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Problem Statement 

Ecologists once focused their research on “pristine” habitats that were considered 

untouched by human activity.  As urbanization rapidly increases, the concept of pristine habitats 

becomes obsolete.  Urban habitats must be studied in order to understand the ecology of our 

increasingly developed society.  Rapid urbanization greatly affects coastal habitats.  Popular real 

estate, strip malls, casinos, and resorts all fragment urban landscapes.  Much of the northern 

coast of the Gulf of Mexico is a fragmented urban landscape caused by rapid development.  That 

same coastal landscape is ecologically important and includes habitats important to many 

different organisms, among them intercontinental migratory songbirds that stop along the coast 

to rest and to meet the energetic demands before and after the long flight over the Gulf of 

Mexico.  In addition to access to appropriate landing sites, migratory songbirds depend on local 

arthropod populations to meet the energetic demands of migratory journey.  The interaction of 

anthropogenic factors linked to urbanization and local arthropod communities is important to 

understand because of the roles arthropods play in functioning ecosystems, such as nutrient 

cycling, pollination, and food webs.  Arthropod communities in an urbanized landscape are not 

well studied or understood. 

Coastal Mississippi provides a setting within which to study arthropod communities in a 

fragmented urban landscape.  I studied arthropod diversity and densities on the Mississippi Gulf 

Coast at sites that varied in size of wooded habitat:  2 small sites of approximately 1 hectare of 

wooded habitat and 2 large sites of approximately 160 hectares of wooded habitat. It is unknown 

whether arthropod communities thrive best in large or small wooded fragments within an urban 

landscape. I hypothesized that arthropod density would vary with size of habitat, and I predicted 

that large wooded areas would support a higher density of arthropods than small wooded areas.     
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I also hypothesized that arthropod diversity would vary with size of habitat, and I predicted that 

the arthropod community confined to a smaller space would be more diverse than an arthropod 

community associated with a larger space.  

 Literature Review 

 In the past, ecologists hesitated to study urban habitats and considered urban landscapes 

of secondary importance to other habitats (Niemela 1999).  Ecologists are changing their 

attitudes about the value of studying urban habitats, and ecological research in urban settings has 

recently increased (Niemela 1999).  In addition to scientific value, Niemela (1999) points out 

that urban ecology studies can benefit city planners.  Urban expansion may have positive and 

negative effects on the ecology of an area, and urban landscapes provide field test sites to study 

the effects (Niemela 1999).  For example, McKinney (2002) points out the threat urbanization 

poses to conservation and native species, while Stracey and Robinson (2012) find that urban 

areas provide successful habitats for native northern mockingbirds (Mimus polyglottos).  A 

common phenomenon of rapid urban expansion is the creation of habitat “patches,” or 

fragments, caused by the urban matrix (Niemela 1999). Urbanization presents new problems for 

local populations of plants and animals.  Many interactions between anthropogenic factors linked 

to urbanization and plant and animal populations are still largely unknown and warrant study, 

especially as urbanization continues to rapidly increase (Schocat et al. 2006).  McKinney (2008) 

studied the effects of urbanization on local populations of plants and animals, and found that 

animal species richness tends to be reduced in areas with more urbanization.  Increased 

biodiversity has positive ecological, aesthetic, recreational, and educational value (McKinney 

2008). 
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Coastal landscapes have been strongly influenced by rapid urbanization.  Desirable real 

estate, strip malls, casinos, and beach resorts all contribute to the fragmentation of coastal 

habitats.  Oivanki et al (1995) reported that developed land use tripled on the Mississippi Gulf 

Coast from the 1950s to 1992, and resultant fragmentation may have negative effects.  For 

example, Burke and Nol (1998) tested a hypothesis that changes in food and nest site availability 

limited settlement of female Ovenbirds in small forest fragments. Small fragments with high 

amounts of light and leaf litter desiccation had reduced density of arthropods, and the reduced 

density of arthropods led to reduced density of Ovenbirds within those fragments.  Burke and 

Nol (1998) concluded that urban fragmentation could reduce insect availability, and that 

arthropod abundance was significantly reduced in sites along city edges and in small woodlands 

than in larger, denser sites.   

