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ABSTRACT 

 
Ribulose-1,5-bisphosphate carboxylase/oxygenase or RubisCO is an enzyme found in autotrophic 

organisms that functions to fix CO2 and therefore plays an important role in the global carbon cycle. In 

order for RubisCO to increase its slow enzymatic rate, it must be exposed to high amounts of its substrate, 

CO2. Carboxysomes, which sequester the RubisCO and its substrate, provide this function. It was 

previously believed that all the components necessary for carboxysome function were encoded by genes 

within the traditional cso operon. Recently, however, a gene in an operon located downstream of the cso 

operon was found to encode the novel shell protein CsoS1D. This discovery raised the possibility that other 

genes located outside of the traditional cso operon may contribute to the structure or function of the 

carboxysome. One such gene is cbbO, which encodes a potential RubisCO activase. A RubisCO activase 

could play a role in maintaining RubisCO’s catalytic efficiency within the carboxysome.  To study the 

cbbO gene and its potential in greater detail, its gene first had to be over-expressed so that sufficient 

amounts of soluble recombinant CbbO protein could be purified for the generation of polyclonal antibodies. 

To achieve this goal, the cbbO gene of Halothiobacillus neapolitanus was PCR amplified and inserted into 

a plasmid vector. The genomic DNA was taken from the model organism for the study of carboxysomes, 

Halothiobacillus neapolitanus. The recombinant construct was sent for sequence determination. Then the 

cbbO gene fragment with the correct DNA sequence was ligated into a protein expression vector. 

Recombinant CbbO protein, which has a hexa-histidine affinity tag that is encoded on the pETDUET-1 

vector, was purified by affinity chromatography and quantified and analyzed using SDS page.  Finally, the 

recombinant CbbO protein was sent off for antibody generation in rabbits and initial bleeds were analyzed 

for antigen specificity using immunoblotting. The preliminary results seemed to indicate that an antibody 

probe for recombinant CbbO protein was obtained.  
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REVIEW OF RELATED LITERATURE 

For a long time, CO2 fixation into energy-rich molecules by autotrophs, organisms that obtain their 

carbon from inorganic molecules, has fascinated scientists. In the infancy of the study of metabolic 

pathways, it was known that some organisms required CO2 as a carbon source, and that the conversion of 1 

mol of CO2 to 2 mols of 3-phosphoglyceric acid (3-PGA) was only accomplished with the help of the 

enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase, or RubisCO (Shively 1998). Autotrophs being 

the primary producers in the global biosphere, a deeper understanding of this enzyme was required. As it 

turns out, RubisCO is the most abundant protein on Earth. It is also an extremely slow enzyme and only 

produces three to ten 3-PGA molecules per second per active site (Feller 2008). Therefore, at normal 

intracellular concentrations of CO2 and ribulose-1,5-bisphosphate (RubP), the other substrate of RubisCO, 

the activity of RubisCO remains relatively low. However, as with all enzymes, once the concentration of 

the limiting substrate, in this case CO2, is increased, the catalytic rate of RubisCO also increases, and 

allows it to fix more CO2 per unit of time. For some autotrophic bacteria to successfully increase the 

concentration of CO2 and increase the enzymatic rate of RubisCO, it seemed likely that some kind of CO2 

concentrating mechanism must occur (reviewed in Shively 1998 & Heinhorst 2010). In 1956 a particular 

type of polyhedral inclusion bodies or bacterial micro-compartments were discovered in a cyanobacterium 

(Figure 1). Their cellular role was at first unknown. Since then the inclusions have been determined to be 

made of an outer thin (3-4 nm) protein shell and to function by sequestering large amounts of the enzyme 

RubisCO within their core (Figure 2). Once this property was discovered, they were called carboxysomes 

(Shively 1998). Bacterial micro-compartments have been thought by Yeates et. al. to be the highest 

possible level of sub-cellular organization for bacteria (2008). It has also been determined that regardless of 

the presence of RubisCO, the carboxysome shell is still assembled and functions normally (Heinhorst 

2010). 
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Figure 1: A cryo-electron tomogram of isolated H. neapolitanus carboxysomes filled with 

RubisCO.Source: C. Iancu & G. Jensen, California Institute of Technology 

 

Figure 2: An artist rendering of a carboxysome shell filled with RubisCO holoenzyme molecules.  Source: 

T.O. Yeates, University of California, Los Angeles 
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The gene region in autotrophs that codes for the carboxysome proteins is called the cso operon. 

Traditionally, this has been considered the only operon responsible for encoding the structural and 

functional carboxysome components. Downstream of this operon, however, resides another operon that has 

recently been studied and is now known to encode at least one additional necessary carboxysome 

component, the novel shell protein CsoS1D (Roberts 2012). In between the traditional cso operon and the 

gene for CsoS1D is the cbbO gene, which is annotated as encoding a Von Willebrand Factor-like protein 

that may function as a RubisCO activase or perhaps a chaperone that guides RubisCO to the carboxysome 

interior (1997 Hayashi). According to Hayashi, the CbbO protein has been shown to enhance RubisCO 

activity and stability in Pseudomonas hydrogenothermophila (1997 Hayashi).  

