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ABSTRACT

LOCALIZED MESHLESS METHODS WITH RADIAL BASIS FUNCTIONS FOR

EIGENVALUE PROBLEMS

by Amy Kern

April 2013

Two localized meshless methods with radial basis functions are considered for solving
eigenvalue problems on two different domains, i.e., a L-shaped domain and an irregular
domain. The irregular domain used in this study comes from an application of the eigenvalue
problem as it plays a role in the reconstruction of velocity vector fields. This study finds
that both localized Kansa’s method and the Localized Method of Approximate Particular
Solutions provide a good numerical approximation to the solution of the eigenvalue problem.
Through numerical experiments, a good value for the shape parameter can be determined for
each domain for each method which will minimize the relative error and maximum relative
error in the eigenvalues of the numeric approximation. The relative error and maximum
relative error were calculated for each domain using different grid sizes. In addition, the
convergence rates for both methods were determined for both domains, and appear to be
quite similar.
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Chapter 1

BACKGROUND

1.1 Introduction

Partial differential equations (PDE) have applications in a vast number of areas including

fluid dynamics, mechanics, computational physics and applied mathematics. Since so

many fields use partial differential equations, being able to find accurate solutions to partial

differential equations is very important in many areas. However, finding an analytical

solution is not possible for all PDEs. In place of finding an analytical solution, researchers

have developed many different methods for numerical approximations of PDE solutions.

This thesis will focus on the numerical solution of eigenvalue problems. In many

textbooks, it is referred to as the Helmholtz equation. The Helmholtz equation often arises in

the study of physical problems involving PDEs in both space and time, e.g., electromagnetic

wave propagation and acoustics. The Helmholtz equation, which represents the time-

independent form of the original equation, results from applying the technique of separation

of variables to reduce the complexity of the analysis. For example, in [9], the circular

drumhead problem is originally posed as a two-dimensional wave equation on the unit circle

with Dirichlet boundary conditions. However, in searching for the solution, separation of

variables is performed on the wave equation to transform it into the Helmholtz boundary

value problem

∆U +λ
2U = 0 in unit disk,

U(1,θ) = 0 0≤ θ < 2π.

Although the Helmholtz equation is not typically the direct problem being solved, it still has

many applications. In fact, the author later explained that by factoring the time component
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out of the heat equation, the solution to the Helmholtz equation is needed once more to

resolve that problem [9]. Since it appears frequently in application problems of many forms,

finding an accurate solution to the Helmholtz equation is very important.

We will use localized meshless methods with radial basis functions to approximate the

solution of eigenvalue problems on two different domains, i.e., a L-shaped domain and

an irregular domain. The irregular domain will be tied to the application of using partial

differential equations to try to reconstruct a velocity vector field (cf. Section 1.3). This

application is one example of how methods, such as the ones used in this study, can be used

in real world problems. However, before delving into the specifics, one should have a basic

understanding of all the associated concepts. The first question one might ask is: What is the

general eigenvalue problem? According to [2], the eigenvalue problem can be expressed as

Aψ = λψ (1.1.1)

where A is a linear operator whose domain and range is a Hilbert space, ψ is a vector or a

function in the space, and λ is a constant. In this case, the operator A is known, and the

unknowns are ψ , the eigenvectors or eigenfunctions, and λ , the eigenvalues. Eigenfunctions

and their corresponding eigenvalues compose the solution to the eigenvalue problem.

In (1.1.1), A is defined to be a linear operator. For the purposes of our study, A will be

the Laplacian operator ∆ = ∂ 2

∂x2 + ∂ 2

∂y2 . This study will seek to calculate the eigenvalues λ

and the eigenfunctions ψ that provide the solution to

∆u+λu = 0 in Ω,

u = 0 on ∂Ω,

(1.1.2)

where Ω is a bounded region in R2 and ∂Ω represents its boundary.

As [8] notes, one important characteristic to note about the eigenvalues from (1.1.2) is

Theorem 1.1.1. 1. Each eigenvalue of Problem (1.1.2) is real;
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2. Furthermore, if we repeat each eigenvalue according to its (finite) multiplicity, we

have a list of eigenvalues:

{λk}∞
k=1,

where

0 < λ1 ≤ λ2 ≤ λ3 ≤ ·· · ,

and

λk→ ∞, as k→ ∞.

As a result of this theorem, the solution to the eigenvalue problem includes a list of

real-valued eigenvalues which can be listed, with repeated values, in ascending order, and

all values will be greater than zero.

According to [21], eigenvalue problems, like the one in this study, occur in acoustics

and, as such, can be defined on complicated domains including ones involving corners. The

more complicated the domain is, the more challenging finding a solution can be. When an

approximation method, like finite difference method, finite element method, or meshless

methods that use radial basis functions, is implemented, the eigenvalue problem is expressed

in terms of matrices, which we usually call “discrete problems". A discrete version of

Problem (1.1.2) can be rewritten as

Avvv = λ̃vvv, (1.1.3)

or, in other words,

(λ̃ I−A)vvv = 0 (1.1.4)

where A is a matrix of finite dimensions; I denotes the identity matrix of the same size.

Equation (1.1.4) will have nontrivial solutions if

det(λ̃ I−A)vvv = 0. (1.1.5)
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According to [1], “This is called the characteristic equation of A; the scalars satisfying this

equation are the eigenvalues of A. When expanded, the determinant is always a polynomial

of λ̃ . · · · It follows from the Fundamental Theorem of Algebra that the characteristic

equation has at most n distinct solutions so A has at most n distinct eigenvalues."

The discrete problem (1.1.3) derived from different numerical methods is an approxima-

tion to Problem (1.1.2). The eigenvalues of Problem (1.1.3) is denoted by λ̃ . The number

of eigenvalues λ̃ depends on the size of matrix A. A good numerical method will produce

numerical eigenvalues that are accurate approximations to some of eigenvalues of Problem

(1.1.2) (cf. [3, 26]).

1.2 A Short Literature Review

Over the years, many different methods have be used to find the eigenvectors and eigenvalues

for the eigenvalue problem. These numerical procedures include traditional and advanced

numerical methods, such as finite element method (FEM) [3, 24], finite difference method

[16], spectral method [26], moment method [14], multipole expansion technique [25], and

meshless methods [6, 10], etc. FEM solves the weak form of PDEs, while finite difference

method and meshless methods solve the strong form of PDEs. The first step of FEM is

mesh generation. In this step, a reasonable mesh is created , consisting of triangles or other

polygons, that are called “elements". Mesh nodes, edges, and local information associated to

each element will be stored in different arrays. This step is simplified in meshless methods to

the generation of collocation points. Also, when discretizing PDEs, meshless methods don’t

involve numerical integration,which makes them computationally faster than FEM. In [3],

the finite element method is used on the L-shaped domain to find solutions to the eigenvalue

problem with Neumann boundary condition. They display their calculated eigenvalues in

comparison to the exact eigenvalues and find that the approximation increases in accuracy

with more elements in the unstructured triangular mesh. However, in order to increase

the number of elements, the mesh must be refined. Keeping up with the maintainence of



5

the mesh is one of the main disadvantages of using a method like Finite Element Method.

