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ABSTRACT

LORENTZ INVARIANT SPACELIKE SURFACES OF CONSTANT MEAN

CURVATURE IN ANTI-DE SITTER 3-SPACE

by Jamie Patrick Lambert

August 2015

In this thesis, I studied Lorentz invariant spacelike surfaces with constant mean curvature

H = c in the anti-de Sitter 3-space H3
1(−c2) of constant curvature −c2. In particular, I

construct Lorentz invariant spacelike surfaces of constant mean curvature c and maximal

Lorentz invariant spacelike surfaces in H3
1(−c2). I also studied the limit behavior of those

constant mean curvature c surfaces in H3
1(−c2). It turns out that they approach a maximal

catenoid in Minkowski 3-space E3
1 as c→ 0. The limit maximal catenoid is Lorentz invariant

in E3
1.
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NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this text represents fairly standard mathematical and computational
usage. In many cases these fields tend to use different preferred notation to indicate the
same concept, and these have been reconciled to the furthest extent possible, given the
interdisciplinary nature of the material. In particular, the notation for partial derivatives
varies extensively, and the notation used is chosen for stylistic convenience based on the
application. While it would be convenient to utilize a standard nomenclature for this
important symbol, the many alternatives currently in the published literature will continue to
be utilized. The blackboard fonts are used to denote manifolds or standard sets of numbers,
e.g., R for the field of real numbers, C for the complex field, Z for the integers, and Q for
the rationals. When the blackboard fonts are used with subscripts and superscripts then it
is to denote spaces, an example of which is H3

1 for the anti-de Sitter 3-space.The capital
letters, A,B, · · · are used to denote domains of surfaces, including lowercase greek letters,
e.g., ϕ for parametric surfaces. Vectors are in bold font, e.g., v, and matrices are typeset in
parentheses, e.g., (·). In general the norms are typeset using double pairs of lines, e.g., || · ||,
and the absolute value of numbers is denoted using a single pair of lines, e.g., | · |. A single
pair of lines around matrices indicates the determinant of the matrix.

vii
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Chapter 1

Introduction

Surfaces of revolution in Euclidean 3-space have been an interesting topic in geometry due
to their geometric beauty which reflects the symmetry of Euclidean 3-space. Examples
of such surfaces include spheres, tori, the catenoid (the minimal surface of revolution),
unduloids (surfaces of nonzero constant mean curvature obtained by rolling an ellipse along
a fixed line, tracing the focus, and revolving the resulting curve around the line), and nodoids
(surfaces of nonzero constant mean curvature obtained by rolling a hyperbola along a fixed
line, tracing the focus, and revolving the resulting curve around the line).

One would also naturally be interested in studying surfaces of revolution in Minkowski
3-space. While there is no distinction between axes of rotation in Euclidean 3-space, in
Minkowski 3-space there are three distinct types of axes of rotation, namely spacelike axes,
timelike axis, and lightlike axes. Rotations about spacelike axes and timelike axis form a
group of the symmetries of Minkowski 3-space, called the Lorentz group. In relativity, such
rotations are called Lorentz transformations. In [2], Hano and Nomizu classified the surfaces
of revolution in Minkowski 3-space by studying profile curves. Those profile curves are
obtained by rolling quadratic curves along a spacelike axis or the timelike axis analogously
to the Euclidean 3-space case. In [4] and [5], the authors noted that the surfaces of revolution
in Minkowski 3-space studied by Hano and Nomizu are surface area minimizing while
holding a volume. They set up an area functional with volume constraint and used calculus of
variations to obtain the differential equations of profile curves for such surfaces of revolution
about a spacelike axis or the timelike axis. They also had an interesting discussion on how
to obtain such surfaces of revolution about lightlike axes.

