
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Honors Theses Honors College

Spring 5-2013

High Performance Network Communication between High High Performance Network Communication between High

Frequency Application Servers and Android Tablets Frequency Application Servers and Android Tablets

Brandon L. Wolfe
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/honors_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wolfe, Brandon L., "High Performance Network Communication between High Frequency Application
Servers and Android Tablets" (2013). Honors Theses. 170.
https://aquila.usm.edu/honors_theses/170

This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital
Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila
Digital Community. For more information, please contact Joshua.Cromwell@usm.edu, Jennie.Vance@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/honors_theses
https://aquila.usm.edu/honors_college
https://aquila.usm.edu/honors_theses?utm_source=aquila.usm.edu%2Fhonors_theses%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=aquila.usm.edu%2Fhonors_theses%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/honors_theses/170?utm_source=aquila.usm.edu%2Fhonors_theses%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu,%20Jennie.Vance@usm.edu

The University of Southern Mississippi

High Performance Network Communication between High Frequency Application

Servers and Android Tablets

by

Brandon Wolfe

A Thesis

Submitted to the Honors College

of The University of Southern Mississippi

in Partial Fulfillment

of the Requirements for the Degree of

Bachelor of Science

in the Department of Computer Science

March 2013

ii

iii

__

Chaoyang (Joe) Zhang, Chair, Adviser

Department of Computer Science

__

David R. Davies, Dean

Honors College

iv

Table of Contents

Chapter 1 Introduction ... 1

Section 1.1 A Trend Towards Mobile Devices .. 1

Section 1.2 Challenges of Mobile Devices .. 1

Section 1.3 Current Mobile Networking Standards 2

Section 1.4 Improvement on Current Mobile Networks 3

Section 1.5 Research Statement ... 4

Chapter 2 Literature Review .. 5

Section 2.1 Reliable Protocol Background .. 5

Section 2.2 Features of a Reliable Protocol ... 6

Section 2.3 Android ... 7

Section 2.4 NORM Protocol Background ... 7

Chapter 3 Methodology ... 8

Section 3.1 Network Parameters ... 8

Section 3.2 Tools .. 9

Subsection 3.2.1 TCP ... 9

Subsection 3.2.2 NORM Protocol ... 9

Subsection 3.2.3 Traffic Control (tc) ... 10

Subsection 3.2.4 Android Debug Bridge (adb) 10

Section 3.3 Application Development ... 11

Section 3.4 Hardware and Network Setup ... 11

Subsection 3.4.1 Standard Application Setup .. 11

Subsection 3.4.2 Android Testing Setup .. 12

Section 3.5 Data Collection ... 13

Subsection 3.5.1 Standard Application Test .. 13

Subsection 3.5.2 Mobile Application Test ... 14

Chapter 4 Results ... 15

Section 4.1 Parameters in Tables ... 23

Section 4.2 File Sizes ... 23

Section 4.3 Data Validation ... 24

Subsection 4.3.1 Mobile Network TCP Corruption Test 24

Subsection 4.3.2 Side Effects of MD5 Hash Failures 24

Section 4.4 Test Parameter Limits ... 25

v

Chapter 5 Analysis and Evaluation .. 33

Section 5.1 Effects of Varying Network Conditions 34

Subsection 5.1.1 NORM Protocol ... 34

Subsection 5.1.2 TCP ... 35

Section 5.2 Overall Protocol Comparison ... 37

Section 5.3 Practical Applications of NORM Protocol 38

Section 5.4 Additional Research Possibilities ... 38

References ... 39

vi

List of Tables

4.1 Mobile Application Tests (NORM) ...15

4.2 Mobile Application Tests (TCP) ..17

4.3 Standard Application Tests (NORM) ..19

4.4 Standard Application Tests (TCP) ...21

vii

List of Figures

4.1 NORM Protocol Mobile Network Delay Test ...25

4.2 NORM Protocol Mobile Network Corrupt Test ..25

4.3 NORM Protocol Mobile Network Loss Test ...26

4.4 NORM Protocol Mobile Network Duplication Test ..26

4.5 TCP Mobile Network Delay Test ..27

4.6 TCP Mobile Network Corrupt Test ...27

4.7 TCP Mobile Network Loss Test ..28

4.8 TCP Mobile Network Duplication Test ...28

4.9 NORM Protocol Standard Network Delay Test ..29

4.10 NORM Protocol Standard Network Corrupt Test ...29

4.11 NORM Protocol Standard Network Loss Test ..30

4.12 NORM Protocol Standard Network Duplication Test ...30

4.13 TCP Standard Network Delay Test ..31

4.14 TCP Standard Network Corrupt Test ...31

4.15 TCP Standard Network Loss Test ..32

4.16 TCP Standard Network Duplication Test ..32

1

Chapter 1 - Introduction

Section 1.1: A Trend Toward Mobile Devices

 Many people today own some sort of mobile device with capabilities comparable

to standard computers. These devices, termed “smart”, come with a variety of hardware

and software capabilities. For hardware, the devices can be divided into two primary

categories, tablets and smartphones. Tablets have larger screens and often more powerful

hardware than smartphones; smartphones still have many of the features found in tablets,

but also have the portability, functionality, and smaller screen of the cellular phone. The

software that runs on these devices is as diverse as the various types of devices. Phones

and tablets house a mobile operating system (OS), which is similar to the operating

systems on standard computers, such as Windows or Mac OS. Two of the more popular

operating systems for mobile devices are Android OS, developed by Google, and iOS,

developed by Apple. Like a standard OS, the phones and tablets can be outfitted with

various applications to suit the needs of the user. As powerful hardware becomes

available in smaller form factors, the power of a standard computer will be brought to

mobile devices, which in turn will lead to the development of more powerful applications

for mobile devices.