Nevertheless, Boffi concludes that the convergence of the method is quadratic [3] when

piecewise linear polynomials are employed.

In regards to meshless methods, one of the oldest meshless methods appears to be

the smooth particle hydrodynamics (SPH) method developed in 1977. SPH was initially

developed for astrophysical problems [18]. Later, Gingold and Monaghan developed further

foundation for the method through the use of kernel approximations [20]. Since the late

1970s and early 1980s, many variations and advancements have been made in the field of

meshless methods leading up to the two meshless methods this study will focus on. In 1990

Kansa [12] designed the radial basis function (RBF) collocation method for solving elliptical,

hyperbolic and parabolic PDEs. Later on this approach (Kansa’s method) was extended

to various PDEs, including nonlinear PDEs. In 2003, Platte and Driscoll [22] applied the

global RBF-collocation method to eigenvalue problems with elliptic operators. One of the

domains used in [22] is an L-shaped domain. As this is one of the domains that this study

will utilize, particular attention will be given to their results on this domain. In their study,

Platte and Driscoll studied a radial basis function method with the multiquadric RBF and

enforced both Dirichlet and Neumann boundary conditions. The multiquadric RBF takes

two parameters- a distance between two points and a positive constant value called the shape

parameter, which will be further defined in the following chapters. Nevertheless, Driscoll

and Platte presented results using a "shape parameter" of 0.6 because, even though accuracy

improves with larger value "shape parameters," the matrix becomes ill-conditioned. In

addition, as mentioned in their algorithm, they add additional functions to their radial basis

function approximation in order to account for corner singularities because the regular radial

basis function approximation did not converge and clustering nodes at the corners did not

help. In order to add these additional functions, certain characteristics of the eigenfunction

had to be exploited. When the maximum relative error for the first twelve eigenvalues was

calculated using the global Kansa’s method and no added functions for corner singularities,
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the maximum relative error was consistently greater than a magnitude of 10−2. When

additional functions were added for corner singularities, the maximum error was able to

drop to a magnitude of 10−3 in some cases [22]. In their conclusion, Platte and Driscoll

write, "For the L-shaped domain and the rhombus, the inclusion of singular terms was found

to be essential for good convergence rates."

MAPS that was designed by Chen et. al in [5] stems from the Method of Particular

Solutions. This method have similar properties to integrated RBFs-collocation methods.

When global radial basis function methods are employed, no mesh creation or refinement is

necessary. However the global matrices formed by the radial basis function approximations

are plagued by ill-conditioning, especially when a large number of collocation points are

necessary. In this study, collocation points are data locations arbitrarily placed within

the domain where function values are to be approximated through the use of radial basis

collocation methods. Typically, irregular domains require a large number of collocation

points. Moreover, for irregular domain, such as a general polygon, extra terms of corner

singularities to enrich the basis functions are not available. It seems that if certain RBFs

are used, the most important technique to obtain an accurate numerical approximation is to

increase the number of collocation points. In this situation, localized methods will be more

desirable because, by using a localized radial basis functions method, the matrices will be

sparse instead of dense. In this way, the issues present with other methods can be avoided

by using localized domains. For more details about localized meshless methods using RBFs,

we refer the reader to [5, 27, 28].

1.3 An Application: To Reconstruct Velocity Vector Field on The Northern Gulf of

Mexico

In the field of physical oceanography, high frequency radars are used to gather information

about the surface currents of a body of water. However, the data sets gathered from the

high frequency radars are plagued by changes in range over time, data drop outs, and
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downtime resulting in data gaps at various locations at random times. Having an incomplete

data set is very inconvenient when a researcher is trying to run a time series analysis that

requires a continuous data set. In such cases, the data set must be interpolated in time and/or

interpolated or extrapolated in space in order to fill in the gaps. During the BP oil spill

in 2010, researchers studying the Gulf of Mexico faced this issue because, at the time of

the spill, only one of three high frequency radars were operating [11]. These researchers

were being turned to by the local, state, and federal governments to use their data sets to

choose which model would best predict the oil’s dispersion. While researchers were able to

get the other two high frequency radars running within a week’s time, the gaps in the data

set created increased uncertainty in the choosing of a model [11]. While the data that was

available was helpful to the oil spill management, a complete data set would have been even

more helpful.

Since this is a common problem for many research projects, researchers have put a lot

of time and effort into developing many different methods to try to estimate the missing

data in the vector fields. In 2004, Lekien et. al proposed a process which they refer to as

“open-boundary modal analysis" (OMA) and which uses the Lipphardt et. al method as

a foundation on which to build their method [15, 17]. One way that OMA differs from

the other methods used by Lipphardt et. al and Chu et. al is that it attempts to account

for flow across the open boundaries of the data collection area without requiring an “a

priori knowledge of the normal velocity at the open boundary" [15, 7, 17]. In addition,

OMA involves the calculation of interior and boundary modes based on the geometry of

the geographical domain. OMA is the first of the three methods to have boundary modes as

opposed to simply a boundary condition for the modes. Once these modes are calculated for

a certain domain, they can be reused for nowcasting at a later time on the same domain [15].

In regards to the term "nowcasting", Lekien explains that it is a "reference to the much more

common forecasting option. Nowcasting does not involve the extrapolation of the velocity

into the future. It uses the available data to determine the velocity everywhere in space at
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the same time the data were collected" [15]. The only part of OMA that involves the actual

CODAR data and the nowcast velocity field is the calculation of the projection coefficients.

Finding the coefficients necessitates the solving of an N×N system of equations where N is

number of boundary, incompressible, and irrotational modes used in the nowcast [15]. In

this manner, OMA significantly decreases the amount of computation that was required by

the Chu et. al and Lipphardt et. al methods in [7, 17].

Taking a CODAR data set from Monterey Bay, Lekien et. al proceeded to test their open

boundary modal analysis. Along with the data set, they used PLTMG, a software package

for solving elliptic partial differential equations. The eigenfunctions found through PTLMG

are intended to be used on a domain that uses an “unstructured triangular grid" [15].The

use of the unstructured triangular grid is another improvement on the method proposed by

Lipphardt et. al which employed the “use of a staircase approximation of the coastline" [15].