One may wonder if we can consider surfaces of revolution in certain curved spaces; for
example, the well-known hyperbolic 3-space. It turns out that we can, but there is limited
rotational symmetry, namely SO(2) symmetry. Due to this limited rotational symmetry,
we cannot study profile curves by rolling quadratic curves along the axis of rotation as
done in Euclidean or Minkowski 3-space. In [6], Lee and Zarske considered the flat chart
model of hyperbolic 3-space of constant negative curvature−c2 and obtained the differential
equation of the profile curve. They constructed the surface of revolution with constant
mean curvature H = c in hyperbolic 3-space of constant negative curvature −c2 and noted
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that it converges to the catenoid, the minimal surface of revolution in Euclidean 3-space
as c→ 0. In Euclidean 3-space, minimal surfaces are characterized by mean curvature,
namely they are zero mean curvature surfaces. However, in hyperbolic 3-space there is no
connection between minimal surfaces and mean curvature. In [6] the authors considered the
area functional for surfaces of revolution and found the minimal surface of revolution as a
critical point of the area functional. This minimal surface too converge to the catenoid in
Euclidean 3-space as c→ 0.

There may be another curved space where surfaces of revolution can be considered. In
fact, there is one: anti-de Sitter 3-space. Due its resemblance with hyperbolic 3-space, it
is also called Lorentzian hyperbolic space. There are actually no rotational symmetries
in anti-de Sitter space but it has limited space-time symmetry, namely SO(1,1) symmetry.
However, we may consider Lorentz invariant (SO(1,1)-invariant) surfaces in anti-de Sitter
3-space analogously to surfaces of revolution in hyperbolic 3-space. Motivated by the
research done in [6], I studied Lorentz invariant spacelike surfaces with constant mean
curvature in anti-de Sitter 3-space for my master’s thesis. This thesis is organized as follows:
In chapter 2, I discuss some basic differential geometry of surfaces as preliminaries. In
chapter 3, I discuss the main results of my research.
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Chapter 2

Preliminaries

In this chapter, I discuss some basic differential geometry of surfaces in R3 that I need to
study the main results in chapter 3. Throughout this chapter, R3 is the space of ordered
triples

R3 = {(x1,x2,x3) : xi ∈ R, i = 1,2,3}.

It is regarded as a 3-dimensional differentiable manifold (in fact a 3-dimensional Riemannian
or pseudo-Riemannian manifold) but not necessarily as Euclidean 3-space.

2.1 Directional Derivatives and Covariant Derivatives

In order to do differential geometry, one should be able to differentiate functions and vector
fields. I begin with the notion of directional derivative of a function f in the direction of a
tangent vector v to R3 at p ∈ R.

Definition 1. Let f : R3 −→ R3 be a differential function on R3, and let v ∈ TpR3 where

TpR3 denotes the tangent space to R3 at p ∈ R3. Let α : (−ε,ε)−→ R3 be a differentiable

curve in R3 such that α(0) = p and α ′(0) = v. Then the directional derivative ∇v f of f in

v direction is defined by

∇v f =
d
dt
( f (α(t))|t=0. (2.1)

Example 1. Let R3 be Euclidean 3-space. Let f = x2yz with p = (1,1,0) and v = (1,0,−3).
In Euclidean 3-space, we may choose α(t) to be

α(t) = p+ tv

= (1,1,0)+ t(1,0,−3)

= (1+ t,1,−3t).

So the directional derivative ∇v f is computed to be

∇v f =
d
dt
( f (p+ tv))|t=0

=−3.
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Proposition 1. The directional derivative ∇v f can be given by

∇v f =
3

∑
i=1

vi

(
∂ f
∂xi

)
p

(2.2)

where vi denotes the i-th component of v for each i = 1,2,3.

Proof. It follows straightforwardly by the chain rule.

Remark 1. If R3 is Euclidean 3-space, (2.2) can be written as

∇v f = ∇ f ·v, (2.3)

where ∇ on the right denotes the gradient operator in Euclidean 3-space ∇ =
(

∂

∂x1
, ∂

∂x2
, ∂

∂x3

)
and · denotes the standard dot product.

Example 2. Let R3 be Euclidean 3-space. Let f = x2yz with p = (1,1,0) and v = (1,0,−3).
Then

∂ f
∂x

= 2xyz,
∂ f
∂y

= x2z,

∂ f
∂ z

= x2y

and so

∂ f
∂x

(p) = 0,
∂ f
∂y

(p) = 0,

∂ f
∂ z

(p) =−1.

Thus ∇v f is computed using (2.2) as ∇v f =−3.