Section 1.2: Challenges of Mobile Devices

 Although mobile devices are rapidly improving, there are still many barriers that

do not allow mobile devices to perform with the same potential as standard computers.

Software capabilities are dependent on hardware capabilities, and mobile devices are

significantly less powerful than the standard computer. Processors (CPUs) are much more

2

powerful for standard computers than for mobile devices, and attempting to add a faster

processor to a phone can add many complications.

CPUs for mobile devices are difficult to scale or develop. In part, this has to do with

mobile devices have a limited power source, which will need to be used efficiently by the

CPU. Also, mobile devices have limited means of dealing with the heat generated by

more powerful CPUs, since large fans in mobile devices are not practical. All these things

considered, these processors must be powerful enough for applications that are

computationally intensive, while also being efficiently managed so that they do not

overheat and ruin the devices.

 Another hurdle for mobile devices is mobile networking. Since most devices do

not have or need an option for connecting to a network via a cable, the devices rely solely

on wireless networks. If the device is not near a wireless access point, such as a home

wireless router, the device will use a mobile network from a phone company. These

mobile networks can be much less reliable than standard Wi-Fi, as the nearest data tower

may be miles away or under heavy load from any large number of devices. Even in the

best case scenario, these mobile networks are often not as fast or reliable as current local

area networks.

Section 1.3: Current Mobile Networking Standards

 Mobile networks and devices typically use the same protocols as standard

computers for common tasks such as data transmission and device-to-device

communication. Data transmission, which could also be termed as “data transport”, is

categorized under layer 4, the transport layer, of the Open Systems Interconnection model

(OSI). The OSI model is outlined in RFC 1122 (Braden 1989). Two primary protocols

3

used at the transport layer are Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP). These protocols have differing applications on mobile devices due to

their contrasting methods of transmission.

 UDP is a very basic protocol with no error checking performed when data is

received. Although UDP may not be reliable for data transfer, its minimal packet

structure is excellent for operations requiring minimal interaction. It is often used for

DNS queries (Vixie 1999) and for streaming data, including Voice over Internet Protocol

(VoIP) and video (Sat, Batu, Wah 2006). UDP is a good choice for sending a large

amount of data that does not need to be fully correct. VoIP and video streaming are good

candidates for UDP-based protocols, because perfect data is usually unnecessary for the

content to be satisfactory.

TCP differs drastically from UDP, as it is a very reliable protocol with several methods to

ensure that the data is sent and received correctly. A TCP packet is much more complex

due to the reliable scheming of TCP. TCP establishes a connection by using a three-way

handshake and continues to check the correctness of transmission throughout the data

transaction. However, its error checking can be a problem when data is being sent over a

network of bad quality, as the constant handshaking and resending will require a lot of

time to correct the bad packets.

Section 1.4: Improvement on Current Mobile Networks

 While technological improvements may continue to improve mobile networks, we

can attempt to improve speed and integrity of data transfer over current networks by

using a protocol that will perform well, even with possible negative conditions of the

mobile network. We will use NORM protocol, (NACK Oriented Reliable Multicast), a

4

protocol developed by the Naval Research Lab, and test its performance and reliability

against TCP, a standard protocol.

Section 1.5: Research Statement

 This thesis will develop methods for comparing NORM protocol in unicast mode

to TCP by simulating high performance network communication between Android tablets

and high frequency application servers. Since mobile network conditions vary based on

service provider or tower distance, we will test over a wide range of network conditions

such as high delay or high loss, as well as high chances of packet corruption or

duplication. We want to maximize speed of data delivery without sacrificing the integrity

of the data. The methods used will be generically applicable to multiple operating system

platforms and will be cross-platform compatible.

5

Chapter 2 - Related Works

Section 2.1: Reliable Protocols Background

There has been much work describing the foundations of reliable network

protocols. Reliable protocols are not limited to our scope of testing, that is, unicast

protocols. There has also been much work done with reliable multicasting protocols that

is relevant to mobile networks. It is also important to note that some multicast protocols

also support unicast operation. NORM protocol, although developed as a reliable

multicast protocol, can also be used in a unicast setting.

Mankin et al. (1998) discussed two main issues in forming a reliable multicast

protocol. First, the protocol would not necessarily be applicable to many different

applications. Different applications have different requirements for receiving the

messages being sent. While this may be fairly easy to see, the protocol would also need to

adapt in its specific application to shrinking or growing of the receiving group. Second,

the protocol will have to adequately work with congestion from large receiving groups.

Whetton et. al (2001) also discussed similar standards in the development of a

multicast protocol. Like Mankin et al. (1998), the paper discusses both the challenges of

congestion control and scalability of the protocol. It also covers security of the protocol.

