level. This is the first instance in which 1α-OH-B has been shown 

to regulate gene transcription and supports the hypothesis that 1α-OH-B functions in a 

manner similar to glucocorticoids in other taxa. Although not yet identified in D. sabina 

SGK1, it is likely that regulation by 1α-OH-B is mediated through binding to a GRE in its 

promoter, as seen in other taxa. Lack of significant change in SGK1 mRNA after 

exposure to 500 nM 1α-OH-B may have been due to the biologically irrelevant high 

dosage. 

SGK1 mRNA in D. sabina RBCs from the stress experiment did not exhibit any 

significant changes. The experiment may have not provided ample time to exhibit 

significant changes. Although SGK1 has been described as an early-response gene and 

has been shown to change significantly within 30 minutes, this has been in the presence 

of elevated glucocorticoids (Baskin and Sayeski, 2012; Johnstone, 2011), a situation 

similar to the red blood cell in vitro incubations described above. Elevated concentrations 

of plasma corticosteroids in this experiment were not observed until 48 hours after air 

exposure. It is possible that steroid concentrations at 48 hours were not elevated enough 



48 
 

 

or for a long-enough duration to produce a detectible change in SGK1 mRNA at this time 

point. 

In conclusion, this study is the first to demonstrate a role for 1α-OH-B in gene 

regulation. Regulation of SGK1 in red blood cells indicates these cells respond to changes 

in circulating corticosteroids, and future studies should further examine the role of 1α- 

OH-B in the cellular stress response of red blood cells and other elasmobranch tissues. To 

further elucidate the mechanisms of gene regulation as well as the glucocorticoid versus 

mineralocorticoid actions of 1α-OH-B, studies should also pursue the remainder of the 5’ 

SGK1 mRNA sequence and promoter region of D. sabina SGK1 to identify transcription 

factor binding sites and response elements including the GRE. This will help to both 

better understand the functioning of SGK1 in D. sabina, as well as provide additional 

evidence for or against the role of 1α-OH-B as a glucocorticoid. 



49 
 

 

CHAPTER IV 

SUMMARY 

This study provides several lines of evidence for the role of 1α-OH-B as a GC, 

and demonstrates, for the first time, that 1α-OH-B has the ability to regulate genes at the 

transcriptional level. Trends of total plasma corticosteroids (which are presumed to be 

1α-OH-B) match changes in glucose during the stress response. Additionally, individual 

measurements of basal total plasma corticosteroids and glucose are significantly 

correlated. This supports a role for 1α-OH-B as a regulator of glucose metabolism, which 

is a key component of GC function observed for both cortisol and corticosterone. 

Whole blood incubated with 1α-OH-B in vitro exhibits increases in transcript 

abundances of a highly conserved glucocorticoid-regulated gene, SGK1. Given that a 

GRE is present in the promoter region of SGK1 in other vertebrates, it is likely that SGK1 

regulation in the blood of elasmobranchs is controlled by the same mechanism. 

Although evidence from this study supports the role of 1α-OH-B as a 

glucocorticoid, further research is still warranted in this area. For example, an 

understanding of the mechanism by which 1α-OH-B regulates the expression of genes 

such as SGK1 transcripts is needed. Isolating the promoter region of this gene will 

indicate whether or not a GRE is present and therefore whether 1α-OH-B regulates 

transcription in a manner similar to other GCs. Additionally, methods for precisely 

measuring circulating levels of 1α-OH-B (e.g., assays using specific antibodies) still need 

to be developed in order to definitively understand its role in the physiological stress 

response and regulation of glucose metabolism. 
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