Shively et. al (1998) expressed the need for a greater understanding of genomic function, with regards to 

the carboxysome, outside of the cso operon. Thus, the necessity to study the cbbO gene downstream 

of the traditional operon is apparent. The hypothesis for this research project is that the CbbO protein 

can be expressed as a soluble recombinant protein in amounts large enough for the generation of polyclonal 

antiserum in rabbits. The recombinant CbbO protein can be used to study protein-protein interactions in 

conjunction with the large and small subunits of RubisCO and other partner proteins, including CbbQ, 

another potential RubisCO activase. Once the antibody is generated and confirmed via Western Blot 

analysis, it can be used to identify if the CbbO protein is present in carboxysomes or if CbbO is involved in 

carboxysomal structure or function.  

As seen in Figure 3 and as reported by Shively et al. (1998) the carboxysome gene regions are very similar 

in several different chemoautotrophic species.  
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Figure 3: Gene annotation denoting the traditional cso carboxysome operon (in red box) for various 

chemoautotrophs, and the cbbO gene (pink, marked by a downward red arrow) thought to code for a 

potential RubisCO activase. 

The findings of this study have important implications for biotechnological applications. One would be the 

manufacture of synthetic carboxysomes. These nano-cages could be used as an advanced biochemical 

approach to a more selective drug delivery system. Another would be the use of recombinant DNA 

technology to engineer more efficient means of CO2 fixation, thereby possibly decreasing the quantities of 
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CO2, a contributing green-house gas, from the atmosphere by bacteria like H. neapolitanus. This effect is 

possible due to the CO2 fixation function carried out by carboxysomes in autotrophs found in Earth’s vast 

oceans and water ways as seen in Figure 4 (Shively 1998).  

For this study the sulfur oxidizing bacterium Halothiobacillus neapolitanus, an obligate autotroph 

will be used as the genomic model organism. This bacterium has been widely studied and its genome has 

been sequenced. Additionally, carboxysomes from this organism can be purified and their composition and 

function studied in vitro (Heinhorst 2010).  

 

Source: Scottish Centre for Carbon Capture and Storage, University of Edinburgh 

Figure 4: The global carbon cycle, showing sources of atmospheric CO2 and processes that remove the 

greenhouse gas from the atmosphere. 

If a better understanding of carboxysome structure and function can be obtained, a greater understanding of 

the in vivo micro-compartment assembly pathway may also be accomplished (Yeates 2008). The findings 

could also give further evidence to the mechanism by which RubisCO obtains a kinetic advantage through 

being sequestered within the carboxysome. 
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It has been hypothesized that the cbbO gene is a component of another operon that helps regulate CO2 

fixation in conjunction with the traditional cso operon (Hayashi, 1999). The overall aim of this project will 

be to express the cbbO gene as soluble, recombinant CbbO protein that will enable future researchers to 

develop an antibody probe for the presence of CbbO in the cell and in carboxysomes. In order to study the 

cbbO gene, the gene will be amplified from the model organism H.neapolitanus, a gram-negative 

bacterium that was the first chemoautotroph from which purified carboxysomes were obtained (Cannon 

2001). Carboxysomes within H. neapolitanus can be seen in Figure 5.  Other autotrophic organisms have 

been found to contain the cbbO gene. However, H. neapolitanus will be used since its carboxysomes have 

already been thoroughly studied (Cannon, et. al. 1983). The gene of interest inserted in the protein 

expression vector can be found in Figure 8.  

 

Figure 5: Cryo-electron tomogram showing an H. neapolitanus cell containing carboxysomes (indicated by 

the downward facing red arrows) that are filled with RubisCO.  
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Figure 6: Gene map of protein expression vector with inserted cbbO gene of interest and restriction enzyme 

sites. 

EXPERIMENTAL PROCEDURES 

Materials  

Media 

Luria Bertani (LB) broth 

10 g/L Bacto tryptone 

5g/L Bacto yeast extract 

10 g/L NaCl 

Autoclave for 20 minutes. at 121°C and 15 psi 

For solid LB medium, add 1.5% w/v agar before autoclaving  

Super Optimal with Catabolite Repression (SOC) medium 

20 g/L Bacto tryptone 
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5 g/L Bacto yeast extract 

0.58 g/L NaCl 

0.19 g/L KCl 

0.95 g/L MgCl2 

3.6 g/L glucose 

Dyes 

Ethidium Bromide stock solution 

0.02 g/mL Ethidium Bromide in deionized water 

Agarose gel tracking dye (10 X) 

100 mM EDTA ( pH 8.0) 

50% (v/v) glycerol 

1% (w/v) SDS 

0.1% (w/v) bromophenol blue 

Buffers 

TAE buffer pH 8.0 

40 mM Tris-HCl (pH 7.8) 

20 mM Na-acetate 

2 mM EDTA 

PMSF/PTSF stock solution 

100 mM phenylmethylsulfonylfluoride (PMSF) 