The protocol will need to protect the data being sent from being eavesdropped on as well

as ensuring that the data is being sent to the correct receiver. The paper also covers some

advantages of building a generic protocol in stages or modules so that can be modified to

6

fit a specific application. These advantages include reduced complexity, verification, and

debugging time; easier upgrades to the protocol as new techniques become available;

common diagnostics can diagnose issues the protocol may have; modules can be

developed independently; and a modular protocol makes deriving a specifically applied

protocol easier. In general, the paper describes the need for the protocol to be simple,

widely applicable, and high performing.

Section 2.2: Features of a Reliable Protocol

Some possible features of a reliable protocol include either acknowledgement

(ACK) negative acknowledge (NACK), forward error correction codes (FEC), and

automatic request for retransmission (ARQ). The following papers discuss the various

features used in the development of a reliable protocol.

Luby et al. (2002) promotes the use of forward error correction over automatic

request for retransmission for two primary reasons. First, the server transmitting would

have to deal with potential many requests for a resend, making ARQ impractical for large

groups needing a very low error threshold on the data being sent. Second, in some

network scenarios, ARQ can only be efficiently implemented with a data carousel

method, first described by Acharya, Franklin, and Zdonik (1995) as breaking data down

into chunks, then cycle through sending the data until all receivers have received each

packet. This method, however, limits performance if a receiver needs to get a packet

resent, as it must wait until another batch of information is sent to get the packet it needs.

According to the paper, FEC generally can overcome both losses in data and bit-level

corruption by allowing the receiver to correct most of the issues in the data stream being

sent without having to ask the server for a resend of the data. This method could help free

7

up server resources and balance the error checking workload between the server and the

client.

Some modifications to TCP may allow it to perform better in a mobile

environment, according to Kim et al. (2012). They propose using algebraic expressions to

describe the packets being sent, and when the information is received, the information

can be reassembled by solving the expressions and determining if any information was

lost or corrupted. Furthermore, they have modified TCP to send fewer acknowledgements

(ACKs) if the packets are “seen,” which they describe as a relation to the number of

consecutive packets received. The early results were excellent, showing a clear

improvement in comparison to standard TCP in bandwidth tests, even on public

networks. However, they are clear to state that more testing will need to be done to

determine the effects of the modifications in scenarios with a very large number of

devices using the protocol.

Section 2.3: Android

Ravindranath et al. propose using internal sensor data to optimize networking

protocols to perform efficiently based on the current situation of the phone (2011). Some

sensors include GPS, the accelerometer, the gyro, and the compass. By adjusting

parameters of a network such as data transfer rate or access point association, overall

throughput using protocols such as TCP and UDP can be improved.

Section 2.4: NORM Protocol Background

Forward error correction (FEC) can be combined with negative acknowledgement

(NACK) to create an efficient, reliable protocol, according to Adamson et al. (2009). This

paper discusses how NORM protocol is oriented around a negative acknowledgement

8

response system for the receivers and could be capable of sending bulk data reliably over

Internet Protocol (IP). NORM protocol also includes a congestion control scheme to

fairly share available network bandwidth with other protocols, specifically TCP; it also

incorporates FEC repair into its implementation to promote balanced error checking

between server and client. This protocol allows for three types of bulk data to be sent

both reliably and efficiently: data stored in the computer’s static memory, files stored on

the hard disk drive of the computer, and continuous data streams from server to clients.

Each of these file types would have a unique data type when being sent over the protocol

as to allow the receiver to properly and completely allocate storage space in its hard disk

or static memory for the files being sent. The protocol does not, however, provide much

identification for its data in the header of the packets being sent. This information can be

determined from status messages passed between the server and the clients.

9

Chapter 3 - Methodology

Section 3.1: Network Parameters

 There will be four negative parameters that will be induced on network packets

for simulating mobile networks: delay, where each packet is delayed for a specified

amount of time before sending; loss, where a specified percentage of packets are dropped

before sending; corruption, where a specified percentage of each packet is corrupted; and

duplicate, where each packet has a specified chance to be resent. For each test of a

specified parameter, a file will be transferred 50 times to ensure accurate results.

Section 3.2: Tools

Subsection 3.2.1: TCP

 The OpenBSD tool netcat will be used for transferring a file through TCP. Due

to its lightweight but versatile functionality, netcat will require very little

configuration or tweaking to use before it can be used for sending files. For use on

Android, netcat will be installed through a BusyBox installer that will be downloaded

from the Google Play store.

Subsection 3.2.2: NORM Protocol

NORM protocol will be built from the most current source files and

dependencies. The resulting C library and its Java Native Interface (JNI) will be

implemented as a native library in a Java program that will ultimately be used in testing.

For use on Android, the library will be built to support ARM architecture processors, a

10

standard type of processor used in mobile devices. There should be no difference in the

JNI for the standard and mobile versions of the NORM protocol testing application.

Subsection 3.2.3: Traffic Control (tc)

 We will use the Linux traffic control application tc for inducing the various

negative network parameters. This application can be used for both incoming and

outgoing traffic on any network interface as well as for any and all types of traffic. The

tc option of netem will be used to add packet delay or corruption. It can also be used to

add a predetermined chance of packet loss or duplication in transmission of the data. The

tc utility will apply negative networking parameters over all subnets used for the transfer

of the file in the tests. This completeness will allow data to be delayed, corrupted, lost, or

duplicated in transfer. The same effect will be applied to the protocol messages (ACKs or

NACKs) that will be sent back to the server that is sending the data. However, special

networking conditions and hardware will have to be used for the Android tablet setup,

which will be discussed in Subsection 4.2.