The directional derivative is linear on v and on f , and satisfies the Leibniz rule.

Proposition 2. Let f ,g : R3 −→ R3 be differentiable functions, v,w ∈ TpR3, and a,b ∈ R.
Then

∇av+bw( f ) = a∇v f +b∇w f

∇v(a f +bg) = a∇v f +b∇vg

∇v( f g) = (∇v f )g(p)+ f (p)(∇vg)

.

(2.4)

In differential geometry, we not only need to differentiate functions but also vector
fields. The notion of directional derivative can be naturally generalized to define a way to
differentiate vector fields. The resulting derivative is called the covariant derivative. Let
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W be a vector field on R3. Then the covariant derivative of W in the v ∈ TpR3 direction,
denoted by ∇vW , is defined to be the initial rate of change of W (p) as p moves in the v
direction. That is,

∇vW =
d
dt

W (α(t))|t=0, (2.5)

where α : (−ε,ε)−→ R3 is a differentiable curve in R3 such that α(0) = p and α ′(0) = v.

Example 3. Let R3 be Euclidean 3-space. Let W be a vector field on R3 defined by

W = x2U1 + yzU3,

where U1, U2 and U3 are vector fields on R3 given by

U1(p) = (1,0,0)p, U2(p) = (0,1,0),

U3(p) = (0,0,1)p.

We calculate the covariant derivative ∇vW where v = (−1,0,2) ∈ TpR3 and p = (2,1,0).
As seen before, in R3 as Euclidean 3-space α(t) can be chosen to be α(t) = p+vt, so we
have

W (p+ tv) = (2− t)2U1 +2tU3

and
∇v =

d
dt

W (p+ tv)|t=0 =−4U1(p)+2U3(p).

Like directional derivatives, covariant derivatives also satisfy linearity (1 and 2) and
Leibniz rules (3 and 4).

Proposition 3. Let v,w ∈ TpR3 and Y,Z vector field on R3. Then

1. ∇av+bwY = a∇vY +b∇wY for all real numbers a and b.

2. ∇v(aY +bZ) = a∇vY +b∇vZ for all real numbers a and b.

3. ∇v( fY ) = (∇v f )Y (p)+ f (p)∇vY for all differentiable functions f .

4. ∇v〈Y,Z〉= 〈∇vY,Z(p)〉+〈Y (p),∇vZ〉, where 〈 , 〉 denotes the inner product on TpR3.

2.2 Shape Operators and Applications

Recall that in calculus the curvature of a unit speed curve can be found by differentiating
the normal vector field (acceleration) on the curve. One may also study the curvature of a
surface M in R3 by differentiating the normal vector field on M. Let p ∈M and N denotes
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a unit normal vector field on a neighborhood of p in M. For each tangent vector v ∈ TpM,
define

Sp(v) =−∇vN. (2.6)

Since1 〈N,N〉=±1, we obtain by differentiating

〈∇vN,N〉+ 〈N,∇vN〉= 2〈∇vN,N〉

= 0.

This means that ∇vN ∈ TpM, therefore (2.6) defines a linear map Sp : TpM −→ TpM. This
linear map Sp is called the shape operator of M at p. The shape operator is symmetric, i.e.

〈S(v),w〉= 〈v,S(w)〉

for v and w ∈ TpM. So it has real eigenvalues. The eigenvalues of S is called the principal
curvatures of M. As S is a 2×2 matrix, there can be at most two real eigenvalues κ1,κ2. The
average H = κ1+κ2

2 and the product K = κ1κ2 are called, respectively, the mean curvature

and the Gaussian curvature of M. Hence we have:

Proposition 4. Let S be the shape operator of a surface M in R3. Then the mean curvature

H and the Gaussian curvature K are given by

H =
1
2

trS (2.7)

K = detS. (2.8)

Let M be a parametric surface in R3, ϕ : D(u,v)−→ R3. Then the mean curvature H

can be calculated by the Gauss’ beautiful formula (see for instance [7])

H =
G`+En−2Fm

2(EG−F2)
, (2.9)

where N is a unit normal vector field on M and

E := 〈ϕu,ϕu〉, F := 〈ϕu,ϕv〉, G := 〈ϕv,ϕv〉,

` := 〈ϕuu,N〉, m= 〈ϕuv,N〉, n= 〈ϕvv,N〉.