100 mM p-toluenesulfonylfluoride (PTSF) 

This solution was made with 100% ethanol  

Lysis buffer, pH 8.0 

50 mM Tris-HCl (pH 8.0)  

5 mM β-mercaptoethanol (BME) 
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1 mM PMSF/PTSF 

Phosphate buffered saline (PBS), pH 7.4 

137 mM NaCl 

2.7 mM KCl 

4.3 mM Na2HPO4 

1.4 mM KH2PO4 

Colony Lysis Buffer 

50 mM Tris-HCl, pH 8.0 

10 mM EDTA 

100 ug/mL RNase A  

*Storage condition: 4 °C after adding RNase A 

 

Affinity Chromatography Buffers 

 

pProEx wash buffer A/ column equilibration buffer 

20 mM Tris-HCl (pH 8.0)  

100 mM KCl 

10 % (v/v) glycerol  

20 mM imidazole 

pProEX wash buffer B 

20 mM Tris-HCl (pH 8.0)  

20 mM KCl 

10% (v/v) glycerol 

Elution buffer 

20 mM Tris-HCl (pH 8.0)  



10 
 

100 mM KCl 

10% (v/v) glycerol 

400 mM imidazole  

Protein dialysis buffer for recombinant proteins, pH 8.0  

10 mM Tris HCl (pH 8.0) 

400 μM PMSF/PTSF 

 

Protein Gel Electrophoresis 

SDS-PAGE running buffer (Laemmli buffer), pH 8.5 

25 mM Tris 

192 mM glycine 

1% w/v SDS 

4X SDS-PAGE loading buffer 

200 mM Tris HCl (pH 6.8) 

40% v/v glycerol 

8% w/v SDS 

10 % v/v 2-mercaptoethanol  

Sterile deionized water to adjust final volume 

Western blot transfer buffer, pH 7.4 

25 mM Tris 

192 mM glycine 

20% v/v methanol 

Store at 4°C 

Immunoblot blocking buffer 

5% non-fat dry milk dissolved in PBS buffer containing 0.1% v/v Triton X-100 
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Buffer always prepared fresh 

Antibiotic Solutions 

 

Stock: 100 mg/mL ampicillin prepared in deionized water and filter sterilized  

Final working concentration: 100 μg/mL 

Stock: 50 mg/mL kanamycin prepared in deionized water and filter sterilized  

Final working concentration: 50 μg/mL 

 

Plasmids and E. coli Strains 

New England Biolabs (NEB) 5-alpha Competent Escherichia coli (E. coli)– for cloning work  

NEB BL21(DE3) Competent Escherichia coli (E. coli) –for protein expression 

pCR 4Blunt-TOPO vector (Invitrogen)- for confirming the sequence of PCR product 

pET DUET-1 vector (Novagen) – for protein expression 

 

Methods 

Polymerase chain reaction (PCR) 

Typically, 20 uL PCR reactions were set up in 0.2 ml thin-walled PCR tubes. Each reaction contained a 

high-fidelity DNA polymerase and PCR buffer both from Invitrogen, 250 uM of each dNTP, 200 nM each 

of forward primer [Von FacA: BamHI:F, 5’-GGATCCGATGAACCCAGCGACTGAA, Tm: 62.8 °C] and 

reverse primer [Von FacA: HindIII:R, 5’-AAGCTTCTATCGCGTCATCGACAAAT, Tm: 58.8 °C], 100 

ng of genomic DNA purified from the model organism as template, and 2 units of DNA polymerase. The 

Bio-Rad MyCycler thermal cycler was pre-heated to 95 °C before inserting the PCR tubes. A typical PCR 

protocol consisted of an initial denaturation step at 95 °C for 3 minutes, an initial 5 repeat cycles of 

denaturation (95 °C for 30 s), annealing (47.2 °C for 30 s) and extension (72 °C for 2.5 minutes), and 25 

repeat cycles of denaturation (95 °C for 30 s), annealing (52.2 °C for 30 s) and extension (72 °C for 2.5 
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minutes). These cycles were followed by a final extension step at 72 °C for 10 minutes, and a hold step at 4 

°C.  

TOPO Cloning & Transformation 

The DNA amplification product was inserted into a Zero Blunt TOPO Vector using the Invitrogen Zero 

Blunt TOPO PCR Cloning Kit. All protocols were taken from the Invitrogen user manual. In a PCR tube, 

10 μL of PCR product was combined with 1 μL of salt solution and 1 μL of the TOPO Vector, both taken 

from the Invitrogen kit. The solution was gently mixed with a pipette, then incubated undisturbed for 30 

minutes at room temperature. After incubation, 100 uL of chemically competent NEB α (NEB) E. coli were 

gently added to the TOPO reaction and incubated for 30 minutes on ice. The E. coli cells were then 

subjected to heat shock at 42° C for one minute, incubated on ice for one minute, then incubated for one 

hour with shaking at 37 °C in 250 μL of SOC medium to allow for recovery. The E. coli containing the 

TOPO vector were able to grow on the media plates containing kanamycin since the gene encoding a 

kanamycin resistance protein was present in the TOPO vector. Individual colonies were streaked onto 

similar LB plates containing the appropriate amount of kanamycin for short-term storage at 4 °C. Liquid 

overnight culture of 5 mL of LB media and 50 μg/mL of kanamycin were inoculated with samples from 

selected streak plates. The plasmids were then isolated from the bacterial cultures using the Qiagen Plasmid 

Miniprep Kit. The purified DNA was quantified using NanoDrop to determine the exact concentration 

along with approximate purity of the purified DNA sample based on the ratio of the double-stranded DNA 

to the protein contamination: 260/280 nm  (Fisher Scientific).  