Subsection 3.2.4: Android Debug Bridge (adb)

 Google provides adb as an application to communicate with Android devices

over USB. The adb tool will be beneficial in checking our result data and starting more

tests, both TCP and NORM protocol tests, on the Android tablet. Despite our unstable

networking environment, we will have unaffected communication to the Android tablet

through use of adb command options such as push, pull, and shell. The use of adb

in Android testing will be described in greater detail in Subsection 5.2.

11

Section 3.3: Application Development

 NORM protocol can be compiled into a standalone program for demonstration

purposes; however, it does not adequately suit the needs of the tests. Our custom program

will allow for accurate testing and more precise control over specific NORM protocol

parameters. The structure used in creating the custom NORM protocol Java classes will

also be applicable to both standard desktop computers and Android devices. Since we

will be using netcat as the application to test the effects of negative network conditions

on TCP, there will be no need to write a specialized application for our tests.

Section 3.4: Hardware and Network Setup

Subsection 3.4.1: Standard Application Setup

 Network setup for standard desktop testing will include three server computers

running Ubuntu Server 12.04. Two of these servers will be used as the testing machines,

one as a sender and one as a receiver. The third server will act as a router between the

two testing servers, as well as a command server for scripting the tests. Since the tc

utility will affect all types of traffic on an interface, the two testing servers will utilize

two Network Interface Cards (NICs). The server will use three, as it must also act as a

router for both computers.

 For scripting purposes, all three servers will be on one subnet,

192.168.3.0/24, so that the controlling server may send commands through SSH to

both testing servers without having tc affect the SSH connection. Each individual testing

server will also be on its own subnet, either 192.168.2.0/24 or

192.168.1.0/24, which will allow for routing through the control server to take

12

place. The control server will enable the Ubuntu IPv4 ip_forwarding option for

routing between the two test server subnets.

 The networking setup for the standard application will allow file transfer rates up

to a maximum of gigabit speed (1 Gbps). Thus, the file to be transferred from sender to

receiver must be of non-trivial size; that is to say, the file must be large enough so that it

ensures the transfer time is above the absolute minimum (non-trivial) time that each

respective protocol can take to transfer a file. This will be determined with preliminary

testing that has no negative network parameters applied.

Subsection 3.4.2: Android Testing Setup

 The Android tablet will be a Samsung Galaxy Tab 10.1 (model GT-P7510),

running a stock Android 4.0.4 ROM (Ice Cream Sandwich). Due to the nature of

BusyBox, the tablet will be modified to allow root access to applications. This will allow

netcat to be used in our testing, as netcat is the only application from the BusyBox

suite that we will need.

 The Android tablet will be connected to a Linksys router that is broadcasting an

IEEE 802.11n wireless networking signal on channel 6. The maximum data transfer rate

over this wireless standard will be 300 megabits per second (Mbps) over this wireless

standard. The Android tablet will only be used as a receiver in our tests, as we feel this

represents a more accurate portrayal of how mobile devices are used in data transfer. The

sender will be a server running Ubuntu 12.04, and it will be connected to the Linksys

router over Ethernet. Ethernet has the potential to transmit the data from our server at

speeds up to 1 Gbps. However, the effective data rate of sending the file to the Android

13

tablet will only be 300 Mbps, due to our eventual relay of the information over an IEEE

802.11n wireless signal.

 Applying netem to a networking interface will only affect outgoing data. This is

a feature of tc that we will need to work around. To account for the desired networking

conditions for both incoming and outgoing data, as described in Subsection 1 and

Subsection 2.3, we will create an Intermediate Functional Block (IFB) that will allow the

incoming data to be adjusted by our networking parameters. This will allow us to do our

testing without having to install tc on the Android tablet and will allow for easy

application of negative network parameters without affecting vital communication with

the tablet.

 Like the standard application test, the size of the file that will be transferred to the

Android tablet will be determined by the absolute minimum (non-trivial) time each

protocol will take to transfer a file of some size. We will determine the size of this file in

preliminary testing.

 Since both input and output data will be manipulated during the testing process,

communication with the Android tablet will be done over USB using adb. This will

allow us to call netcat and restart our NORM protocol testing application through the

adb shell, and will also allow us to check the integrity of the received file. This will be

described in Subsection 5.2.

Section 3.5: Data Collection

Subsection 3.5.1: Standard Application Test

 Using the three server setup described in Subsection 4.1, our routing server will

start a set of tests by sending a command to the sending and receiving servers through

14

SSH, then start the sending and receiving applications of NORM protocol or TCP. Since

this command will be sent on the 192.168.3.0/24 subnet, we will not have to worry

about the command not being received by the two data transfer servers. Once the data

transfer servers have started running the command, the routing server will wait on each

data transfer server to finish the file transfer. After the transfer has been completed, the

routing server will write the time that the transfer has taken to a file. It will also test

whether the transfer has passed or failed, and to what degree the transfer has done so, by

using an MD5 hash comparison between the original file and the received file. The router

server will ensure that the transfer has taken place a total of 50 times. Afterwards, the

routing server will increment the current negative networking parameter and start a new

set of tests. This process will continue until each negative networking parameter has

reached the maximum possible value at which NORM protocol or TCP can function.