The classical proof of (2.9) given in [7] is no longer valid for parametric surfaces in a curved
3-space but (2.9) still holds for parametric surfaces in a curved 3-space. For a general proof
see, for instance, [6] (Appendix A).

1As seen in the next chapter, a normal vector on a spacelike surface in R3 as a pseudo-Riemannian manifold
has negative squared norm.
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Chapter 3

Main Results

3.1 The Flat Chart Model of Anti-de Sitter 3-Space H3
1(−c2)

Let E4
2 denote the semi-Euclidean 4-space R4 with coordinates t̂, û, v̂, ŵ and the metric

ds2 =−(dt̂)2− (dû)2 +(dv̂)2 +(dŵ)2.

The anti-de Sitter 3-space H3
1(−c2) is defined by the hyperquadric in E4

2

−t̂2− û2 + v̂2 + ŵ2 =− 1
c2 .

The anti-de Sitter 3-space H3
1(−c2) has the constant negative sectional curvature−c2. While

the flat chart model of hyperbolic 3-space and de Sitter 3-space are well-known, the flat
chart model of the anti-de Sitter 3-space was not known. Some even believed that the anti-de
Sitter 3-space does not admit the flat chart model. However, my advisor Dr. Sungwook Lee
showed in [3] that the anti-de Sitter 3-space indeed admits the flat chart model. So, one may
study surfaces in the anti-de Sitter 3-space H3

1(−c2) analogously to surfaces in Euclidean
3-space. The flat chart model of H3

1(−c2) is obtained as follows ([3]): Let us consider an
open chart

U = {(t̂, û, v̂, ŵ) ∈H3
1(−c2) : û+ v̂ > 0},

and define the transformations:

t =
t̂

c(û+ v̂)
,

x =
ŵ

c(û+ v̂)
,

y =−1
c

logc(û+ v̂).

(3.1)

Then
ds2 = e−2cy{−(dt)2 +(dx)2}+(dy)2. (3.2)

R3 with coordinates (t,x,y) and the metric ds2 in (3.2), or (R3,ds2) for short, is called the
flat chart model of anti-de Sitter 3-space H3

1(−c2). Hereafter, I mean H3
1(−c2) by the flat

chart model (R3,ds2). As c→ 0, one can clearly see that H3
1(−c2) flattens out to Minkowski

3-space.
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3.2 Parametric Spacelike Surfaces in H3
1(−c2)

Let D be a domain1 and ϕ : D−→H3
1(−c2) which is an immersion. 〈 , 〉 denotes the inner

product on each tangent space TpH3
1(−c2) induced by the pseudo-Riemannian metric (3.2).

Definition 2. An immersed surface ϕ : D −→ H3
1(−c2) is said to be spacelike if both the

tangent vectors ∂ϕ

∂u and ∂ϕ

∂v are spacelike vectors, i.e.

〈∂ϕ

∂u
,
∂ϕ

∂u
〉> 0, 〈∂ϕ

∂v
,
∂ϕ

∂v
〉> 0.

Using the inner product, one can speak of conformal surfaces in H3
1(−c2).

Definition 3. ϕ : D−→H3
1(−c2) is said to be conformal if

〈ϕu,ϕv〉= 0,

|ϕu|= |ϕv|= e
ω

2 ,
(3.3)

where (u,v) is a local coordinate system in D and ω : D−→ R is a real-valued function in

D.

The induced metric on the spacelike surface ϕ is given by

ds2
ϕ = 〈dϕ,dϕ〉= eω{(du)2 +(dv)2}. (3.4)

If N denotes a unit normal vector field on a spacelike surface ϕ : D−→H3
1(−c2), then

we have:
〈N,N〉=−1, 〈N,ϕu〉= 〈N,ϕv〉= 0.

