Spring 5-2015

The Relationship Between Teacher Collaboration and Teachers' Level of Knowledge, Implementation, and Confidence Related to Common Core State Standards for Literacy in History/Social Studies, Science and Technical Subject Areas

Talia Shaunte' Lock
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/dissertations

Part of the Curriculum and Instruction Commons, Educational Leadership Commons, Elementary and Middle and Secondary Education Administration Commons, Junior High, Intermediate, Middle School Education and Teaching Commons, Other Educational Administration and Supervision Commons, and the Secondary Education and Teaching Commons

Recommended Citation
https://aquila.usm.edu/dissertations/74

This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.
THE RELATIONSHIP BETWEEN TEACHER COLLABORATION AND TEACHERS’ LEVEL OF KNOWLEDGE, IMPLEMENTATION, AND CONFIDENCE RELATED TO COMMON CORE STATE STANDARDS FOR LITERACY IN HISTORY/SOCIAL STUDIES, SCIENCE AND TECHNICAL SUBJECT AREAS

by

Talia Shaunté Lock

Abstract of a Dissertation
Submitted to the Graduate School
of The University of Southern Mississippi
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

May 2015
ABSTRACT

THE RELATIONSHIP BETWEEN TEACHER COLLABORATION AND TEACHERS’ LEVEL OF KNOWLEDGE, IMPLEMENTATION, AND CONFIDENCE RELATED TO COMMON CORE STATE STANDARDS FOR LITERACY IN HISTORY/SOCIAL STUDIES, SCIENCE AND TECHNICAL SUBJECT AREAS

by Talia Shaunté Lock

May 2015

The purpose of this study was to explore the relationship between elements of teacher collaboration and teachers’ level of knowledge, level of implementation, and level of confidence related to CCSS for Literacy in History/Social Studies, Science, and Technical Subject Areas in grades 6-12. The study included an extensive literature that included an introduction, pertinent literature, and research regarding literacy in the 21st century, CCSS, cross curriculum, teacher collaboration, the role of leadership, and the theoretical framework. The study also included the methodology, research results, the conclusions, recommendations for policymakers and practitioners, and recommendations for further research.

It was discovered through this study that there is a statistically significant relationship between the elements of teacher collaboration and a teacher’s level of implementation and confidence of the reading standards for literacy via CCSS; however, there was not a significant relationship between elements of teacher collaboration and teacher knowledge of reading standards for literacy via CCSS. The data also revealed that generally, history/social studies teachers have more knowledge in the CCSS for Literacy in grades 6-12 compared to science and technical subject area teachers and
history/social studies are significantly better at implementation level and confidence level than science teachers in the CCSS for Literacy in grades 6-12.

The qualitative data indicated that lack of time, lack of appropriate resources, and lack of student on-grade-level reading abilities are variables that impede the implementation of the CCSS for Literacy; however, variables that assist in teachers’ implementation of the CCSS for Literacy are the advantage of collaborating with ELA teachers or other colleagues and the use of effective resources.
THE RELATIONSHIP BETWEEN TEACHER COLLABORATION AND
TEACHERS’ LEVEL OF KNOWLEDGE, IMPLEMENTATION, AND
CONFIDENCE RELATED TO COMMON CORE STATE STANDARDS
FOR LITERACY IN HISTORY/SOCIAL STUDIES, SCIENCE
AND TECHNICAL SUBJECT AREAS

by

Talia Shaunte Lock

A Dissertation
Submitted to the Graduate School
of The University of Southern Mississippi
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Approved:

Dr. Thelma J. Roberson, Committee Chair
Associate Professor, Educational Leadership and School Counseling

Dr. James T. Johnson, Committee Member
Director, Center for Research Support

Dr. Myron B. Labat, Committee Member
Assistant Professor, Educational Leadership and School Counseling

Dr. David E. Lee, Committee Member
Associate Professor, Educational Leadership and School Counseling

Dr. Karen S. Coats
Dean of the Graduate School

May 2015
DEDICATION

To my Long Beach School District friends and “family” along with my new USM friends and “family”—some of you have been some of the biggest encouragers and cheerleaders a girl could ever ask for. There were many times I wanted to quit but you all kept pushing me and encouraging me and I thank each and every one of you. You know who you are. I also want to thank Dr. Strebeck for dropping everything you had going on in life and coming to my house to tutor me in Stats. Not only are you a lifesaver, but I am proud to say you became one of my mentors. Thank you.

To all of my family—I really cannot thank you enough. A sincere thank you to my father-in-law and Mrs. Shirley. There were many of days and nights you had to pick the boys up for me or make me dinner while I carried on through this program. I am so grateful for your support and patience. To my mom, sister, and brother-distance and this journey have made it difficult for us to spend the time together like we want. I hope you know that part of the reason I have worked so hard is so that I am able to spend more time with each one of you. I would certainly not be here if it were not for the encouraging and loving upbringing I received growing up. Quitting was never an option and I now thank you momma, Tarin, and Caleb from the bottom of my heart.

It is with sincere thoughtfulness that I thank my dad who passed away before I started this journey. The memory of his love and support has stayed with me throughout the most difficult of days. I will never forget how proud he was of me on the day I received my Bachelor’s degree from this same institution and he would continually ask me what was next in my education. Well daddy, I never lost sight of what was next because of you.
To my sons, Aiden and Dalton who have sacrificed so much but made my life easier so that I could achieve this goal—I am so grateful to be your mom and I hope I have made you proud. Last but certainly not least, I dedicate this to my husband, Jeff Lock. Without him, this dream would have never been possible. He has been my rock and I could not be more grateful for his love, continuous support and encouragement, and tremendous amount of patience throughout this process. You have always believed in me and I thank you.
ACKNOWLEDGMENTS

There are several individuals who deserve much more than this acknowledgment for their significant contributions. Without each one of these people, this dream of mine would have never been possible and I am forever in your debt.

I would like to give a special thanks to Dr. Angela McHenry for allowing me to adapt and utilize the items on your Collaboration Survey and another special thank you to Dr. Chris Koliba and Dr. Rebecca Woodland for allowing me to adapt and utilize the items on your TCAR assessment tool. I can’t thank you enough.

I would like to thank Dr. Myron Labat for your willingness to serve on my committee. I always appreciated all of your words of encouragement and guidance throughout this process. I did not have the pleasure of having you as an instructor, but you treated me as though you were invested in me and that made a difference. I would also like to thank Dr. David Lee for serving on my committee and always making me feel a little more calm and more at ease, even when I was extremely stressed out and nervous. I did have the pleasure of having you as an instructor and I will never forget the words of wisdom you shared with your students. I feel honored to have had the chance to know you. To Dr. J.T. Johnson—I can assure you that Chapters IV and V would have been impossible without your knowledge and guidance! Your expertise in statistics left me in awe and I am forever grateful. Finally, to my chair who made this dream possible, I want to thank Dr. Thelma Roberson from the very bottom of my heart. From the time I called her and told her that I would not graduate in May, she pushed, encouraged, and provided guidance like no one ever has. I can never put into words how grateful I am to her. What
I do know is that God was watching over me when I asked her to serve as my chair and my family and I are forever in her debt.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Purpose of the Study</td>
<td></td>
</tr>
<tr>
<td>Research Questions</td>
<td></td>
</tr>
<tr>
<td>Hypotheses</td>
<td></td>
</tr>
<tr>
<td>Assumptions</td>
<td></td>
</tr>
<tr>
<td>Delimitations</td>
<td></td>
</tr>
<tr>
<td>Justification</td>
<td></td>
</tr>
<tr>
<td>Definition of Terms</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td>II. REVIEW OF THE LITERATURE</td>
<td>13</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Literacy in the 21st Century</td>
<td></td>
</tr>
<tr>
<td>The Call for Common Core State Standards</td>
<td></td>
</tr>
<tr>
<td>CCSS for Literacy in Science and Technical Subject Areas</td>
<td></td>
</tr>
<tr>
<td>CCSS for Literacy in History/Social Studies</td>
<td></td>
</tr>
<tr>
<td>The Need for a Cross Curriculum</td>
<td></td>
</tr>
<tr>
<td>Teacher Collaboration</td>
<td></td>
</tr>
<tr>
<td>The Role of Leadership</td>
<td></td>
</tr>
<tr>
<td>Theoretical Framework</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td>III. METHODOLOGY</td>
<td>66</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Research Design</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Instrumentation</td>
<td></td>
</tr>
<tr>
<td>Procedures</td>
<td></td>
</tr>
<tr>
<td>Data Analysis</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table

1. Pilot Study – Cronbach’s alpha for Pilot Study and Real Study71
2. Frequencies and Percentages of Content Area Taught76
3. Frequencies and Percentages of Grade Level Taught77
4. Mean and Standard Deviation for Years of Teaching Experience78
5. Frequencies and Percentages for Collaboration Time with Teachers on CCSS .79
6. Frequencies and Percentages for School Provided Collaboration Time79
7. Frequencies and Percentages for Time of Day Collaboration Time is Held80
8. Frequencies and Percentages for How Often a Structure Collaboration Time is Held with Fellow Teachers about CCSS ...81
9. Descriptive Statistics for Elements of Teacher Collaboration: Factors Related to Collaboratively Supported Literacy Instruction via CCSS83
10. Descriptive Statistics for Elements of Teacher Collaboration: Utilization of Data during the Collaboration Process ...84
11. Descriptive Statistics for Knowledge Level ..86
12. Descriptive Statistics for Implementation Level ..89
13. Descriptive Statistics for Confidence Level ..91
14. Descriptive Statistics for Differences between Subject Area Teachers and Knowledge ...93
15. Descriptive Statistics for Differences between Subject Area Teachers and Implementation ...94
16. Descriptive Statistics for Differences between Subject Area Teachers and Confidence ...94
CHAPTER I
INTRODUCTION

If we teach today’s students as we taught yesterday’s, we rob them of tomorrow—

John Dewey (Young, 2012, p. 70).

According to Rotherham and Willingham (2009), “educators are united around
the idea that students need 21st century skills to be successful today” (p. 16). The author
of The World is Flat: A Brief History of the 21st Century, Thomas Friedman (2005),
asserted that the most successful people of the 21st century will be those who can acquire
and use knowledge to develop and communicate a combination of ideas, applications,
and strategies to solve problems, and do so in a creative way. Silva (2009) stated that
there should be an emphasis placed on what students can do with knowledge rather than
on the actual “units of knowledge” they possess (p. 630). According to Silva (2009), the
modern workplace requires workers who are “independent thinkers, problem solvers, and
decision makers” and that public schools must do a better job developing students’
thinking and reasoning skills (p. 630).

Only countries with a highly skilled workforce will be able to compete in today’s
global economy (National Center on Education and the Economy [NCEE], 2007).
Besides technology, other elements of learning are essential for the 21st century (The
National Council of Teachers of English [NCTE], 2007b). In fact, studies of workforce
readiness, according to NCTE (2007b), show that employers rate written and oral
communication skills very highly along with critical thinking skills, all of which rank
higher than information technology. Unfortunately, colleges state that students are ill-
prepared for the literacy tasks of higher education while employers also echo the need for more adequate literacy skills among workers (NCTE, 2007a).

Friedman (2005) emphasized that such skills can be acquired through teaching “plain old reading and writing” in content areas that seem to be declining in importance in an alarming way (p. 353). Skills of the 21st century, such as informational literacy, are not new concepts. Students who have attended highly effective schools and/or have been taught by highly effective teachers have already been exposed to these skills; however, no school system can afford to let these skills go unnoticed if they are to effectively prepare students for success (Rotherham & Willingham, 2009).

The skills needed for the 21st century are not new, but according to Silva (2009), are “newly important” because today’s workers “must be able to find and analyze information from multiple sources and use this information to make decisions and create new ideas” (p. 631). In their presentation entitled *Did You Know; Shift Happens - Globalization, Information Age*, Fisch and McLeod (2015) informed audiences that the top 10 in-demand jobs in 2010 did not exist in 2004 and that educators are currently preparing students for jobs that do not yet exist. The presentation reiterates the need for students to have the capability to solve problems that are not even known yet and the need for change in the education system (Fisch & McLeod, 2015). In 2014, there were 540,000 words in the English language which is five times as many as during Shakespeare’s time. More than 3,000 new books are published daily; a week’s worth of *New York Times* contains more information than a person came across in a lifetime in the 18th century alone and an estimated 40 exabytes of new information will be generated worldwide during 2014, with new technical information doubling every 2 years (Fisch &
McLeod, 2015). Between 2002 and 2007, cell phones replaced landline telephones; in half a decade, cell phones and the internet became the second most indispensable technology, which until 2002 was the television (Jerald, 2009). Rotherham and Willingham (2009) suggested that there is a 21st century skills movement and that “with so much knowledge being created, content no longer matters; that ways of knowing information are now much more important than information itself” (p. 16). According to Jerald (2009),

when the essential daily tools can change in just five years, the impact over longer stretches can be profound. Many experts say that since the 1970’s, new technologies, combined with demographic, political, and economic trends, have altered Americans’ work and social lives in ways that have significant consequences for today’s young people. (p. 1)

Jerald (2009) continued to state that these types of trends have caused education reformers to “argue that the traditional curriculum is not enough and that schools must provide students with a broader set of 21st century skills” (p. 1). Because the world keeps learning, according to Friedman (2005), our country must “step it up a notch” and Americans can “thrive and claim the jobs of the new middle -- provided we get ready to compete, get every individual to think about how he or she can upgrade his or her educational skills, and keep investing in the secrets of America’s sauce” (pp. 338-340).

The new Common Core State Standards (CCSS) are a state-led effort that established a set of clear educational standards for K-12 grade in English and Math and are designed to ensure that students are ready to enter college and/or the workforce demanded for the 21st century (Mississippi Department of Education, 2012). The
Mississippi Department of Education (MDE, 2012) also reported that these standards emphasize critical thinking, teamwork, problem solving, and are “grounded in college and career readiness” which will also lead to proficiency in English-language arts.”

According to the National Governors Association Center for Best Practices (NGA Center) and the Council of Chief State School Officers (CCSSO, 2010), the CCSS represents a set of expectations that students need to succeed in college and careers and are aligned with these expectations in mind while also preparing students to be productive in a global economy and society.

The CCSS for Literacy calls for a “shift” in implementation compared to the previous standards taught by educators (NGA Center & CCSSO, 2010, para. 1). These shifts call for students to have lots of practice with complex, rigorous texts and academic language in the areas of reading, writing, and speaking and all evidence used within student work should be based from the text while building knowledge through content-rich nonfiction (NGA Center & CCSSO, 2010). This type of informational reading includes information found in history/social studies, sciences, and technical subjects and the standards for these subject areas “ensure that students can independently build knowledge in these disciplines through reading and writing,” which needs to be an integral part of every subject area (NGA Center & CCSSO, 2010, para. 11). Friedman (2005) stated that fewer students than ever can read the kinds of “lengthy, complex texts” that are now required to learn and innovate (pp. 353-354). History, science, and technical subject area teachers are to use their “content area expertise to help students meet the particular challenges of reading, writing, speaking, listening, and language in their
respective fields”; however, these standards are meant to supplement subject area content rather than replace it (NGA Center & CCSSO, 2010, p. 3).

“The Standards insist that instruction in reading, writing, speaking, listening, and language be a shared responsibility within the school” (NGA Center & CCSSO, 2010, p. 4). Although the standards “define what all students are expected to know and be able to do,” they do not define how teachers should teach the standards (NGA Center & CCSSO, 2010, p. 6). Although English/Language Arts teachers are responsible for teaching information text standards, the CCSS include a strand of literacy standards that are the responsibility of the history/social studies, science, and technical subject areas (Greene, 2012). Greene (2012) stated that CCSS calls for these subject areas to incorporate close readings of “meaty, high-quality texts” that focus strictly on the text rather than student-made connections or experiences and that students must “get their hands dirty by digging into the text to uncover the evidence that supports their answers” (p. 23). In 2011, Schmoker asserted that a content-rich curriculum must include “frequent, meaningful, in-class opportunities to read and discuss newspapers and serious magazines in every subject” (p. 98). Teachers will have the freedom to utilize the appropriate pedagogies for their students and their curriculum that recognize "reciprocal processes of reading, writing, speaking, and listening, as well as the application of literacy standards within history/social studies, science, and technical subjects" (Drew, 2012, pp. 321-322).

Purpose of the Study

The purpose of this study was to explore the relationship between elements of teacher collaboration and teachers’ level of knowledge, level of implementation, and level of confidence related to CCSS for Literacy in History/Social Studies,
Science, and Technical Subject Areas in grades 6-12. This research is important to the field of educational administration because principals serve as instructional leaders in their schools. In order for teachers to better prepare students for the skills necessary to succeed in the 21st century, educational leaders need to understand where the gaps are to better prepare the teachers for the changes needed in their instruction in their classroom, specifically, in their implementation of literacy. According to Jerald (2009), districts need to prepare students for college and career readiness and, by doing so, must do a better job at teaching the application of knowledge and skills. Jerald (2009) asserted that the key to preparing students for the 21st century is to develop a curriculum that teaches students how to apply their knowledge, for success in an ever more complex and demanding world. The right word is “and” not “or.” To that end, applied literacies and broader competencies are best taught within traditional disciplines. Cognitive scientists warn against efforts to teach critical thinking as isolated skills outside of content. (p. 69)

Research Questions

The following research questions guided this study:

1. What are teachers’ perceptions of the CCSS for Literacy in history/social studies, science, and technical subjects in grades 6-12 in the areas of level of knowledge, level of implementation, and level of confidence using the CCSS for Literacy in history/social studies, science, and technical subject areas?

2. Do teachers’ perceptions of the CCSS for Literacy in history/social studies,
science, and technical subject areas in grades 6-12 in the areas of their level of knowledge, level of implementation, and level of confidence differ based on subject area taught?

3. Is there a relationship between teachers’ perceptions of the CCSS for Literacy in history/social studies, science, and technical subject areas in grades 6-12 in the areas of their level of knowledge, level of implementation, and level of confidence and teacher collaboration?

Research Hypotheses

The hypotheses developed for this study included the following:

1. Teachers’ perception of the CCSS for Literacy in history/social studies, science, and technical subject areas in grades 6-12 in the areas of knowledge, level of implementation, and level of confidence will differ based on subject area.

2. Certain elements of teacher collaboration will have a strong positive correlation with the level of knowledge a teacher has of the CCSS for Literacy in history/social studies, science, and technical subject areas.

3. Certain elements of teacher collaboration will have a strong positive correlation with the level of implementation of the CCSS for Literacy in history/social studies, science, and technical subject areas.

4. Certain elements of teacher collaboration will have a strong positive correlation with the level of confidence a teacher has of the CCSS for Literacy in history/social studies, science, and technical subject areas.
Assumptions

It was assumed that the researcher was provided with an accurate and complete list of all the history/social studies, science, and technical subject area 6th-12th grade teachers in the select school districts. Another assumption of this study was that participants responded to the questionnaire in an open and honest manner.

Delimitations

The study was limited to 6 school districts within the Mississippi Gulf Coast region. Survey methodology was used to gather data related to teachers’ perceptions of the CCSS for Literacy (Reading) in history, science, and technical subjects in grades 6-12 in the areas of teacher knowledge, implementation, and confidence level. Participants were limited to teachers employed in the select school districts during AY 2014-2015 who teach history/social studies, science, and technical subjects in grades 6-12.

Justification

Further investigation regarding implementation of CCSS for Literacy (Reading) standards among history, science, and technical subject teachers may offer insight for administrators and teachers to facilitate the implementation of these new literacy standards. This study is valuable to the field of educational administration because it may identify barriers to implementing CCSS for Literacy (Reading), which may lead to changes in how teachers are prepared to incorporate literacy standards in content areas. As Goddard, Hoy, and Hoy stated in 2004, “as educators look for approaches to school improvement that can help all students reach high levels of achievement, it is timely and important to examine how schools can be empowered to exert control over their circumstances” (p. 8).
Definition of Terms

The following definitions were used for specific terminology related to this study:

1. **Barrier** – refers to a circumstance or obstacle that prevents communication or Progress (Oxford Dictionaries, n.d.) For the purposes of this study, a barrier will be what history/social studies, science, and technical subject area teachers determine are obstacles that keep them from implementing the Common Core Literacy Standards within their specific subject areas from 6th-12th grade.

2. **Collaboration** - the systematic process in which teachers work together to analyze and impact professional practice in order to improve individual and collective results (DuFour, 2003).

3. **College and Career Readiness Anchor Standards for Reading** - broad literacy standards that define what students should understand and be able to do by the end of each grade span and correspond to the CCSS for Literacy. For the purpose of this study, this may be interchangeable with the term *CCSS for Literacy (Reading)* because they are both within the CCSS for English Language Arts and Literacy in history/social studies, science, and technical subjects.

4. **Common Core Literacy Standards** - predicated on teachers of history/social studies, science, and technical subjects using their content area expertise to help meet the particular challenges of reading, writing, speaking, listening, and language in their respective fields. These standards are not meant to replace content standards in these areas but rather supplement them (NGA Center & CCSSO, 2010). For the purposes of this study, the literacy standards that were analyzed were the reading standards.

5. **Common Core State Standards** - refers to a set of high quality academic
expectation in English-language arts (ELA) and mathematics that define the knowledge and skills all students should master by the end of each grade level in order to be on track for success in college and career. For the purposes of this study, the English Language Arts and Literacy in History/Social Studies, science, and technical subjects are the standards that represent the next generation of K-12 standards designed to prepare all students for success in college, career, and life by the time they graduate from high school (NGA Center & CCSSO, 2010).