Part of using the OMA method to create nowcasts of the velocity field requires the

solving of an eigenvalue problem with Dirichlet boundary conditions and an eigenvalue

problem with Neumann boundary conditions [15]. OMA uses the finite element method

as its tool for solving the eigenvalue problem. However, in the proposed study, two newer

meshless method will be used to solve the eigenvalue problem with Dirichlet boundary

conditions. These methods have the benefit of not needing to approximate the domain

boundaries in order to get an accurate solution in a timely manner. While OMA is not

implemented in this study, the study will test how the two meshless methods would perform

on an irregular domain like those that might use OMA. Once we get the eigenvalues and

eigenfunctions on this irregular domain, the velocity field could be reconstructed.

1.4 Proposed Study and Hypothesis

The proposed study will solve the eigenvalue boundary value problem with Dirichlet bound-

ary conditions, as given in (1.1.2), for two different domains.
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Figure 1.1: L-shape domain.

The first domain is an enclosed L-shape where

Ω1 = [−1,1]2 \ [−1,0]2.

Figure 1.1 sketched the graph of this domain.

The second domain is a part of the application of reconstructing a velocity vector field by

solving the eigenvalue problem with boundary conditions. To construct this domain, a time

step of surface current data was found for which there was a maximum number of velocity

vectors measured in the northern Gulf of Mexico. The latitudes and longitudes where the

data was collected were extracted, and the boundary locations were identified to form an

irregular shape that closely mimics the shape of the area of data collection (see Figure 1.2).

This study will use two different methods, i.e., localized Kansa’s method and Localized

Method of Approximate Particular Solution (LMAPS), to find a numerical solution to the

partial differential equation defined in (1.1.2). Both of the methods in this study are based

on a global form of the same method, i.e., Kansa’s method and Method of Approximate

Particular Solution (MAPS) which are elaborated on in Section 2.2. The variation of Kansa’s



10

 

Figure 1.2: Irregular Domain

method which will be utilized in this study is localized Kansa’s Method which is introduced

in Section 2.3. LMAPS is a more recent method which will be briefly explained in Section

2.3. Localized Method of Approximate Particular Solution was chosen for this study because

this method is expected to yield results with a higher accuracy than in [22] and to avoid the

necessity of adding singular terms in order to reach this degree of accuracy. In addition,

since it is a localized method, the matrices formed during the method will not suffer from

ill-conditioning because they will be sparse matrices. Finally, this method will not require

a mesh but will still take the domain into account and yield results of a certain degree of

accuracy. The localized Kansa’s method is being used to provide a comparison for the

results of the LMAPS.

Using these two methods, this study proposes to calculate the first ten eigenvalues and

their corresponding numerical eigenfunctions. The first ten eigenvalues for both methods
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will be displayed in Section 3.1 for the L-shaped domain and Section 3.2 for the irregular

domain. In addition to calculating the solution to the partial differential equation in (1.1.2),

an analysis will be performed to determine how the "shape parameter" affects the relative

error and the maximum relative error in the eigenvalues. The results of this analysis are

displayed in Section 4.1. This study is also interested in comparing the stability of the

error in regards to different "shape parameters" across methods to see if one method is

significantly more favorable than the other one. Also, the convergence rates for the two

methods will be determined and discussed in Section 4.2.

The goals on this study are as follows:

• Goal 1: To determine if localized Kansa’s method and LMAPS are good methods for

solving the eigenvalue problem on the L-shaped domain and the irregular domain. In

the past, a number of methods, including FEM and radial basis collocation method,

have been used on the L-shaped domain and produced fairly accurate results. So far,

no known study has tested localized Kansa’s method or LMAPS on either of the two

domains presented in this study. Therefore, this study seeks to provide some data for

these methods on the given domains.

• Goal 2: To figure out the value(s) that the "shape parameter" of the multiquadric radial

basis function that will minimize error and provide stability to the numeric solution for

both the irregular and L-shaped domain. A lot of work is currently being performed

to find a method for how to pick a good "shape parameter." As this seems to still be a

question for research, this study will test a variety of "shape parameters" and analyze

the results.

• Goal 3: To decide what size local domain will produce the most accurate results for

the irregular domain.

This study hopes to provide some insight into these three main topics upon its conclusion.
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Chapter 2

Methodology

A number of different methods are available for finding numerical solutions to a partial

differential equation like the eigenvalue problem (1.1.2) that is the focus of this study.

As was mentioned in [15], one method that can be used involves the formation of an

unstructured triangular mesh on the domain of the PDE. The method Lekien is referring to

is more formally known as the Finite Element Method where the triangles of the mesh are

considered to be the elements. While the Finite Element Method has been used for decades

to solve problems in science and engineering, the generation and maintenance of the mesh

is a substantial drawback to using this method and other similar mesh-based methods. In

the more recent years, researchers have made drastic progress in the creation of meshless

methods for numerical solutions. In [27], Yao explains “Meshless methods, in contrast, use

the geometry of the domain directly to avoid many of the difficulties which characterize

meshed and grided methods." Some of these meshless methods depend on a group of

functions referred to as radial basis functions which are particularly useful in numerical

approximations and interpolations. Yao points out that "The main advantages of RBF-based

methods for solving partial differential equations lie in their simplicity, their applicability

to various PDEs, and their effectiveness in dealing with high-dimensional problems with

complicated geometries" [27]. In particular, this study will utilize two RBF-based methods

called localized Kansa’s method and Localized Method of Approximate Particular Solutions

(LMAPS) to solve the eigenvalue problem with Dirichlet boundary conditions on each of

the two previously defined domains.
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2.1 Radial basis functions (RBFs)

Radial basis functions (RBFs) comprise the foundation for the numerical methods employed

by this study, and, therefore, it is essential to have a firm grasp of what the radial basis

functions are. The history of the concept of radial basis functions dates back to near 1985

and 1986 when they were discussed by both Powell [23] and Micchelli [19]. One of the first

uses of radial basis functions was in a study by Broomhead and Lowe in 1988 for their work

on adaptive networks [4]. Using more recent mathematical terminology, Yao provides a

definition of a RBF in her dissertation.

Definition 2.1.1. Let Rd be d-dimensional Euclidean space. Let ppp∈Rd , and let φ : Rd→R

be an invariant function whose value at any point xxx ∈ Rd depends only on the distance from

the fixed point ppp, and can be written

φ(‖xxx− ppp‖)

Then the function φ is a RBF where ppp is the center of the RBF φ [27].