Robinson (1998) commented on Burke and Nol’s study and suggested that foliage 

dwelling arthropods may have higher density at the edge of sites where foliage is denser, and that 

birds might choose these sites based on food availability despite increased predation along the 

edge of forested habitat.   Robinson (1998) also commented on the possible negative effects of 

urban fragmentation on migrating songbirds.   Arthropod density at test sites for study of 

migratory birds is an important factor to consider as many species of birds may depend on 

arthropods for refueling after a long flight (e.g., Graber and Graber (1983)).  Stracey and 

Robinson (2012) cautioned that a full understanding of how urbanization affects the biology of 

birds, for example, depends on the level of urbanization 

McIntyre (1999) discussed the need for urban arthropod studies and encouraged 

ecologists to conduct these types of studies. Arthropod density in different habitat types in 

Phoenix, Arizona, reveal that agricultural sites have the highest richness and abundance of 
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arthropods, and research further explains that understanding the effects of urbanization on 

arthropod communities is important because of the roles arthropods play in functioning 

ecosystems, such as nutrient cycling, pollination, and food webs (McIntyre et al. 2001).  Gibb 

and Hochuli (2002) studied the effects of urban fragmentation on arthropod community 

composition in Australia and reported that habitat fragmentation affected insect abundance and 

diversity as well as interactions between arthropods and other organisms.  Gibb and Hochuli 

(2002) discovered that large fragments did not support more species per unit area than small 

fragments and suggested that arthropod responses to fragmentation are not only limited to 

reduced habitat area and urban proximity, but also fire regimes and degradation of habitats may 

also have roles in arthropod assembly in urban landscapes.   

Methods 

Data was gathered at 4 sites that differed in size (see Figure 1 below).  Hellmers Lane and  

 

 

Figure 1:  Map of Test Sites.  From west to east, Hellmers Lane (small), Davis Bayou (large), 

Shepard State Park (large), and Don’s Woods (small) are shown. 
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Don’s Woods both have less than one hectare of wooded habitat, while Davis Bayou and 

Shepard State Park both have approximately 160 hectares of wooded habitat.  Arthropods were 

sampled along 500 meter transects (large sites) and 300 meter transects (small sites) established 

at each site. Transects were identified by number of meters along the total testing site transect.  

Branch clippings of both Ilex, common name Holly, and Quercus, common name Oak, were 

obtained at each transect, and leaf litter samples were taken at 3 of the 6 transects at each site.   

Three leaf litter samples were obtained at each testing site.  The transect points for leaf 

litter sampling at Hellmers Lane were points 75, 150, 225, at Davis Bayou points 75 (south), 75 

(north), 150, 300 at Shepard State Park points 150, 300, 425 and at Don’s Woods points 100, 25, 

125.  Leaf litter samples were obtained using a quadrant, a timer, and a ruler.  The quadrant was 

placed gently on the ground, and a timer was set for 3 minutes.  All arthropods observed were 

recorded by length and taxonomic order.  Data sheets included the test site name, transect, and 

date of observation. Observers knelt over the quadrant and recorded all arthropods seen within 

the quadrant or flying insects that landed in the quadrant.  The leaf litter was not disturbed during 

testing, and insects that flew over but did not land within the quadrant were not counted.  Figure 

2 shows the leaf litter sampling technique. 
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Figure 2:  Leaf Litter Technique.  For each leaf litter sample, the quadrant was 

carefully placed on the ground.  A timer was set for 3 minutes, and all arthropods 

observed within the quadrant were recorded by length and order.  Leaf litter was not 

disturbed during sampling, and flying insects were only counted if they landed within the 

quadrant. 

Branch clippings of both Ilex and Oak were obtained at each transect of each testing site 

(Figure 3).  Johnson (2000) established the branch clipping method as an effective way to study 

arthropods through his study in Jamaica. At each transect, a branch from the desired plant 

species that was approximately 12’’ long was selected.  Branches that did not have many 

seedheads and were not intertwined with other plant species (such as vines) were ideal.  A 12 

gallon plastic bag was carefully placed around the branch, disturbing the branch as little as 

possible. Once the bag was around the branch, clippers were used to cut the branch off at the 
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opening of the bag.  Insecticide was then sprayed into the bag through a small opening.  The bag 

was opened as little as possible to prevent arthropods from escaping.  Enough insecticide was 

sprayed to coat the sample, but not so much that the bag was saturated.  Over saturating the 

sample with insecticide would make sorting difficult.  After spraying the insecticide, the bag was 

sealed carefully and quickly.  The bag was shaken vigorously to distribute insecticide throughout 

the sample (Figure 3). 