Agarose Gel Electrophoresis 

To separate and analyze the nucleic acids, the technique of agarose gel electrophoresis was used. The 0.8% 

agarose gels were prepared in TBE buffer. A 1 kb dsDNA marker (NEB) and 6X loading buffer (2.5% 

Ficoll, 11 mM EDTA, 3.3 mM Tris-HCl pH 8.0, 0.017% SDS, 0.015% Bromophenol Blue) were purchased 

from New England Biolabs Inc. Loading buffer was added to samples and the gels were subjected to 100 

volts until the bromophenol blue tracking dye migrated approximately ¾ down the length of the gel. The 

GELS were stained by using 0.5 μg/ mL ethidium bromide for ten minutes, and then destained in distilled 
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water for an additional ten minutes. The nucleic acids were visualized under UV light and analyzed using 

gel analysis software, VersaDoc (BioRad Laboratories, Hercules, CA). 

Restriction Enzyme Digestion of DNA 

Restriction enzyme digestion of plasmid DNA was carried out in a 40 μL reaction. Each reaction contained 

20 μL of pET DUET-1 vector (26 ng/μL), 2 μL each of 10x NEB Buffer 2 and NEB Buffer 3, 12 μL of 

sterile water, 1 μL of HindIII and 1 μL of BamHI (both from New England Biolabs). The two restriction 

enzymes were the last components added to the reaction mixture. The 40 μL mixture was placed in a 37 °C 

water bath overnight before gel electrophoresis. Agarose gel electrophoresis was then used to confirm the 

presence of the cbbO gene. After analysis with restriction digestion, the TOPO plasmid containing the 

cbbO gene was sent to Eurofins MWG Operon Inc. for sequence determination of the inserted DNA.  

DNA recovery from agarose gels 

To recover the DNA from a gel, the band of interest was excised using a clean razor blade, and the excised 

fragment was transferred to a 1.5 mL microcentrifuge tube. The GeneClean Gel DNA Recovery Kit 

Protocol was used to purify the DNA from the gel fragment. The gel piece was dissolved in a volume of 

NaI solution corresponding to three times its weight. The gel slice and NaI solution were incubated to melt 

the agarose. The reaction tube was placed in a 45 °C -55 °C water bath for 1 minute. The contents of the 

tube were mixed by gently pipetting up and down. The incubation was continued until all the agarose was 

dissolved. The amount of GLASSMILK
©
 needed was calculated and added to the sample and mixed gently 

using a pipette. The sample was then incubated at room temperature for 5 minutes. Then the 

GLASSMILK
©
 with the bound DNA was pelleted by centrifugation at 14,000 x g for 5 s. The supernatant 

was discarded. Five hundred μL prepared NEW Wash was added and the pellet resuspended. The sample 

was centrifuged again at 14,000 x g for 5 s and the supernatant once again discarded. This wash step was 

repeated once. The pellet was allowed to dry and a volume of water equal to that of the amount of 

GLASSMILK
©
 initially added was used to resuspend the pellet. The sample was centrifuged at 14,000 x g 

for 30 s. The supernatant containing the DNA was carefully separated by pipetting into a fresh tube.  
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DNA Ligation reaction 

For ligation of the cbbO gene into the pET DUET-1 vector (Novagen), a 10 μL reaction volume was used. 

The reaction mixture included 1 μL of pET DUET-1 expression vector (26 ng/μL) linearized with the 

restriction enzymes Bam HI and Hind III, 2 μL of 10x T4 DNA Ligase Reaction Buffer (NEB), and 1 μL of 

T4 DNA ligase (NEB). Ligation reactions were incubated at 16 °C overnight and used to transform 

chemically competent NEB α E. coli cells as described previously. 