While this notation may be appropriate for a formal definition, in many papers, the RBF

is denoted as φ(r) where r = ‖xxx− ppp‖. For the remainder of this study, the radial basis

function will be indicated as φ(r). The Euclidean norm will be utilized in this study, and

is what is intended by ‖ · ‖. Table 2.1 gives a number of examples of RBFs. Here constant

Table 2.1: Examples of Radial Basis Functions
RBF Names Formula

linear r
cubic r3

Gaussian exp(−r2)

Multiquadrics
√

r2 + c2

Inverse Multiquadrics 1/
√

r2 + c2

Thin-plate spline r2ln(r)

c > 0 is called the shape parameter of RBFs.
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The way to implement using a RBF is to identify a finite set of distinct points {ppp j}N
j=1

in Rn. In the given definition of a RBF, each one of the points in this set is a center of a RBF.

Collectively, these centers can be used to give a RBF approximation of a function u:

ũ(xxx) :=
N

∑
j=1

α jφ(‖xxx− ppp j‖), (2.1.1)

where xxx ∈ Rn.

Let us review about how to find the RBF interpolation ũ. In [22], Platte explains that "If

u(xxxi), i = 1,2, · · · ,N, were known, finding ααα would require the solution of an N×N linear

system

Aααα =UUU ,

where
A = [φ(‖xxxi− ppp j‖)]N×N ,

ααα = [α1,α2, ...,αN ]
T ,

UUU = [u(xxx1),u(xxx2), ...,u(xxxN)]
T .

Matrix A is called the RBF interpolation matrix and, for some RBFs, is positive definite."

As this study utilizes the multiquadric RBF, particular interest is given to its behaviors.

In [27],Yao states a few more useful properties of the multiquadrics radial basis functions

(MQ-RBFs): “This is a class of monotonically increasing functions of distance r. It has

been prove that the MQ is conditionally positive definite and of order one, which implies

that the matrix for the interpolation problem is invertible." We will only use the MQ-RBF in

the analysis and numerical experiments.

One noteworthy characteristic of RBFs is that the error calculated from using RBFs to

approximate a smooth function approaches zero rather quickly. As a result of these high

convergence rates, using RBFs typically equates to needing fewer collocation points to get

an accurate approximation [27]. These characteristics further promote the use of radial basis

function methods, like LMAPS and Kansa’s method.
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2.2 Method of Approximated Particular Solutions (MAPS) and Kansa’s method

We will sketch the idea of MAPS and Kansa’s method in this section. These two different

methods were designed for PDEs, such as the Possion equation ∆u = f . In Kansa’s method,

we use RBF approximation from Equation (2.1.1) to approximate u so that f can be approx-

imated by ∆ũ. In MAPS, the right hand side f utilizes the RBF approximation in Equation

(2.1.1), which is the same as ũ in Kansa’s method. Therefore, the RBF approximation of ũ

in MAPS is the combination ∑α jΦ j, since Φ j is a particular solution of φ j.

It has been observed that MAPS is more stable and accurate for solving Possion equation

than Kansa’s method. Thus, it will be interesting to see if these two methods give comparable

numerical results for eigenvalue problems. First, we will briefly explain the method of

finding the RBF approximation ũ to the exact solution of Problem (1.1.2) regardless of the

type of RBFs, which will be specified later.

Suppose that radial basis functions Φ and φ satisfy

∆Φ =
1
r

d
dr

(
r

d
dr

Φ

)
= φ .

Hence, if we use radial basis function Φ in the RBF interpolation (2.1.1), it follows that

ũ(xxx) =
N

∑
j=1

α jΦ(‖xxx− ppp j‖),

∆ũ(xxx) =
N

∑
j=1

α jφ(‖xxx− ppp j‖).
(2.2.1)

Place the set of points {ppp j}N
1 = {xxx j}N

1 , which is the set of collocation points both in

the domain and on the boundary. The interior points will be denoted as {xxx j}Ni
1 , and the

collocation points on the boundary will be denoted as {xxx j}Ni+Nb
Ni+1 such that N = Ni+Nb. The

entire set of collocation points will be used to approximate the solution u(xxx) to the PDE.

Substituting u in (1.1.2) with ũ and confining the equation to the set of collocation points,
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we have

−
N

∑
j=1

α jφ(‖xxxi− xxx j‖) = λ

N

∑
j=1

α jΦ(‖xxxi− xxx j‖) ∀ i = 1, · · · ,Ni,

N

∑
j=1

α jΦ(‖xxxi− xxx j‖) = 0 ∀ i = Ni +1, · · · ,N.

(2.2.2)

The above equations define a linear system with variable ααα . For simplicity, we can write

it into a matrix form:

Aααα = λBααα, (2.2.3)

where

A =

 LI

P

 , B =

 AI

0Nb×N

 .

Here LI , AI , P are matrices defined as follows:

LI = [φ(‖xxxi− xxx j‖)]NI×N , AI = [Φ(‖xxxi− xxx j‖)]NI×N , P = [Φ(‖xxxi− xxx j‖)]Nb×N

Solving (2.2.2) we obtain N values of λ . Multiple eigenvalues are possible. The

eigenvalues of (2.2.2) are the N smallest eigenvalues of Problem (1.1.2).

Now we are going to point out the radial basis functions used in Kansa’s method and

MAPS.

In Kansa’s method, we let Φ be the multiquadrics RBF, and solve (2.2.3) with ∆Φ = φ

so that φ takes the following value

Φ =
√

r2 + c2, φ =
2√

r2 + c2
− r2

(r2 + c2)3/2 . (2.2.4)

But in MAPS method, we let φ be the multiquadrics RBF. We solve (2.2.3) by using the
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following values for φ and Φ:

Φ =
4c2 + r2

9

√
r2 + c2− c3

3
ln(c+

√
r2 + c2), φ =

√
r2 + c2. (2.2.5)

2.3 LMAPS and localized Kansa’s method

In this study, radial basis functions will be utilized in a method called the Localized Method

of Approximate Particular Solutions (LMAPS) which was first introduced in [27, 28] and is

a more recent approach to MAPS. In MAPS, the basis functions for an approximate solution

to the original partial differential equation are found by using radial basis functions φ(r)

to find a solution to, in the case of this study, ∆Φ(r) = φ(r) [27]. However, it should be

noted that the method is not restricted to the use of ∆ as the operator. As demonstrated in

the previous section, the downfall of MAPS is the fact that the approximations are found by

using all of the collocations points which results in dense matrices that are ill-conditioned

and sensitive to the choice of shape parameter [27]. By using LMAPS, this study hopes to

avoid these added difficulties. LMAPS uses the same basis functions as are found in MAPS

for the approximation, but, instead of using all the collocation points, a local domain is

found for each collocation point. The local domain consists of the n nearest neighbors to

that point. By only using the local domain to approximate a solution at each point, the dense

matrix in MAPS becomes a sparse matrix in LMAPS which reduces the ill-conditioning.