Subsection 3.5.2: Mobile Application Test

 The mobile application tests will be run in a similar fashion to the standard

application test, with one notable exception being communication with the Android tablet

(the receiving server) over adb. The network instability from the negative network

parameters makes sending a command over SSH potentially impossible, due to the

Android tablet has only one NIC. The adb utility will substitute for SSH in our mobile

application, as adb will allow full control over the networking interfaces on the sending

server. This also has the added benefit of having no side effects in starting additional sets

of tests.

15

Chapter 4 - Results

Table 4.1: Mobile Application Tests (NORM)

NORM

Delay

Time

(ms)
Average Time (s)

0 5.51745098039

100 9.91262745098

200 7.88515686275

300 11.9940588235

400 18.9297254902

500 24.5085294118

600 24.5085294118

700 33.3969215686

800 41.2074509804

900 102.226784314

1000 50.9480392157

Corrupt

Bit

Error

(%)

Average Time

(s)
Hash

Failures

0 3.95590196078 0

5 5.80001960784 0

10 6.99933333333 0

15 7.88166666667 0

20 9.03368627451 1

25 15.9407647059 3

30 9.84874509804 1

35 11.8245490196 2

40 13.7780196078 1

45 14.3498431373 1

50 12.5831176471 0

55 17.8075686275 6

60 21.2394901961 8

65 22.4758235294 6

70 28.0779215686 4

16

Loss

Lost (%) Average Time (s)

0 6.53033333333

5 6.43411764706

10 6.43652941176

15 4.57978431373

20 4.28117647059

25 4.91407843137

30 6.95341176471

35 4.35778431373

40 6.76731372549

45 7.44543137255

50 9.26296078431

55 14.6744901961

60 25.2856078431

65 46.2160588235

Duplicate

Duplication (%) Average Time (s)

0 7.31511538462

5 9.28798039216

10 6.01470588235

15 4.46331372549

20 5.01425490196

25 4.48125490196

30 5.76664705882

35 4.62949019608

40 5.20174509804

45 5.57305882353

50 5.96805882353

55 7.07080392157

60 6.67152941176

65 6.36596078431

70 5.93976470588

75 5.41790196078

80 5.93323529412

85 6.09535294118

90 7.64815686275

95 9.77847058824

100 5.62143137255

17

Table 4.2: Mobile Application Tests (TCP)

TCP

Delay

Time (ms) Average Time (s)

0 3.6483134123

100 13.5893421632

200 17.7790240966

300 65.9406932547

400 84.1365083594

500 100.389171958

600 107.957106311

700 106.160027692

800 115.746439622

900 129.484409814

1000 146.278960563

Corrupt*

Bit Error

(%)
Average Time

(s)
Hash

Failures

0 18.004144609 0

0.02 3.76858170674 10

0.04 3.92708722903 20

0.06 3.89096484276 19

0.08 5.71938019532 29

0.10 5.68725178333 36

0.12 4.98322460285 34

0.14 4.73774617452 32

0.16 6.78956252795 47

0.18 33.345048313 40

0.20 4.45599959905 38

* Note: the mobile networking TCP tests with

corruption added were the only tests that had

substantial MD5 hash mismatches at such

low parameter values. The number of this

failures is out of a total of 50 tests run. This

is discussed in Section 4.2.1

18

Loss

Lost (%) Average Time (s)

0 3.64469026052

3 7.99275776056

6 16.877409394

9 28.62879782

12 46.9222646768

15 116.227699477

18 172.141429974

21 216.299349899

Duplicate

Duplication

(%)
Average Time

(s)
Hash

Failures

0 3.31747461741 0

5 64.0667704252 1

10 68.8530153036 1

15 65.5055791964 1

20 4.27197780517 0

25 57.7942578426 1

30 69.8206650935 1

35 5.33594928796 0

40 122.36681294 2

45 72.3756605386 1

50 201.07562536 3

55 204.146972583 3

60 206.713097196 3

65 272.580928321 4

70 136.777654194 3

75 207.030634605 5

80 242.210385125 6

85 136.310462314 3

90 165.782522078 5

95 104.548839982 3

100 135.903081082 4

19

Table 4.3: Standard Application Tests (NORM)

NORM

Delay

Time (ms) Average Time (s)

0 2.47973492813

100 9.36356542507

200 16.5655429268

300 20.3668978739

400 27.4813037157

500 35.4199774122

600 45.477275548

700 53.7405391741

800 62.3772495174

900 72.6577617788

1000 81.5713464372

Corrupt

Bit Error (%) Average Time (s)

0 1.88131186485

5 42.0565103245

10 58.3856527471

15 60.0905677605

20 77.6660950374

25 64.9751196432

30 58.124481616

35 62.4063548088

40 63.5909676552

45 52.5729706812

50 46.6915375519

55 39.9192517812

60 49.0697722286

65 59.5309140587

70 62.6408917236

20

Loss

Lost (%) Average Time (s)