While (R3,ds2) appears to look similar to Euclidean 3-space, it is not a vector space.
But the cross product can be locally defined on each tangent space TpH3

1(−c2). The tangent
vectors v,w ∈ TpH3

1(−c2) can be represented as

v = v0(
∂

∂ t
)p + v1(

∂

∂x
)p + v2(

∂

∂y
)p,

w = w0(
∂

∂ t
)p +w1(

∂

∂x
)p +w2(

∂

∂y
)p,

(3.5)

where {( ∂

∂ t )p,(
∂

∂x)p,(
∂

∂y)p} is the canonical bases for TpH3
1(−c2). Then the cross product

v×w is defined by

v×w =

∣∣∣∣∣∣
−e2cy ∂

∂ t e2cy ∂

∂x
∂

∂y
v0 v1 v2
w0 w1 w2

∣∣∣∣∣∣
= e2cy{−(v1w2− v2w1)

∂

∂ t
+(v2w0− v0w2)

∂

∂x
}+(v0w1− v1w0)

∂

∂y

(3.6)

1A connected open 2-manifold.
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where p = (t,x,y) ∈ H3
1(−c2). We can also define a triple scalar product 〈u,v×w〉 as a

determinant

〈u,v×w〉=

∣∣∣∣∣∣
−e2cyu0 −e2cyu1 u2

v0 v1 v2
w0 w1 w2

∣∣∣∣∣∣ . (3.7)

Unlike the Euclidean case, the cross product and the inner product are not interchangeable.

〈u,v×w〉 6= 〈u×v,w〉.

Proposition 5. Let ϕ : M−→H3
1(−c2) be a spacelike parametric surface in H3

1(−c2). Then

on each tangent plane TpH3
2(−c2)

||ϕu×ϕv||2 = e4cy(F2−EG) (3.8)

where p = (t(v,w),x(u,v),y(u,v)) ∈H3
1(−c2).

Proof. It follows straightforwardly from a direct calculation.

Remark 2. If c→ 0, (3.8) becomes the familiar formula in Lorentzian case [4]

||ϕu×ϕv||2 = F2−EG.

Remark 3. The normal vector field ϕu×ϕv is a timelike vector i.e. F2−EG < 0. Hence in
geometry and physics the norm ||ϕu×ϕv|| is defined to be the proper time:

||ϕu×ϕv|| :=
√
−||ϕu×ϕv||2

= e2cy(u,v)
√

EG−F2.
(3.9)

The unit normal vector N of ϕ is then given by

N =
ϕu×ϕv

e2cy(u,v)
√

EG−F2
. (3.10)

In physics, the trajectory of a massive particle is a timelike path in spacetime. The physical
meaning of proper time is that it is the actual time measured on a physical clock carried
along the timelike path.

Let ϕ : M −→ H3
1(−c2) be a conformal spacelike surface and N a unit normal vector

field of ϕ . Also let S =

(
a b
c d

)
be the shape operator of ϕ with respect to the orthogonal

basis ϕu,ϕv of Tpϕ(M). Then
S(ϕu) =aϕu +bϕv ,

S(ϕv) =cϕu +dϕv .
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So,
〈S(ϕu),ϕu〉+ 〈S(ϕv),ϕv〉=ew(a+d)

=ewTrS

=2ewH .

Let v0 be fixed. Then ϕ(u,v0) a curve on the surface ϕ . Let N be restricted on this curve
ϕ(u,v0). Then S(ϕu) =−Nu. Differentiating 〈ϕu,N〉= 0 to the respect of u,

〈ϕuu,N〉=−〈ϕu,Nu〉

=〈ϕu,S(ϕu)〉 .

By similar calculation we obtain 〈S(ϕv),ϕv〉= 〈ϕvv,N〉. Therefore the mean curvature H is
calculated to be

H=
1
2

e−w(〈ϕuu,N〉+ 〈ϕvv,N〉)

=
1
2

e−w 〈4ϕ,N〉

where4= ∂ 2

∂u2 +
∂ 2

∂v2 .

Proposition 6. Let ϕ : M −→H3
1(−c2) be a conformal spacelike surface. Then the mean

curvature H of ϕ is computed to be

H =
1
2

e−w 〈4ϕ,N〉 . (3.11)

It can be readily seen that the formulas (2.9) and (3.11) coincide for conformal spacelike
surfaces.