Colony Lysis of Transformants and Restriction Enzyme Digestion  

Following transformation, 30 well-separated E. coli colonies that had grown on selective, ampicillin-

containing medium were re-streaked onto a patch plate and allowed to grow overnight. Using a small, 

sterile disposable pipette tip, a portion of each patch was transferred to 3 μL of water in a 0.5 mL microfuge 

tube, and the bacteria were re-suspended. Then 8 μL of Colony Lysis Buffer (pH 8.0) were added to each 

microfuge tube and mixed by vortexing the sample briefly. Each sample was heated at 100 °C for 30 s and 

allowed to cool to room temperature. Then a 4 μL reaction mixture containing 1.4 μL of 10X NEB Buffers 

2 and 3 (1:1 ratio; pH 7.9), 0.2 μL of 1 mg/mL Bovine Serum Albumin (BSA), 0.5 μL of BamHI, and 0.5 

μL of HindIII was added to each sample. The samples were placed in a water bath and incubated at 37 °C 

for 30 minutes. The cellular debris of each sample was pelleted by centrifugation at 14,000 rpm for 1 

minute, and 2.5 μL of agarose gel tracking dye (pH 8.0) were mixed with each sample supernatant before 

loading onto an agarose gel for electrophoresis. Following electrophoresis, the gel was allowed to stain 

with ethidium bromide for 10 minutes. The DNA was visualized using the VersaDoc System (BIO-RAD). 

The colonies that showed evidence of an insert were targeted for plasmid DNA preparation and restriction 

digestion.  

Small Scale Protein Expression 

Two-milliliter overnight cultures of E. coli transformants that contained the pET DUET-1 plasmid with the 

appropriate insert were grown in Luria-Bertani (LB) broth with 100 μg/mL of ampicillin. Aliquots (0.5 mL) 

of these cultures were used as an inoculum for 50 mL working cultures, which were incubated at 37 °C 
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with agitation for 2.5 hours. Once the cultures reached an optical density of 0.6 to 0.8 at a wavelength of 

600 nm, 1-mL aliquots were removed and centrifuged at 10,000 X g for 3 minutes. The supernatants were 

discarded and the pellets were placed on ice (un-induced samples). To the remaining cultures isopropyl-β-

D-thiogalactoside (IPTG) was added (0.3 mL) to a final concentration of 0.6 mM. The cultures were 

incubated at 37 °C for 5 hours or at 25 °C overnight, before 1 mL samples were removed and centrifuged 

as before (induced samples). The induced and un-induced samples were re-suspended in 100 μL of PBS 

buffer (pH 7.4). For sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, 5 

μL of the suspensions were mixed with 5 μL of 4X Laemmli Loading Buffer, and 10 μL of distilled water. 

The mixture was boiled for 10 minutes and loaded onto a vertical 12% Laemmli SDS-polyacrylamide gel. 

The samples were subjected to electrophoresis at 100 V for 1.5 hours. The gels were washed in distilled 

water for 30 minutes, stained with Gel-Code Blue (Fisher Scientific) overnight and destained in sterile 

water to visualize the polypeptide bands. Induced and un-induced samples were analyzed using SDS-

PAGE. 

Large Scale Protein Expression 

Protocols for induction and purification of the HT-CbbO protein were taken from Life 

Technologies pProEX HT Prokaryotic Expression System Protocol. Based on the small-scale expressions, 

one of the E. coli cultures found to express recombinant CbbO was prepared for protein production by 

adding 15 mL of the overnight starter culture to 1 L of LB media along with the appropriate amount of 

ampicillin antibiotic. The culture was shaken at 37 °C for four hours until the optical density at 600 nm 

(OD600) was approximately 0.6. Production of T7 RNA polymerase and transcription of the cbbO gene 

were induced by addition of 0.5 mM IPTG. Cells were incubated with shaking at 225 rpm at 30 °C for 

another 4 hours before they were harvested by centrifugation at 10,000 x g for 10 minutes. Cell pellets were 

stored at -20 °C until they were used. The bacterial pellet was then re-suspended in 40 mL of Lysis buffer 

and lysed by three passages through a chilled French pressure cell at 138 MPa. The lysed cell suspension 

was centrifuged for 10 minutes at 10,000 x g to remove the cell debris, and unbroken cells. The crude 

extract, supernatant, and pellet were analyzed by SDS-PAGE, using 5 uL of each suspension.  
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Affinity Chromatography 

Using the protocol taken from Life Technologies, the resulting 40 mL of supernatant was loaded onto 4 mL 

of Ni-NTA resin equilibrated with wash buffer A and 0.5 mM PMSP/PTSF and agitated on a rotary shaker 

for 24 hours at 4 °C to maximize binding. The supernatant was then allowed to flow through the Ni-NTA 

column and the resulting resin was washed with 40 mL of wash buffer A containing 20 mM imidazole, 

followed by 20 mL of wash buffer B without imidazole, and finally 20 mL of wash buffer A containing 20 

mM imidazole to remove contaminating proteins with non-specific binding. The CbbO protein was then 

eluted from the column using elution buffer containing 300 mM imidazole. The purified protein samples 

were dialyzed against 10 mM Tris HCl at pH 8.0 to remove the imidazole and stored at -20 °C for further 

use in producing antibodies. Then, SDS-PAGE was used to verify the presence of the protein. 

 

Estimation of Protein Concentration 

A BCA protein assay (Pierce, Rockford, IL) was performed using a Beckman Coulter DU 800 

Spectrophotometer (Beckman Coulter, Fullerton, CA). Bovine Serum Albumin (BSA) standards were 

prepared using 1-40 μg total protein per sample. Samples contained protein and distilled water to a 100 μL 

total volume and 900 μL of BCA reagent was added. Samples were incubated for 30 minutes at 37 °C. 