6. **Implementation** - a specified set of activities designed to put into practice an activity or program of known dimensions (Halle, 2012, p. 4). For the purpose of this study, the specified set of activities are the Common Core Literacy Standards for history/social studies, science and technical subject areas that are or are not put into practice within 6-12 grade classrooms.

7. **Interdisciplinary/Cross Curriculum/Discipline Specific/Disciplinary Literacy**- terms that are used interchangeably throughout this study due to the different terminology used throughout the literature, but all terms describe a conscious effort to apply knowledge, principles, and/or values to more than one academic discipline simultaneously (Education Place, 1997). For the purpose of this study, these terms refer to the effort applied to integrating the Common Core Literacy Standards within their specific subject areas of history/social studies, science, and technical subject areas in 6th-12th grade.

8. **Knowledge** - the pedagogical content knowledge, that special amalgam of content and pedagogy that is uniquely the province of teachers, their own special form of professional understanding (Shulman, 1987, p. 8). For the purpose of this study,
knowledge is specifically targeted toward 6th-12th grade teachers’ perceptions of their professional understanding of the Common Core Literacy Standards and how they relate to their specific subject area.

9. \textit{Literacy} - described as the ability to apply academic knowledge and skills to deal with real-world challenges (Jerald, 2009). For the purpose of this study, this type of literacy can be seen throughout the Common Core State Standards for Literacy among history/social studies, science, and technical subject areas in 6th-12th grade.

10. \textit{Self-efficacy/Confidence} - a feature that is effective in fostering behavior and one’s beliefs about one’s own capacity or organizing necessary activities to realize a specific performance and being successful in this organization (Kurt, 2014, as cited in Bandura, 1997).

Summary

Twenty-first century skills are a necessity for college and workforce readiness. Students will need to be prepared to be productive citizens in the now global society; unfortunately, students are ill-prepared for the literacy tasks that face them. With the challenges that now face students, the new CCSS were designed to prepare them with the challenges that they now face. With these new set of standards, a shift in the implementation of literacy will require teachers of history/social studies, science, and technical subject areas to share the responsibility to develop student literacy while also providing a content-rich curriculum.

This study examined teachers’ perceptions of their level of knowledge, implementation, and confidence of the CCSS for Literacy (Reading) to determine if there is a relationship between their perceptions and the elements of teacher collaboration.
Through the data collected, an analysis of the teachers’ perceptions and the elements of teacher collaboration determined if a relationship exists. This study involved a range of upper elementary, middle schools, and high schools in districts along the Mississippi Gulf Coast. There are no factors such as socio-economic status, size of district, or the ratings earned through the Mississippi Statewide Accountability System. These selection conditions provided the researcher with quality samples to adequately determine the relationship between the variables.
CHAPTER II

REVIEW OF THE LITERATURE

This chapter provides an overview of the research literature that serves as the framework for this study. The major bodies of literature that are reviewed are (a) Literacy in the 21st Century, (b) the Call for Common Core State Standards (CCSS), (c) CCSS for Literacy in Science and Technical Subjects, (d) CCSS for Literacy in History/Social Studies, (e) the Need for a Cross Curriculum, (f) Teacher Collaboration, (g) The Role of Leadership, and (h) Theoretical Framework.

Literacy in the 21st Century

The term “literate” has steadily evolved. Originally, the term defined someone who could read and write, but was later used to describe someone who had knowledge in a particular area (Jerald, 2009). Today, the term “literate” defines someone who “not only ‘knows’ a lot about a topic but who also can apply that knowledge outside the classroom to successfully tackle real world challenges” (Jerald, 2009, p. 37). Schmoker (2011) stated that students cannot learn facts and will be even less likely to care about them without many opportunities to read, write, and talk. When thinking of literacy in today’s world, Jerald (2009) stated that people are now “reading to learn” versus the past mindset of “learning to read” due to the need to understand a variety of documents in order to carry out a task in a “complex modern society” (p. 37). Jerald (2009) continued to state that “from an economic perspective, it is important to understand that strong reading skills have become even more important in the technology-driven information age” (p. 38).
The key findings from the 2012 Programme for International Student Assessment (PISA) survey indicated that there had been no significant changes since 2009 in reading performance of students in the United States; however, while the United States is continuing to remain stagnant in the area of reading, other countries such as Belgium, Germany, and Poland are continuing to improve and evolve (Organization for Economic Co-operation and Development [OECD], 2012). Only countries with a highly skilled workforce will be able to compete in today’s global economy. The National Center on Education and the Economy (NCEE 2007) reported that out of the advanced industrial nations, students in the United States continually place between the middle to the bottom in the achievement of general literacy. Similarly, the 2009 National Assessment of Educational Progress (NAEP) reported that only 2% of 8th graders tested were reading at an advanced level. NAEP data also showed that only about 30% of 4th-12th grade students are proficient in writing, which may explain why colleges have to offer remedial reading and writing courses for a high percentage of students (NAEP, 2009). According to the results of the 2009 NAEP, 67% of grade 4 students and 68% of grade 8 students scored at the basic level or below in the area of reading and only 29% of 8th grade students met NAEP’s standard of reading proficiency in the United States (NAEP, 2009). In 2011, NAEP scores more currently revealed that 67% of 8th grade students performed at or above the “basic” level, which “did not change significantly from 2009 to 2011” and in Mississippi, 21% of 8th grade students performed proficient in reading versus 31.6% nationally, which puts Mississippi at the bottom of the list (Nation’s Report Card, 2011, p. 2). Although the 8th grade scores are one point higher than in 2009, these scores do not show a significant difference; in fact, the average 8th grade reading score was 19 points
lower for students who attended public schools rather than private schools, in which 91% of 8th graders attended public schools versus the 9% attending private schools (Nation’s Report Card, 2011). The National Governors Association Center for Best Practices (NGA Center) and Council of Chief State School Officers (CCSSO) (2010) reported that although reading skills needed for success in college, in the workforce, and in life have remained steady or increased over the past half century, the text complexity in K-12 classrooms has declined in difficulty leaving tremendous gaps in the reading ability of high school seniors and their future.

The Call for Common Core State Standards

According to Rotherham and Willingham (2009), the history of U.S. reform “should greatly concern everyone who wants schools to do a better job of teaching students to think.” Many previous reform efforts have quickly turned into “fads” or have been implemented with “weak fidelity to their core intent” (p. 16). “The governance, organizational, and management scheme of American schools was created in the early years of the 20th century to match the industrial organization of the time” (National Center on Education and the Economy (NCEE, 2007, p. 15). During that time, low levels of literacy were necessary for many of the jobs available to the workforce. This was true even for teachers who were only required to have one more year of schooling than the students they taught (NCEE, 2007). During most of the 20th century, the United States had 30% of the world’s population of college students; however, in 2007 that percentage plummeted to 14% and continued to decline in 2007 (NCEE, 2007).

The Common Core State Standards (CCSS) “provide an opportunity to realize systematic change and ensure that American students are held to the same high
expectations in mathematics and literacy as their global peers—regardless of state or zip code” (Achieve, Inc., National Association of Secondary School, & National Association of Elementary School, 2012, p. 2). Nearly a decade before CCSS, Black and Wiliam (1998) asserted that raising the standards of learning was a vital national priority and in 2007, NCEE (2007) suggested that the United States adopt “internationally benchmarked standards” to assist in educating students. The drive behind CCSS’s interdisciplinary approach to literacy is embedded in “extensive research establishing the need for college and career ready students to be proficient in reading complex informational text independently in a variety of content areas” and most “required reading in college and workforce training programs is informational in structure and challenging in content” (NGA Center & CCSSO, 2010, p. 4).

The state of Mississippi has played an active role in the American Diploma Project Network since 2005 by aligning its standards and graduation requirements to ensure that students are college and career ready (Partnership for Assessment of Readiness for College and Careers [PARCC], 2014, p. 1). The Mississippi Board of Education adopted the CCSS in language arts/literacy in June 2010 and then joined PARCC in the spring of 2010 and helped “shape PARCC’s proposal for a common, next-generation assessment system” (PARCC, 2014, p. 2). The Mississippi Department of Education (MDE) State Accountability and Assessment Transitional Timeline indicated that teachers are to be fully implementing these new literacy standards into their curriculum during the 2013-2014 school year and that the first year of the new assessment based on these standards will be implemented during the 2014-2015 school year (MDE, 2012). Mississippi’s public 2-year and 4-year universities have also assisted
in the development of this new assessment which measured “real world skills that colleges value, like critical thinking and problem solving” (PARCC, 2014, p. 2).

According to the NGA Center and CCSSO (2010), the literacy standards for history, science and technical subject areas include key ideas and details, craft and structure, integration of knowledge and ideas, and range of reading and level of text complexity. The College and Career Readiness (CCR) Anchor Standards for Reading guided the grade-specific reading standards for literacy in history/social studies, science, and technical subjects (NGA & CCSSO, 2010). These CCR anchor standards complement the grade specific reading standards for literacy and are supposed to work in “tandem to define college and career readiness expectations” (NGA & CCSSO, 2010, p. 61). The CCR Anchor Standards for Reading are broader but guided the specific literacy standards and are listed as follows (NGA & CCSSO, 2010, p. 60):

Key Ideas and Details:

- Read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
- Determine central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.
- Analyze how and why individuals, events, or ideas develop and interact over the course of a text.
Craft and Structure:

- Interpret words and phrases as they are used in a text, including determining technical, connotative, and figurative meanings, and analyze how specific word choices shape meaning or tone.
- Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text (e.g., a section, chapter, scene, or stanza) relate to each other and the whole.
- Assess how point of view or purpose shapes the content and style of a text.

Integration of Knowledge and Ideas:

- Integrate and evaluate content presented in diverse formats and media, including visually and quantitatively, as well as in words.
- Delineate and evaluate the argument and specific claims in a text, including the validity of the reasoning as well as the relevance and sufficiency of the evidence.
- Analyze how two or more texts address similar themes or topics in order to build knowledge or to compare the approaches the authors take.

Range of Reading and Level of Text Complexity:

- Read and comprehend complex literary and informational texts independently and proficiently.

The NGA Center and CCSSO (2010) also specifically lay out the CCSS for Literacy (Reading Standards) in history/social studies, science, and technical subject areas. These standards add additional specificity. For grades K-5, the literacy standards are integrated into the reading standards; however, in grades 6-12, these literacy standards...
standards are specifically outlined in the CCSS document and are broken down into three
groups of grades; grades 6-8 students; 9-10 students; and 11-12 students (NGA &
CCSSO, 2010). The following are the CCSS for Literacy for grades 6-8 (NGA &
CCSSO, 2010, pp. 61-62):

Reading Standards for Literacy in History/Social Studies Grades 6-8 Students:

Key Ideas and Details:

- Cite specific textual evidence to support analysis of primary and secondary sources.
- Determine the central ideas or information of a primary source; provide an accurate summary of the source distinct from prior knowledge or opinions.
- Identify key steps in a text’s description of a process related to history/social studies.

Craft and Structure:

- Determine the meaning of words and phrases as they are used in a text, including vocabulary specific to domains related to history/social studies.
- Describe how a text presents information.
- Identify aspects of a text that reveal an author’s point of view or purpose.

Integration of Knowledge and Ideas:

- Integrate visual information with other information in print and digital texts.
- Distinguish among fact, opinion, and reasoned judgment in a text.
- Analyze the relationship between a primary and secondary source on the same topic.
Range of Reading and Level of Text Complexity:

- By the end of grade 8, read and comprehend history/social studies texts in the grades 6-8 text complexity band independently and proficiently.

Reading Standards for Literacy in Science and Technical Subjects Grades 6-8

Students:

Key Ideas and Details:

- Cite specific textual evidence to support analysis of science and technical texts.

- Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

- Follow precisely a multi-step procedure when carrying out experiments, taking measurements, or performing technical tasks.

Craft and Structure:

- Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.

- Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

- Analyze the author’s purpose in providing an explanation, describing a procedure, or discussing an experiment in a text.
Integration of Knowledge and Ideas:

- Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually.
- Distinguish among fact, reasoned judgment based on research findings, and speculation in a text.
- Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

Range of Reading and Level of Text Complexity:

- By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

The CCSS for Literacy in grades 9-10 progresses in difficulty and are listed as follows: (NGA & CCSSO, 2010, pp. 61-62):

Reading Standards for Literacy in History/Social Studies Grades 9-10 Students:

Key Ideas and Details:

- Cite specific textual evidence to support analysis of primary and secondary sources, attending to such features as the date and origin of the information.
- Determine the central ideas or information of a primary or secondary source; provide an accurate summary of how key events or ideas develop over the course of the text.
- Analyze in detail a series of events described in a text; determine whether earlier events caused later ones or simply preceded them.
Craft and Structure:

- Determine the meaning of words and phrases as they are used in a text, including vocabulary describing political, social, or economic aspects of history/social studies.

- Analyze how a text uses structure to emphasize key points or advance an explanation or analysis.

- Compare the point of view of two or more authors for how they treat the same or similar topics, including which details they include and emphasize in their respective accounts.

Integration of Knowledge and Ideas:

- Integrate quantitative or technical analysis (e.g. charts, research data) with qualitative analysis in print or digital text.

- Assess the extent to which the reasoning and evidence in a text support the author’s claims.

- Compare and contrast treatments of the same topic in several primary and secondary sources.

Range of Reading and Level of Text Complexity

- By the end of grade 10, read and comprehend history/social studies texts in the grades 9-10 text complexity band independently and proficiently.
Reading Standards for Literacy in Science and Technical Subjects Grades 9-10

Students:

Key Ideas and Details:

- Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanation or descriptions.
- Determine the central ideas or conclusions of a text; trace the text’s explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text.
- Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.

Craft and Structure:

- Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
- Analyze the structure of the relationships among concepts in a text, including relationships among key terms (e.g. force, friction, reaction force, energy).
- Analyze the author’s purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, defining the question the author seeks to address.
Integration of Knowledge and Ideas:

- Translate quantitative or technical information expressed in words in a text into visual form (e.g. a table or chart) and translate information expressed visually or mathematically (e.g. in an equation) into words.
- Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem.
- Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.

Range of Reading and Level of Text Complexity

- By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently.

The CCSS for Literacy in grades 11-12 continues to build upon the previous standards and progress as follows: (NGA & CCSSO, 2010, pp. 61-62)

Reading Standards for Literacy in History/Social Studies Grades 11-12 Students: Key Ideas and Details:

- Cite specific textual evidence to support analysis of primary and secondary sources, connecting insights gained from specific details, to an understanding of the text as a whole.
- Determine the central ideas or information of a primary or secondary source; provide an accurate summary that makes clear the relationships among the key details and ideas.
• Evaluate various explanations for actions or events and determine which explanation best accords with textual evidence, acknowledging where the text leaves matters uncertain.

Craft and Structure

• Determine the meaning of words and phrases as they are used in a text, including analyzing how an author uses and refines the meaning of a key term over the course of a text.

• Analyze in detail how a complex primary source is structured, including how key sentences, paragraphs, and larger portions of the text contribute to the whole.

• Evaluate authors’ differing points of view on the same historical event or issue by assessing the authors’ claims, reasoning, and evidence.

Integration of Knowledge and Ideas

• Integrate and evaluate multiple sources of information presented in diverse formats and media in order to address a question or solve a problem.

• Evaluate an author’s premises, claims, and evidence by corroborating or challenging them with other information.

• Integrate information from diverse sources, both primary and secondary, into a coherent understanding of an idea or event, noting discrepancies among sources.
Range of Reading and Level of Text Complexity

- By the end of grade 12, read and comprehend history/social studies texts in the grades 11-CCR text complexity band independently and proficiently.

Reading Standards for Literacy in Science Grades 11-12 Students:

Key Ideas and Details:

- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.

- Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.

- Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.

Craft and Structure:

- Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.

- Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.
• Analyze the author’s purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, identifying important issues that remain unresolved.

Integration and Knowledge and Ideas:

• Integrate and evaluate multiple sources of information presented in diverse formats and media in order to address a question or solve a problem.

• Evaluate the hypothesis, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.

• Synthesize information from a range of sources into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

Range of Reading and Level of Text Complexity:

• By the end of grade 12, read and comprehend science/technical texts in the grades 11-CCR text complexity band independently and proficiently.

In 2011, Schmoker stated that standards had never included guidelines which are the “most vital factor in education: clear, minimal guidelines for how much meaningful reading and writing students should do in every subject area” (p. 39). CCSS calls for “explicit literacy instruction” that is now a shared responsibility among all teachers, in particular history, science, and technical subjects (Achieve, 2012).
CCSS for Literacy in Science and Technical Subjects

The CCSS for Literacy combine the standards for technical subject areas and science. Technical subjects such as Information and Communications Technology (ICT) classes (ICT) found in most middle schools are growing increasingly important in everyday lives (Jerald, 2009). Just teaching the basics of technology mechanics is meaningless to students due to the ever-changing tools and applications and the fact that students are “digital natives” themselves and have far more knowledge than most of their teachers in this area (Jerald, 2009, p. 45). Because literacy in technology does not mean that students need to be competent in the mechanics of technology, they do need to know how to utilize and use the information technology “more responsibly, reflectively, and effectively in different areas of life” and “link their use of technology to what they are learning in school” (Jerald, 2009, p. 45).

Experts reveal that adults in the 21st century need to “better understand and apply science related information” as well (Jerald, 2009, p. 43). Snow and Biancarosa (2003) stated that struggling adolescent readers specifically often display a “high degree of variation in reading ability”; although students may read well with certain materials, they often read “particularly badly with content text” (p. 6). Although science teachers may expect middle and high school students to know how to read and comprehend from informational texts, many students do not know how to “read to learn” science (Herman & Wardrip, 2012, p. 48). According to Jerald (2009), experts say that the 21st century adult will need to possess scientific literacy by better understanding and applying science-related information. Unfortunately, many science teachers do not know how to increase comprehension for students and need strategies and best practices to assist in
developing “critical reading-to-learn skills” that are necessary for students to be successful in school (Herman & Wardrip, 2012, p. 48).

The Organization for Economic Co-operation and Development ([OECD], 2013) reiterated that many of the challenges that will be faced in the 21st century will require “innovative solutions that have a basis in scientific thinking and scientific discovery” and scientific literacy will require students to have a “deep understanding of the nature of science, its limitations and the consequences of its application” (p. 4). The OECD released the 2015 science framework for the Programme for International Student Assessment (PISA). This assessment will assess the competencies that 15 year old students possess based on their content, procedural, and epistemic knowledge (OECD, 2013). According to the OECD (2013), the 2015 definition of scientific literacy is:

the ability to engage with science-related issues, and with the ideas of science, as a reflective citizen (p. 7). According to the OECD (2013), a scientifically literate person, therefore, is willing to engage in reasoned discourse about science and technology which requires the competencies to: (a) Explain phenomena scientifically: recognize, offer and evaluate explanations for a range of natural and technological phenomena. (b) Evaluate and design scientific inquiry: describe and appraise scientific investigations and propose ways of addressing questions scientifically. (c) Interpret data and evidence scientifically: analyze and evaluate data, claims and arguments in a variety of representations and draw appropriate scientific conclusions. (p. 7)

This definition of scientific literacy has evolved from “knowledge of science” to “understandings about science” (OECD, 2013, p. 9). Herman and Wardrip (2012) stated
that to be scientifically literate, students must not only be able to learn from science texts using multiple means of media, however, teachers must actively attend to, plan for, and support reading in science classrooms to assist in students’ understanding of science phenomena. PISA (2013) defined three competencies to measure scientific literacy, which are to (a) “explain phenomena scientifically, (b) evaluate and design scientific inquiry, and (c) interpret data and evidence scientifically” (p. 5). All of the competencies require content knowledge; however, the second and third competency requires more than knowledge of what a student knows, but rather a procedural and epistemic knowledge. The epistemic knowledge that a student must possess to become scientifically literate is an “understanding of the rationale for the common practices of scientific inquiry, the status of the knowledge claims that are generated, and the meaning of foundational terms such as theory, hypothesis and data” (OECD, 2013, p. 6). This epistemic knowledge that is now called for requires students to judge whether procedures and data sets are appropriate and claims are justified (OECD, 2013).

Argumentation and critique, therefore are essential to determining which is the most appropriate conclusion…argumentation is the means that scientists and technologists use to make their case for new ideas. Disagreement amongst scientists is therefore normal extraordinary….The scientifically literate individual would understand the function and purpose of argument and critique and why it is essential to the construction of knowledge in science. In addition, they should have the competency both to construct claims that are justified by data and to identify any flaws in the arguments of others. (OECD, 2013, p. 9)

CCSS for Literacy in History/Social Studies
Besides science and technical subject areas, the CCSS for Literacy also include history/social studies as well. “The place to teach students to ask questions about truth and evidence in our digital age is the history and social studies classroom, and we should not delay” (Wineburg & Martin, 2004, p. 42). Schmoker (2011) stated that the most intensive literate subject next to language arts is social studies. Wineburg and Martin (2004) agreed that the key to effective social studies instruction is literacy. Both disciplines assist students in an understanding of people, cultures, the human condition, and both require students to “read closely and carefully for nuance — beyond literal meaning, so that we may be wise, wary consumers of language that is so often used for commercial, political, or self-aggrandizing purposes” (Schmoker, 2011, p. 133). “Wisdom, enthusiasm for learning, and college preparation can only come from intensive, frequent reading talking; writing; and arguing about people, issues, and events of the past and present” (Schmoker, 2011, p. 133). The CCSS for Literacy calls on the use of primary and secondary sources. Primary source documents allow students an “up-close” and “unfiltered sense” of what the people of the time period thought and did (Schmoker, 2011, p. 154). Reading these primary and secondary sources is “at the heart of such an investigative curriculum” (Wineburg & Martin, 2004, p. 45). Schmoker (2011) stated that educators must “model how to read, talk, and write ‘argumentatively and analytically’ at least two times per week, every week, at every grade level” with documentary evidence within the history discipline (p. 146). Within social studies, students must have the opportunity to look at these types of sources, which include eyewitness accounts, contemporary accounts, or official/notable documents from the a particular time period, about once a week; this would deepen a student’s understanding
that goes beyond what a textbook can offer on its own (Schmoker, 2011). By using these sources, educators will be teaching students how to be “informed readers, writers, and thinkers about the past as well as the present—a goal all parties should be able to embrace” (Wineburg & Martin, 2004, p. 45).