Also, in [27], Yao states, "Another important advantage of local RBF approaches is that the

MQ or IMQ shape parameter affects the numerical results only slightly." For these reasons,

this study has chosen to use the LMAPS method. However, before proceeding further, it

may be helpful to look at the mathematics involved in LMAPS. Similarly, instead of Kansa’s

method, we will also use the localized Kansa’s method and compare it with LMAPS. To

begin, the general method will be introduced followed by the appropriate functions to use

for each method given that, as in this study, the multiquadric RBF is to be used.

We use the set of collocation points {xxx j}N
1 defined in Section 2.2. The interior points will
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be denoted as {xxx}Ni
1 , and the collocation points on the boundary will be denoted as {xxx}Ni+Nb

Ni+1

such that N = Ni +Nb . For each xxxs in the set of collocation points, a local domain must

be found of the nearest n neighbors. Here we will adopt Yao’s notation for demonstrating

the local domain of a collocation point xxxs as xxx[s]k for k = 1,2, · · · ,n [27]. In this notation, all

the xxx[s]k with the same s value denote being a part of the same local domain Ωs for xxxs, and k

denotes which of n-nearest neighbors it is. It is important to note that the local domains for

different collocation points can and, in most cases, will overlap with each other.

Within the local domain Ωs of an interior point xs (s = 1, · · · ,Ni), the function values of

u can be approximated by the local RBF interpolation:

u(xxx)≈ ũ(xxx) =
n

∑
k=1

α
[s]
k Φ(‖xxx− xxx[s]k ‖). (2.3.1)

Setting xxx ∈ {xxx[s]k }
n
1 yields a system of equations



ũ(xxx[s]1 )

ũ(xxx[s]2 )

...

ũ(xxx[s]n )


=



Φ(‖xxx[s]1 − xxx[s]1 ‖) Φ(‖xxx[s]1 − xxx[s]2 ‖) ... Φ(‖xxx[s]1 − xxx[s]n ‖)

Φ(‖xxx[s]2 − xxx[s]1 ‖) Φ(‖xxx[s]2 − xxx[s]2 ‖) ... Φ(‖xxx[s]2 − xxx[s]n ‖)
...

... ...
...

Φ(‖xxx[s]n − xxx[s]1 ‖) Φ(‖xxx[s]n − xxx[s]2 ‖) ... Φ(‖xxx[s]n − xxx[s]n ‖)





α
[s]
1

α
[s]
2
...

α
[s]
n


.

For ease of referencing, the above equation can be rewritten as

UUU [s] = Pnnααα
[s],

where

Pnn =
[
Φ(‖xxx[s]i − xxx[s]j ‖)

]
, ααα

[s] =
(

α
[s]
1 , · · · ,α [s]

n

)T
, UUU [s] =

(
ũ(xxx[s]1 ), · · · , ũ(xxx[s]n )

)T
.
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From here it’s easy to see that

ααα
[s] = P−1

nn UUU [s]. (2.3.2)

Let
ΦΦΦ

s =
[
Φ(‖xxxs− xxx[s]1 ‖),Φ(‖xxxs− xxx[s]2 ‖), · · · ,Φ(‖xxxs− xxx[s]n ‖)

]
,

ΨΨΨ
s =
[
φ(‖xxxs− xxx[s]1 ‖),φ(‖xxxs− xxx[s]2 ‖), · · · ,φ(‖xxxs− xxx[s]n ‖)

]
.

Using (2.2.1) and (2.3.2) we obtain

∆ũ(xxxs) = ∆ΦΦΦ
[s]

ααα
[s] = ΨΨΨ

[s]P−1
nn UUU [s] = Θ

[s]UUU [s] = ΘUUU , (2.3.3)

where

Θ
[s] = ΨΨΨ

[s]P−1
nn , UUU = (ũ(xxx1), · · · , ũ(xxxNi))

T ,

and, to transition from the local domains to the global function values, N− n zeroes are

placed within vectors Θ[s] (which becomes Θ) at locations where the function values are not

included in the local domain.

Then the approximation problem using localized method directly follows (2.3.3) and the

fact that the right-hand side is nothing but a single vector ΘUUU :

ΘUUU = λUUU . (2.3.4)

The first m eigenvalues and corresponding numerical eigenfunctions of the above linear

system can be solved by using MATLAB command eigs(Θ,m,0).

Remark 2.3.1. In localized Kansa’s Method, we let Φ be the multiquadrics RBF, and solve

(2.3.3) with ∆Φ = φ so that φ takes the following value

Φ =
√

r2 + c2, φ =
2√

r2 + c2
− r2

(r2 + c2)3/2 . (2.3.5)

But in LMAPS method, we let φ be the multiquadrics RBF. We solve (2.3.3) by using
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the following values for φ and Φ:

Φ =
4c2 + r2

9

√
r2 + c2− c3

3
ln(c+

√
r2 + c2), φ =

√
r2 + c2. (2.3.6)
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Chapter 3

Numerical Experiments

The eigenvalue problem that is being numerically solved in this study was introduced at the

beginning of Chapter 1 in (1.1.2). Then, in Chapter 1 Section 4, the domains used in this

study were defined to be an L-shaped domain as well as an irregular shaped domain derived

from the domain of surface current data in the northern Gulf of Mexico. To elaborate on

the previously defined basis of this study, the population of the collocation points must be

discussed as this is a crucial part of any method that utilizes radial basis functions. The

methods for defining the collocation points will be described in the following sections.

3.1 Example 1: L-shape Domain

By using the localized methods on the L-shaped domain, a numerical solution to the

eigenvalue problem from (1.1.2) can be found in the form of a set of numerical eigenfunctions

and the corresponding eigenvalues. For the L-shaped domain, the collocation points were set

Table 3.1: First Ten Eigenvalues for L-shaped Domain Using 41 × 41 grid
Position LMAPS Kansa

1st 9.6204 9.7116
2nd 15.1009 15.2299
3rd 19.6198 19.7801
4th 29.6198 29.5236
5th 31.7534 31.9977
6th 41.1136 41.4228
7th 44.4399 44.7721
8th 48.8308 49.1933
9th 48.8308 49.1933

10th 56.2233 56.6370
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up like a uniform grid which, on a square, would have been a 41 × 41 grid. However, since

the domain is L-shaped, one quadrant of the square is omitted, leaving 1,281 collocation

points of which 160 are boundary points and the rest are interior points. For ease in

referencing, grids of different resolution on both the L-shaped and irregular domain will

be referred to by the grid dimensions that would be applicable for a square domain. Thus,

when talking about the grid with 1,281 collocation points, it will be denoted as the 41 × 41

grid. The shape parameter c in this study is chosen to be c = γds, where ds is the maximal

distance from xs to {x[s]k }
n
1; γ takes on values ranging from one to one hundred in increments

of five.