0 1.92759618282

5 3.95006384373

10 6.83402519226

15 8.4805047369

20 9.47769023895

25 10.1636055613

30 10.9191163206

35 11.8861831141

40 12.9423074865

45 14.1469590855

50 15.7298204851

55 17.9545792341

60 21.9061140394

65 25.6975946522

Duplicate

Duplication (%) Average Time (s)

0 1.85281494617

5 1.861946311

10 1.85997519493

15 1.86466278076

20 1.85745548725

25 1.85210840225

30 1.84542104244

35 1.83923261166

40 1.83478843212

45 1.85446674824

50 1.85530232906

55 1.85196208477

60 2.06933405399

65 2.21036903381

70 2.05975035191

75 2.12028933525

80 2.1051688385

85 2.17454503536

90 2.22607143402

95 2.34869624138

100 2.24043930054

21

Table 4.3: Standard Application Tests (TCP)

TCP

Delay

Time (ms) Average Time (s)

0 1.34365602568

100 11.2355766606

200 21.2103670168

300 31.5235369015

400 41.6850223064

500 52.4113567924

600 62.4966660261

700 72.4579406691

800 83.7973110104

900 92.5111307859

1000 103.393945699

Corrupt

Bit Error (%) Average Time (s)

0 1.38025881946

1 6.90010064603

2 9.23556391716

3 18.1375432301

4 27.2168324184

5 36.7255697775

6 55.7620031309

7 83.8314852667

8 145.54889338

9 281.087950997

10 678.923252306

22

Loss

Lost (%) Average Time (s)

0 1.35586238384

1 6.61872742176

2 15.5671227837

3 26.063038435

4 43.2312340021

5 59.7318134451

6 104.390770512

7 206.487164478

8 213.308822217

9 513.300556979

10 1425.69833303

Duplicate

Duplication (%) Average Time (s)

0 1.13802670479

5 1.07672141075

10 1.14420938015

15 1.21635595322

20 1.30722589493

25 1.34143207073

30 1.36685935497

35 1.2743807888

40 1.30588029861

45 1.24786633492

50 1.28089592934

55 1.31366980553

60 1.3246570158

65 1.31123177528

70 1.30690385342

75 1.25710924625

80 1.3101513195

85 1.26166550159

90 1.26257130623

95 1.26071363926

100 1.25227894306

23

Section 4.1: Parameters in Tables

 Each parameter chosen in the tests represents some negative value added to the

network transmission to make the network less reliable. The delay parameter adds a delay

of the specified time to each packet sent in the transmission. The corrupt parameter adds

bit errors to the packets in the frame based on the ratio of correct packets to incorrect

packets. For example, a corrupt parameter of 0.1% will cause 1 out of 1000 packets to

contain a bit error.

 The loss parameter has a similar parameter effect as the corrupt parameter, except

that instead of having a bit error, the packet will simply be lost. For example, a 0.1% loss

parameter value will cause 1 out of 1000 packets to be lost in transmission. Finally, the

duplication parameter is specified like the loss and corrupt parameters. If the parameter is

given a value of 0.1%, then 1 out of every 1000 packets will be duplicated (resent) in the

transmission. Unlike loss or corruption, each packet will be guaranteed to be sent with the

duplication parameter added; the protocol being used for the transfer will have to only

ignore the duplicate information.

Section 4.2: File Sizes

 Due to the different maximum network speeds that the data transfer would take

place over, we decided to use a smaller file for the mobile networking tests. The mobile

networking tests will be using an 8 megabyte (MB) file and the standard networking tests

will be using a 64 MB file. These files were chosen based on the time taken to transfer

them in comparison to smaller files being used for the tests. At 8 MB and 64 MB, for

mobile and standard networks respectively, the time taken to transfer these files is greater

than files of any smaller size. We wanted to transfer a file that was large enough in size to

24

take longer than the minimum, non-trivial amount of time NORM protocol and TCP

could take to transfer any file.

Section 4.3: Data Validation

 In order to check the integrity of the file, we compared the MD5 hash of the

received file with an expected hash from the file on the sending server. If the hash was

not an exact match, then the data was unreliable, and the protocol that was used had

failed. Generally, the packet corruption and the packet loss tests, given a high loss

percentage, were the most susceptible for transfer failure. There were generally few

failures in all tests, with the notable exception of the mobile network TCP test with

corruption added.

Subsection 4.3.1: Mobile Network TCP Corruption Test:

 The mobile networking TCP tests with corruption added to the packets had a near

impossible chance to achieve consistent reliable data reception. Original parameters for

this test were more similar to those used in the standard network TCP tests with

corruption added, but due to the extreme lack of reliable data reception at those

parameters, we greatly lowered the parameter values for the mobile networking tests.

Theories on the reason for this massive unreliability will be discussed in Chapter 5.

Subsection 4.3.2: Side Effects of MD5 Hash Failures

 Some parameters, including the NORM protocol mobile mobile tests with

corruption added and the TCP mobile network tests with duplication added, show sets of

tests with lower values behaving unlike previous or later sets of tests. We first thought

that these values were outliers in our data. However, a closer inspection showed that

these very high or very low transfer times were simply how the protocol would behave in

25

a situation where the transfer did not fully complete. TCP often would take a very long

time to recognize that the transfer was failed, while NORM protocol usually would have

the failure take place very quickly. The effects of these failures are represented very well

visually, with steep increases or decreases in the graph.