The Need for a Cross Curriculum

With CCSS, cross-curricular literacy is not an option, but rather a necessity and is possibly the “most significant change faced by middle schools and high schools” (Achieve, 2012, p. 10). The NCEE (2007) reported that strong “English, mathematics, technology, and science, as well as literature, history, and the arts will be essential for many” (p. 8). “As content demands increase, literacy demands also increase: students are expected to read and write across a wide variety of disciplines, genres, and materials with increasing skill, flexibility, and insight” (Snow & Biancarosa, 2003, p. 5).

The educational reform group Achieve (2012) asserted that increasing literacy can no longer be the work of a small group of teachers with this expertise and within a single content area. Vicki Phillips and Carina Wong of The Bill and Melinda Gates Foundation reiterated this thought by stating that educators should "Think of literacy as a spine; it holds everything together. The branches of learning connect to it, meaning that all core content teachers have a responsibility to teach literacy" (Schmoker 2011, p. 33); however, according to Achieve (2012), very few middle and high schools have been able to implement school wide literacy successfully because they have lacked the capacity to integrate literacy instruction in the content areas due to the absence of training and resources needed to deliver this type of instruction.
Schmoker (2011) stated that there are three “essentials” for schools: “reasonably coherent curriculum (what we teach); sound lessons (how we teach); and far more purposeful reading and writing in every discipline, or authentic literacy (integral to both what and how we teach)” (p. 2). CCSS suggests that grades 6-12 history/social studies, science, and technical subjects “ensure that students can independently build knowledge in these disciplines through reading and writing” and reading, writing, speaking, and listening should take place within the school day from K-12 as within every subject area (NGA Center & CCSSO, 2010, para. 11). Conley argued that there are “standards for success” or “habits of mind” which are short, simple skills that should impact the K-12 curriculum (as cited in Schmoker, 2011, p. 38). Conley stated that there are “four intellectual standards” that are “paramount within and among disciplines’ which are as follows: (a) Read to infer/interpret/draw conclusions; (b) Support arguments with evidence; (c) Resolve conflicting views encountered in source documents; and (d) Solve complex problems with no obvious answer (as cited in Schmoker, 2011, p. 38).

Schmoker (2011) stated that these “standards” could replace almost all of the Language Arts standards as well as the “confusing verbiage that accompanies standards in areas like science and social studies. Matched with disciplinary content, I believe they give us all we need to ensure that students are prepared for college, careers, and any state or national test that comes their way” (p. 38).

According to the Partnership for Assessment of Readiness for College and Careers (PARCC, 2012), “all fields of study demand analysis of complex texts and strong oral and written communication skills using discipline-specific discourse” in which educators must now “take ownership of building robust instruction around discipline-
specific literacy skills to better prepare students for college and careers” (p. 58). The PARCC Model Content Frameworks created a chart for ELA/Literacy that is divided into four quarter-length modules that include the knowledge and skills that students should learn and apply within a particular school year. At the heart of each of these modules lies the task of exposing students to “grade-level texts of appropriate complexity,” and this document further stated that although a great deal of reading literature and literacy nonfiction must be read with the ELA classrooms, “a great deal of informational reading in grades 6-12 must take place in other classes to meet the demands of the standards” (PARCC, 2012, p. 59).

With the implementation of CCSS, reading has to “dramatically increase in all content areas” due to the fact that students will be expected to “actively engage with increasingly complex text in all content areas” as well as provide “text based answers” (Achieve et al., 2012, pp. 11-13). Research states that “learning the literacies of a given discipline can help adolescents negotiate multiple, complex discourses and recognize that texts can mean different things in different context” (NCTE, 2007a). According to Jerald (2009), experts have also studied how “creativity frequently involves breaking down the barriers between disciplines to make connections across different domains of knowledge” and that studies have shown that people who have solved problems find that they often solve them outside of their own field because they recognized recurring patterns and made “connections across domains” (p. 66). By working together to teach students to read “deeply and purposefully” by answering good text-based questions, and then write about the text is the “essence of both learning and literacy” (Schmoker, 2011, p. 36). Schmoker (2011) further stated that teams of teachers can accomplish this task more
effectively by working together in developing their questions across the various disciplines, which would also share the work among the teachers as well. “Literacy is an integral part to both what and how we teach; it’s the spine that holds everything together in every subject. The best teaching emerges from this simple combination of a good question and a good text-in every subject” (Schmoker, 2011, p. 37).

Teacher Collaboration

Collaboration grows more important every day, especially in a “shrinking world in which technology and political complexity increase at an accelerating rate” offering fewer places where individuals can work individually and be effective (Bennis & Biederman, 1997, p. 1). Throughout history, groups of individuals have come together to create new and wonderful things, even in a complex society; unfortunately, the survival of organizations in the future will rely heavily on the creativity of the members of a collaborative group (Bennis & Biederman, 1997, p. 8). Bennis and Biederman (1997) stated that no matter how gifted an individual may be, “there are simply too many problems to be identified and solved, too many connections to be made” and “urgent projects require the coordinated contributions of many talented people”, and further stated that in a global society such as today’s, “collaboration is not simply desirable, it is inevitable” because “one is too small a number to produce greatness” (pp. 2-3).

Rotherham and Willingham (2009) reiterated this theme by stating that “common standards will not, by themselves, be enough” (p. 21). “Teacher collaboration is one of the most essential, if not the most important, requisite for achieving substantial school improvement and critical learning outcomes” (Gajda & Koliba, 2008, p. 134).
Goatley and Hinchman (2013) stated that the role of literacy across the curriculum will require a “seismic shift at the secondary level as content-area teachers come to understand their shared responsibility for literacy instruction pertinent to their disciplines” and that a major barrier can be a “lack of confidence and pedagogical content knowledge for teachers to take on this new responsibility” (p. 61). In 2009, Rotherham and Willingham suggested that states, school districts, and schools need to “revamp how they think about human capital in education—in particular, how teachers are trained” (p. 18). Effective collaboration is needed for teachers to make such a change to their curriculum and to effectively implement literacy. Reformers must pay close attention to the challenges that face improving teaching and learning in preparation for 21st century skills or it risks becoming another “fad” (Rotherham & Willingham, 2009, p. 21).

Goatley and Hinchman (2013) further stated that the change needed to implement this type of disciplinary literacy will only occur when it “stems from a combination of teacher preparation, new visions of school scheduling, targeted professional development, and ongoing inquiry that occurs in collaborative and connected conversations” (p. 61).

Because the new CCSS initiative will require a new type of knowledge, skill, and understanding, accommodations must be made to support teachers so that this is not a source of tension and “teachers’ values, beliefs, and the images that they have of themselves and their subject may be challenged by complementary disciplines and what they bring to the cross-curricular experience” (McClune, Alexander, & Jarman, 2012, p. 67).

According to Rotherham and Willingham (2009), “we must have a plan by which teachers can succeed where previous generations have failed” (p. 19). With a greater
emphasis placed on 21st century skills, an important emphasis has been placed on teacher training. Jerald (2009) stated that in order to teach something well and consistently across classrooms, educators need to define what specific knowledge/skills that students need to learn or it will be impossible to measure. Jerald (2009) continued to state that if this “defining stage” is skipped, then two problems could arise: teachers may end up spending too much time and effort on teaching material that does not meet the needs of the 21st century skills and teachers will not be teaching the same thing which means that “they will not be able to collaborate on instructional approaches and share emerging best practices” (p. 70). Herman and Wardrip (2012) stated that “teachers need a repertoire of supports that are effective and practical in classrooms” to support “reading-to-learn competencies” (p. 50). Teachers do not yet know “how to teach self-direction, collaboration, creativity, and innovation” the way they know how to teach “long division” (Rotherham & Willingham, 2009, p. 19).

The goals of discipline specific literacy initiatives are: to enhance learning outcomes beyond what each subject could achieve by themselves; to provide professional development for teachers; and to provide interdisciplinary collaboration because this is a key component (McClune et al., 2012). These types of skills have not been formally taught among these particular subject area teachers, but according to Rebore (2011), teachers must update their skills and knowledge in a subject area and keep abreast of societal demands. Teachers are realizing the urgency in which these new standards are to be taught but need the resources in order to implement them effectively. The type of curriculum development needed to establish disciplinary literacy teaching will require professional development. Cross-curricular teaching will demand a new pedagogy that
will be more successful when teachers realize the benefits to this type of teaching for themselves, at which time teachers will then commit to this change because they are “supported in becoming confident in and sustaining new pedagogical practice” (McClune et al., 2012, p. 67).

In a focus group commissioned by WestEd’s Center for the Future of Teaching and Learning in 2012, teachers were asked if they were ready to teach the new standards. Key findings in this study indicated that the majority of participants had “little familiarity with the details of CCSS,” but once given a description, participants appreciated the focus on critical thinking” (WestEd, 2012). Although the participants appreciated the depth of the standards, the increase of interdisciplinary readings, progressively complex texts, and an emphasis on informational texts made teachers uneasy (WestEd, 2012). Science teachers voiced their concern over the focus on literacy and stated that the emphasis may decrease their “hands-on-learning” and could result in less instructional time for their comprehensive science curriculum (WestEd, 2012, p. 2). State assessments and accountability within subject areas also manifest separations between English Language Arts and content areas despite the fact that CCSS call for disciplinary literacy (Goatley & Hinchman, 2013). Content specific teachers are required to teach large amounts of subject-related content while also accountable for assessments that are very specific to that content (Goatley & Hinchman, 2013). Although there has recently been much mention of the Japanese’s successful approach to management through collaboration, individuals in American culture still try to distinguish themselves as individuals (Bennis & Biederman, 1997).
In addition to all of these obstacles, Achieve (2012) listed three common misconceptions teachers have regarding literacy instruction which were as follows: “students should already know how to read; I don’t have the time; and I’m not a reading teacher” (p. 10); however, The National Council of Teachers of English (NCTE, 2007a) affirms that literacy learning, unlike math in which one principle builds upon another, requires continuous development and practice because each content area possesses its own literacy challenges with vocabulary, concepts, and topics. Although students have learned most of the major processes of reading by the fourth grade, students continually need practice in applying academic literacy skills in unique texts, situations, levels, and disciplines (NCTE, 2007a).

In another survey administered in 2012 by the Council of the Great City Schools, along with support from the Bill and Melinda Gates Foundation, strengths and weaknesses were identified in the area of support needed to implement the CCSS. The survey covered implementation areas including professional development activities in both English Language Arts and Literacy among other areas. Key findings in the field of professional development indicated that for the 2012-2013 school year, the majority of school districts that responded had plans to revise their curriculum in English Language Arts and Literacy. Furthermore, the survey indicated that organizational structures needed to be in place in order to implement the CCSS, and one of the structures that needed the most support was a common planning time for teachers (Council of the Great City, 2012). The implications for teaching across the curriculum, according to McClune et al. (2012), are that teachers “need opportunities to explore their own starting points and also find ways to understand the perspectives that other contributing subjects have” (p.
Their study suggested that teachers who engaged with other subject area teachers through “planned interdisciplinary collaboration could offer a combination of support and challenge that is conducive to learning” and professional development would include: “(a) understanding the starting points and capabilities of the teachers involved; (b) recognizing that working collaboratively can foster teacher development and broaden horizons; (c) making the learning intentions of the cross-curricular activity explicit; (c) and assisting teachers by making them aware of the strengths and complementary skills of colleagues from different disciplines” (McClune et al., 2012, pp. 77-78). WestEd (2012) made suggestions regarding actions that schools and districts should immediately take in regards to the implementation of CCSS. One of the suggestions made was for school districts to provide “intensive ongoing professional development about the differences between current standards and the CCSS regarding content and pedagogy,” (p. 3), and WestEd (2012) also iterated that teachers “must have appropriate materials and resources whether they are provided by the district” or “developed by teachers themselves” (p. 3). NCTE (2009a) produced a list of research-based recommendations for effective adolescent literacy instruction that included qualities such as teacher participation in ongoing professional development and the collaboration of interdisciplinary teacher teams.

In 2012, Scholastic and the Bill and Melinda Gates Foundation presented their findings from their project entitled “Primary Sources: 2012 America’s Teachers on the Teaching Profession.” The report presented the results of a national survey of more than 10,000 public school teachers from grades pre-k to 12. They found that while the majority of teachers (78%) were aware of CCSS, many of them felt unprepared to teach
these standards (Scholastic & the Bill & Melinda Gates Foundation, 2012). Teachers across the nation echoed the need for tools and supports to effectively implement these new standards; specifically, 60% of teachers surveyed indicated the need for professional development on “how to teach parts of the standards that are new to them” and 63% of teachers need “professional development focused on the requirements of the standards” (Scholastic & the Bill & Melinda Gates Foundation, 2012, p. 18). The report in 2012 by Scholastic & the Bill & Melinda Gates Foundation stated that these needs, especially in these specific areas of professional development, are “greater among the 27% of teachers who feel unprepared to implement the standards” (p. 18). The report also indicated that although teachers’ salaries are important in their job satisfaction, a time for collaboration with colleagues was significantly more important to teachers (Scholastic & the Bill & Melinda Gates Foundation, 2012). Since that time, a new report by Scholastic Inc. and the Bill and Melinda Gates Foundation (2014) has been released. A majority of the teachers surveyed indicated a critical need in the area of quality professional development: 65% of teachers say that there is a need for “professional development focusing on content of the standards that apply for their students,” 64% say there is a need for professional development focusing on how to embed CCSS across subject areas, and 59% indicated a need for professional development on the “instructional shift needed to teach the standards” (Scholastic and the Bill and Melinda Gates Foundation, 2014, p. 17). The report also indicated that a majority of teachers are seeking supports and resources on their own, such as opportunities to collaborate with their colleagues on best implementation practices (58%), ideas and ways to teach in an inquiry-based way that promotes deep thinking among their students (68%), and additional planning time to find
additional materials and plan lessons (67%) (Scholastic and the Bill and Melinda Gates Foundation, 2014).

According to Wilcox and Angelis (2012), a 2012 survey of middle schools showed that high-performing schools engaged in more effective collaboration than their counterparts. NCTE (2009a) also reiterated that the teachers who participate in ongoing professional development and interdisciplinary teacher teams are recommendations for effective adolescent literacy instruction. The challenge is “identifying some of the specific practices that build teacher’s ability to effectively collaborate” (Wilcox & Angelis, 2012, p. 41). To avoid the challenge of cross-curricular teaching, educators cannot latch on to a “superficial theme” or try to “garner some superficial overlap or random content opportunities” by providing a “feel good factor” that focuses on “simplistic common denominators” (Woodcock, 2013, p. 56). Woodcock (2013) stated that for teachers to provide “meaningful cross-curricular learning opportunities” for students, educators must assist students in “exploring links between subjects that generate deeper, more complex understandings, ones that raise new questions which perhaps would not have otherwise been considered” (p. 56). McClune et al. (2012) stated that although there is a “feel good factor” attached to cross-curriculum and thoughts of “joined up thinking, shared education or connected learning” come to mind, collaboration should not be at the “expense of disciplinary integrity,” but should rather be viewed as “added value for motivation and also for understanding” (p. 66). Middle and high school teachers do not lack instructional choices; however, teachers do not use the tools available to them for many reasons such as a lack of “systematic or building support,” or teachers are resistant to change because they “do not have the appropriate knowledge
base in reading development to understand the new approach,” or teachers who are willing to change may not be able to “sustain change without ongoing professional development and/or collegial support” (Snow & Biancarosa, 2003, p. 16). In 2003, Snow and Biancarosa stated that education must provide “ongoing professional development and support in order to achieve the long-lasting change in practices necessary to truly change literacy outcomes” (p. 16).

In 2003, DuFour defined collaboration as a “systematic process in which we work together to analyze and impact professional practice in order to improve our individual and collective results,” and he further stated that collaboration is a “systematic process” because it must be systematically embedded in the routine during the school day (para. 7). DuFour stated that educators need to think differently about “their work, their loci of responsibility, and how they define success” and need to commit to “work together to solve problems, to investigate and try new approaches, and to learn from their own and others’ experiences” (as cited in Wilcox & Angelis, 2012, p. 41). DuFour, Eaker and DuFour (2005) listed strategies to assist in creating a sharing culture, which include teams becoming the focus of celebration and identifying and pursuing common goals. By celebrating teams, they become recognized and applauded for their efforts which can shift a culture’s focus on competition to a focus on sharing (DuFour et al., 2005). They further stated that the most powerful strategy to reduce a focus on individual goals is to pursue a common goal that can only be achieved through interdependent action. If a goal can be achieved without contributions from each member of the group, then the school has not fostered collaboration. And if a group of teachers meets on a regular basis, but
they have no specific goal they are trying to achieve, then they are not a collaborative team. Both interdependence and a common goal are essential to developing collaborative teams and a culture of sharing. (DuFour et al., 2005, p. 240)

During the collaboration of teachers, a collective, rich dialogue needs to be developed, focusing on how to provide appropriate levels of support to teachers and students and the effects of their practice (Gajda & Koliba, 2008). However, DuFour et al. (2005) also warn against educators engaging in weeks and months’ worth of dialogue “in an attempt to persuade staff about merits of acting in new ways”; however, leaders should attempt to build shared knowledge regarding the initiative until a critical mass is ready to support moving forward. They will then create conditions that require people to behave in new ways in the hope that these new experiences will affect attitudes and beliefs in a positive way. (p. 247)

According to DuFour (2003), many leaders equate collaboration with congeniality, engaging staff with in the development of operational guidelines and procedures, and/or a teachers’ willingness to work together to create school-wide programs and events which can all be known as a form of “collaboration lite” (p. 2). DuFour (2003) further stated that collaboration should be designed to impact professional practice which means that teachers must do more than “analyze, reflect, discuss, or debate”, but rather use collaboration as a “catalyst to change their practice” by continuously looking for effective ways to increase student achievement (para. 8). Gajda and Koliba (2008) stated that the most important decision teachers can make to improve student learning are those dealing with what to teach and how to teach it on an individual
and collective level. Schmoker (2011) reiterated this statement by expressing that one of the highest priorities must be for teams of teachers in every discipline to develop and refine good “text-based questions” (p. 36). DuFour (2003) offered three critical questions that collaboration dialogue can center around. The first is “what is it we want our students to learn; how will we know when each student has learned it; and how can we improve in current levels of student achievement?” (DuFour, 2003, para. 7). DuFour et al. (2005) further stated that teams of teachers need to focus on building shared knowledge about the most essential learning by collaboratively studying standards, identifying and committing to teach the most essential outcomes, developing a plan to ensure common pacing, creating frequent formative assessments, establishing a common standard to determine proficiency through establishing agreed upon criteria to be used for assessments, and analyzing the results from each formative assessment and further developing a plan to address areas of concern (pp. 228-229).

Findings from a 2012 study by Wilcox and Angelis (2012) revealed four characteristics of high-performing middle schools and their capacity to support collaboration. Among these characteristics was a culture that supports a shared vision of high achievement, a climate of respect and trust, and structures and expectations that reinforce collaboratively supported instruction and coherent programs. One of these key findings was that teachers in higher-performing schools identified trust and respectful relationships, for and from all, as the primary reason for success because it resulted in higher levels of collaboration. They also found that shared responsibility for performance, encouragement of initiative taking, and professional opportunities “within and beyond the classroom” were features of these relationships and fostered
collaboratively supported instruction (Wilcox & Angelis, 2012, p. 43). Trust was built within teacher collaboration opportunities and because of this, successes and struggles were shared (Wilcox & Angelis, 2012). A shared responsibility for performance was found to be key to teacher collaboration, and decisions were made jointly regarding instruction that fostered interdisciplinary projects (Wilcox & Angelis, 2012). According to Wilcox & Angelis (2012), taking initiative was encouraged, and school leaders provided opportunities for others to lead as well as encouraged teachers to “open their classroom doors to let others in and to go out to others’ classrooms in their building and observe” (pp. 44-45). Research has provided evidence that teachers influence the performance of other teachers through “systematic observation of specific teaching practices on student achievement” and the continuous sharing with other teachers (Reeves, 2010, p. 73).