   

Figure 3:  Branch Clipping Technique. Branches of approximately 12 inches were selected.  A gallon 

size bag was placed over the branch and held shut. The branch was cut just above the opening of the bag.  

Insecticide was sprayed into a small opening in the bag.  The bag was then quickly sealed to prevent 

arthropods from escaping.  Finally, the bag was shaken to distribute insecticide throughout the sample. 

Branch clippings were brought to the laboratory for processing.  For each branch 

clipping, the sealed bag containing the branch was first shaken to dislodge any insects.  Then, the 

bag was opened and vegetative material removed.  Each branch was carefully inspected for 

insects that were not dislodged.  Vegetative material was put into a plastic container on a scale to 

be weighed. All insects were removed from the bag and classified to order and then measured.  

The whole plastic bag was carefully inspected for small insects.  The date of sampling, site name 
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and transect point, invertebrate order, length of invertebrate in millimeters, plant species, and 

plant weight in grams were recorded (Figure 4).                                                                                                            

 

  

Figure 4:  Lab Techniques.  Each branch clipping sample was shaken to dislodge any arthropods.  

Then, vegetative material was removed and placed in the dish.  The bag was carefully inspected 

for arthropods that were not dislodged.  Vegetative material was separated from arthropods and 

placed on a scale and recorded in grams. Arthropod lengths were measured in millimeters.  All 

arthropods were classified to order. 

For both the branch clipping and leaf litter data, a regression equation was used to 

transform arthropod length in millimeters to mass in milligrams (Rogers et al 1976).  Once the 

weight of each arthropod was established in the branch clippings data set, the total arthropod 

mass per branch (48 branches total) was calculated.  Then, the arthropod mass in milligrams 

divided by plant mass in grams was calculated for each branch to examine arthropod density.   

Because of many samples with no arthropods collected, which created a non-normal distribution, 

a zero-altered negative binomial model was executed using the program R, (Zurr et al 2009).  
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Once the weight of each arthropod in the leaf litter data set was established, the data was log 

transformed to shift the data to a normal distribution.  An analysis of variance was performed on 

the transformed values to test the significance of date and site as variables affecting the data.  

These methods were used on the leaf litter data to deal with the problem of many zeros in the 

data set. 

 Results 

 Branch clipping data showed that arthropod density varied among sites. The two large sites, 

Davis Bayou and Shepard State Park, were characterized by both the lowest and the highest 

arthropod density, and the two small sites, Don’s Woods and Hellmers Lane, had arthropod 

densities that fell  between the two large sites (Figure 5). Overall, large sites had a higher 

arthropod density than small sites.  Arthropod density also varied across the spring season 

(Figure 6). After the end of March, values were consistently higher at the large sites with the 

exception of the last sampling day in mid-May.  
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Figure 5:  Average Arthropod Weight in Branch Clippings per site. For each site, (A) DAV-Large, (B) 

DON-Small, (C) HEL-Small and (D) SHE-Large, average milligrams of arthropods to grams of vegetation is 

shown. 
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Figure 6:  Average Arthropod Mass in Branch Clippings per Week. For each sampling date, average 

milligrams of arthropods to grams of vegetation are shown for Large (DAV and HEL) and Small (DON and 

HEL) sites.   

A zero-altered negative binomial model was executed using the program R to examine the effect 

of week, site size, and sample year on the branch clipping data.  Arthropod abundance estimated 

from branch clippings did vary with week (χ
2
=15.206, DF=6, and p = 0.01872), but did not vary 

significantly with site  (χ
2
=1.9502, DF=1, and p = 0.1626) for  year (2011 and 2012)  (χ

2
=0.169, 

DF=1, and p = 0.681). 

Leaf Litter data showed that Don’s Woods, a small site, had the highest mass of 

arthropods in leaf litter, while Shepard State Park, a large site, had the lowest.  Hellmers Lane, a 

small site, had a density that was close to Shepard State Park’s.  Overall, small sites had a greater 

mass of arthropods than large sites (Figure 11).           