Section 4.4: Test Parameter Limits

The limits on the tests were determined in preliminary testing by keeping records

when each protocol could either no longer complete the transfer, or when the data

received in an entire set of tests was wrong. If a protocol would no longer receive correct

data, there would be no need to continue testing further. Furthermore, if a connection

between sender and receiver could not be established to begin a data transfer, as was the

case with high loss percentage cases, then testing would not be able to yield results.

26

Fig. 4.1 - NORM Protocol Mobile Network Delay Test

27

Fig. 4.2 - NORM Protocol Mobile Network Corrupt Test

Fig. 4.3 - NORM Protocol Mobile Network Loss Test

Fig. 4.4 - NORM Protocol Mobile Network Duplication Test

28

Fig. 4.5 - TCP Mobile Network Delay Test

Fig. 4.6 - TCP Mobile Network Corrupt Test

29

Fig. 4.7 - TCP Mobile Network Loss Test

Fig. 4.8 - TCP Mobile Network Duplication Test

30

Fig. 4.9 - NORM Protocol Standard Network Delay Test

Fig. 4.10 - NORM Protocol Standard Network Corrupt Test

31

Fig. 4.11 - NORM Protocol Standard Network Loss Test

Fig. 4.12 - NORM Protocol Standard Network Duplication Test

32

Fig. 4.13 - TCP Standard Network Delay Test

Fig. 4.14 - TCP Standard Network Corrupt Test

33

Fig. 4.15- TCP Standard Network Loss Test

Fig. 4.16 - TCP Standard Network Duplication Test

34

Chapter 5: Analysis and Evaluation

Section 5.1: Effects of Varying Network Conditions

Subsection 5.1.1: NORM Protocol

 The effect of delayed packets in data transmission on NORM protocol is similar

across our network types, for the most part. The time taken to transfer a file grew in a

linear fashion within the standard networking tests, which is entirely normal. As each

packet is delayed for an increasingly longer time, the transfer time will also grow at the

same rate. The graph of our standard networking test with delay (Figure 4.9) backs up

this statement. The mobile networking test also behaved in a similar fashion, but with

oscillation between some data points. This can be attributed to the relative

unpredictability of wireless networks in comparison to a standard wired network.

 The results of tests (Figures 4.6 and 4.10) with packet corruption show distinct

differences between the standard and mobile networks. The standard network tests had a

very large jump in transfer time as soon as corruption was induced; however, the time

taken in mobile network tests instead gradually increased. Also, while data gathered from

the mobile networking test grew in a mostly linear fashion, the data from the standard

network tests had no real pattern of growth. In fact, the standard tests show a dip in

transfer times as the corruption percentage increases. However, it is important to note that

both networks show an increase in transfer time as the limit for our tests is approached.

Mobile networks also show a much higher chance of a failed transfer after 50%

corruption.

35

 Perhaps at first glance, the duplication graphs of both the standard (Figure 4.12)

and mobile (Figure 4.4) network tests show a strange flux in the graph, especially at the

end. However, the transfer times show that duplication does not heavily impact NORM

protocol on either standard or mobile networks. The range of transfer times over the

entire set of tests is very small, less than 1 second. The range of times in mobile

networking tests is larger, approximately 5 seconds, but this can still be explained by the

relative unpredictability of wireless networks.

 The most interesting data in all of the NORM protocol tests is the loss graph

(Figure 4.11). The standard network graph shows a moderate, linear rate of data growth;

however, the mobile network test shows almost no change between data points until high

loss percentages occur. Although a partial explanation for this may be due to the

difference in file sizes used in the transfer, this can only apply to low values of loss

percentages. One possible theory is that the Android operating system kernel has been

somehow optimized for dealing with higher amounts of data loss even when the protocols

used in data transfer are not native to Android.

Subsection 5.1.2: TCP

 There was a small difference between the standard (Figure 4.9) and mobile

networking (Figure 4.5) tests under the effects of packet delay. The standard network

data grew perfectly linear, as expected. Conversely, the Android tests show a sharp

increase in transfer time, approximately 45 seconds, at the 300 millisecond mark.

Furthermore, the Android tests show a small decrease in transfer time at the 700

millisecond mark. The decrease, like with some of the NORM protocol tests, can be

traced to the relative instability of wireless networking in comparison to wired networks.

36

However, the large increase in transfer time cannot be explained by the same reasoning.

There must be a more obscure reason to explain this, such as certain Android operating

system kernel settings.

 As mentioned in Chapter 4, the mobile networking tests showed that TCP could

not handle any amount of corruption (Figure 4.6). This is contrary to the results of the

standard network tests, where it was possible to have a possible ratio of 10% bad packets

to 90% good packets in a frame. With the mobile networking tests, however, having

99.98% good packets was not enough to ensure that the data would always arrive

reliably. As noted in Table 4.2, this scenario contained the only instances of MD5 hash

matching failure.