The study performed by Wilcox and Angelis (2012) also found that structures reinforce collaboration and that a scheduled meeting time was a vital support system when fostering teacher capacity to collaborate. Meetings consisted of grade-level and cross-grade department meetings that occurred at least once a day. During these meetings, teachers “became aware of the standards for content areas of their colleagues and then planned ways to reinforce one another” by integrating subjects, concepts, and instruction (Wilcox & Angelis, 2012, p. 45). During this time, teachers should be provided “specific guidelines and asked to engage in specific activities” that focus on student achievement (DuFour, 2003, para. 7). Schmoker (2011) stated that refining the standards and their delivery “must become the team’s active priority: the focus of all professional development, faculty, and team meetings” (p. 137). This type of
professional development will take a huge shift, in which teachers will need much more support such as “specific lesson plans that deal with the high cognitive demands” and staff development planners would “do well to engage the best teachers available in an iterative process of planning, execution, feedback, and continued planning” which will require significant time (Rotherham & Willingham, 2009, p. 20). Gajda and Koliba (2008) further stated, however, that the degree of instructional quality depended on the teachers’ investment in professional collaboration with their colleagues. According to Reeves (2010), teachers have an enormous influence over student achievement; however, teachers can multiply that influence when they are supported by school leaders who give them time and the professional learning opportunities for effective teaching. He also stated that collaboration is “not a gift from the gods but a skill that requires effort and practice” (p. 50). However, Woodcock (2013) stated that just saying that “staff need time to plan” is not enough because intellectual preparation is required. “Staff need time to talk in order to explore and understand the way in which distinctive disciplinary knowledge in one subject can serve another, and to make sense of one another’s disciplinary considerations” (Woodcock, 2013, p. 59).

Taking action on the decisions made is vital to the success of teacher collaboration and will result in the changes in “pedagogical practice that entail a level of intellectual sophistication” (Gajda & Koliba, 2008, p. 145). An area that is crucial for successful teacher collaboration is the “systematic collection, analysis, and use of data” to shape the decisions made within these groups (Gajda & Koliba, 2008, p. 146). One of the factors of successful schools is that they “explicitly involve the subjects that are frequently and systematically disregarded in traditional accountability systems” (Reeves,
Schmoker (2011) stated that data from end-of-the-unit assessments should be the primary vehicle for assessing the implementation and improvement of lessons that are planned within teams and are “at the very heart of effective leadership in the professional learning communities” (p. 49). Effective collaboration cannot be assessed on perceptions, projects, or positive intentions either, but rather it must be assessed on “specific, measurable, results-oriented goals” which shifts the focus from “teacher inputs to student outcomes—evidence that students are learning at higher levels” (DuFour, 2003, para. 9). Data from end of the unit assessments should be the “primary tools for monitoring implementation and promoting improvement” and need to become the “basis for essential team discussions” that are “at the very heart” of effective professional development (Schmoker, 2011, p. 49).

As Woodcock (2013) stated, cross-curricular planning can only be secured by “close collaboration between colleagues in all relevant disciplines and each being aware, at least in some degree, of the nature and requirements of each subject” (p. 58). He continued to state that crossing the curriculum should provide students with opportunities to look and think about “complexity,” but this needs to come from what each subject specifically offers, and not just a “surface connection from its surface products only” (p. 58). The 21st century movement is calling for greater teacher collaboration, and Rotherham and Willingham (2009) added that a valuable resource is wasted when schools do not give teachers time to share their expertise with one another which raises questions about the design of today’s schools and if they are in sync with the goals of the 21st century skills movement.
Based on individual teacher’s perspectives on their subject, professional development will continually be evolving and will continue to evolve and be shaped based on teachers interactions with each other (McClune et al., 2012). While CCSS may create some unique challenges for teachers, the goal is to provide high impact learning to meet the challenges of the 21st century. The change may not be popular with some teachers, but teachers will be challenged to do “professional work with deep meaning and lifelong impact” that will not be easy nor popular” (Reeves, 2010, p. 108).

The Role of Leadership

Teacher collaboration is an “essential element of substantive school change for which principals have responsibility for cultivating” (Gajda & Koliba, 2008, p. 133). Schools are currently on a timeline to fully implement and assess the CCSS while also on a “stingy school budget” which may have school leaders feeling forced to disregard “rich professional development” (Goatley & Hinchman, 2013, p. 61). Educational leaders may rather implement “scripted published curriculum” that claims to address the new standards, but instead impedes the teachers to make pedagogical moves that students need to progress (Goatley & Hinchman, 2013, p. 61). Goatley and Hinchman (2013) suggested that school leaders do not focus on a “quick fix,” but rather invest attention to professional development/in-service learning opportunities so that teachers can develop the “expertise needed to provide responsive literacy instruction” (p. 62).

The National Policy Board for Educational Administration (NPBEA) created the Interstate School Leaders Licensure Consortium (ISLCC) to design the first set of standards for educational leaders that are entitled the ISLCC Standards for School Leaders (CCSSO, 2013). At the national level, the National Council for Accreditation of
Teacher Education (NCATE) used a modified version of these standards that was conducted by the Educational Leadership Licensure Consortium (ELLC) in which these standards are known as the ELLC Standards. These standards provided a “common vision for effective educational leadership”; however, with higher expectations on student learning, the expectations for educational leaders have also dramatically changed (CCSSO, 2013, p. 5). School leaders are no longer just managing orderly, structured school environments, but instead are responsible for leading instruction (CCSSO, 2013). The four main catalysts that sparked the change for educational leaders are the CCSS, Race to the Top (RTTT), the Blueprint for Reform, and the Elementary and Secondary Education Act (ESEA) (CCSSO, 2013). All four of these initiatives have made educational leaders “central to a system of accountability that requires them to ensure that each child is college and career ready upon graduation from high school and that each teacher effectively meets the diverse learning needs of his/her students on a daily basis” (CCSSO, 2013, p. 10).

According to the Council of Chief State School Officers (CCSSO, 2013), national standards were designed for educational leaders that placed great emphasis on the “instructional leadership responsibilities of administrators” (p. 5). The CCSSO (2013) further reported that educational leaders are “expected to lead the full implementation of the new CCSS, which will require the transformation of new educator evaluation and support systems” that requires leaders to “engage in the practice of continuous school improvement and support that leverages the highest levels of student learning and the most impactful teacher instructional practices” (p. 10). Evidence for ISLCC/ELCC Standard 3 confirmed that a “building-level educational leader must have knowledge of
best practices regarding management of a school organization, operations, and resources for a safe, efficient, and effective learning environment” which includes the “knowledge of effective practices of management and leadership that are associated with improved school conditions and subsequent school outcomes” (CCSSO, 2013, p. 30). The evidence that was presented in support of the ISLLC/ELCC standards further confirmed that an educational leader needs to have knowledge of “best practices regarding management of a district organization, operations, and resources for a safe, efficient, and effective learning environment” which would include “knowledge of how to organize educational improvement efforts” (CCSSO, 2013, p. 31).

Creating and sustaining distributed leadership in which educational leaders “identify leadership capabilities of staff, model distributed leadership, and involve school staff in decision making processes” was also found to be an essential skill under the standards (National Policy for Educational Administration [NPBEA], 2011, p. 15). The school leader will need to focus on “building teacher capacity” because the changes that CCSS will require will be intimidating to teachers; therefore, the school leader “must work to create a teacher-friendly culture in which the norm is trying new things and running the risk of making mistakes” (Achieve, 2012, p. 8). Research suggests that when “teachers are empowered to influence instructionally relevant school decisions, they are likely to report more confidence in the capability of their faculty to educate students than would be the case if teachers were given less control over decisions that affect their professional work” (Goddard et al., 2004, p. 10). According to NPBEA, the ELCC (2011) standard element 3.5 outlines that an educational leader is to also ensure that organizational time focuses on supporting high-quality school instruction and student
learning by providing “knowledge of supervision strategies that ensure that teachers maximize time spent on high-quality instruction and student learning” and by providing “knowledge of management theories on effective school time, priorities, and schedules” (p. 16).

Leaders must promote a collaborative culture, which, according to DuFour (2003), does not happen by chance, but rather school leaders develop procedures to ensure that staff works together and stays focused. School leaders will need to utilize models of professional development that will “purposefully cultivate high quality collaboration” (Gajda & Koliba, 2008, p. 134). If principals want to improve teacher collaboration, leaders need to aid in creating conditions that foster a shared understanding and foster “communities of practice that form building blocks of their school’s larger professional learning communities and whose members will engage in a cycle of inquiry around a shared purpose” (Gajda & Koliba, 2008, p. 137).

The success of the change required by CCSS demands much attention of school leaders and will also “depend heavily on the ability of school leaders to implement school wide literacy initiatives in their schools” (Achieve, 2012, p. 10). The literacy standards require teachers to understand how their daily instruction helps “foster college and career readiness” because the standards demonstrate a logical progression through the grades; therefore, the implementation of CCSS “requires school leaders to think across grades, to consider not only learning at a specific grade level, but the progression of mathematical and literacy skills across grades” (Achieve, 2012, p. 2). According to Achieve (2012), “school leaders set a critical foundation for learning and success of all students” and principals are now being called upon to “lead their teacher leaders through a process of
examining their curricula and instruction and making adjustments so that students achieve at higher levels and are better prepared for subsequent grades” (p. 3). Due to the key shifts in the standards, school leaders need to start making instructional shifts in practice.

Achieve (2012) stated that “implementing the CCSS is not about thinking out of the box. It is about transforming the box itself” (p. 4). This shift will require teachers to change the way they teach and the way leaders lead, and this transformation will rest heavily on the principal (Achieve, 2012, p. 4). “When leaders build shared knowledge of best practices and give everyone on the staff access to the same information, they increase the likelihood that the staff will arrive at the same conclusions regarding the benefits of acting in new ways” (DuFour et al., 2005, p. 236). The instructional shifts will require school leaders to make short-term and long-term plans that include professional development needs of the teachers (Achieve, 2012).

According to Achieve (2012), the key to the success of the standards will be the principal; “study after study points to the principal as the single key to a strong school culture” (p. 8). The principal who wants to close the “knowing-doing gap” will now need to closely monitor the implementation of decisions made by teacher teams (DuFour et al., 2005, p. 228). Creating space and time for teacher collaboration is not nearly enough to foster the types of changes in instruction that is required for teachers in the midst of the implementation of CCSS. Resources are needed for history, science, and technical subject area teachers to effectively integrate literacy into their content area curriculum, but in order for principals to “induce you to do something you are not currently doing depends, in large part, on your capacity to actually do it” (Gajda & Koliba, 2008, p. 149).
Theoretical Framework

According to the social learning theory, “behavior is learned” before it is performed (Bandura, 1971, p. 8).

Man’s capacity to learn by observation enables him to acquire large, integrated units of behavior by example without having to build up the patterns gradually by tedious trial and error. Similarly, emotional responses can be developed observationally by witnessing the affective reactions of others undergoing painful or pleasurable experiences. Fearful and defensive behavior can be extinguished vicariously by observing others engage in the feared activities without any adverse consequences. And behavioral inhibitions can be induced by seeing others punished for their actions. (Bandura, 1971, p. 2)

Bandura (1971) further stated that in the social learning system “new patterns of behavior can be acquired through direct experience or by observing the behavior of others” (p. 3). A commonly held belief is that people’s automatic responses are based on immediate consequences, whether they are unconscious or not. People make hypotheses about what types of behaviors will most likely be beneficial to them and which they will succeed in. People also hypothesize about which behaviors they need to avoid; therefore, actions are controlled by anticipated consequences (Bandura, 1971). Bandura’s social learning theory states that people learn through observing others’ and that there are several reasons why modeling influences people’s behaviors. Bandura (1971) stated that learning through modeling is beneficial due to the following:

When mistakes are costly and dangerous, new modes of response can be developed without needless errors by providing competent models who
demonstrate how the required activities should be performed. Some complex behaviors, of course, can be produced only through the influence of models…Even in instances where it is possible to establish new response patterns through other means, the process of acquisition can be considerably shortened by providing appropriate models. Under most circumstances, a good example is therefore a much better teacher than the consequences of unguided actions. (p. 5)

Goddard et al. (2004), stated that when social cognitive theory is applied to the teaching profession, it can assist in predicting which decisions teachers will make about their classroom practices because they are directly linked to a teacher’s sense of efficacy of teaching. The most fundamental assumption of the social cognitive theory “involves the choices that individual and collectives make through the exercise of agency”; therefore, the choices that are made by the individual or groups are influenced by the strength of their efficacy beliefs (Goddard et al., 2004, p. 4).

Self-efficacy is grounded in the work of Albert Bandura’s social learning theory. Goddard, Hoy, and Hoy (2004) stated the following:

Efficacy judgments are beliefs about individual or group capability, not necessarily accurate assessments of those capabilities. This is an important distinction because people regularly over or underestimate their actual abilities, and these estimations may have consequences for the courses of action they choose to pursue and the effort they exert in those pursuits. Over or underestimating capabilities also may influence how well they use the skills they possess. (p. 3)
Studies, as reported by the Center for Comprehensive School Reform and Improvement (Center for CSRI) (Jerald, 2007), have “found a strong relationship between a range of professional supports and the feelings of efficacy, including strong leadership, a positive school climate, collegiality, and shared decision making” (p. 5). There continues to be much research in the area of the “power of efficacy judgments in human learning, performance, and motivation” (Goddard et al., 2004, p. 3). Jerald (2007) also stated that if teachers are to take responsibility for educational outcomes, educational leaders must take the appropriate steps to assist teachers in believing in their own abilities.

According to Ross and Bruce (2007), teacher efficacy is “a teacher’s expectation that he or she will be able to bring about student learning” (p. 50). Kurt (2014) stated that teachers’ sense of efficacy can be defined as the beliefs about their capacity of “affecting students’ performances, learning, learning and success or exhibiting necessary behavior to conduct their responsibilities successfully” (p. 286). A teacher’s perceived sense of self-efficacy is completely distinct from other perceptions about self, such as self-esteem and self-worth, because self-efficacy is specific to a specific task (Goddard et al., 2004). There are often differences in teachers’ perception of their competence versus their actual competence or performance (Goddard et al., 2004). “Perceived threats activate defensive behavior because of their predictive value rather than their aversive quality” (Bandura, 1977, p. 209).

Teacher efficacy, however, is not the same as teacher effectiveness or successful teaching; therefore, it is important to determine the teachers “perception” of their self-efficacy rather than their actual performance (Goddard et al., 2004, p. 4). It is important that teachers’ sense of self-efficacy is high “in order to conduct their responsibilities
successfully since it is believed that there is a relationship between a high level of teachers’ sense of self-efficacy and...teachers’ self-confidence, openness to learn and apply new developments or positive sense of their competencies” (Kurt, 2014, p. 286).

Hoy (2003) stated that teacher efficacy is “highly context-specific” and that teachers who feel highly successful with their instruction in one area may feel less successful when the context is slightly different; therefore, when “making an efficacy judgment, it is necessary to assess one’s strengths and weaknesses in relation to the requirements of the task on hand” (p. 3). Hoy (2003) further stated that teachers with a strong sense of efficacy tend to:

- exhibit greater levels of planning, organization, and enthusiasm and spend more time teaching in areas where their sense of efficacy is higher, whereas teachers tend to avoid subjects and topics when efficacy is lower. They tend to be more open to new ideas, more willing to experiment with new methods to better meet the needs of their students, and more committed to teaching. They persist when things do not go smoothly and are more resilient in the face of setbacks. (p. 1)

A teacher’s sense of self-efficacy is a significant predictor of productive teaching practices (Goddard et al., 2004, p. 4). Bandura (1977) stated that “people fear and tend to avoid threatening situations they believe exceed their coping skills” (p. 194). Bandura (1977) further stated that people will “approach, explore, and try to deal with situations within the self-perceived capabilities, but they will avoid transactions with stressful aspects of their environment they perceive as exceeding their ability” (p. 203). Ross (1994) identified the relationships between teachers’ self-efficacy and their behaviors and
noted that one of the relationships was that higher teacher self-efficacy led to the learning and use of new approaches and strategies for teaching.

Protheroe (2008) stated that “personal teaching efficacy” is understood as the teacher’s personal feeling about his or her confidence level in regards to his or her teaching capabilities (p. 43). Hoy listed factors that can impact a teacher’s sense of efficacy which include:

(a) Vicarious experiences. For example, a teacher might observe another teacher using a particularly effective practice and thus feel more confident that, through its use, she could be more successful in reaching her students. (b) Social persuasion. In a school setting, this could take the form of either pep talks or feedback that highlights effective teaching behaviors while providing constructive and specific suggestions for ways to improve. However, such “persuasion” is likely to lose its positive impact if subsequent teacher experiences are not positive. (as cited in Protheroe, 2008, p. 43)

Many principals provide vicarious experiences by giving teachers opportunities to observe other effective teachers and/or observe effective schools (Center for CSRI, 2007). In the issue brief by Jerald (2007) for the Center for CSRI, he stated that social persuasion could include a variety of strategies such as “pushing and prodding” by teachers and administrators, professional development activities, feedback provided by colleagues and/or supervisors, and could also include “conversations in the faculty lounge” (p. 5). It is important, however, that people have an understanding of what type of performance or behavior is required from them and the circumstances under which they will perform the task or behavior (Bandura, 1977). People may give up trying due to
a lack of self-efficacy in performing a certain task, or they may give up regardless if they have the capability or not because they believe that their performance will have no effect on a situation or they feel they may be punished (Bandura, 1977).

Rotherham and Willingham (2009) also stated that although most teachers know which methods are effective, teachers do not use them. According to Ross and Bruce (2007), teachers who believe that they will fail at a task will avoid it at all costs because it threatens their self-esteem; however, teachers who believe they will be successful at a task will set higher goals for themselves and continue to try and attain those goals by being more persistent through difficulties. It is possible, as reported by Jerald (2007) for CSRI, to create “a strong sense of responsibility for outcomes even among teachers who start out with exactly the opposite attitudes” because efficacy beliefs influence “teachers’ persistence when things do not go smoothly and their resilience in the face of setbacks” (pp. 2-3). Bandura (1977) reiterated that efficacy expectations will determine how much effort a person exerts on certain tasks and how long they will persist when faced with obstacles.

A person’s “outcome expectancy” is defined as “a person’s estimate that a given behavior will lead to certain outcomes” whereas an efficacy expectation is the “conviction that one can successfully execute the behavior required to produce outcomes” (Bandura, 1977, p. 193). If an individual has doubts about whether or not he or she can perform the task at hand, then it does not matter if he or she believes a particular course of action will produce certain outcomes because the power of peoples’ beliefs will affect what is attempted (Bandura, 1977). Bandura (1971) identified four sources of efficacy expectations which include mastery experiences, physiological and
emotional states, vicarious experiences, and social persuasion. Ross and Bruce (2007) reiterated that additional sources of efficacy information besides a mastery experience include “vicarious experience (social comparison by observations of successes and failures of others), persuasion by peers and superiors (a weak source but important to teachers with little experience in a domain), and physiological and affective states” (p. 51). According to Ross and Bruce (2007), the most important source of efficacy information is “mastery experiences” in which teachers “demonstrate to themselves that they are competent instructors,” and they further stated that these experiences must be reflected upon (p. 51). “Persistence in activities that are subjectively threatening but in fact relatively safe produces, through experiences of mastery, further enhancement of self-efficacy and corresponding reductions in defensive behavior” (Bandura, 1977, p. 191). Through these mastery experiences, efficacy is further enhanced through “feedback from superiors and social validation that connects the achievement outcomes to teacher actions” (Ross & Bruce, 2007, p. 51). A teacher’s perception that his or her performance was successful raises efficacy beliefs, which will, in turn, raise the expectations for future performances.

Ross and Bruce (2007) stated that teacher efficacy occurred when teachers experienced situations when they “perceived themselves as professionally masterful, observed teachers like themselves being successful, and persuaded each other that they could teach the new curriculum” (p. 52). A vicarious experience is “one in which the skill in question is modeled by someone else” (Goddard et al., 2004, p. 5). Bandura (1977) stated that seeing others perform threatening activities without negative
consequences may increase a person’s willingness to persist because they too think they may achieve at least some improvement if others can do the same.

Social persuasion can include encouragement or specific performance feedback from a colleague or principal, and these discussions can take place in a variety of places (Goddard et al., 2004). Goddard et al. (2004) stated that

Social persuasion is another means of strengthening a faculty’s conviction that it has the capabilities to set and achieve goals. Talks, workshops, professional development opportunities, and feedback about achievement can inspire action. Although verbal persuasion alone is not likely to compel profound organizational change, when coupled with models of success and positive direct experience, it can influence the collective efficacy beliefs of a faculty. Persuasion can encourage group members to innovate and overcome difficult challenges. (p. 6)

Social persuasion can also be termed “verbal persuasion” as stated by Bandura (1977), which states that people are led through “suggestion” into believing they can accomplish a task that has previously stressed them out in the past (p. 198). Unfortunately, this type of efficacy expectation is not as powerful at a mastery experience because it does not provide an authentic experience for them (Bandura, 1977). Bandura (1977) warned against utilizing social/verbal persuasions without offering conditions “to facilitate effective performance” because it will “most likely lead to failures that discredit the persuaders and further undermine the recipients’ perceived self-efficacy” (p. 198).

Affective states persuade efficacy levels because the amount of arousal, excitement, anxiety, etc. a person feels will affect their perception of their ability to perform a certain task (Goddard et al., 2004).
People rely partly on their state of physiological arousal in judging their anxiety and vulnerability to stress. Because high arousal usually debilitates performance, individuals are more likely to expect success when they are not beset by aversive arousal than if they are tense and viscerally agitated. Fear reactions generate further fear of impending stressful situations through anticipatory self-arousal. By conjuring up fear-provoking thoughts about their ineptitude, individuals can rouse themselves to elevated levels of anxiety that far exceed the fear experienced during the actual threatening situation. Perceived self-competence can therefore affect susceptibility of self-arousal. Individuals who come to believe that they are less vulnerable than they previously assumed are less prone to generate frightening thoughts in threatening situations. Those whose fears are relatively weak may reduce their self-doubts and debilitating self-arousal to the point where they perform successfully. Performance successes, in turn, strengthen self-efficacy. (Bandura, 1977, pp. 199-200)

Fortunately, anxiety will likely be diminished through modeling and experienced mastery experiences (Bandura, 1977). Bandura (1977) further stated that diminishing emotional arousal can assist the avoidance of tasks that pose a threat.