3.3 Constructing Lorentz Invariant Spacelike Surfaces with CMC H = c in H3
1(−c2)

Note that the metric (3.2) is invariant under the Lorentz transformation (a hyperbolic
rotation) coshv sinhv 0

sinhv coshv 0
0 0 1

 , (3.12)

where −∞ < v < ∞ is a hyperbolic angle. So, H3
1(−c2) has SO(1,1) symmetry. Let us

consider the profile curve (h(u),0,g(u)) in the ty-plane. Rotating (h(u),0,g(u)) about the
y-axis via the hyperbolic rotation (3.12), we obtain a surface

ϕ(u,v) = (h(u)coshv,h(u)sinhv,g(u)). (3.13)

Here we used the word rotation but only in a metaphorical sense. The hyperbolic rotation
(3.12) is not really a rotation that we are familiar with in Euclidean 3-space. However
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the surface (3.13) shares similar properties to rotational surfaces in Euclidean 3-space. In
particular, the induced metric ds2

ϕ is given by

ds2
ϕ = e−2cg(u)[{−(h′(u))2 +(g′(u))2}du2 +(h(u))2dv2] (3.14)

and this does not depend on the hyperbolic angle v analogously to rotational surfaces in
Euclidean space. I call surfaces of the form (3.13) Lorentz invariant surfaces. If g′(u) 6= 0
for all u, (3.13) has a parametrization of the form

ϕ(w,v) = ( f (w)coshv, f (w)sinhv,w).

So without loss of generality we may assume that g(u) = u in (3.13). From now on, I only
consider Lorentz invariant surfaces of the form

ϕ(u,v) = (h(u)coshv,h(u)sinhv,u). (3.15)

I now calculate the mean curvature of the Lorentz invariant surface (3.15) using Gauss’
formula (2.9). First, E,F,G are calculated to be

E =−e−2cuh′(u)2 +1,

F = 0,

G = e−2cuh(u)2.

Since I want ϕ(u,v) to be conformal, I require that E = G. Hence I obtain

(h(u))2 =−(h′(u))2 + e2cu. (3.16)

Also the quantities `,m,n are calculated to be

`=− h′′(u)h(u)√
−(h(u))2[−e−2cu +(h′(u))2]

,

m= 0,

n=− (h(u))2√
−(h(u))2[−e−2cu +(h′(u))2]

.

Hence, the mean curvature H is given by

H =−1
2

h(u)h′(u)−h′′(u)2 + e2cu

[e−2cu(h′(u))2−1]
√
−(h(u))2[−e2cu +(h′(u))2]

. (3.17)

Using the conformality condition (3.16), (3.17) can be simplified as

H =
h′′(u)+h(u)
−2e−2cu(h(u))3 . (3.18)
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Differentiating (3.16), I obtain

h′(u)(h′′(u)+h(u)) = ce2cu. (3.19)

From (3.18) and (3.19) we see that if H = 0 then c = 0. Therefore, the following proposition
holds.

Proposition 7. There are no Lorentz invariant conformal spacelike surfaces of H = 0 in

H3
1(−c2).

Those who are familiar with maximal spacelike surfaces in Minkowski 3-space E3
1

may think that proposition 7 implies that there are no Lorentz invariant maximal spacelike
surfaces in H3

1(−c2). In Minkowski 3-space E3
1, a conformal spacelike parametric surface ϕ

is maximal if and only if4ϕ = 0 if and only if H = 0. However, this is no longer true in
anti-de Sitter 3-space H3

1(−c2) as4ϕ = 0 is not the harmonic map equation (see [3]) i.e.
maximal spacelike surfaces in H3

1(−c2) are not characterized by mean curvature. While
there are no Lorentz invariant conformal spacelike surfaces in H3

1(−c2), there are Lorentz
invariant maximal spacelike surfaces in H3

1(−c2). I will discuss this later.
Let H = c. Then from (3.18) I obtain the second order nonlinear differential equation

h′′(u)+h(u)+2ce−2cuh(u)3 = 0. (3.20)

This equation cannot be solved analytically. Hence I solve the equation numerically with
the aid of MAPLE software. (Appendix contains details of computational procedure I
performed.) The conformality condition (3.16) can be used to determine initial conditions.
For all of the numerical solutions in this thesis, I used the initial conditions h(0) = 0 and
h′(0) = 1.