Using the standard curve generated by the BSA standards, protein content of each sample was determined.  

Western Blotting 

To verify the presence of the recombinant CbbO protein, a western blot was performed using antibodies 

raised against the six histidine residue tag. The protein was separated using an SDS-PAGE following the 

protocol described earlier. The protein was transferred to a nitrocellulose membrane by lateral electro-

transfer at 250 mA for 30 minutes at 4 °C using Western Transfer Buffer (as described in the buffer 

protocol). To develop the blot, the membrane was soaked in 5% milk solution (PBS with 0.1% Triton) to 

prevent non-specific binding to the membrane. For antibody recognition a 1:4000 dilution of Anti CbbO 

Rabbit Polyclonal from Cocalico Biologicals was used as the primary antibody. The secondary antibody 
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was a 1:10,000 dilution of a commercial Goat Anti-Rabbit IgG antiserum, with 5% milk and PBS-0.1% 

Triton washes in between each antibody. Thermo Scientific SuperSignal West Pico Chemiluminescence 

Substrate was used to develop the blot for imaging. The chemiluminescence agent was prepared by adding 

750 uL of Peroxide solution and 750 uL of Luminol/Enhancer solution. The blot was incubated for 2 

minutes before being imaged using the VersaDoc Imager from BioRad.  

RESULTS 

PCR amplification and cloning of the cbbO gene into the TOPO vector 

Primers were designed to amplify the chosen region of DNA from H. neapolitanus by the PCR technique. 

The amplified DNA was then visualized using gel electrophoresis (Figure 9). The “S” lane represents the 

standard 1 kb DNA ladder used for size comparison of the amplified gene of interest. Lanes 1 and 2 

represent the same amplified cbbO gene. A strong band corresponding to the gene of interest was found 

between standard bands 3 kb and 2 kb. This result was consistent with the expected gene size of 2.367 kb.  
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Figure 7: PCR amplification of the cbbO gene. “S” lane represents the standard with the respective size of 

the gene indicated with an arrow. Lanes 1 and 2 represent the amplified cbbO gene.  

The gene of interest was cloned into the pCR 4Blunt-TOPO vector and the resulting cbbO (TOPO) plasmid 

used to transform the NEB alpha strain of E. coli. Overnight cultures of 3 mL were grown using ten 

colonies along with 50 ug/uL of kanamycin. The plasmid DNA was purified from the overnight cultures 

using Qiagen mini-prep kit following manufacture protocols.  Restriction digest was performed on the 

purified plasmid DNA using Bam HI and HindIII to verify the presence of the cbbO insert. Gel 

electrophoresis was preformed to confirm the gene of interest (Figure 10). The lane “S” represents the 1 kb 

DNA ladder standard. The linearized TOPO vector was found to be contained in all 10 samples between 

standard bands 4 kb and 3 kb, as expected. This was consistent with the known size of the TOPO vector, 

3.956 kb. Lanes 3, 4, 7, 8, 9, and 10 showed the excised gene of interest between standard bands at 3 kb 

and 2 kb. This result was consistent with the expected gene size of 2.367 kb. Small fragments could be seen 

in lanes 1,2, 5, and 6 but none of these samples also contained a band large enough to represent the gene of 
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interest. 

 

Figure 8: Restriction digest of plasmids containing the amplified cbbO gene cloned in the TOPO vector. 

Lane “S” is the standard and lanes 1-10 represent the enzyme-digested cbbO excised from the TOPO 

vector. The vector band was found between standard bands of 4 and 3 kb, and the gene of interest (2.1 kb) 

was found between standard bands of 3 and 2 kb. 

 

Cloning of the cbbO gene into the protein expression vector pET Duet-1 

The sample of the TOPO cloning reaction (Figure 10, lane 4) contained a band that likely represented the 

cbbO gene was used for the purification of the insert for insertion into the pET DUET-1 vector. Digestion 

with Bam HI and HindIII was designed to insert the cbbO gene in the same reading frame as the 6-His 

protein tag. This measure ensured that the CbbO protein would be translated with a N-terminal 6-His tag, 

which aids in its purification from the cellular supernatant by affinity chromatography. Selected 

transformants of NEB alpha E . coli were chosen for recombinant plasmid DNA purification and restriction 

digestion. Gel electrophoresis was performed to confirm the presence of the cbbO gene fragment (Figure 

11). The lane “S” represents the 1 kb DNA ladder standard. Lanes 1-5 represent restriction enzyme-

digested plasmids of individual clones. The pET DUET-1 vector band was observed in all five samples. 

The band representing the cbbO gene was expected to migrate between standard bands of 3 and 2 kb and 

was present in all five samples. However, samples 3 and 5 seem to also contain a significant quantity of 

another nucleic acid fragment larger than the cbbO gene and the protein expression vector. This band may 
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represent the cbbO gene attached to the linearized pET DUET-1 vector. This vector along with the insert 

would correspond to ~8.1 kb in size. Samples 2 and 4 were chosen for sequencing. The sequencing results 

confirmed the sequence of the cbbO gene without mutations. Figure 8 represents the final vector map of the 

cbbO gene cloned into the pET DUET-1 plasmid. This construct was eventually used for protein 

expression.  