However, Bandura’s (1971) theory elaborated on this idea by further stating that a person cannot learn much by observing the modeling if he or she does not heed, or recognize, the “essential features of the model’s behavior” because “simply exposing persons to models does not in itself ensure that they will attend closely to them, that they will necessarily select from the model’s numerous characteristics the most relevant ones, or that they will even perceive accurately the aspects they happen to notice” (p. 6).
Rehearsal also serves as a “memory aid” and people who mentally or actually perform “modeled patterns of behavior are less likely to forget them than those who neither think about nor practice what they have seen” (Bandura, 1971, p. 7). Modeling approaches can remove fears and increase self-efficacy while also teaching effective coping skills by demonstrating effective ways to handle stressful situations (Bandura, 1977). Bandura’s theory of social learning also states that:

A person can acquire, retain, and possess the capabilities for skillful execution of modeled behavior, but the learning may rarely be activated into overt performance if it is negatively sanctioned or otherwise unfavorably received. When positive incentives are provided, observational learning, which previously remained unexpressed, is promptly translated into action. Reinforcement influences not only regulate the overt expression of matching behavior, but they can affect the level of observational learning by controlling what people attend to and how actively they code and rehearse what they have seen. (Bandura, 1971, p. 8)

Observational learning under the social learning theory also recognizes the fact that within “any social group, some members are likely to command greater attention than others” (Bandura, 1971, p. 7). The person modeling the desired behavior may need to repeatedly exhibit the action in order for others to replicate the behavior; however, with positive incentives and persistent demonstrations, perhaps multiple times, the requested action will eventually be invoked (Bandura, 1971). When a person observes the modeled behavior, he or she “forms an idea of how response components must be combined and temporally sequenced to produce new behavioral configurations” (Bandura, 1971, p. 9). Increased attention to the model’s actions can occur while also
increasing desired behaviors by the observer if the observer knows that the requested action being modeled produces valued rewards or is void of negative consequences (Bandura, 1971). Models that do not experience negative consequences in seemingly threatening activities can reduce the inhibitions of the observer (Bandura, 1971). Models that also possess qualities such as high “vocational, intellectual and social competencies” have a higher functional value for observers than do models that do not have these traits (Bandura, 1971, p. 19).

According to Bandura (1971), “modeling influences can serve as teachers, as inhibitors, as disinhibitors, as response elicitors, as stimulus enhancers, and as emotion arousers” (p. 11). People will display strong emotional reactions toward certain activities based on little or no personal experience with them due to symbolic conditioning such as “emotion-arousing words” whereas vicarious conditioning evokes an emotional response from people based on the emotional responses of other people (Bandura, 1971, p. 13). The social learning theory states that people constantly observe the actions of others and in which ways they are rewarded, punished, and/or ignored (Bandura, 1971).

Efficacy is a cycle. Greater efficacy leads to greater effort in persistence, which then leads to better performance, which in turn leads to greater efficacy; however, on the flip side, lower efficacy leads to less effort, which in turn leads to giving up on the task at hand which may lead to poor teaching outcomes which then cause a decrease in efficacy (Hoy, 2003). “The higher the teachers’ sense of efficacy is, the more likely they are to tenaciously overcome obstacles and persist in the face of failure. Such resiliency, in turn, tends to foster innovative teaching and student learning” (Goddard et al., 2004, p. 4). However, Bandura (1977) stated that expectation alone will not produce desired
performance if the needed skills are lacking, but if the appropriate skills needed are present, then efficacy expectations “are a major determinant of people’s choice of activities, how much effort they will expend, and how long they will sustain effort in dealing with stressful situations” (p. 194). Hoy (2003) stated that efficacy is the most influenced during the early stages of mastering a skill and becomes more set with experience. If early attempts to the desired behaviors are positive, then teachers are better able to persist “in the face of inevitable disappointments and discouragements of the first attempts”; however, unsuccessful first experiences may detour teachers away from the desired behavior (Hoy, 2003, p. 3). In conclusion, a “sense of efficacy is a valuable outcome” when implementing a new curriculum and “can be fostered with specific training that provides needed pedagogical knowledge, a variety of forms of feedback, and social support that normalizes the predictable fears of teachers” (Hoy, 2003, p. 4).
CHAPTER III

METHODOLOGY

Introduction

The purpose of this quantitative study was to analyze the relationship between elements of teacher collaboration and teachers’ level of knowledge, level of implementation, and level of confidence related to Common Core State Standards (CCSS) for Literacy in History/Social Studies, Science, and Technical Subject Area teachers in grades 6-12. According to Field (2009), in correlational research the researcher observes natural events or takes a “snapshot of many variables at a single point on time” (p. 12). The researcher in this study wanted to take a “snapshot” of teachers’ perceptions when different elements of teacher collaboration are involved. Fields (2009) continued to state that correlational research provides a natural view of questions being researched because the researcher is not an influence on what happens which allows the quantitative data to speak for itself. This chapter defines the (a) independent and dependent variables, (b) hypotheses, (c) research design, (d) data collection methods, and (e) data analysis methods used to answer research questions developed in Chapter I. In Chapter II, the literature review analyzed concepts related to teacher collaboration and the new CCSS for Literacy in History/Social Studies, Science, and Technical Subjects. The topics that were examined were: literacy in the 21st century, the call for Common Core State Standards, CCSS for literacy in science and technical subject areas, CCSS for literacy in history/social studies, the need for a cross-curriculum, teacher collaboration, the role of leadership, and the theoretical framework. This study utilized a correlational analysis to examine the relationship between elements of teacher collaboration and
teachers’ level of knowledge, level of implementation, and level of confidence related to Common Core State Standards (CCSS) for Literacy in History/Social Studies, Science, and Technical Subject Area teachers in grades 6th-12th.

Research Design

This study used a quantitative approach to identify a relationship between elements of teacher collaboration and teachers’ perception of knowledge, implementation, and confidence of the CCSS for Literacy (Reading). The independent variable was demographics. The dependent variables for this study were the teachers’ perceptions of their knowledge level, implementation level, and confidence level of the CCSS for Literacy and the elements of teacher collaboration. The variables addressed on the survey were the collaboration and knowledge of CCSS. A qualitative approach was used for the one open-ended constructed response item. The open-ended item was analyzed using grounded theory and was then coded thematically.

Participants

The participants in this study included 6th-12th grade history/social studies, science, and technical subject area teachers. These particular subject area teachers were chosen because the new CCSS require these areas to address literacy skills needed for college and career readiness in the 21st century along with their content area curriculum. The participants in this study included 74 teachers with a range from 15-31 teachers from each of the three subject areas. Participants surveyed were from one upper elementary school, three middle schools, six high schools, and two career and technical institutes from the southern region of Mississippi across the Gulf Coast. This convenience sampling was based on location and willingness to participate.
Instrumentation

Using the CCSS, the researcher created a questionnaire entitled Teacher Collaboration and Teacher Perception: CCSS for Literacy (Reading) in History/Social Studies, Science, and Technical Subject Areas Grades 6th-12th (Appendix A) to survey the teachers in this sample. The questionnaire was divided into the following sections: (a) demographics, (b) elements of teacher collaboration, and (c) teachers’ perceptions of the CCSS for Literacy (Reading). Nineteen Likert type items that pertain to CCSS and teacher collaboration were utilized for this instrument.

In the first part of the survey (Part A), there were demographic questions regarding subject area, grade level of the respondent, and collaboration time. The questions in the second part of the instrument (Part B) were designed to measure elements of teacher collaboration and were adapted from two different instruments. Questions 1 through 5 were adapted from an instrument developed by McHenry (2009) to measure attitudinal perceptions associated with teacher collaboration and student achievement. The researcher of this study utilized Part 3 of McHenry’s (2009) Collaboration Survey to assess the factors related to collaboratively supported literacy instruction via CCSS. McHenry provided permission to the researcher to adapt the items on the instrument (Appendix B).

Questions 6 through 9 of Part B were adapted from a formative assessment tool entitled Teacher Collaboration Assessment Rubric (TCAR) presented by Gajda and Koliba (2008). This tool was originally used to assess the quality of teacher collaboration and had four components—dialogue, decision making, action, and evaluation. For the instrument used in this study, only the evaluation piece was utilized to determine the
extent to which the team engages in the evaluation process through systematic collection and examination of performance data (Gajda & Koliba, 2008). Gajda and Koliba provided permission to the researcher to adapt the TCAR (Appendix C). The two elements included in this section of the survey are entitled “Factors Related to Collaboratively Supported Literacy Instruction via CCSS,” which are questions 1 through 5, and the “Utilization of Data during the Collaboration Process,” which are questions 6 through 9. These two sections of Part B are referred to as “Factors” and “Utilization.” Each question was designed to initiate reflective thinking and to avoid the opportunity for participants to give their opinion.

In Part C, the teachers’ perceptions segment, questions 10 through 19 were adapted from the CCSS for Literacy in History/Social Studies, Science, and Technical Subject Areas (NGA & CCSSO, 2010, p. 60), specifically the College and Career Readiness (CCR) Anchor Standards for Reading. Questions 10 through 12 specifically focused on key ideas and details; questions 13 through 15 focused on craft and structure; questions 16 through 18 focused on integration of knowledge and ideas; and question 19 focused on range of reading and level of text complexity.

Part B of the instrument consists of 9 Likert type items using a 5-point Likert scale with the following ratings: 1 (Never), 2 (Not Usually), 3 (Occasionally), 4 (Usually), and 5 (Always). These questions pertain to elements of teacher collaboration and CCSS. Part C of the survey was on a 4 point scale with the following ratings:

Knowledge level—1 (Not knowledgeable), 2 (Somewhat knowledgeable), 3 (Reasonably Knowledgeable), and 4 (Exceptionally knowledgeable); Implementation level—1 (No implementation), 2 (Some implementation), 3 (Reasonable implementation), 4
(Exceptional implementation); Confidence level—1 (Not confident), 2 Somewhat confident), 3 (Reasonably confident), and 4 (Exceptionally confident).

The researcher averaged all of the knowledge questions (11-20), implementation questions (11-20), and confidence questions (11-20). These variables were examined to determine the strength of the relationship among the variables upon teachers’ perceptions of their knowledge, implementation, and confidence of literacy via CCSS and elements of teacher collaboration. The researcher considered the strength of the relationships, positive or negative, and the coefficient of determination was used to argue the percentage of overlap between the variables.

To test the reliability of this instrument, 15 respondents from 1 middle school and 1 high school took the survey as a pilot study and the researcher scored it using Cronbach’s alpha. The pilot study was initiated once the researcher had IRB approval. In order to test the validity of the instrument, a panel of experts was assembled. These experts were in the field of education and each was given a copy of the questionnaire. The researcher asked the panel members the following questions: Is the questionnaire unclear? Are any of the questions redundant? What should be added to gain further information regarding this topic? Should anything on the questionnaire be reworded? Feedback was considered and adjustments were not needed by the researcher after the expert panel reviewed the instrument. The researcher collected, organized, and analyzed the information pertaining to the participants’ perceptions regarding the CCSS for Literacy (Reading) and teacher collaboration.

The statistical program SPSS was used to analyze data from the pilot study. Cronbach’s alpha was used to test the reliability of the instrument. An adequate
Cronbach’s alpha was attained for each subscale. Table 1 illustrates the reliability results for the pilot study. Each of the reliability coefficients for the different sections of the survey were ≥.7, indicating that the survey should produce reliable results.

Table 1

Cronbach’s Alpha Results for the Pilot Study and Real Study

<table>
<thead>
<tr>
<th>Subscale</th>
<th>Cronbach’s alpha for Pilot</th>
<th>Cronbach’s alpha for Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factors</td>
<td>.780</td>
<td>.841</td>
</tr>
<tr>
<td>Utilization</td>
<td>.899</td>
<td>.925</td>
</tr>
<tr>
<td>Knowledge</td>
<td>.907</td>
<td>.942</td>
</tr>
<tr>
<td>Implementation</td>
<td>.830</td>
<td>.924</td>
</tr>
<tr>
<td>Confidence</td>
<td>.907</td>
<td>.938</td>
</tr>
</tbody>
</table>

The researcher also utilized the CCSS document to design the survey. The CCSSO and the NGA Center developed these standards by working with the participating states, expert educators, content experts, researchers, national organizers, and community groups (CCSSO & NGA Center, 2010); therefore, content validity had already been addressed because the content-related evidence of validity comes from the judgments of people who are content experts (Validity Evidence, 2014).

Procedure

Distribution of questionnaires and collection of the data began after Institutional Review Board (IRB) approval by The University of Southern Mississippi (Appendix D). Permission was sought and obtained by the schools represented in the study to administer
the questionnaires to participating school districts (Appendix E). The researcher then followed up with each building administrator to schedule delivery of the surveys to the respective schools. If the researcher did not hand deliver the surveys, they were sent though the United States Postal Service. A contact was established within each district. The contact person explained and/or distributed questionnaires and informed consent cover letters (Appendix F) to teachers and assisted in completion of data. The surveys remained at the school site for a period of no longer than 10 days. The completed surveys were then held at the school office in a container until picked up by the researcher or returned by mail. The schools were provided a postage-paid envelope for the purpose of returning the surveys to the researcher.

An informed consent cover letter was attached to each questionnaire. This letter explained that the respondents’ answers were kept in the strictest of confidence and that the questionnaires were kept completely anonymous. Respondents were also assured that the information ascertained by the researcher was only used for research purposes and they will be destroyed upon completion of the study after one year. The cover letter also explained that each participant was only required to complete the survey on a voluntary basis. Validity and reliability testing was performed on the instrument prior to it being made available to the participants.

Data Analysis

After the pilot study was analyzed and the sample was chosen, the researcher distributed the survey to participants for data collection. The desired sample size for the statistical tests was 25 teachers in each subject area of history/social studies, science, and technical subjects; therefore, a total of 75 teachers are ideal for completing the survey.
Correlations were used to determine the relationship between the variables, and because this study was a quantitative analysis, Pearson’s \(r \) correlation was utilized. Data were disseminated and processed through the statistical software program SPSS. Once all surveys were received, data were collected from the questionnaires and analyzed using SPSS. The researcher compiled the results and presented an analysis of the data to determine: teachers’ perceptions toward the CCSS for Literacy in history, science, and technical subject areas in grades 6-12; if there are differences between the perceptions of the three groups; their perceptions regarding their level of knowledge, confidence, and implementation toward the CCSS for Literacy; and the relationship between their level of knowledge, level of confidence, and level of implementation and elements of teacher collaboration.

Summary

This chapter presented a detailed statistical analysis to answer the research questions regarding the relationship between teacher collaboration and teachers’ perceptions of their level of knowledge, level of implementation, and level of confidence related to CCSS for Literacy in History/Social Studies, Science, and Technical Subject Area teachers in grades 6-12. Using the data collected from the questionnaire entitled Teacher Collaboration and Teacher Perception: CCSS for Literacy (Reading) in History/Social Studies, Science, and Technical Subject Areas Grades 6-12, the researcher was able to consider the implications of certain elements of teacher collaboration and analyze the correlation between those and the levels of knowledge, implementation and confidence a teacher has of the CCSS for Literacy. The participants were certified 6-12 grade history/social studies, science, and technical subject area teachers in public schools.
in Mississippi across the southern region of the Gulf Coast. They understood that they
were participating in the study on a strictly volunteer and confidential basis.
CHAPTER IV
RESEARCH RESULTS

Introduction

The purpose of this study was to explore the relationship between elements of teacher collaboration and teachers’ level of knowledge, level of implementation, and level of confidence related to CCSS for Literacy in History/Social Studies, Science, and Technical Subject Areas in grades 6-12. The questionnaire entitled “Teacher Collaboration and Teacher Perception: CCSS for Literacy (Reading) in History/Social Studies, Science, and Technical Subject Areas Grades 6th-12th” was mailed to six high schools, three middle schools, one upper elementary school, and two Career and Technical Centers from six public school districts. The respondents were teachers who worked at middle schools, high schools, and career technical centers who teach in the areas of history/social studies, science, and/or technical subject areas. The respondents were asked to complete 4 parts of the instrument. Part A consisted of demographic items; the second section consisted of elements of teacher collaboration and were specifically broken down into two sections entitled “Factors related to Collaboratively Supported Literacy Instruction via CCSS” and the “Utilization of Data during the Collaboration Process.” Part C of the instrument, respondents were asked to rate their perceptions of the reading standards for literacy via CCSS, specifically their knowledge, implementation, and confidence in specific reading skills. The last section of the instrument was an open-ended item. Each of the 12 schools received 25 surveys. A total of 325 surveys were mailed out; however, only 127 teachers total meet the criteria to receive and complete the survey. Out of 127 possible surveys, 74 teachers answered each
question, with the exception of the open-ended response, and returned the survey for analysis. This represented a response rate of 58.27%.

Descriptive Data

Descriptive statistics and frequencies for the data collected are presented in the tables below. Table 2 contains a breakdown of the content areas taught for each participant. The largest proportion of participant’s were social studies/history teachers (41.9%), followed by science teachers (33.8%), and then technical subject area teachers (20.3%).

Table 2

Frequencies and Percentages of Content Area Taught (N=71)

<table>
<thead>
<tr>
<th>Content Area</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>25</td>
<td>33.8</td>
</tr>
<tr>
<td>Social Studies/History</td>
<td>31</td>
<td>41.9</td>
</tr>
<tr>
<td>Technical Subject Area</td>
<td>15</td>
<td>20.3</td>
</tr>
</tbody>
</table>

The participants reported the grade level they taught for the current 2014-2015 school year. The largest portion of teachers taught 9th, 10th, 11th, and 12th grade (21.6%), followed by 10th, 11th, and 12th grade (16.2%), 7th grade (13.5%), 8th grade (12.2%), 6th grade (6.8%), 11th grade (5.4%), 9th and 10th grade (5.4%). The following grade levels taught had the same percentage as follows: 7th and 8th grade (2.7%), 9th and 12th (2.7%), 9th, 10th, 11th grade (2.7%), and 11th and 12th grade (2.7%). The following grade levels had the same percentages as well: 9th grade (1.4%), 10th grade (1.4%), 12th
grade (1.4%), 10th and 11th grade (1.4%), 6th, 7th, 8th, 9th, 10th, 11th, and 12th (1.4%), and
10th and 12th grade (1.4%). Table 3 provides frequencies and percentages for these data.

Table 3

Frequencies and Percentages of Grade Level Taught (N=74)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>6.8</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>13.5</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>12.2</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>7,8</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>9,10</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td>10,11</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>10,11,12</td>
<td>12</td>
<td>16.2</td>
</tr>
</tbody>
</table>
Participants were asked how many years of full time teaching experience they had. The mean score was 12.67 and the standard deviation was 7.23. Table 4 displays these data.

Table 4

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many years of full time teaching experience do you have?</td>
<td>12.67</td>
<td>7.23</td>
</tr>
</tbody>
</table>

Participants were asked to report if they collaborate with fellow teachers about CCSS. The largest portion of participants (75.7%) reported they did collaborate, which
was followed by 24.3% of participants who reported they did not collaborate. Table 5 provides the frequencies and percentages for these data.

Table 5

Frequencies and Percentages for Collaboration Time with Teachers on CCSS (N=74)

<table>
<thead>
<tr>
<th>Response</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>56</td>
<td>75.7</td>
</tr>
<tr>
<td>No</td>
<td>18</td>
<td>24.3</td>
</tr>
</tbody>
</table>

Participants were asked to report if their school provided time for collaboration with fellow teachers. The largest portion of participants (86.5%) reported they were provided a collaboration time, which was followed by 13.5% of participants who reported they were not provided a time to collaborate. Table 6 provides the frequencies and percentages for these data.

Table 6

Frequencies and Percentages for School Provided Collaboration Time (N=74)

<table>
<thead>
<tr>
<th>Response</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>64</td>
<td>86.5</td>
</tr>
<tr>
<td>No</td>
<td>10</td>
<td>13.5</td>
</tr>
</tbody>
</table>

Table 6 is relative to the time of day in which the collaboration time is held. The majority of the respondents reported that collaboration time is held after school hours.
(43.2%), followed by during school hours (21.6%), during and after school hours (18.9%), before, during and after school hours (8.1%), before and during school hours (5.4%), before school hours (1.4%) and no collaboration time (1.4%). Table 7 provides frequencies and percentages for these data.

Table 7

Frequencies and Percentages for Time of Day Collaboration is Held (N=74)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before School</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>During School</td>
<td>16</td>
<td>21.6</td>
</tr>
<tr>
<td>After School</td>
<td>32</td>
<td>43.2</td>
</tr>
<tr>
<td>Before, During, and After School</td>
<td>6</td>
<td>8.1</td>
</tr>
<tr>
<td>Before and During School</td>
<td>4</td>
<td>5.4</td>
</tr>
<tr>
<td>During and After School</td>
<td>14</td>
<td>18.9</td>
</tr>
<tr>
<td>None</td>
<td>1</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Participants were asked to report on average, how often they have a structured time to meet with fellow teachers about CCSS. Of those who completed surveys, 37 participants (50%) reported that they meet monthly. 28.4% reported they meet weekly, 10.8% meet yearly, 8.1% have not collaborated with fellow teachers regarding CCSS,
and 2.7% reported they meet daily regarding CCSS. Table 8 provides the frequencies and percentages for these data.