 

 12 

 

Figure 7:  Average Arthropod Weight in Leaf Litter per Site. For each site, (A) DAV-Large, (B) DON-

Small, (C) HEL-Small and (D) SHE-Large, average milligrams of arthropods from Leaf Litter is shown.  

Arthropods in leaf litter increased over the season, and differences in arthropod abundance from 

leaf litter between large and small sites is unclear (Figure 12). 
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milligrams of arthropods from leaf litter is shown for Large (DAV and SHE) and Small (HEL and DON)    

sites. 

An analysis of variance was used on the log transformed leaf litter data to test the significance of 

sample week and site on arthropod abundance.  There was a significant effect of sample date on 

arthropod abundance at the p<0.05 level [F ratio = 25.0835, DF = 8, and p = <.001].  There was a 

significant effect of site on arthropod abundance at the p<0.05 level [F ratio = 4.7234, DF = 3, 

and p = 0.0044].  Figure 7 shows the results of the Tukey HSD test.  Levels not connected by the 

same letter are significantly different. 

Arthropod diversity counts of branch clippings showed that small sites (HEL and DON) had 

the greatest diversity of arthropods.  Arachnids and Coleopterans made up the majority of the 

arthropod population in both large and small sites, but a higher diversity of arthropods in small 
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Figure 8:  Average Arthropod Weight in Leaf Litter per Week.  For each sampling date, average  
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sites can be seen (Figures 7 and 8).  When Arachnids and Coleopterans are removed from the 

population counts, the higher diversity of arthropod orders in small sites is clear (Figures 9 and 

10).  

 

Figure 9:  Arthropod Diversity from Branch Clippings in Large Sites.  Total diversity counts of 

arthropod orders from branch clippings over the entire season are shown for Large (DAV and SHE) sites. 
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Figure 10:  Arthropod Diversity from Branch Clipping in Small Sites. Total diversity counts of 

arthropod orders from branch clippings over the entire season are shown for Small (HEL and DON) sites. 

Figure 11:  Arthropod Diversity from Branch Clipping in Large Sites without Arachnids and 

Coleopterans.  Diversity counts of arthropod orders without majority orders (Arachnids and 

Coleopterans) are shown for Large (DAV and SHE) sites. 
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Figure 12: Arthropod Diversity from Branch Clippings in Small Sites without Arachnids and 

Coleopterans.  Diversity counts of arthropod orders without majority orders (Arachnids and Coleopterans) 

are shown for small (HEL and DON) sites. 

Arthropod diversity counts from leaf litter showed few differences between large and 

small sites (Figure 13 and 14).  Hymenopterans and dipterans make up the majority of arthropods 

for both site sizes.   When hymenopterans and dipterans are removed from diversity counts, both 

site sizes appear to have similar levels of arthropod diversity (Figures 15 and 16). 
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Figure 13:  Arthropod Diversity from Leaf Litter in Large Sites.  Total diversity counts of arthropod orders from 

leaf litter over the entire season are shown for large (DAV and SHE) sites. 

 

Figure 14:  Arthropod Diversity from Leaf Litter in Small Sites.  Total diversity counts of arthropod orders from 

leaf litter over the entire season are shown for small (HEL and DON) sites. 
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Figure 15:  Arthropod Diversity from Leaf Litter in Large Sites without Hymenoptera and Diptera.  

Diversity counts of arthropod orders without hymenopterans and dipterans are shown for large (DAV and 

SHE) sites. 

Figure 16:  Arthropod Diversity from Leaf Litter in small sites without Hymenoptera and Diptera.  

Diversity counts of arthropod orders without hymenopterans and dipterans are shown for small (HEL and 

DON) sites. 
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 Discussion 

Arthropod Density 

I hypothesized that arthropod density would vary with size of habitat, and I predicted that 

large wooded areas would support a higher density of arthropods than small wooded areas. My 

leaf litter results had higher abundance than branch clippings, and leaf litter abundance was 

higher in small sites.  Date was significant for density in leaf litter, and arthropod density in leaf 

litter increased over the spring.  This was expected since arthropods mature and become 

increasingly active as the weather becomes warmer.  Site was significant for abundance in leaf 

litter. Shepard State Park (large) was different from Davis Bayou (large) and Don’s Woods 

(small).  Hellmers lane was not significantly different from any of the sites. My results indicate 

that arthropod abundance in leaf litter is higher in small urban fragments than in large urban 

fragments. 