 

Figure 3.1: Collocation points for the 21 × 21 L-shaped grid

In calculating the numerical eigenfunctions and eigenvalues, the 5 nearest neighbors

to each collocation point were used to compose the local domain for the approximation.

The numerical eigenfunctions and eigenvalues were calculated using a γ = 15. Fifteen

was chosen as the value for γ because, in the result of this study, it was shown to be a

value that both minimizes the error and is relatively stable on the domain. Chapter 4 will

provide a more in depth discussion of shape parameters and their influence on the numerical

approximation as well as give justification for the previous statement.

In order to have a basis for comparison, the eigenvalues and numerical eigenfunctions

were also found on the L-shaped domain by using localized Kansa’s method. The parameters-

value of γ , number of nodes, and number of contour lines- were kept consistent from the

calculations using LMAPS. It is easy to notice that, between the two methods, the eigenvalues
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 Figure 3.2: The first eight numerical eigenfunctions for the L-shaped domain using LMAPS.

are very similar. In most cases, the eigenvalues for localized Kansa’s method are slightly

larger than those calculated by LMAPS where the only exception is the fourth eigenvalue.

Nevertheless, by inspecting the first ten eigenvalues, it appears as though both methods yield

very similar numeric results.

In fact, the numerical eigenfunctions demonstrated the same degree of similarity. Since

no visible differences could be detected, the numerical eigenfunctions calculated by using

localized Kansa’s method will not be displayed in this study. Figure 3.2 displays the first

eight numerical eigenfunctions for the L-shaped domain which were generated by using

LMAPS along with the same parameters as the eigenvalues in Table 3.1. Each numerical

eigenfunction uses twenty contour lines.

3.2 Example 2: An Irregular Domain From The Northern Gulf of Mexico

A numerical approximation to the partial differential equation defined in (1.1.2) is calculated

for the irregular domain in Figure 1.2 using both LMAPS and localized Kansa’s method.

The parameters for the meshless methods are set with slightly different values than those that

were used for the L-shaped domain. The same shape parameter from the L-shaped domain

results was used for the irregular domain. In addition, the collocation points were set up to
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Figure 3.3: Collocation Points for Irregular Domain 21 × 21 Grid

be a uniform grid of the size 41×41 on a square domain. However, given that the domain is

slightly irregular and more of a circular shape, the number of collocation points actually

used to cover the domain was 1,018 points with 80 boundary points. These boundary points

were not generated by the uniform grid that populates the rest of domain. The boundary

points were found by taking the latitude-longitude positions of surface current data for a

given time slot and doing a simple transformation from the latitude-longitude coordinate

system to an x-y coordinate system. From the set of x-y coordinates, the boundary points

were manually identified to define the outline of the domain. The 21×21 and 41×41 grids

for the irregular domain are the only time during which the boundary points are solely those

that correspond to the surface current data collection sites. For uniform grid sizes with a

higher resolution, i.e., 81×81, 161×161 and 321×321, extra boundary points were added

to try to keep the grid size consistent throughout. For the 81×81 domain, all of the same

boundary points were kept from the 41×41 grid and the midpoints between these points

were added as boundary points. Similarly, the 161×161 grid and the 321×321 grid both

kept all of the original boundary points and added points that would divide the distance

between two consecutive boundary points in thirds and fourths, respectively.

Regardless of the grid size, within the domain, as previously stated, the collocation

points are distributed on a uniform grid. However, some collocation points that would
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Table 3.2: First Ten Eigenvalues for Irregular Domain using 41 × 41
Position LMAPS Kansa

1st 5.1333 5.1603
2nd 9.1630 9.1395
3rd 15.0432 15.0933
4th 16.6340 16.7839
5th 21.5634 21.4562
6th 23.8895 23.9831
7th 28.1992 28.2261
8th 33.8383 34.2456
9th 34.3436 34.4035

10th 37.6378 38.1084

have been a part of the uniform grid were omitted from the irregular domain if they were

determined to be too close to the boundary. The criteria for being a point being omitted

from the domain is if the distance from that point to any given boundary point is less than

one-fourth of the smallest grid size in either the x or y direction.

Using these methods for populating the irregular domain with collocation points, both

LMAPS and localized Kansa’s methods were applied to the domain to calculate the eigen-

values and numerical eigenfunctions for the numerical approximation. For both methods,

γ = 15 was used as the value for the shape parameter, and the local domains were based

on the eight nearest neighbors. Justification for the choice of both of these values can

be found in Sections 1 and 2 of the next chapter. Table 3.2 displays the eigenvalues for

the first ten numerical eigenfunctions calculated by each method. As was found for the

L-shaped domain, the eigenvalues calculated by localized Kansa’s method are almost always

slightly greater than the eigenvalues found through LMAPS, except for the second and fifth

eigenvalues.

Figure 3.4 displays the first eight numerical eigenfunctions calculated for the irregular

domain by using LMAPS. Each numerical eigenfunction uses twenty contour lines. Owing

to the fact that no significant differences could be distinguished, the numerical eigenfunction

for localized Kansa’s method will not be displayed in this study.
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Figure 3.4: The first eight numerical eigenfunctions for the irregular domain using LMAPS.
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Chapter 4

Conclusions and Remarks

LMAPS and localized Kansa’s method were implemented to find the solution to the eigenval-

ue problem. Given the numeric approximation, a comparison of the accuracy and efficiency

of the methods will be performed based on two sets of collocation points one for each type

of domains. In this chapter, the results are provided for two types of comparisons that

are made for both domains using both methods with various grid sizes. The first type of

comparison is the relative error within eigenvalues which this study defines to be

Relative error = |λ̃ (i)− λ̃M
(i)|/λ̃

(i),

where i = 1,2, · · · ,8 indicates which eigenvalue is being compared and M symbolizes the

corresponding eigenvalue of a numeric approximation which utilizes a higher resolution grid.

In this study, the relative error for the first eight eigenvalues of a domain will be graphed as

it changes with different shape parameter values. In addition, this study will evaluate the

maximum relative error of eigenvalues which is defined as

Maximum relative error = max
i=1,...,8

(
|λ̃ (i)− λ̃

(i)
M |/λ̃

(i)
)
,

As with the relative error, the maximum relative error with be graphed in relation to changing

shape parameter values. Calculating both the relative error and maximum relative error

provides a basis for comparing the two methods on the same domain.
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4.1 Remarks On The Shape Parameters

One of the more challenging issues in using LMAPS and localized Kansa’s Method is

determining a good value to use as the shape parameter for a given domain. In this section,

both LMAPS and localized Kansa’s methods were used with a variety of values for shape

parameter. For both methods, the shape parameter c = γds, where ds is the maximal distance

from xs to {x[s]k }
n
1. In this way, ds depends on the local domain of each collocation point.