Table 8

Frequencies and Percentages for How Often a Structured Collaboration Time is Held with Fellow Teachers about CCSS (N=74)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structured Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>Weekly</td>
<td>21</td>
<td>28.4</td>
</tr>
<tr>
<td>Monthly</td>
<td>37</td>
<td>50</td>
</tr>
<tr>
<td>Yearly</td>
<td>8</td>
<td>10.8</td>
</tr>
<tr>
<td>Have Not Collaborated</td>
<td>6</td>
<td>8.1</td>
</tr>
</tbody>
</table>

Descriptive Statistics for Hypothesis

Following the demographic items on Part A of the instrument, the survey was divided into three main sections for the respondents to answer, which were broken down into Part B, Part C, and Part D. Participants were asked to provide responses using a 5 point Likert scale on Part B (Elements of Teacher Collaboration) which ranged from Never to Always. Within Part B, two sections of teacher collaboration were analyzed
which were factors related to collaboratively supported literacy instruction via CCSS and utilization of data during the collaboration process.

The first section consisted of five items regarding the factors related to collaboratively supported literacy instruction via CCSS. This section was used to answer Research Question 3, “Is there a relationship between teachers’ perceptions of the CCSS for Literacy in history/social studies, science, and technical subject areas in grades 6-12 in the areas of their level of knowledge, level of implementation, and level of confidence and teacher collaboration?” The participants were asked to choose the response that best described how they collaboratively support literacy instruction via CCSS. The Likert scale was as follows: 1=Never, 2=Not Usually, 3=Occasionally, 4=Usually, 5=Always. Item 3, “I have collaborated on CCSS for Literacy with another teacher in my subject area this year” had the highest mean \(M=3.03, SD=1.24\) of all the items in this section. Item 4, “I have collaborated by integrating the CCSS for Literacy with another teacher outside of my subject area this year” had the second highest mean \(M=2.58, SD=1.27\) of all the items in this section. Item 1, “I ask other teachers to observe my implementation of the CCSS for Literacy when I am teaching” had the lowest mean \(M=1.86, SD=.94\) of all the items in this section of Part B. Table 9 provides the means and standard deviations for these data.
Table 9

Descriptive Statistics for Elements of Teacher Collaboration: Factors Related to Collaboratively Supported Literacy Instruction via CCSS (N=74)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I have collaborated on CCSS for Literacy with another teacher in my subject area this year</td>
<td>3</td>
<td>3.03</td>
<td>1.24</td>
</tr>
<tr>
<td>I have collaborated by integrating the CCSS for Literacy with another teacher outside of my subject area this year.</td>
<td>4</td>
<td>2.58</td>
<td>1.27</td>
</tr>
<tr>
<td>I have collaborated this year with the literacy coach and/or language arts teacher on the topic of content area literacy this year.</td>
<td>5</td>
<td>2.57</td>
<td>1.23</td>
</tr>
<tr>
<td>I have observed another teacher teaching the CCSS for Literacy this year.</td>
<td>2</td>
<td>2.01</td>
<td>1.14</td>
</tr>
<tr>
<td>I ask other teachers to observe my implementation of the CCSS for Literacy when I am teaching.</td>
<td>1</td>
<td>1.86</td>
<td>.94</td>
</tr>
</tbody>
</table>

Note: Minimum =1.00, Maximum =4.00; 1.00= Never, 2.00=Not Usually, 3.00=Occasionally, 4.00 =Usually, 5=Always

The second section consisted of four items regarding the factors related to collaboratively supported literacy instruction via CCSS. This section was used to answer Research Question 3, “Is there a relationship between teachers’ perceptions of the CCSS for Literacy in history/social studies, science, and technical subject areas in grades 6-12 in the areas of their level of knowledge, level of implementation, and level of confidence
and teacher collaboration?” The participants were asked to choose the response that best described how teachers utilize data during the collaboration process. The Likert scale was as follows: 1=Never, 2=Not Usually, 3=Occasionally, 4=Usually, 5=Always. Item 9, “During collaboration time, student performance data is shared and is the basis for team dialogue and decision-making” had the highest mean ($M=3.16, SD=1.11$) of all the items in this section. Item 7, “During collaboration time, all teachers collect, share, and analyze qualitative and quantitative information about student learning” had the second highest mean ($M=3.07, SD=1.05$) of all the items in this section. Item 6, “During collaboration time, all teachers collect, share, and analyze qualitative and quantitative information about member teaching practices” had the lowest mean ($M=2.89, SD=1.04$) of all the items in this section of Part B. Table 10 provides the means and standard deviations for these data.

Table 10

Descriptive Statistics for Elements of Teacher Collaboration: Utilization of Data during the Collaboration Process (N=74)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>During the collaboration time, student performance data is shared and is the basis for team dialogue and decision-making.</td>
<td>9</td>
<td>3.16</td>
<td>1.11</td>
</tr>
<tr>
<td>During collaboration time, all teachers collect, share, and analyze qualitative and quantitative information about student learning.</td>
<td>7</td>
<td>3.07</td>
<td>1.05</td>
</tr>
</tbody>
</table>
Table 10 (continued).

<table>
<thead>
<tr>
<th>Factors</th>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>During collaboration time, teachers use student performance data to evaluate the merit of individual and collective pedagogical practices.</td>
<td>8</td>
<td>3.01</td>
<td>1.08</td>
</tr>
<tr>
<td>During collaboration time, all teachers collect, share, and analyze qualitative and quantitative information about member teaching practices.</td>
<td>6</td>
<td>2.89</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Note: Minimum =1.00, Maximum =4.00; 1.00= Never, 2.00=Not Usually, 3.00=Occasionally, 4.00 =Usually, 5=Always

Part C (Teachers’ Perceptions of the Reading Standards for Literacy via CCSS), participants were asked to provide responses using a 4 point Likert scale, ranging from not knowledgeable to exceptionally knowledgeable; no implementation to exceptional implementation; and not confident to exceptionally confident.

Part C consisted of 30 items total regarding the participant’s perceptions of the reading standards for literacy via CCSS. The participants were asked to choose the response that best described their perceptions of their knowledge level, implementation level, and confidence level of the reading standards for literacy via CCSS. These questions were used to answer Research Question 1 “What are teachers’ perceptions of the CCSS for Literacy in history/social studies, science, and technical subjects in grades 6-12 in the areas of level of knowledge, level of implementation, and level of confidence using the CCSS for Literacy in history/social studies, science, and technical subject areas?”
In the first section, the teacher’s perceived knowledge level, item number 13 “Interpret words and phrases as they are used in a text, including determining technical, connotative, and figurative meanings, and analyze how specific word choices shape meaning or tone” had the highest mean ($M=3.26$, $SD=0.70$) of all the items. Item number 11, “Determine central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas” had the second highest mean ($M=3.24$, $SD=0.68$) of all the items in the knowledge section. Item number 14, “Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text relate to each other and the whole” had the lowest mean ($M=2.91$, $SD=0.80$) of all the items in the knowledge section. Table 11 provides the means and standard deviations for these data.

Table 11

Descriptive Statistics for Knowledge Level Subscale (N=74)

<table>
<thead>
<tr>
<th>Skill</th>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpret words and phrases as they are used in a text, including determine technical, connotative, and figurative meanings, and analyze how specific word choices shape meaning or tone.</td>
<td>13</td>
<td>3.26</td>
<td>0.70</td>
</tr>
<tr>
<td>Determine central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.</td>
<td>11</td>
<td>3.24</td>
<td>0.68</td>
</tr>
</tbody>
</table>
Table 11 (continued).

<table>
<thead>
<tr>
<th>Skill</th>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read and comprehend complex literary and informational texts</td>
<td>19</td>
<td>3.22</td>
<td>0.85</td>
</tr>
<tr>
<td>independently and proficiently.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.</td>
<td>10</td>
<td>3.20</td>
<td>0.64</td>
</tr>
<tr>
<td>Integrate and evaluate content presented in diverse formats and media, including visually and quantitatively, as well as in words.</td>
<td>16</td>
<td>3.19</td>
<td>0.75</td>
</tr>
<tr>
<td>Delineate and evaluate the argument and specific claims in a text, including the validity of the reasoning as well as the relevance and sufficiency of the evidence.</td>
<td>17</td>
<td>3.12</td>
<td>0.78</td>
</tr>
<tr>
<td>Analyze how and why individuals, events, or ideas course of the text.</td>
<td>12</td>
<td>3.10</td>
<td>0.80</td>
</tr>
<tr>
<td>Analyze how two or more texts address similar themes or topics in order to build knowledge or to compare the approaches the authors take.</td>
<td>18</td>
<td>3.07</td>
<td>0.82</td>
</tr>
</tbody>
</table>
Table 11 (continued).

<table>
<thead>
<tr>
<th>Skill</th>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assess how point of view or purpose shapes the content and style of a text.</td>
<td>15</td>
<td>3.05</td>
<td>0.83</td>
</tr>
<tr>
<td>Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text relate to each other and the whole.</td>
<td>14</td>
<td>2.91</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Note: Minimum =1.00, Maximum =4.00; 1.00= Not Knowledgeable, 2.00=Somewhat Knowledgeable, 3.00=Reasonably Knowledgeable, 4.00 =Exceptionally Knowledgeable

In the second section of teacher perceptions of the reading standards for literacy via CCSS, the teacher’s perceived implementation level was analyzed. Item number 13 “Interpret words and phrases as they are used in a text, including determining technical, connotative, and figurative meanings, and analyze how specific word choices shape meaning or tone” had the highest mean ($M=2.94$, $SD=0.68$) of all the items. Item number 10, “Read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text” had the second highest mean ($M=2.95$, $SD=0.66$) of all the items in the implementation section. Item number 14, “Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text relate to each other and the whole” had the lowest mean ($M=2.47$, $SD=0.86$) of all the items in the implementation section. Table 12 provides the means and standard deviations for these data.
Table 12

Descriptive Statistics for Implementation Level Subscale (N=74)

<table>
<thead>
<tr>
<th>Skill</th>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpret words and phrases as they are used in a text, including determine technical, connotative, and figurative meanings, and analyze how specific word choices shape meaning or tone.</td>
<td>13</td>
<td>2.95</td>
<td>0.68</td>
</tr>
<tr>
<td>Read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.</td>
<td>10</td>
<td>2.95</td>
<td>0.66</td>
</tr>
<tr>
<td>Integrate and evaluate content presented in diverse formats and media, including visually and quantitatively, as well as in words.</td>
<td>16</td>
<td>2.93</td>
<td>0.78</td>
</tr>
<tr>
<td>Determine central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.</td>
<td>11</td>
<td>2.88</td>
<td>0.70</td>
</tr>
<tr>
<td>Read and comprehend complex literary and informational texts independently and proficiently.</td>
<td>19</td>
<td>2.70</td>
<td>0.93</td>
</tr>
<tr>
<td>Skill</td>
<td>Item</td>
<td>Mean</td>
<td>Std. Deviation</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>Delineate and evaluate the argument and specific claims in a text, including the validity of the reasoning as well as the relevance and sufficiency of the evidence.</td>
<td>17</td>
<td>2.69</td>
<td>0.89</td>
</tr>
<tr>
<td>Anaylze how and why individuals, events, or ideas develop and interact over the course of the text.</td>
<td>12</td>
<td>2.66</td>
<td>0.88</td>
</tr>
<tr>
<td>Assess how point of view or purpose shapes the content and style of a text.</td>
<td>15</td>
<td>2.58</td>
<td>0.89</td>
</tr>
<tr>
<td>Analyze how two or more texts address similar themes or topics in order to build knowledge or to compare the approaches the authors take.</td>
<td>18</td>
<td>2.51</td>
<td>0.93</td>
</tr>
<tr>
<td>Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text relate to each other and the whole.</td>
<td>14</td>
<td>2.47</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Note: Minimum =1.00, Maximum =4.00; 1.00= Not Knowledgeable, 2.00=Somewhat Knowledgeable, 3.00=Reasonably Knowledgeable, 4.00 =Exceptionally Knowledgeable

The third section, the teacher’s perceived confidence level, item number 16 “Integrate and evaluate content presented in diverse formats and media, including visually and quantitatively, as well as in words” had the highest mean ($M=3.08, SD=0.77$) of all the items. Item number 11, “Determine central ideas or themes of a text and analyze their
development; summarize the key supporting details and ideas” had the second highest mean ($M=3.06, SD=0.75$) of all the items in the confidence section. Item number 14, “Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text relate to each other and the whole” had the lowest mean ($M=2.71, SD=0.84$) of all the items in the confidence section. Table 13 provides the means and standard deviations for these data.

Table 13

Descriptive Statistics for Confidence Level Subscale (N=74)

<table>
<thead>
<tr>
<th>Skill</th>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrate and evaluate content presented in diverse formats and media, including visually and quantitatively, as well as in words.</td>
<td>16</td>
<td>3.08</td>
<td>0.77</td>
</tr>
<tr>
<td>Determine central ideas or themes of a text and analyze their development; summarize the key supporting details and ideas.</td>
<td>11</td>
<td>3.07</td>
<td>0.75</td>
</tr>
<tr>
<td>Interpret words and phrases as they are used in a text, including determine technical, connotative, and figurative meanings, and analyze how specific word choices shape meaning or tone.</td>
<td>13</td>
<td>3.05</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Table 13 (continued).

<table>
<thead>
<tr>
<th>Skill</th>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read closely to determine what the text says explicitly and to make logical inferences from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.</td>
<td>10</td>
<td>3.03</td>
<td>0.72</td>
</tr>
<tr>
<td>Read and comprehend complex literary and informational texts independently and proficiently.</td>
<td>19</td>
<td>2.89</td>
<td>0.85</td>
</tr>
<tr>
<td>Analyze how and why individuals, events, or ideas develop and interact over the course of the text.</td>
<td>12</td>
<td>2.86</td>
<td>0.87</td>
</tr>
<tr>
<td>Assess how point of view or purpose shapes the content and style of a text.</td>
<td>15</td>
<td>2.81</td>
<td>0.95</td>
</tr>
<tr>
<td>Delineate and evaluate the argument and specific claims in a text, including the validity of the reasoning as well as the relevance and sufficiency of the evidence.</td>
<td>17</td>
<td>2.81</td>
<td>0.85</td>
</tr>
<tr>
<td>Analyze how two or more texts address similar themes or topics in order to build knowledge or to compare the approaches the authors take.</td>
<td>18</td>
<td>2.80</td>
<td>0.92</td>
</tr>
</tbody>
</table>
Table 13 (continued).

<table>
<thead>
<tr>
<th>Skill</th>
<th>Item</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text relate to each other and the whole.</td>
<td>14</td>
<td>2.72</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Note: Minimum =1.00, Maximum =4.00; 1.00= Not Confident, 2.00=Somewhat Confident, 3.00=Reasonably Confident, 4.00= Exceptionally Confident

Descriptive statistics for knowledge, implementation, and confidence among the different subject area teachers were calculated. Three teachers reported they were dual science and social studies/history teachers. These three teachers were not used for these data. The results are listed on Tables 14, 15, and 16.

Table 14

Descriptive Statistics for Differences between Subjects Area Teachers on Knowledge (N=71)

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>2.90</td>
<td>0.58</td>
</tr>
<tr>
<td>Social Studies/History</td>
<td>3.43</td>
<td>0.53</td>
</tr>
<tr>
<td>Technical Subject</td>
<td>3.14</td>
<td>0.71</td>
</tr>
<tr>
<td>Overall</td>
<td>3.14</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Table 15

Descriptive Statistics for Differences between Subjects Area Teachers on Implementation (N=71)

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>2.53</td>
<td>0.65</td>
</tr>
<tr>
<td>Social Studies/History</td>
<td>2.96</td>
<td>0.67</td>
</tr>
<tr>
<td>Technical Subject</td>
<td>2.57</td>
<td>0.46</td>
</tr>
<tr>
<td>Overall</td>
<td>2.72</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Table 16

Descriptive Statistics for Differences between Subjects Area Teachers on Confidence (N=71)

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>2.64</td>
<td>0.69</td>
</tr>
<tr>
<td>Social Studies/History</td>
<td>3.18</td>
<td>0.61</td>
</tr>
<tr>
<td>Technical Subject</td>
<td>2.79</td>
<td>0.62</td>
</tr>
<tr>
<td>Overall</td>
<td>2.91</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Hypotheses Results

Hypothesis 1

Hypothesis 1 stated: “Teachers’ perception of the CCSS for Literacy in history/social studies, science, and technical subject areas in grades 6-12 in the areas of knowledge, level of implementation, and level of confidence will differ based on subject area.” This hypothesis addressed Research Question 2 which asked: “Do teachers’ perceptions of the
CCSS for Literacy in history/social studies, science, and technical subject areas in grades 6-12 in the areas of their level of knowledge, level of implementation, and level of confidence differ based on subject area taught?” A one-way ANOVA was calculated to determine if there was a significant difference in the areas of knowledge, implementation, and confidence. There was a significant difference for knowledge, $F(2,68)=6.574$, $p=.002$. For implementation, there was a significant difference for implementation, $F(2,68)=3.902$, $p=.025$. For confidence, there was a significant difference for confidence, $F(2, 68)=5.247$, $p=.008$.

Pairwise comparisons were performed for knowledge, implementation, and confidence. For knowledge, Tukey’s HSD revealed that social studies was significantly better than science ($p = .004$), and social studies was significantly better than technical subject areas ($p = .033$). For implementation, social studies was significantly better than science ($p = .033$). For confidence, social studies was significantly better than science ($p = .007$).

Hypothesis 2

Hypothesis 2 stated: “Certain elements of teacher collaboration will have a strong positive correlation with the level of knowledge a teacher has of the CCSS for Literacy in history/social studies, science, and technical subject areas.” A Pearson Correlation test was done to determine if there was any linear correlation between the two elements of teacher collaboration and the level of knowledge a teacher has of the CCSS for Literacy in history/social studies, science, and technical subject areas. For the first section of teacher collaboration, the data revealed a coefficient of $r(74) = .194$, $p = .098$. There is a non-significant positive correlation between knowledge and factors related to
collaboratively supported literacy instruction via CCSS. For the second section of teacher collaboration, the data revealed a coefficient of $r(74) = .159$, $p = .176$. There is a non-significant positive correlation between knowledge and utilization of data during the collaboration process.

Hypothesis 3

Hypothesis 3 stated: “Certain elements of teacher collaboration will have a strong positive correlation with the level of implementation a teacher has of the CCSS for Literacy in history/social studies, science, and technical subject areas.” A Pearson Correlation test was done to determine if there was any linear correlation between the two elements of teacher collaboration and the level of implementation a teacher has of the CCSS for Literacy in history/social studies, science, and technical subject areas. For the first section of teacher collaboration, the data revealed a coefficient of $r(74) = .291$, $p = .012$, sig. There is a significant positive correlation between implementation and factors related to collaboratively supported literacy instruction via CCSS. For the second section of teacher collaboration, the data revealed a coefficient of $r(74) = .303$, $p = .009$, sig. There is a significant positive correlation between teacher implementation and the utilization of data during the collaboration process.

Hypothesis 4

Hypothesis 4 stated: “Certain elements of teacher collaboration will have a strong positive correlation with the level of confidence a teacher has of the CCSS for Literacy in history/social studies, science, and technical subject areas.” A Pearson Correlation test was done to determine if there was any linear correlation between the two elements of teacher collaboration and the level of confidence a teacher has of the CCSS for Literacy
in history/social studies, science, and technical subject areas. For the first section of teacher collaboration, the data revealed a coefficient of $r(74) = .266$, $p = .022$, sig. There is a significant correlation between confidence and factors related to collaboratively supported literacy instruction via CCSS. For the second section of teacher collaboration, the data revealed a coefficient of $r(74) = .277$, $p = .017$, sig. There is a significant correlation between teacher confidence and the utilization of data during the collaboration process.

Open-Ended Constructed Response Item

Part D of the instrument contained an open-ended question which was item 20 of the instrument. This question allowed the researcher to gain a deeper insight into teachers’ perceptions regarding what they believe impedes or assists in their implementation of the reading standards for literacy in their subject area as it pertains to CCSS. The researcher analyzed the data by reading through the responses and looking for themes. The analysis of these themes is presented below and separated according to responses that impede teacher implementation and responses that assists teacher implementation.

Impedes teacher implementation. More teachers reported impediments rather than assistance in their implementation of the reading standards for literacy in history/social studies, science, and/or technical subjects as it pertains to CCSS. The theme that was the most commonly stated was the lack of time teachers have, whether that be in the classroom or a lack of time for preparation. Teacher comments included: “Time is a factor. We are on a 4x4 block. To get the desired lab time, calculation/problem solving, takes a significant amount of class time. I use literary skills where I
can.” “I teach Biology which is state tested so we focus more on the science frameworks and objectives instead of CCSS. We don’t have a lot of time to teach the objectives so I am not able to do as much outside literary works.” “It is difficult to find the time to develop resources to implement all of the standards.” “Students have little content knowledge coming into the class. If I were to spend as much time as necessary to teach the nonsense that is labeled Common Core we would get no history covered.” “There is simply not enough time. Trying to integrate CC activities while currently teaching and completing other paperwork makes it nearly impossible.” “Time is the biggest stumbling block.” “The largest obstacle is always time. Many students refuse to complete any assignments out of class and the use of heavy reading artifacts generally consumes a lot of class time.” “The biggest factor is time as students are tested on history curriculum and not CCSS.”