If c→ 0, then the equation (3.20) becomes an equation of underdamped harmonic
oscillator

h′′(u)+h(u) = 0. (3.21)

This equation has a general solution

h(u) = c1 cosu+ c2 sinu.

This h(u) results a Lorentz invariant maximal spacelike surface in E3
1 called a Lorentz

invariant spacelike catenoid. Figure 3.1 shows a Lorentz invariant spacelike catenoid with
h(0) = 0 and h′(0) = 1. It is now shown that Lorentz invariant conformal spacelike surfaces
of constant mean curvature (CMC) H = c in anti-de Sitter 3-space H3

1 approach the Lorentz
invariant spacelike catenoid in Minkowski 3-space E3

1 as c→ 0. Figures 3.2 - 3.6 illustrate
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Figure 3.1: Spacelike Catenoid in E3
1

this limiting behavior. Each figure contains both Lorentz invariant spacelike surface of
constant mean curvature H = c in H3

1(−c2) (in blue) and the limit surface Lorentz invariant
spacelike catenoid in E3

1 (in red) for visual comparison.

(a) (b)

Figure 3.2: CMC H = 1: (a) Profile Curve h(u), −3 ≤ u ≤ 4.2, (b) Lorentz Invariant
Spacelike Surface in H3

1(−1)

3.4 Lorentz Invariant Maximal Spacelike Surface in H3
1(−c2)

I mentioned earlier that maximal spacelike surfaces in H3
1(−c2) are not characterized by

mean curvature. In this section, I find the Lorentz invariant maximal spacelike surface in
H3

1(−c2) as a critical point of the area functional using the calculus of variations.
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(a) (b)

Figure 3.3: CMC H = 1
2 : (a) Profile Curve h(u), −3 ≤ u ≤ 4.2, (b) Lorentz Invariant

Spacelike Surface in H3
1(−

1
4)

(a) (b)

Figure 3.4: CMC H = 1
4 : (a) Profile Curve h(u),−5≤ u≤ 5, (b) Lorentz Invariant Spacelike

Surface in H3
1(−

1
16)

By invoking a Euclidean picture, let us consider a rotational surface which is obtained
by rotating a curve t(y) in the ty-plane about the y-axis. I require the boundary conditions
(y1, t1) and (y2, t2) on the curve t(y) as seen in Figure 3.7. I want to find the curve t(y) so
that the area of the resulting rotational surface is a maximum. The area element dA from
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(a) (b)

Figure 3.5: CMC H = 1
8 : (a) Profile Curve h(u),−5≤ u≤ 5, (b) Lorentz Invariant Spacelike

Surface in H3
1(−

1
64)

(a) (b)

Figure 3.6: CMC H = 1
16 : (a) Profile Curve h(u), −5 ≤ u ≤ 5, (b) Lorentz Invariant

Spacelike Surface in H3
1(−

1
256)

Figure 3.7 is given by

dA = 2πt(y)ds = 2πt(y)

√
1− e−2cy

(
dt
dy

)2

dy. (3.22)

The area functional J is

J =
∫ y2

y1

2πt(y)

√
1− e−2cy

(
dt
dy

)2

dy. (3.23)
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t

y

ds

(y

t(y)

1, 1t )

(y
2
,t2)

Figure 3.7: Surface of Revolution in H3
1(−c2)

Remark 4. I obtained the area functional (3.23) from a Euclidean perspective of rotational
surfaces. But there is no rotation in the ty-plane in Euclidean sense. So how can I justify
the functional (3.23)? For one, the area functional (3.23) is obtained by mimicking a
Euclidean rotation and we may as well accept (3.23) as the definition of area functional
for spacelike surfaces in H3

1(−c2). On the other hand, the area of a parametric surface
ϕ(u,v) = (t(u,v),x(u,v),y(u,v)) in H3

1(−c2) is given by∫ ∫
D
||ϕu×ϕv||dudv =

∫ ∫
D

ecy(u,v)(EG−F2)dudv (3.24)

which is consistent with the area of a parametric surface in Euclidean 3-space. (Recall the
way ||ϕu×ϕv|| is defined in Remark 3.) So this may reasonably justify the way the area
functional (3.23) is obtained.