γ takes on values ranging from one to one hundred in increments of five. Although the γ

value is what we are actually changing and testing in this section, we will refer to it as the

shape parameter because the overall shape parameter, as previously defined, will increase

with increased values in γ . In addition, the γ will be directly assigned values while the ds

value may vary over local domains. Nevertheless, the γ value will vary from one to one

hundred in increments of five for the relative error and maximum relative error comparisons.

Over this variation of shape parameter, the first comparison that is being made is relative

error for eigenvalues of the first eight numerical eigenfunctions. Out of these calculations

for relative error, the maximum relative error among the eight eigenvalues was determined

for each shape parameter, and these are the values graphed in the second plot of each figure.

Notice that analytic solution of this problem is not available. For both domains, the values

of a lower resolution grid are compared with the next higher resolution grid. In this way,

the 21×21 grid versus the 41×41 grid, the 41×41 grid versus the 81×81 grid are plotted

in Figure 4.1, the 81× 81 grid versus the 161× 161 grid, the 161× 161 grid versus the

321×321 grid are plotted in Figure 4.2. In this manner, the relative error and the maximum

relative error were calculated and graphed for both domains using both methods and are

displayed in Figures 4.1-4.10.

For the L-shaped domain, a local domain of five is used which would include the point

itself and the four closest neighboring points. For an interior point, the value of ds that

factors into the shape parameter would be the same across the domain due to the uniform



29

 

 

Figure 4.1: Localized Kansa’s Method on L-shape domain, 21×21 versus 41×41; 41×41
versus 81×81.
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grid of collocation points. For a boundary point, one or more of the points in the local

domain would not be directly immediate neighbors. Thus, the value of ds would take on a

slightly larger value than for the boundary modes.

Using a local domain of five and various values for the shape parameter, Figure 4.1-4.2

displays the results of the relative error for the first eight eigenvalues and the maximum

relative error over a range of shape parameters when localized Kansa’s method is used

for the L-shaped domain. Both comparisons for all four different grid comparisons yield

smooths graphs demonstrating that that the error in the eigenvalues decrease with larger

shape parameters, but, once the shape parameter hits a certain benchmark, the error levels

off and remains consistent regardless of further increases in value. However, the benchmark

value, after which the shape parameter is stable and the error becomes relatively constant,

changes depending on the number of collocation points within the domain. As shown in

Figure 4.1, for the 21×21 grid, the maximum relative error becomes stable near a shape

parameter of five. However for the 321× 321 grid, the maximum relative error does not

stabilize until shape parameter reaches fifty. Nevertheless, all comparisons for localized

Kansa’s method demonstrate a certain level of smoothness

Unfortunately, Figure 4.3-4.4 demonstrates that LMAPS does not have the same degree

of smoothness as characterized the results of localized Kansa’s method. In fact, the com-

parisons of LMAPS on the L-shaped domain demonstrate the difficulty in trying to pick a

shape parameter that will yield the highest possible degree of accuracy. For all four grid

sizes, the error appears to drop for certain values of shape parameter followed by an increase

in error of approximately 101 with only a small increase in shape parameter before the error

falls back down again. The 21×21 grid is the only numerical approximation for which the

comparisons produced a smooth graph comparable to localized Kansa’s method. The other

three grid sizes show greater variation in magnitude of error with respect to shape parameter.

The comparisons for both methods were consulted when deciding a shape parameter value

to use for looking at the convergence rates of both methods in the following section. As
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shown in Figures 4.1-4.4, one hundred seems to be a good value for both methods and will

be used in Section 4.3.

For the irregular domain, both localized Kansa’s method and LMAPS were employed

to run the same types of comparisons. However, in calculating the eigenvalues for which

the relative error and maximum relative error were calculated, the local domain of the

collocation points used eight nearest neighbors instead of five or nine. While eight may

seem like a strange value because it does not produce a symmetric local domain, it was

determined that, for this particular grid pattern, eight was the best size. To prove that eight

was a better size for a local domain than the two symmetric domain sizes around it, the

maximum relative error was calculated out of the first eight eigenvalues for a variety of shape

parameter values using a local domain of five and nine. Both localized Kansa’s method and

LMAPS were tested using the 41×41 grid against the 81×81 grid.

In Figure 4.5, the maximum relative error decrease to between 1 and 0.1 at a shape

parameter of 5 before the error starts increasing. Once it starts increasing, the error never

gets to the low value it hit at 5. While the error varies less drastically using LMAPS, both

localized Kansa’s method and LMAPS show that the value of the shape parameter does

not stabilize at a certain degree of error for any given range of shape parameters which

makes it more difficult to chose a good shape parameter for this local domain arrangement.

Therefore, using five nearest neighbors to make the local domain is not the most appropriate

solution for the irregular domain.

To expand the local domain and keep it symmetric, nine was the next value that was

tested for the local domain of each collocation point. The expectation was that nine points

would provide a higher degree of accuracy than a local domain of five could yield. In

addition, the goal was to find a local domain where the error would remain relatively

constant after the shape parameter reached a benchmark value as had occurred with the

L-shaped domain. However, as shown in Figure 4.6, the results did not agree with the

expectation. For both methods, the error does eventually reach a low around 10 and 15 for
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LMAPS and localized Kansa’s Method, respectively. Unfortunately, the maximum relative

error does not stabilize after this point. In contrast, shortly thereafter, the relative error

begins a series of spikes where the variation in error between the high and low points is

rather significant in magnitude, especially for localized Kansa’s method. In this manner, the

idea of using a local domain of nine points was discarded. In trying to find a good size for

the local domain, values of six, seven, and eight were all tested with eight demonstrating the

best results.

Thus, Figures 4.7-4.10 demonstrate the relative error and the maximum relative error for

the first eight numerical eigenfunctions for shape parameters of different values using a local

domain of eight. As was the case with the L-shape domain, a lower resolution is compared

with the next highest resolution grid to calculate the values. Therefore, the 21×21 grid is

compared to the 41×41 grid, the 41×41 grid compared to the 81×81 grid, the 81×81

grid compared to the 161× 161 grid, and the 161× 161 grid compared to the 321× 321

grid.

For localized Kansa’s method, the improvement upon local domains of size five or nine

is quite significant, especially for the 41×41 grid. For this particular grid, the maximum

relative error reaches its low around a shape parameter of ten and remains nearly constant

afterwards. However, for the 81×81 and the 161×161 grids, the maximum relative error

seems to stabilize after a benchmark shape parameter value, but, when the shape parameter

takes a value from 55 to 100, the maximum relative error begins to oscillate rapidly. One

possible explanation for these oscillations is due to the ill-conditioning of matrices for

the local domain. With the increased number of points included in the local domain and

the relatively large shape parameter, the matrices become near singular as the radial basis

function values become dominated by the shape parameter value. Although these oscillations

are not ideal, the shape parameter can accept a decent range, from 20 to 55, of values while

maintaining a stable maximum relative error.