Another theme that was seen throughout the statements was the need for up-to-date resources, including texts and/or textbooks. Some of the teacher comments are as follows: “Trying to find text besides the textbook.” “The biggest problem that I face in science is trying to find scientific text other than the course textbook to implement the reading strategies like point-of-view and author’s purpose.” “Finding relevant, age appropriate text outside of the textbook.” “Lack of new technology (computers, iPads, etc.).” “Textbooks impede the reading standards (too low).” “Lack of resources, especially technology in the classroom.” “Better technology resources would help.”

The third theme that was also seen throughout the statements was the varied reading levels of the students, specifically, the lack of on-grade-level reading abilities. Some of the teachers’ comments that were included are as follows: “Overall reading
fluency and comprehension levels of students may limit complexity of texts (primary and secondary sources) that can be used when teaching content.” “Student lack of reading/vocabulary development is a major factor in the ability/depth of implementation of these standards.” “Some students have trouble reading above a 3rd grade level.” “Reading level of students vary from very low to very high and they are in the same class.”

Assists teacher implementation. Teachers did not report as many items of assistance their implementation of the reading standards for literacy in history/social studies, science, and/or technical subjects as it pertains to CCSS. The theme that was the most commonly stated was the advantage of collaborating with the English-Language Arts (ELA) teacher or another helpful colleague at their school. Teacher comments included: “I attended the school for STEM class this past summer. I consult with a few instructors from the class.” “Through rigorous training and collaboration, implementation has progressed.” “Collaboration with other educators, especially Language Arts has helped.” “Allowing myself to work with ELA teachers to group knowledge and use it for my own teaching.” “Working closely with the ELA teachers!” “Having a department that shares ideas and lessons is phenomenal.” “I am assisted by specialized computer programs addressing student’s specific needs.” “Outside articles aid in standards.”

Another theme that emerged was the use of resources assisted teachers implementation. Examples of comments made by teachers were: “Teachthecore.com is a website that I have used as a resource.” “Encouragement to use multiple media formats helps those with literacy struggles.”
Few teachers reported the third and final theme that emerged from the teachers, which is support from teacher leadership and/or administration. Teacher comments were as follows: “Our administration does a great job helping us.” “Administrative planning.” “The leadership and coordinating of teachers assist my implementation of CCSS.”

Summary

This study examined teachers’ perceptions of their level of knowledge, implementation, and confidence of the CCSS for Literacy (Reading) to determine if there was a relationship between their perceptions and the elements of teacher collaboration. Through the data collected, an analysis of the teachers’ perceptions and the elements of teacher collaboration were examined. This study involved a range of upper elementary, middle schools, and high schools in 6 districts along the Mississippi Gulf Coast.

The quantitative data collected were analyzed using the SPSS statistical program. The quantitative data from the survey indicated that the level of knowledge and the level of implementation was the strongest with the standard “Interpret words and phrases as they are used in a text, including determine technical, connotative, and figurative meanings, and analyze how specific word choices shape meaning or tone.” For the level of confidence, the standard that scored the highest was “Integrate and evaluate content presented in diverse formats and media, including visually and quantitatively, as well as in words.” The standard that was repeatedly the lowest scoring standard among the level of knowledge, implementation and confidence was “Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text relate to each other and the whole.”

Analysis also revealed that generally, social studies/history teachers have more knowledge, are able to implement, and have more confidence in the reading standards for
literacy via CCSS in grades 6-12. For knowledge level, the data revealed that social studies was significantly better than science, and social studies was significantly better than technical subject areas as well. For implementation level, social studies was significantly better than science and for confidence, social studies was significantly better than science.

It was discovered through this study that there is a statistically significant relationship between the elements of teacher collaboration and a teacher’s level of implementation and confidence of the reading standards for literacy via CCSS; however, there was not a significant relationship between elements of teacher collaboration and teacher knowledge of reading standards for literacy via CCSS.

The open-ended constructed response item asked teachers what they believe impedes or assists in their implementation of the reading standards for literacy in history/social studies, science, and/or technical subjects as it pertains to CCSS. The open-ended constructed response item of the instrument was analyzed using thematic coding and grounded theory. The qualitative data indicated that teachers are much more apt to report barriers in their implementation of the CCSS for Literacy than variables that assist in their implementation. Items that impede teachers’ implementation include lack of time, lack of appropriate resources, and lack of student on-grade-level reading abilities. Items that assist in teachers’ implementation of the CCSS for Literacy are the advantage of collaborating with ELA teachers or other colleagues and the use of effective resources.

The data from this study was used to identify teachers’ perceptions of their level of knowledge, level of implementation, and level of confidence related to CCSS for
Literacy in History/Social Studies, Science, and Technical Subject Area teachers in grades 6-12 and its relationship to elements of teacher collaboration. Chapter V will offer a discussion of these results, implications for policy makers and educational leaders, and further research recommendations.
CHAPTER V
DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS

Introduction

The primary purpose of this study was to explore the relationship between elements of teacher collaboration and teachers’ level of knowledge, level of implementation, and level of confidence related to CCSS for Literacy in History/Social Studies, Science, and Technical Subject Areas in grades 6-12. Participants from 6 public school districts across the Mississippi Gulf Coast were asked to complete the survey instrument entitled Teacher Perception: CCSS for Literacy (Reading) in History/Social Studies, Science, and Technical Subject Areas Grades 6th-12th. Their responses to this instrument provided both qualitative and quantitative data for this study. This chapter includes a summary of the procedures, major findings, discussion of the results, limitations of the study, recommendations for policymakers and practitioners, and recommendations for future research on this subject.

Summary of Procedures

The data collected in this study were acquired from 74 surveys that were completed by upper elementary, middle school, and high school teachers who teach in the subject areas of history/social studies, science, and technical subjects. The instrument used in this study, developed by the researcher, was reviewed by a panel of experts and piloted with a group of teachers to establish its validity and reliability. The survey was administered to teachers from six high schools, three middle schools, one upper elementary school, and two Career and Technical Centers from six public school districts. Quantitative data were input into SPSS for analysis. The data from the open-ended
constructed response items were analyzed using grounded theory and were coded thematically. Hypothesis were tested using a one-way ANOVA.

Major Findings and Discussion of Results

Research Question 1 asked: What are teachers’ perceptions of the CCSS for Literacy in history/social studies, science, and technical subjects in grades 6-12 in the areas of level of knowledge, level of implementation, and level of confidence using the CCSS for Literacy in history/social studies, science, and technical subject areas? Teachers perceived their knowledge level was the highest in the standard “Interpret words and phrases as they are used in a text, including determining technical, connotative, and figurative meanings, and analyze how specific word choices shape, meaning or tone”. These data suggests that teachers feel the most knowledgeable in the area of vocabulary and determining words and phrases as they are used in their subject area. Teachers perceived themselves the least knowledgeable in the standard “Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text relate to each other and the whole”. These data suggests that teachers feel the least knowledgeable in the area of how texts are structure to present information and how the major sections contribute to the whole text.

Teachers perceived their level of implementation was the highest in the literacy standard “Interpret words and phrases as they are used in a text, including determining technical, connotative, and figurative meanings, and analyze how specific word choices shape, meaning or tone.” These data again suggests that teachers implement what they feel the most knowledgeable about, specifically in the area of vocabulary and determining words and phrases as they are used in their subject area. Teachers again perceived themselves implementing the standard “Analyze the structure of texts,
including how specific sentences, paragraphs, and larger portions of the text relate to each other and the whole” the least. These data suggests that teachers implement what they feel the least knowledgeable about, specifically in the area of how texts are structure to present information and how the major sections contribute to the whole text.

Teachers perceived their level of confidence was the highest in the standard “Integrate and evaluate content presented in diverse formats and media, including visually and quantitatively, as well as in words.” These data suggests that teachers feel confident about integrating charts, maps, videos, diagrams, and other forms of visual information as used in their subject areas. Although the data suggests teachers have a higher level of confidence regarding the integration and evaluation of content presented in diverse formats and media, the data did not indicate that this standard was the most implemented or the area teachers felt the most knowledgeable. This finding is not consistent with the literature. According to Goddard et al. (2004), when the social cognitive theory is applied to the teaching profession, it can assist in predicting which decisions teachers will make about their classroom practices because they are directly linked to a teacher’s sense of efficacy of teaching; the choices that are made by the individual or groups are influenced by the strength of their efficacy beliefs. The findings in this study indicate that the although teachers implement and feel more knowledgeable in the standard “Interpret words and phrases as they are used in a text, including determining technical, connotative, and figurative meanings, and analyze how specific word choices shape, meaning or tone”, they are actually more confident in a different standard. Teachers need to aware of this because Herman and Wardrip (2012) stated that to be scientifically literate, students must not only have the ability to learn from science
texts using multiple means of media, teachers must also actively attend to, plan for, and support reading in science classrooms to assist in students’ understanding of science phenomena.

Again, teachers perceived themselves the least confident in the standard “Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text relate to each other and the whole.” This data suggests that teachers feel the least confident in what they perceive themselves to be the least knowledgeable in and also are less likely to implement within their classrooms. Teachers scored the standard “Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text relate to each other and the whole” as the standard they implement the least, are the least knowledgeable, and the least confident in. The literature is consistent with this finding because teachers who believe that they will fail at a task will avoid it at all costs because it threatens their self-esteem (Ross & Bruce, 2007). If an individual has doubts about whether or not he or she can perform a task, such as teaching the analysis of text structure, then it does not matter if he or she believes a particular course of action will produce certain outcomes because the power of peoples’ beliefs will affect what is attempted (Bandura, 1977).

Research Question 2 asked: Do teachers’ perceptions of the CCSS for Literacy in history/social studies, science, and technical subject areas in grades 6-12 in the areas of their level of knowledge, level of implementation, and level of confidence differ based on subject area taught? This question was answered by testing Hypothesis 1: “Teachers’ perception of the CCSS for Literacy in history/social studies, science, and technical
subject areas in grades 6-12 in the areas of knowledge, level of implementation, and level of confidence will differ based on subject area.”

The findings of this study indicated that social studies/history teachers tended to have more knowledge than science and technical subject area teachers and were able to implement, and had more confidence in the reading standards for literacy via CCSS in grades 6-12 than science teachers. The data revealed that social studies teachers were significantly higher on knowledge level than science teachers and significantly higher than technical subject area teachers as well. Social studies scored significantly higher on implementation level compared to science teachers and also scored significantly higher on confidence level compared to science teacher. These findings were supported by Herman and Wardrip (2012), who reported that many science teachers do not know how to increase comprehension for students and need strategies and best practices to assist in developing “critical reading-to-learn skills” (p. 48) that are necessary for students to be successful in schools; Also, according to Schmoker (2011), the most intensive literate subject next to language arts is social studies. The results from this study, did in fact point to social studies teachers scoring significantly higher in the areas of knowledge compared to science teachers and technical subject area teachers, and scoring higher in the area of implementation and confidence compared to science teachers.

Research Question 3 asked: “Is there a relationship between teachers’ perceptions of the CCSS for Literacy in history/social studies, science, and technical subject areas in grades 6-12 in the areas of their level of knowledge, level of implementation, and level of confidence and teacher collaboration?” This question was answered by testing Hypothesis 2, 3, and 4 which are: “Certain elements of teacher collaboration will have a
strong positive correlation with the level of knowledge a teacher has of the CCSS for Literacy in history/social studies, science, and technical subject areas”, “Certain elements of teacher collaboration will have a strong positive correlation with the level of implementation of the CCSS for Literacy in history/social studies, science, and technical subject areas,” and “Certain elements of teacher collaboration will have a strong positive correlation with the level of confidence a teacher has of the CCSS for Literacy in history/social studies, science, and technical subject areas.”

The results of this study indicated that there is a statistically significant relationship between the elements of teacher collaboration and a teacher’s level of implementation and confidence of the reading standards for literacy via CCSS; however, there was not a significant relationship between elements of teacher collaboration and teacher knowledge of reading standards for literacy via CCSS.

The findings of this study suggest that just because teachers have knowledge of the CCSS for literacy, they may not implement or have the confidence in these standards. The literature also supports Goddard, et al. (2004) assertion that there are often differences in teachers’ perception of their competence versus their actual performance. Rotherham and Willingham (2009) also stated that although most teachers know which methods are effective, some teachers do not use them. Findings of this present study indicate that certain elements of teacher collaboration, such as factors related to collaboratively supported literacy instruction via CCSS and the utilization of data during the collaboration process do assist in producing greater implementation and confidence in these standards.
Another interesting finding in this study was that the lowest 2 means for the teacher collaboration section of the survey indicated that teachers do not usually observe teachers teaching the CCSS for Literacy, nor do they usually ask other teachers to observe their implementation of the CCSS for Literacy. All other elements of collaboration scored at or closer to occurring more frequently. This is contrary to recommendations by Ross and Bruce (2007), however, state that teacher efficacy occurs when teachers experience situations when they “perceived themselves as professionally masterful, observed teachers like themselves being successful, and persuaded each other that they could teach the new curriculum” (p. 52).

Responses to the open-ended constructed response items on the survey offered additional insights. These survey items asked teachers what they believe impedes and/or assists in their implementation of the reading standards for literacy as it pertains to CCSS. It was interesting to note that more teachers reported impediments than assistance in their implementation of the reading standards for literacy in history/social studies, science, and/or technical subjects as it pertains to CCSS. For impediments to teacher implementation, the theme that was the most commonly stated was the lack of time teachers have, whether that be in the classroom or a lack of time for preparation. This finding is consistent with a study by WestEd (2012), in which science teachers voiced their concern over the focus on literacy and stated that the emphasis may decrease their “hands-on-learning” and could result in less instructional time for the comprehensive science curriculum (p. 2). However, these standards are not meant to replace these content areas standards, but rather, they are meant to “complement the specific content demands of the disciplines” (NGA & CCSSO, 2010, p. 60). Another theme that emerged
from the findings of this study was the impediment to implementation because of the need for up-to-date resources, including texts and/or textbooks. In the WestEd (2012) study, it was also stated that teachers “must have appropriate materials and resources whether they are provided by the district” or “developed by teachers themselves” (p. 3). In another study conducted by Scholastic and the Bill and Melinda Gates Foundation (2012) researchers also found that teachers across the nation echoed the need for tools and supports to effectively implement the CCSS. The third theme that emerged through the present study was the varied reading levels of the students, specifically, the lack of student who were reading on-grade-level. Snow and Biancarosa (2003) stated that struggling adolescent readers often display a “high degree of variation in reading ability”; although students may read well with certain materials, they often read “particularly badly with content text” (p. 6).

Fewer responses were reported about what assists in teacher implementation of the reading standards for literacy in history/social studies, science, and/or technical subjects as it pertains to CCSS. The theme that was the most commonly stated was the advantage of collaborating with the English-Language Arts (ELA) teacher or another helpful colleague at their school. The review of literature in this study supported this theme. “Teacher collaboration is one of the most essential, if not the most important, requisite for achieving substantial school improvement and critical learning outcomes” (Gajda & Koliba, 2008, p. 134). DuFour and Garvin stated that educators must think differently about “their work, their loci of responsibility, and how they define success” and need to commit to “work together to solve problems, to investigate and try new approaches, and to learn from their own and others’ experiences” (as cited in Wilcox &
The second theme to emerge was that the use of resources assisted teacher’s implementation. Some of these resources were found and/or created by the teacher. Although few teachers reported it, a third theme that emerged related to support from teacher leadership and/or administration. This also could have been due to the fact that teachers were thinking about variables that they actually use or cannot use or that they encounter on a daily basis rather than that the structures that were put in place by administration.

Limitations

The findings of this study were limited by several factors. The sample was limited to participants from one upper elementary, three middle schools, six high schools and two Career and Technical Centers from six public school districts along the Mississippi Gulf Coast region. The sample size produced 74 respondents, and although that was an adequate number of schools and participants to yield usable results, it is a small representation of the number of 6th-12th grade schools and teachers in the state. Another limitation to this study is the number of surveys collected. Letters to superintendents were sent out before Christmas holidays, which caused some delay in permission to conduct the study. Once permission was received and school principals were called, the surveys were then sent out to the school sites; however, all of the schools that received surveys had a Mardi Gras holiday break in between the time they received the survey and the time that they were sent back to the researcher. This may have been the cause of fewer survey results than what was originally anticipated.

To determine the teachers’ perceptions of their level of knowledge, level of implementation, and level of confidence of the CCSS for Literacy in History/Social
Studies, Science and Technical Subject Areas, the CCR Anchor Standards for Reading were utilized. These are a part of the CCSS for Literacy but are a broad guide of the grade-specific standards; however, according to the CCSSO and NGA Center (2010), they “work in tandem to define college and career readiness expectations” (p. 61). These CCR Anchor Standards for Reading are more general, but define what students should be able to do by the end of each specified grade. The CCSS for Literacy also include grade-specific standards that are “necessary compliments” and provide additional specificity of the CCR anchor standards; however, in order to keep the survey at an appropriate length, the CCR Anchor Standards for Reading were utilized (CCSSO & NGA Center, 2010). Due to utilizing the broader standards rather than the grade-specific standards in literacy, further investigation may need to occur after this study takes place.

Another limitation was that in less than a month before the survey to this study was sent out to participants across schools in Mississippi, the Mississippi Department of Education released that the Mississippi Board of Education voted on January 16, 2015 to withdraw from the Partnership for the Assessment of Readiness for College and Careers (PARCC) assessment (MDE, 2012). Although the State Board of Education stated that Mississippi will remain fully committed to the Mississippi College and Career-Ready Standards (MCRRS), this could have created confusion among teachers who were completing a survey using the words of “Common Core State Standards.”

Recommendations for Policymakers and Practitioners

Today, educational leaders now serve as the instructional leaders of our education system. The results from this study will allow educational leaders to analyze what teachers’ perceptions are of the literacy standards in history/social studies, science, and
technical subject areas in grades 6-12 along with their relation to elements of teacher collaboration. The rigorous standards for these subject areas are not going away and neither are the literacy standards across subject areas. School districts are exploring different ways to conserve money and stretch instructional time within the school day; however, this study indicated the important role of teacher collaboration and its relationship to the level of confidence and implementation. If school leaders and teachers want students to gain knowledge from challenging, complex informational texts, it is important that these reading standards for literacy are implemented with fidelity. Collaboration has proven to be a very important piece of the puzzle. Finding time and effective resources are also key elements for educational leaders to look into with the change in the curriculum and were evident in the teacher responses.

Educational leaders and teachers could utilize a survey such as the instrument used in this study to assess teachers’ perceived knowledge level, implementation level, and confidence level regarding literacy skills. This instrument or another assessment piece could assist in informing leaders and teachers specific areas teacher collaboration should focus. McClune et al. (2012) also conducted a study that suggested that teachers who engaged with other subject area teachers through “planned interdisciplinary collaboration could offer a combination of support and challenge that is conducive to learning” and professional development would include: “(a) understanding the starting points and capabilities of the teachers involved; (b) recognizing that working collaboratively can foster teacher development and broaden horizons; (c) making the learning intentions of the cross-curricular activity explicit; (d) and assisting teachers by
making them aware of the strengths and complementary skills of colleagues from
different disciplines” (pp. 77-78).

Although Mississippi has now rebranded the name from the CCSS to the
MCCRS, the CCSS standards were built on “the best of existing standards and reflect the
skills and knowledge students will need to succeed in college, career, and life” (NGA &
CCSSO, 2010, p. 60). The MCCRS are designed to ensure that students are prepared to
be productive in a global economy and society. Employers will still rank written and oral
communications skills very highly along with critical thinking skills (NCTE, 2007b) and
colleges are still echoing the need for students prepared for the literacy tasks of higher
education (NCTE, 2007a). The literature in this study states over and over again that
leaders must provide “ongoing professional development and support in order to achieve
the long-lasting change in practices necessary to truly change literacy outcomes” (p. 16).

In order for teachers to better prepare students for the skills necessary to succeed in the
21st century, educational leaders need to understand where the gaps are to better prepare
the teachers for changes needed in their instruction in their classroom, specifically, in
their implementation of literacy. According to Jerald (2009), districts need to prepare
students for college and career readiness and, by doing so, must do a better job at
teaching the application of knowledge and skills. This study reiterates this same theme.

Recommendations for Future Research

The following recommendations for future research arose from the findings of
this study. Researchers interested in the topic of teacher collaboration, and/or CCSS,
specifically literacy, could focus on one or more of the following recommendations:
1. It is recommended that research be conducted in the area of specific collaboration times held. The majority of teachers reported that their collaboration time is after school hours. Future studies should differentiate between the time of day that teacher collaboration is held to see if there is a difference between teacher collaboration held during the school day versus teacher collaboration held after school hours.

2. It is recommended that research be conducted to examine the differences between middle school teachers and high schools to explore if there are differences between the relationship between subject areas level of knowledge, level of implementation, and level of confidence and teacher collaboration and the differences between grade levels, specifically middle school and high schools.

3. It is recommended that research be conducted to examine the different schedules at middle schools and high schools to see which are more effective at producing effective teacher collaboration time among different subject area teachers. Most teachers reported that time was the number one hindrance when implementing the reading standards for literacy in history/social studies, science, and/or technical subject areas as it pertain to CCSS. If this variable was so widely reported, it would be interesting to see which type of schedule best offers teachers more time to collaborate, plan, share, and observe.

4. It is recommended this study could be conducted again, but rather than analyze the relationship of teacher collaboration, the study could analyze the relationship between specific teacher resources such as certain programs or textbook being
utilized and its relationship to teacher perception of knowledge level, implementation level, and confidence level.