 

Figure 9: Plasmid DNA digests containing cbbO in the pET Duet-1 Protein Expression Vector. Lanes 1-5 

represent DNA samples from individual clones. The band representing the gene of interest migrated 

between standard bands of 3 and 2 kb. Samples 2 and 4 were sent for sequence confirmation. Lane “S” 

represents the location of the size standard bands.  

Small-scale protein expression of Histidine Tagged-CbbO (HT-CbbO) 

The pET DUET-1 construct containing the cbbO gene was transformed into the BL21DE3 chemically 

competent strain of E. coli, which is more suitable to protein expression than NEB5alpha. Overnight 
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cultures of 5 mL were then used for small-scale protein expression to test whether the selected clones 

expressed the CbbO protein. The small-scale protein expression was carried out following the protocol 

described in the materials and methods section. Figure 12 shows the protein samples after separation on an 

SDS-PAGE gel and after being stained with Coomassie stain. The even-numbered lanes represent un-

induced samples and the odd-numbered lanes represent induced samples. The inducer chemical IPTG was 

used to overexpress the gene of interest (cbbO) in the samples. The lane marked “H” represents purified 

carboxysomes from H. neapolitanus and the lane marked “S” represents the protein standard. The expected 

molecular weight of the His-tagged recombinant CbbO protein was 90.14 kDa. As expected in Figure 12, 

lanes 2, 4, and 6 containing the induced samples showed the distinct protein band between 118.6 kDa and 

78.9 kDa representing the CbbO protein. The CbbO protein migrated between standard bands 118.6 kDa 

and 78.9 kDa.  

 

Figure 10: Coomassie stain denaturing Polyacrylamide Gel of the samples from the small scale protein 

expression. The odd-numbered lanes represent un-induced samples and even-numbered lanes represent 

induced samples. The lane marked “H” represents purified carboxysomes from wild-type Halothiobacillus 

neapolitanus. Molecular Weight of the His-tag protein: 90.14 kDa. The arrow indicates the presence of the 

protein.  
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Purification of HT-CbbO using affinity column chromatography 

Larger cultures (1 L) were then grown from the 5 mL overnight cultures of the pET DUET-1 vector 

containing the cbbO gene transformed into the BL21DE3 E. coli strain from samples 2 and 4. Protein 

expression was performed by inducing with IPTG. The HT-CbbO protein was purified from the induced 

cultures using Ni-NTA affinity chromatography (see Materials and Methods for description). Samples of 

each fraction were analyzed by separating them on an SDS-PAGE (Figure 13). Lane “S” represented the 

Bio-Rad protein standard. An arrow indicates the presence of the HT-CbbO protein.  Significant quantities 

of the protein were seen in: [the lysed bacterial supernatant (Lane 1), bacterial pellet (Lane 2), initial flow-

through (Lane 3), and the first three eluates (lanes 4, 5, and 6) containing 100, 200, and 300 mM imidazole 

respectively]. Minimal amounts of the purified protein were observed in the three eluates. It may also be 

seen that more protein was present in the lysed bacterial supernatant and initial flow through fractions than 

the pelleted bacterial fraction. The eluates, lanes 4, 5, and 6 all show the protein in decreasing 

concentrations and possibly increasing purity due to increasing lack of background bands. All three eluates 

were combined for each sample and a BCA protein assay was used to determine the quantity of protein 

present. For the protein sample from the column elutions run from sample 2 and 4, approximately 0.7 

mg/mL and 0.9 mg/mL of protein were obtained for samples 2 and 4 respectively.  
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Figure 11: SDS PAGE samples from large scale protein expression. Lane 1 represents the lysed bacterial 

supernatant sample. Lane 2 represents the lysed bacterial pellet. Lane 3 represents the column flow-

through. Lanes 4,5, and 6 show eluates 1, 2, and 3 respectively. Lane “S” represents the molecular weight 

standards. An arrow indicates the presence of the CbbO protein.  

Western blot analysis of HT-CbbO 

Protein samples 2 and 4 were then sent to Cocalico Biologicals Inc. for the generation of polyclonal 

antibodies in rabbits. A Western was completed for the 1
st
 and 2

nd
 test bleed (Figure 14). The figure, 14 a 

represents the Coomassie stain and 14 b represents the Immunoblot. For the 2
nd

 bleed, a 1:3,000 dilution 

was used for the primary antibody and a 1:10,000 dilution was used for the secondary antibody. Very little 

or no target antigen CbbO seemed to be present in the crude extracts. Lane “S” represents the protein 

standards. Lane “H’ represents isolated purified carboxysomes from H. neapolitanus. Lane 1 represents the 

semi-purified CbbO protein. The protein of interest was perhaps visible between standard bands 118.6 kDa 

and 78.9 kDa, and is represented by the arrow. However, the CbbO protein band was very faint. No target 

antigen CbbO was visible in the isolated purified carboxysomes. 
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Figure 12: Results of a Western Blot using the 2
nd

 test Bleed of a polyclonal antibody generation. A. 