 TCP behaved very erratically under the effects of packet duplication (Figures 4.8,

4.16). Average times in consecutive sets of tests show very little relationship. This is due

to situations where TCP attempted to complete a transfer but eventually could not. Test

times in these situations would possibly be longer than 3000 seconds. Removing these

large times would produce a graph similar to that of NORM protocol, but since NORM

protocol did not have any failures in the mobile network tests with duplication added, we

decided to include these large times in the results since they show the possible effects on

TCP of duplication in mobile networks.

 Despite the failings with packet corruption, tests with packet loss in mobile

networks (Figure 4.7) showed an interesting phenomenon, very similar to what happened

with NORM protocol. First, the standard networking tests with packet loss added could

not function past 10% loss; the mobile networking tests with packet loss could function at

20%. Second, although data from the mobile networking tests initially grow faster

37

compared to standard networking tests data, the standard networking tests show a

massive spike in transfer times at its maximum limit of 10% loss. Mobile networking

tests show a much less severe jump in transfer times leading to the 20% loss limit. The

similarity of results between NORM protocol and TCP mobile networking tests, as

compared to their respective standard networking tests, implies that the Android

operating system may be optimizing network transfers that have high loss.

Section 5.2: Overall Protocol Comparison

 TCP had a substantial margin of advantage when networking conditions were

optimal, beating out NORM protocol in all of our tests with no negative effects added.

TCP also performed strongly against NORM protocol in the standard networking tests

with duplication added. However, NORM protocol was much more effective at

completing data transfers in networks with loss or corruption, regardless of whether the

network was a standard wired network or a mobile wireless network. NORM protocol

performed especially well in comparison to TCP when packet loss was greater than 5%.

NORM protocol also had a much larger limit of loss than TCP, with tests on both the

mobile and standard networks showing NORM protocol being able to complete transfers

even when packet loss reached 65%.

 NORM protocol also has an advantage over TCP in networks with delay of 200

milliseconds or more. This is most likely due to NORM protocol, like its name states,

using negative acknowledgements (NACKs) to respond to lack of data. Since NORM

protocol does not acknowledge (ACK) each time as it receives data, there is significantly

less communication that has to be resolved during the transfer.

38

Section 5.3: Practical Applications of NORM Protocol

 NORM protocol seems to be an excellent fit for the world of mobile networking.

If a mobile device is in an area where mobile coverage is weak and data is lost in

transmission due to low signal, applications using NORM protocol for data transmission

will be minimally affected in comparison to applications using TCP for data

transmission. Also, as mobile network speeds have increased, applications that stream

data, such as VoIP or video streaming services, are in very high demand. However, in

scenarios with high loss or delay, these applications must sacrifice quality to ensure that

the data stream will continue. NORM protocol can help these applications continue to

have a high quality stream even on networks with high loss or high delay. An example of

using NORM protocol for video on a high-loss network can be found at

http://cs.itd.nrl.navy.mil/work/noviss/demo.php.

Section 5.4: Additional Research Possibilities

 One possible area to extend from this research would be using NORM protocol

and TCP for streaming live data, such as music or video. Although we will not be able to

record quantitative measurements, we will be able to add other protocols that can be used

for live streaming, such as Real Time Messaging Protocol (RTMP) or coded TCP (Kim

2012). Since live video feeds are in very high demand, determining an optimal protocol,

such as one with low overhead or easy compression of video data, for use in streaming

video would be a practical topic. This topic could also extend into mobile devices and

networks, such as battery consumption by various networking protocols used in

streaming video and if a live video stream causes poor network performance in other

applications.

http://cs.itd.nrl.navy.mil/work/noviss/demo.php
http://cs.itd.nrl.navy.mil/work/noviss/demo.php
http://cs.itd.nrl.navy.mil/work/noviss/demo.php

39

References

Acharya, S., Franklin, M. and S. Zdonik, "Dissemination - Based Data Delivery Using

Broadcast Disks", IEEE Personal Communications, pp.50-60, Dec 1995.

Adamson, B., Bormann, C., Handley, M., Macker, J., "NACK-Oriented Reliable

Multicast (NORM) Transport Protocol," Internet Engineering Task Force (IETF) RFC

5740, November 2009.

Braden, R. "RFC 1122." Requirements for Internet Hosts—Communication Layers

(1989).

Kim, MinJi, et al. "Network Coded TCP (CTCP)." (2012).

Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley, M., and J. Crowcroft, "The Use

of Forward Error Correction (FEC) in Reliable Multicast", RFC 3453, December 2002

Mankin, A., Romanov, A., Bradner, S., and V. Paxson, "IETF Criteria for Evaluating

Reliable Multicast Transport and Application Protocols", June 1998

Ravindranath, Lenin, et al. "Improving wireless network performance using sensor hints."

USENIX NSDI. 2011.

Sat, Batu, and Benjamin W. Wah. "Analysis and evaluation of the Skype and Google-

Talk VoIP systems." Multimedia and Expo, 2006 IEEE International Conference on.

IEEE, 2006.

Vixie, Paul. "Extension mechanisms for DNS (EDNS0)." (1999).

Whetten, B., Vicisano, L., Kermode, R., Handley, M., Floyd, S., and M. Luby, "Reliable

Multicast Transport Building Blocks for One-to-Many Bulk-Data Transfer", RFC 3048,

January 2001

	High Performance Network Communication between High Frequency Application Servers and Android Tablets
	Recommended Citation

	Thesis.docx