Week was also significant for branch clippings, and abundance increased over the spring 

as it did in leaf litter.  Site size was not significant for branch clippings—overall, it appears that 

large sites have a higher abundance than small sites.  Shepard State Park had the highest 

abundance of all sites, but Davis Bayou, the other large site, had the lowest arthropod abundance 

in branch clippings. The field and lab methods used for branch clippings were designed to 

eliminate the possibility of different branch clipping weights but similar arthropod weights on 

each branch.  Only oak and ilex trees were used, and specific trees were selected at the beginning 

of the season.  Selected branch clippings met certain criteria (approximately 12” in length, lack 

of seedheads) before clipping.  The transect I used in Shepard State Park was directly over a 

swamp. Proximity to water could have influenced arthropod abundance in the Shepard transect.  
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The Davis Bayou transects I used were not in direct contact with water as in Shepard.  With this 

difference and the abundance in small sites in mind, my results do not indicate a clear difference 

in arthropod abundance in branch clippings between large and small urban fragments.  

 My arthropod density results are contrary to Burke and Nol (1998), who concluded that 

urban fragmentation could reduce insect availability, and that arthropod abundance is reduced 

along city edges and in small woodlands as compared to larger, denser sites.  However, Burke 

and Nol suggested that small fragments with high amounts of light and leaf litter desiccation are 

what resulted in the reduced density of arthropods.  Robinson (1998) commented on this study 

and suggested that foliage dwelling arthropods could have high density in edge sites with dense 

foliage.  The small sites I used did not have high light or leaf litter desiccation.  Since arthropod 

density was not clearly reduced in urban fragments in my study, Burke and Nol’s comment 

appears to be correct, and Robinson suggestion is consistent with my density results. 

Arthropod Diversity 

I hypothesized that arthropod diversity would vary with size of habitat, and I predicted 

that the arthropod community confined to a smaller space would be more diverse than an 

arthropod community associated with a larger space.  My results show that arthropod diversity 

from branch clippings was highest in small sites, and arthropod diversity in leaf litter did not 

depend on fragment size. 

My results are contrary to McKinney 2008, who found that species richness tends to be 

reduced in areas with a great deal of urbanization, but also stated research was needed to 

understand urbanization/biodiversity and that the effects of urbanization could be good and bad. 

My results are consistent with Gibb and Hochuli (2002), who studied the effects of urban 

fragmentation on arthropod community composition in Australia and reported that habitat 
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fragmentation affected insect abundance and diversity as well as interactions between arthropods 

and other organisms.  Gibb and Hochuli (2002) discovered that large fragments did not support 

more species per unit area than small fragments and suggested that arthropod responses to 

fragmentation are not only limited to reduced habitat area and urban proximity, but also fire 

regimes and degradation of habitats may also have roles in arthropod assembly in urban 

landscapes.   

The results of my study indicate that coastal fragmented urban landscapes do not 

negatively affect arthropod biodiversity.  My diversity counts revealed higher arthropod diversity 

in small urban fragments.  However, as mentioned in the literature review, a problem with urban 

ecology studies is differences in the level of urbanization at different test sites.  “Urban” has 

different meanings depending on the study, and this confusion causes difficulty in making 

absolute conclusions about my results.  Since the definition of urban varies between studies, it is 

difficult to state for certain that my arthropod diversity counts are higher than in other urban 

landscapes.  Even more difficult is understanding how my urban arthropod diversity counts 

compare to diversity in non-urban landscapes.  Future studies examining arthropod diversity in 

urban fragments as well as non-urban landscapes would clarify my results and lead to greater 

understanding of how arthropod assemblages differ in urban and non-urban environments. 