Represents the Coomassie stain and B represents the immunoblot. A 1:3,000 dilution was used for the 

primary antibody and a 1: 10,000 dilution was used for the secondary antibody. The protein of interest is 

perhaps visible between standard bands 118.6 kDa and 78.9 kDa, and is represented by the arrow. The 

lanes labeled “S” represent the standards. Lanes “H” represent the isolated purified carboxysomes from H. 

neapolitanus. The 1
st
 lane represents the purified CbbO protein samples.  

 

DISCUSSION & CONCLUSION 

The cbbO gene was successfully amplified using the Polymerase Chain Reaction technique (Figure 9). 

Minimal background was seen in both sample lanes, suggesting selected proper amplification of the 

selected genomic sequence only.  It was then cloned into the TOPO vector. In lane 6, a nucleic acid band 

kDa 
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can be seen above the standard kb that are expected for the size of the gene of interest and the empty TOPO 

vector (see Figure 10). The gene of interest was then cloned into the pET DUET-1 protein expression 

vector. Once again, lanes 2, 3, and 5 seem to indicate a nucleic acid band above the standard kb size 

expected for the cbbO gene and the empty pET DUET-1 vector (see Figure 11). The results of the TOPO 

and pET DUET-1 cloning reactions could indicate an incomplete digestion by the restriction enzymes, 

BamHI and HindIII. Small cultures of the pET DUET-1 construct were then grown and three samples were 

induced with IPTG and three were not. The samples were then analyzed using SDS-PAGE and the resulting 

gel clearly showed little or no protein expression for the un-induced samples and protein expression for the 

induced samples (see Figure 12). This result was likely due to the fact that the original pET DUET-1 vector 

used to create the recombinant pET DUET-1 vector with the inserted cbbO gene, required an inducer to 

activate transcription at the ATG start region (see Figure 8). Once again small cultures were grown for 

purposes of protein expression. The culture was spun down to remove the media supernatant and the 

bacterial pellet re-suspended. A sample of this lysed bacterial supernatant was set aside. Then, the re-

suspended bacteria was lysed and spun in order to separate the cellular components. The supernatant 

containing the lighter density protein was purified using a Ni-NTA column. The pellet of lysed cellular 

components was also re-suspended and set aside. Once the lysed supernatant had passed through the 

column, additional eluates were performed with wash buffer to elute protein remaining in the column. After 

lysis, most of the protein was found in the expected purified supernatant fraction (lane 3), though some 

protein could be seen in the lysed pellet fraction as well (lane 2). It has been hypothesized that protein was 

seen in the denser pellet fraction because of protein mis-foldings causing the protein to reside in inclusion 

bodies rather than the cytosol. For sample 2, we obtained 0.70 mg/mL of protein and for sample 4, we 

obtained 0.93 mg/mL of protein. As determined by a BCA assay, this was a significant amount of protein. 

In order to further study this protein, were sent to an outside firm for the generation of polyclonal 

antibodies. Once the antibodies were received, their affinity for the protein was tested using a Western and 

Immuno Blot (see Figure 14 a and 14 b). In the lanes “H” the anti-body was used to probe for the presence 

of the protein in wild-type, isolated pure carboxysomes. No protein band of the appropriate size was seen, 

however. Therefore, it was hypothesized that the CbbO protein is not sequestered into carboxysomes itself, 

though it still may function to help carboxysomes sequester RubisCO. Additionally, the antibody was able 
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to be successfully used as a probe for the CbbO protein as seen by the lanes, 1, in which the CbbO protein 

was present as indicated by its position relative to the protein standard. The antibody displayed cross-

reactivity as evidenced the presence of the immunoblot signal.  

The cbbO is a gene encoded downstream of the traditional carboxysome operon in H. neapolitanus which 

can be expressed as a significant amount of soluble recombinant protein as determined by a BCA assay. 

The protein could also be used for generation of polyclonal antibodies. The efficacy of these antibodies 

remains to be seen.  

Future researchers should be able to complete a Western Blot for the final bleed in order to determine the 

efficacy of the antibody probe for the presence of CbbO protein. A radiometric RubisCO assay could also 

be performed with and without CbbO to elucidate the activase property of CbbO. Yet another avenue for 

future work would be to determine the structure of the CbbO protein. Determining the structure of the 

CbbO protein could prove advantageous in determining its biochemical role in the fixation of CO2 by 

RubisCO as well as contribute to a greater understanding of the mechanism for creating the intact 

carboxysome in vivo. Finally, future researchers may be able to confirm the involvement of CbbO in 

RubisCO packaging. The future work should be conducted in order to elucidate the importance of the 

CbbO protein in the structure and function of carboxysomes. This elucidation could be completed by 

knocking out the cbbO gene and by measuring the RubisCO enzyme activity in the carboxysome granules 

and observing the carboxysome structure using transformation electron microscopy.  
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