Figures 4.9-4.10 demonstrates an increased difficulty in picking an appropriate value
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for a shape parameter. In particular, the 41×41 grid has a surprisingly large spike in error

values from shape parameter 20 to 30 even though from 10 to 20 and 30 to 70 the maximum

relative error is nearly constant. A spike appears for the same shape parameter values in the

81×81 grid comparison although it has a smaller magnitude and less stability in error for

shape parameter values (6 to 21) leading up to the spike. The 161×161 grid also has some

amount of fluctuation in the maximum relative error from shape parameter values 10 to 60

before the error stabilizes.

If the stabilized maximum relative error is compared between methods for the same

grid size, then it appears as though both methods, for a stable shape parameter, provide the

close to the same degree of accuracy. The key is to identify a good shape parameter for the

method. Throughout this section, good ranges or values for the shape parameter have been

identified for each method for each domain. By using the identified shape parameters on

the appropriate domain with the correct method, the resulting numerical approximation can

minimize its errors, and produce higher accuracy results.

4.2 Remarks On The Convergence Rates

In finding the convergence rate of both LMAPS and localized Kansa’s method, the shape

parameter was held constant at fifty for the L-shaped domain, and the irregular domain used

a shape parameter of a hundred. The values for the shape parameters were chosen, based on

the results from the previous section, to be fairly stable shape parameters for both methods.

The L-shaped domain employed a local domain of the five nearest neighbors whereas the

irregular domain broadened its local domain to include the eight nearest neighbors.

Table 4.1: Maximum Relative Error for L-Shaped Domain
Grid Size LMAPS Rate Kansa Rate

21*21 0.0317 — 0.0319 —
41*41 0.0076 2.0604 0.0077 2.0506
81*81 0.0017 2.1605 0.0018 2.0969

161*161 0.00049634 1.7761 0.00036831 2.2890



34

For the L-shape domain, the 321×321 grid size which translated to 77,441 points and

1,280 boundary points was taken to be the most accurate numerical approximation, and

is, therefore, used as the basis for comparison. The first ten eigenvalues generated by the

320×320 grid size were compared in a pairwise fashion with the first ten eigenvalues for

each of the 21×21, 41×41, 81×81, and 161×161 grid sizes. A maximum relative error

was calculated for each of the four other grid sizes when compared with the 321×321 grid.

The maximum relative error values are graphed corresponding to the grid size where the grid

size is in terms of 21, 41, 81, 161 instead of the actual number of points in the grid which

would be 341, 1,281, 4,961, and 19,521, respectively. Table 4.1 gives the exact numerical

results.

Clearly, LMAPS and localized Kansa’s method converge at almost exactly the same rate

for the L-shaped domain. The lines in the graph nearly coincide because the values are so

close to each other with the exception being that LMAPS has a slightly larger maximum

relative error for the 161×161 grid size. This data supports the observation in the previous

section that the magnitudes of maximum relative error were comparable across methods for

the L-shaped domain.

The same type of analysis was run on the irregular domain with a shape parameter of one

hundred and local domain incorporating the eight closest neighbors to the given collocation

point. The 321×321 will still be used for the basis of comparison, and it will be compared

with the 21×21, 41×41, 81×81, and 161×161 grid sizes. These grid sizes correspond

to 312 collocation points, 1,018 collocation points, 3,924 collocation points, and 15,270

collocation points respectively. Nevertheless, the graph refers to the grid size as opposed to

the number of collocation points. Table 4.2 displays the numerical results of the comparison.

While the values for the maximum relative error are close, they are not quite as close

as the values for the L-shaped domain. A small amount of separation exists between the

LMAPS values and the localized Kansa’s method values. For the 41×41 grid, the LMAPS

had a value approximately 1.75 times the localized Kansa’s method value. However, for the
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Table 4.2: Maximum Relative Error for Irregular Domain
Grid Size LMAPS Rate Kansa Rate

21*21 0.3543 — 0.0626 —
41*41 0.0223 3.9899 0.0132 2.2456
81*81 0.0030 2.8940 0.0037 1.8349

161*161 9.2815e-4 1.6925 0.0012 1.6245

higher resolution grids, the LMAPS values were slightly lower than the values for localized

Kansa’s method.

4.3 Conclusions

Overall, the maximum relative error for the two methods-LMAPS and localized Kansa’s

method- appear to converge at about the same rate regardless of whether the domain is a

polygon, like the L-shaped domain, or slightly irregular, like the domain from the surface

current data. The real difference between the methods seems to be in the stability of the

shape parameter. Undoubtedly, there is a larger interval for the shape parameter for which

localized Kansa’s method is stable, as shown in Section 4.1, than the interval for which

LMAPS is stable. The increased stability in localized Kansa’s method is apparent for

both domains. Thus, the results of this study demonstrate that using localized Kansa’s

method to find a numerical approximation to the eigenvalue partial differential equation in

(1.1.2) would yield approximately the same magnitude of accuracy in the results as using

LMAPS on the two given domains. In addition, finding a good shape parameter to use in

the numerical approximation is easier with localized Kansa’s method because there are less

fluctuations in error as the shape parameter changes. Nevertheless, both methods have the

capacity to produce results with a good degree of accuracy.
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Figure 4.2: Localized Kansa’s Method on L-shape domain, 81× 81 versus 161× 161;
161×161 versus 321×321.
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Figure 4.3: LMAPS on L-shape domain, 21×21 versus 41×41; 41×41 versus 81×81.
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Figure 4.4: LMAPS on L-shape domain, 81× 81 versus 161× 161; 161× 161 versus
321×321.
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Figure 4.5: Errors of numerical eigenvalues using 5 local points.

  

Figure 4.6: Errors of numerical eigenvalues using 9 local points.



40

 

 

Figure 4.7: Localized Kansa’s Method on irregular domain, 21×21 versus 41×41; 41×41
versus 81×81.
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Figure 4.8: Localized Kansa’s Method on irregular domain, 81× 81 versus 161× 161;
161×161 versus 321×321.
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Figure 4.9: LMAPS on irregular domain, 21×21 versus 41×41; 41×41 versus 81×81.
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Figure 4.10: LMAPS on irregular domain, 81× 81 versus 161× 161; 161× 161 versus
321×321.
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Figure 4.11: Convergence curves for L-shape domain.

 

Figure 4.12: Convergence curves for irregular domain.
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