Summary

The purpose of this research study was to explore the relationship between elements of teacher collaboration and teachers’ level of knowledge, level of implementation, and level of confidence related to CCSS for Literacy in History/Social Studies, Science, and Technical Subject Areas in grades 6-12. The study included an extensive literature that included an introduction, pertinent literature and research regarding literacy in the 21st century, CCSS, cross curriculum, teacher collaboration, the role of leadership, and the theoretical framework. The study also included the methodology, research results, conclusions, recommendations for policymakers and practitioners, and recommendations for further research.

The quantitative data from the survey indicated that the level of knowledge and the level of implementation was the strongest with the standard “Interpret words and phrases as they are used in a text, including determine technical, connotative, and figurative meanings, and analyze how specific word choices shape meaning or tone.” For the level of confidence, the standard that scored the highest was “Integrate and evaluate content presented in diverse formats and media, including visually and quantitatively, as well as in words.” The standard that was repeatedly the lowest scoring standard among the level of knowledge, implementation and confidence was “Analyze the structure of texts, including how specific sentences, paragraphs, and larger portions of the text relate to each other and the whole.”
Analysis also revealed that generally, social studies/history teachers have more knowledge, are able to implement, and have more confidence in the reading standards for literacy via CCSS in grades 6-12. For knowledge level, the data revealed that social studies was significantly better than science, and social studies was significantly better than technical subject areas as well. For implementation level, social studies was significantly better than science and for confidence, social studies was significantly better than science.

It was discovered through this study that there is a statistically significant relationship between the elements of teacher collaboration and a teacher’s level of implementation and confidence of the reading standards for literacy via CCSS; however, there was not a significant relationship between elements of teacher collaboration and teacher knowledge of reading standards for literacy via CCSS.

The qualitative data indicated that teachers are much more apt to report barriers in their implementation of the CCSS for Literacy than variables that assist in their implementation. Items that impede teachers’ implementation include lack of time, lack of appropriate resources, and lack of student on-grade-level reading abilities. Items that assist in teachers’ implementation of the CCSS for Literacy are the advantage of collaborating with ELA teachers or other colleagues and the use of effective resources.

The study also included recommendations for policymakers and practitioners in order for teachers to better prepare students for the skills necessary to succeed in the 21st century. Finding time for teachers to deeply implement their content along with these literacy standards and also finding effective resources are also key elements for educational leaders to look into with the change in the curriculum. These were evident in
the teachers’ responses. Educational leaders also need to look at their elements of teacher collaboration within their schools and districts and if these elements can be further enhanced to assist teachers in preparing students for college and career readiness.
APPENDIX A

TEACHER COLLABORATION AND TEACHER PERCEPTION SURVEY

Part A: Demographics

1. Please circle which content area you teach this school year. You may select all that apply.
 A. Science B. Social Studies/History C. Technical Subject Area

2. Please circle which grade level/levels you teach this school year. You may select all that apply.
 A. 6th B. 7th C. 8th D. 9th E. 10th F. 11th G. 12th

3. How many years of full time teaching experience do you have?

The following items specifically relate to your collaboration with fellow teachers for the purpose of developing your knowledge and implementation of Common Core State Standards (CCSS). It does not include collaboration with fellow teachers for other purposes.

4. Do you collaborate with fellow teachers about CCSS? (circle one)
 yes no

5. Does your school provide time for collaboration with fellow teachers? (circle one)
 yes no

6. Circle which time of day your collaboration time is held. You may circle all that apply.
 A. Before school hours B. During school hours C. After school hours

7. On average, how often do you have a structured time to meet with fellow teachers about CCSS? Choose one:
 _______ Daily (at least once per work day)
 _______ Weekly (at least once each work week)
 _______ Monthly (at least once per month)
 _______ Yearly (at least once per year)
 _______ Have not collaborated with fellow teachers regarding CCSS
Part B: Elements of Teacher Collaboration

Read each question below and rate them accordingly:

<table>
<thead>
<tr>
<th>Factors related to Collaboratively Supported Literacy Instruction via CCSS</th>
<th>Never 1</th>
<th>Not Usually 2</th>
<th>Occasionally 3</th>
<th>Usually 4</th>
<th>Always 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I ask other teachers to observe my implementation of the CCSS for Literacy when I am teaching.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>I have observed another teacher teaching the CCSS for Literacy this year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>I have collaborated on CCSS for Literacy with another teacher in my subject area this year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>I have collaborated by integrating the CCSS for Literacy with another teacher outside of my subject area this year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>I have collaborated this year with the literacy coach and/or language arts teacher on the topic of content area literacy this year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utilization of Data During the Collaboration Process</th>
<th>Never 1</th>
<th>Not Usually 2</th>
<th>Occasionally 3</th>
<th>Usually 4</th>
<th>Always 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>During collaboration time, all teachers collect, share, and analyze qualitative and quantitative information about member teaching practices.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>During collaboration time, all teachers collect, share, and analyze qualitative and quantitative information about student learning.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>During collaboration time, teachers use student performance data to evaluate the merit of individual and collective pedagogical practices.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>During collaboration time, student performance data is shared and is the basis for team dialogue and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part C: Teachers’ Perceptions of the Reading Standards for Literacy via CCSS

For each of the following reading standards for literacy in history/social studies, science, and technical subject areas in grades 6th-8th, please circle your level of knowledge, implementation, and confidence you feel in your ability to teach the standard.

<table>
<thead>
<tr>
<th>Skill</th>
<th>Your Knowledge Level</th>
<th>Your Implementation Level</th>
<th>Your Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Read closely to determine what the text says explicitly and to</td>
<td>1-Not knowledgeable</td>
<td>1-Not knowledgeable</td>
<td>1-Not knowledgeable</td>
</tr>
<tr>
<td>make logical inferences from it; cite specific textual evidence when</td>
<td>2-Somewhat knowledgeable</td>
<td>2-Somewhat knowledgeable</td>
<td>2-Somewhat knowledgeable</td>
</tr>
<tr>
<td>writing or speaking to support conclusions drawn from the text.</td>
<td>3-Reasonably knowledgeable</td>
<td>3-Reasonably knowledgeable</td>
<td>3-Reasonably knowledgeable</td>
</tr>
<tr>
<td>11. Determine central ideas or themes of a text and analyze their</td>
<td>1-Not knowledgeable</td>
<td>1-Not knowledgeable</td>
<td>1-Not knowledgeable</td>
</tr>
<tr>
<td>development; summarize the key supporting details and ideas.</td>
<td>2-Somewhat knowledgeable</td>
<td>2-Somewhat knowledgeable</td>
<td>2-Somewhat knowledgeable</td>
</tr>
<tr>
<td>12. Analyze how and why individuals, events, or ideas develop and</td>
<td>1-Not knowledgeable</td>
<td>1-Not knowledgeable</td>
<td>1-Not knowledgeable</td>
</tr>
<tr>
<td>interact over the course of a text.</td>
<td>2-Somewhat knowledgeable</td>
<td>2-Somewhat knowledgeable</td>
<td>2-Somewhat knowledgeable</td>
</tr>
<tr>
<td>13. Interpret words and phrases as they are used in a text,</td>
<td>1-Not knowledgeable</td>
<td>1-Not knowledgeable</td>
<td>1-Not knowledgeable</td>
</tr>
<tr>
<td>including determining technical, connotative, and figurative</td>
<td>2-Somewhat knowledgeable</td>
<td>2-Somewhat knowledgeable</td>
<td>2-Somewhat knowledgeable</td>
</tr>
<tr>
<td>meanings, and analyze how specific word choices shape meaning or</td>
<td>3-Reasonably knowledgeable</td>
<td>3-Reasonably knowledgeable</td>
<td>3-Reasonably knowledgeable</td>
</tr>
<tr>
<td>tone.</td>
<td>4-Exceptionally knowledgeable</td>
<td>4-Exceptionally knowledgeable</td>
<td>4-Exceptionally knowledgeable</td>
</tr>
<tr>
<td>14. Analyze the structure of texts, including how specific</td>
<td>1-Not knowledgeable</td>
<td>1-Not knowledgeable</td>
<td>1-Not knowledgeable</td>
</tr>
<tr>
<td>sentences, paragraphs, and larger portions of the text relate to</td>
<td>2-Somewhat knowledgeable</td>
<td>2-Somewhat knowledgeable</td>
<td>2-Somewhat knowledgeable</td>
</tr>
<tr>
<td>each other and the whole.</td>
<td>3-Reasonably knowledgeable</td>
<td>3-Reasonably knowledgeable</td>
<td>3-Reasonably knowledgeable</td>
</tr>
<tr>
<td></td>
<td>4-Exceptionally knowledgeable</td>
<td>4-Exceptionally knowledgeable</td>
<td>4-Exceptionally knowledgeable</td>
</tr>
</tbody>
</table>
15. Assess how point of view or purpose shapes the content and style of a text.

<table>
<thead>
<tr>
<th>1 - Not knowledgeable</th>
<th>2 - Somewhat knowledgeable</th>
<th>3 - Reasonably knowledgeable</th>
<th>4 - Exceptionally knowledgeable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
</tbody>
</table>

16. Integrate and evaluate content presented in diverse formats and media, including visually and quantitatively, as well as in words.

<table>
<thead>
<tr>
<th>1 - Not knowledgeable</th>
<th>2 - Somewhat knowledgeable</th>
<th>3 - Reasonably knowledgeable</th>
<th>4 - Exceptionally knowledgeable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
</tbody>
</table>

17. Delinate and evaluate the argument and specific claims in a text, including the validity of the reasoning as well as the relevance and sufficiency of the evidence.

<table>
<thead>
<tr>
<th>1 - Not knowledgeable</th>
<th>2 - Somewhat knowledgeable</th>
<th>3 - Reasonably knowledgeable</th>
<th>4 - Exceptionally knowledgeable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
</tbody>
</table>

18. Analyze how two or more texts address similar themes or topics in order to build knowledge or to compare the approaches the authors take.

<table>
<thead>
<tr>
<th>1 - Not knowledgeable</th>
<th>2 - Somewhat knowledgeable</th>
<th>3 - Reasonably knowledgeable</th>
<th>4 - Exceptionally knowledgeable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
</tbody>
</table>

19. Read and comprehend complex literary and informational texts independently and proficiently.

<table>
<thead>
<tr>
<th>1 - Not knowledgeable</th>
<th>2 - Somewhat knowledgeable</th>
<th>3 - Reasonably knowledgeable</th>
<th>4 - Exceptionally knowledgeable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
<tr>
<td>1 - Not knowledgeable</td>
<td>2 - Somewhat knowledgeable</td>
<td>3 - Reasonably knowledgeable</td>
<td>4 - Exceptionally knowledgeable</td>
</tr>
</tbody>
</table>

Part D: Open-Ended Question

10. What impedes or assists in your implementation of the reading standards for literacy in history/social studies, science, and/or technical subjects as it pertains to CCSS?
APPENDIX B

MCHENRY COLLABORATION SURVEY PERMISSION LETTER

Use of Leadership for Collaboration questionnaire

Angela McHenry <amchenry@lauerdale.k12.ms.us>

To: Talia Lock <talia.lock@lbsdk12.com>

Thu, Dec 4, 2014 at 9:28 AM

This is fine. I would like to see your results when you get finished. Good luck to you!

On Wed, Dec 3, 2014 at 9:17 PM, Talia Lock <talia.lock@lbsdk12.com> wrote:

Dr. McHenry,

My name is Talia Lock and I am a doctoral student at the University of Southern Mississippi. I am currently writing my dissertation on the topic of the relationship between teacher collaboration and teachers' level of knowledge, implementation, and confidence related to Common Core State Standards for literacy in history, science and technical subject areas. I would like to ask permission to adapt the 6 item collaboration method subsection of your questionnaire. I would be more than happy to send you my survey and share my results with you as well. This study will be used to fulfill my requirement for the degree of Doctor in Philosophy and I will not receive any monetary gain. Thank you so much for your consideration. If you have any further questions, my email is talia.lock@lbsdk12.com. Sincerely, Talia Lock

"The foregoing electronic message and any files transmitted with it are confidential and are intended only for the use of the intended recipient named above. This communication may contain material protected by the Family Educational Rights and Privacy Act (FERPA). If you are not the intended recipient, copying, distribution or use of the contents of this message is strictly prohibited. If you received this electronic message in error, please notify us immediately at (228-864-1146)."

Angela McHenry, Ed.D.
Principal, Clarkdale Middle School

https://mail.google.com/mail/u/0?mr=2&ik=d5474f49dd&view=pt&search=all&lsrc=14a155e71534a769&in=14a155e71534a769
Use of the TCAR

Chris Koliba <ckoliba@uvm.edu> Thu, Dec 4, 2014 at 1:34 PM
To: Talia Lock <talialock@lbsd12.com>
Cc: rebecca.woodland@educ.umass.edu

Talia,

I'd be happy to have you adapt the COP-CAR for your needs. I've copied Rebecca on this. She has changed her name is at UMass, Amherst now. Hi Rebecca!

Good luck with your study,
Chris

On 12/4/14, 12:28 PM, Talia Lock wrote:

Dr. Koliba,

My name is Talia Lock and I am a huge fan of your work. I am currently an 8th grade language arts teacher and a doctoral student at the University of Southern Mississippi and in the process of writing my dissertation on the topic of the relationship between teacher collaboration and teachers’ level of knowledge, implementation, and confidence related to Common Core State Standards for literacy in history, science and technical subject areas. I had tried to get in touch with Dr. Gajda but I have had no luck. I would like to ask permission to adapt the evaluation section of your TCAR. This rubric is so very insightful and I truly believe that an area that is crucial to the success of teacher collaboration is the “systematic collection, analysis, and use of data” to shape decisions that are made (of course I have to quote you and Dr. Gajda, 2008, p. 146). I would be honored if I would be able to use this section in my study and would be more than happy to send you my survey and share my results with you as well. This study will be used to fulfill my requirement for the degree of Doctor in Philosophy and I will not receive any monetary gain. Thank you so much for your consideration. If you have any further questions, my email is talia.lock@lbsd12.com.

Sincerely, Talia Lock

"The foregoing electronic message and any files transmitted with it are confidential and are intended only for the use of the intended recipient named above. This communication may contain material protected by the Family Educational Rights and Privacy Act (FERPA). If you are not the intended recipient, copying, distribution or use of the contents of this message is strictly prohibited. If you received this electronic message in error, please notify me immediately at (220-864-1148)."
APPENDIX D

IRB APPROVAL FORM

INSTITUTIONAL REVIEW BOARD
118 College Drive #5147 | Hattiesburg, MS 39406-0001
Phone: 601.266.5997 | Fax: 601.266.4377 | www.usm.edu/research/institutional_review_board

NOTICE OF COMMITTEE ACTION

The project has been reviewed by The University of Southern Mississippi Institutional Review Board in accordance with Federal Drug Administration regulations (21 CFR 26, 111), Department of Health and Human Services (45 CFR Part 46), and university guidelines to ensure adherence to the following criteria:

- The risks to subjects are minimized.
- The risks to subjects are reasonable in relation to the anticipated benefits.
- The selection of subjects is equitable.
- Informed consent is adequate and appropriately documented.
- Where appropriate, the research plan makes adequate provisions for monitoring the data collected to ensure the safety of the subjects.
- Where appropriate, there are adequate provisions to protect the privacy of subjects and to maintain the confidentiality of all data.
- Appropriate additional safeguards have been included to protect vulnerable subjects.
- Any unanticipated, serious, or continuing problems encountered regarding risks to subjects must be reported immediately, but not later than 10 days following the event. This should be reported to the IRB Office via the "Adverse Effect Report Form".
- If approved, the maximum period of approval is limited to twelve months.
 Projects that exceed this period must submit an application for renewal or continuation.

PROTOCOL NUMBER: 15012201
PROJECT TITLE: The Relationship between Teacher Collaboration and Teachers' Level of Knowledge, Implementation and Confidence Related to Common Core State Standards for Literacy in History/Social Studies, Science and Technical Subject Areas
PROJECT TYPE: New Project
RESEARCHER(S): Tasia Lock
COLLEGE/DIVISION: College of Education and Psychology
DEPARTMENT: Educational Leadership and School Counseling
FUNDING AGENCY/SPONSOR: NIA
IRB COMMITTEE ACTION: Expedited Review Approval
PERIOD OF APPROVAL: 01/23/2015 to 01/22/2016

Lawrence A. Hosman, Ph.D.
Institutional Review Board
APPENDIX E

LETTER TO THE SUPERINTENDENT

Date

Name of Superintendent
Name of School District
Address to Central Office

Dear ________________:

I am writing to request permission to conduct a research study with the teachers in your district, specifically at ________________________School. The information gathered will be used in my dissertation at The University of Southern Mississippi; results will be shared with my dissertation committee and published in my dissertation. No participant, school, or district will be named in the study. The purpose of this study is to analyze the relationship between teacher collaboration and teachers’ level of knowledge, implementation, and confidence related to Common Core State Standards (CCSS) for Literacy in history/social studies, science, and technical subject areas in 6th-12th grade. The results of this study assist school leaders in understanding the potential role teacher collaboration plays in implementing school reform efforts such as the implementation of Common Core State Standards.

All data will be kept confidential and stored in a safe location in the researcher’s home; only the researcher and committee members will have access to the participant’s responses to a brief questionnaire. The research will not interfere with classroom instruction. With your permission, I will contact each school principal to schedule time to administer surveys at an upcoming faculty meeting between January and May, 2015. Participation will be voluntary and may be discontinued at any time without penalty or prejudice to the participant. Surveys collected will be destroyed after the study is completed. There is no inherent risk associated with being a participant in this study. Survey responses will be aggregated and results will be analyzed and reported in my dissertation. I will be glad to share composite results with you and/or your staff upon request.

The study has been approved by my dissertation committee. Dr. Thelma Roberson is the chair and you may contact her at 601-266-4579 if you have additional questions. Prior to data collection, the study will also be approved by the Human Subjects Review Committee (IRB) at Southern Miss. Upon receipt of your consent letter, I will submit my application to the IRB for final approval.

For your convenience, I have prepared a sample consent statement for you. Please copy this statement onto your district letterhead, sign, and return. The statement may be modified to include any additional information or conditions that relate to data collection in your school district.
Thank you for your support.

Sincerely,

Talia Lock

Talia Lock has provided the attached letter requesting permission to collect data in the [school district]. The letter documents that she has permission to collect data in the district as it relates to her study entitled, *The Relationship between Teacher Collaboration and Teachers’ Level of Knowledge, Implementation, and Confidence Related to Common Core State Standards for Literacy in History/Social Studies, Science and Technical Subject Areas.* Data collection will be limited to a survey of teachers in grades 6-12 who teach history, social studies, science and/or technical subject areas in the schools listed below:

[specific schools]

Surveys will be administered in consultation with each school’s principal at an agreed upon time that does not interfere with classroom instruction. I understand that no participant, school, or district will be named and that I can request a copy of the composite findings of the study. I also understand that participation is voluntary and participants may choose to end their participation at any time without penalty.

Signed,

[signature]

Superintendent of Education (or Designee) Date
APPENDIX F

INFORMED CONSENT LETTER

Dear Participant,

I am a doctoral candidate at the University of Southern Mississippi. I am conducting a research study on the relationship between teacher collaboration and teachers’ level of knowledge, implementation, and confidence related to Common Core State Standards for Literacy in history/social studies, science, and technical subject areas. I am interested in your professional opinion regarding teachers’ perceptions of the literacy standards via CCSS and if they are related to elements of teacher collaboration. Please take a few moments of your time to complete the enclosed questionnaire. The survey should take no more than 20 minutes to complete. The questionnaire contains 20 questions. The first portion of the questionnaire asks demographic information regarding your subject area, grade level, and collaboration time. The second section of the questionnaire requests that you rate a variety of statements regarding elements of teacher collaboration on a scale of 1 – 5. The third section of the questionnaire asks you to rate a variety of statements on a scale of 1-4 regarding your perception of the literacy standards, specifically reading, via CCSS. The final section asks that you share your thoughts in regards to what impedes or assists in your implementation of the reading standards for literacy as it pertains to CCSS. Your responses will reflect your perceptions about the implementation of the literacy standards at they pertain to your subject area in relation to teacher collaboration time.

Upon receipt of all participants’ responses, aggregated information from all participants will be shared with my dissertation committee.

The data collected from the completed questionnaires will be compiled and analyzed. All data collected will be anonymous. All information gathered will be kept completely confidential and reported in aggregated form. To ensure confidentiality of teachers, no one will be identified by name. Upon completion of this research study, I will shred all surveys. As the researcher, I am very appreciative of your participation. By completing the survey, you will be providing your consent to participate in the study. However, you have the option to decline to participate if you so wish. If you decide to withdraw from participation at any time there is no penalty or risk of negative consequence.

I will use the data you provide to inform and strengthen the research in the area of teachers’ perceptions related to CCSS for Literacy and if they are related to elements of teacher collaboration. Should you have any questions please feel free to contact me: Talia Lock, email: talia.lock@eagles.usm.edu; phone: 228-265-2743. The research is being conducted under the supervision of Dr. Thelma Roberson, The University of Southern Mississippi, email: thelma.roberson@usm.edu; phone: (601) 266-4580.

This research project has been reviewed and approved by the Human Subjects Protection Review Committee, which ensures that all research fits the federal guidelines for research involving human subjects. Any questions or concerns about the rights of a research
participant should be directed to the Chair of the Institutional Review Board, The University of Southern Mississippi, 118 College Drive #5147, Hattiesburg, MS 39406-0001, (601)-266-5997.

Thank you for your participation.

Sincerely,

Talia Lock
REFERENCES

Retrieved from

Retrieved from