Several arthropod orders were found in branch clippings from small sites only.  Among 

these orders were Ephemeroptera (Mayflies), Plecoptera (Stoneflies), Nueroptera (Lacewings), 

and Hymenoptera (ants).  Ephemeropterans were found in branch clippings from Hellmers Lane 

(a small site) on March 20, the first sampling date of the season.  Since Ephemeropterans have 

short life spans, it is not unusual that I found this order on only one day of the season.  However, 

I do not know why this order only appeared in Hellmers Lane. The majority orders from branch 
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clippings in both large and small sites, Arachnids and Coleopterans (spiders and beetles) were 

not surprising for branch clippings from the level of forest that I studied.  

Diversity counts in leaf litter revealed that arthropod diversity does not depend on 

fragment size.  Hymenopterans and Dipterans dominated diversity counts in leaf litter in both 

large and small fragments.  Hymenopterans (ants) made up 69% of the arthropod population in 

leaf litter in large sites and 54% in small.  This is not surprising for leaf litter counts of 

arthropods.  With Hymenopterans (ants) and Dipterans (flies) removed from arthropod counts in 

leaf litter, interesting differences between large and small sites are revealed.  Blattodea 

(cockroaches) made up 10% (without Hymenopterans and Dipterans) of the arthropod population 

in small sites and 2% in large sites.  Hemipterans (true bugs) made up 15% of (without 

Hymenopterans and Dipterans) the arthropod population in small sites and 4% in large sites.  

Isopodans (roly poly) made up 23% of (without Hymenopterans and Dipterans) the arthropod 

population in small sites and 13% in large sites.  Coleopterans (beetles) made up more of the 

population in large sites than in small, 19% in large (without Hymenopterans and Dipterans) and 

3% in small. 

The most exciting results of my diversity counts are my findings that diversity of 

arthropod populations in leaf litter is higher in small sites than in large.  The small sites I studied 

were residential.  My results indicate that backyards in urban neighborhoods are not a damaging 

environment for arthropods.  In fact, the residential areas I studied support more biodiversity in 

arthropod populations than in the large sites (state parks).  While diversity counts of arthropods 

in branch clippings did not reveal more biodiversity in either large or small sites, the lack of a 

difference is still an exciting result.  Again, my results do not indicate that urban neighborhoods 

are damaging to arthropod biodiversity in trees.  The results of my arthropod diversity counts are 
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an example of how urbanization is not always negative to biodiversity.  Urbanization can have 

negative and positive impacts on different areas of a community, and studies in urban ecology 

are important to understanding the full effects of urbanization.  

 

Confounding Factors 

Confounding factors existed primarily in field methods.  Throughout the season, I 

brought different people to assist me in gathering sample.  I trained each assistant in the field, 

and most of their help was in gathering branch clippings.  However, assistants stayed with me 

along each transect, and I was present to supervise and check their branch clippings.  Assistants 

only helped in leaf litter samples by helping me to spot arthropods—I classified and measured 

the arthropods in leaf litter. Another confounding factor to consider in field methods is 

consistency in insecticide.  Efforts were made to distribute a similar amount of insecticide to 

each sample, but this certainly varied (different people spraying insecticide, differences in 

insecticide in a full bottle versus an almost empty one).  Also, Some arthropods likely escaped 

the plastic bags before the bag was sealed. Varying bird populations between sites could also 

affect the arthropod data I received, but until other studies in these same test sites are completed, 

differences in bird abundance between the four sites is unknown. Finally, all four test sites are 

located in Jackson County, which is subject to periodic spraying of insecticide for mosquitoes by 

Mississippi Mosquito Control Incorporated.  This mosquito control method could have affected 

numbers of mosquitoes I found in my samples.  However, I did not test directly for flying 

insects.  Mosquitoes that did not land within the leaf litter quadrant during testing were not 

counted. 
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In addition to confounding factors with the actual sampling techniques we used, it is 

important to note that the field methods used for this study are not the only methods for 

gathering arthropod samples. I only sampled two layers of vegetation, and other methods could 

have been used to sample higher levels of vegetation, flying arthropods, ticks, etc. 

 Confounding factors in laboratory techniques include classifying the arthropods.  I could 

have made mistakes in classifying some of the arthropods, and some arthropods I found may 

have been disfigured enough (sometimes from over-saturation of insecticide) to cause an 

incorrect taxonomic classification.  In addition, errors may have occurred in weighing the branch 

clippings. 
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