Let2

f (t, t ′,y) =
√

1− e−2cy(t ′)2,

where t ′ = dt
dy . I find a critical point of the area functional (3.23) by solving the Euler-

Lagrange equation (see, for instance, [1])

∂ f
∂ t
− d

dy
∂ f
∂ t ′

= 0. (3.25)

2I neglect the constant 2π as it has no effect on the solution of the variational problem.
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The Euler-Lagrange equation (3.25) is equivalent to

−(t ′)2 + e2cy− ce−2cytt ′(−(t ′)2 + e2cy)− ctt ′+ t ′′t = 0. (3.26)

I require the conformality condition (3.16) i.e.

(t(y))2 =−(t ′(y))2 + e2cy. (3.27)

The resulting equation is
t ′′− c(1+ e−2cyt2)t ′+ t = 0. (3.28)

The second order nonlinear equation (3.28) cannot be solved analytically so I solve it
numerically. I use the same initial condition t(0) = 0 and t ′(0) = 1 for the numerical solution.
Figure 3.8 shows the profile curve t(y) and the Lorentz invariant maximal spacelike surface
in H3

1(−1).

(a) (b)

Figure 3.8: (a) Profile Curve t(y), −3≤ y≤ 4.2, (b) Maximal Lorentz Invariant Spacelike
Surface in H3

1(−1)

As c→ 0, the equation (3.28) becomes the equation of underdamped simple harmonic
oscillator (3.21). So, we see that Lorentz invariant maximal spacelike surfaces in H3

1(−c2)

also approach the Lorentz invariant spacelike catenoid in E3
1. Figures 3.9 - 3.11 illustrate

this limiting behavior of Lorentz invariant maximal spacelike surfaces in H3
1(−c2). Each

figure contains both Lorentz invariant maximal spacelike surface in H3
1(−c2) (in blue) and

the limit surface Lorentz invariant spacelike catenoid in E3
1 (in red) for visual comparison.
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(a) (b)

Figure 3.9: (a) Profile Curve t(y), −3≤ y≤ 4.2, (b) Maximal Lorentz Invariant Spacelike
Surface in H3

1
(
−1

4

)

(a) (b)

Figure 3.10: (a) Profile Curve t(y), −3≤ y≤ 4.2, (b) Maximal Lorentz Invariant Spacelike
Surface in H3

1
(
− 1

16

)
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(a) (b)

Figure 3.11: (a) Profile Curve t(y), −3≤ y≤ 4.2, (b) Maximal Lorentz Invariant Spacelike
Surface in H3

1
(
− 1

64

)
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Appendix A

COMPUTER RESULTS

A.1 The Numerical Solution of (3.20) with MAPLE

The numerical solution of the differential equation (3.20) was obtained with the aid of
MAPLE software version 15. For the readers who want to try by themselves, here are the
MAPLE commands that I used to obtain the numerical solutions and the graphics. The
commands need to be run in the following order.

First we clear the memory.
restart:

In order to solve the equation numerically, we need a MAPLE package called DEtools.
with(DEtools):

Set the c value. In this example, we set c = 1.
c:=1;

Define the differential equation (3.20).
eq:=diff(h(u),u,u)+h(u)+2*c*exp(-2*c*u)*h(u)^3=0;

Define the initial conditions for the equation (3.20).
ic:=h(0)=0,D(h)(0)=1;

Get the numerical solution.
sol:=dsolve({eq,ic},numeric,output=listprocedure);

Define the numerical solution as a function Y .
Y:=subs(sol,h(u)):

For testing, we evaluate Y (0.8).
Y(0.8);

The output is
0.707356122085521

Now, we are ready to plot the profile curve h(u).
plot(Y,-3..4.2,scaling=constrained);

The output is Figure 3.2 (a).
Define the surface of revolution X .
X:=[Y(u)*cosh(v),Y(u)*sinh(v),u)];

Finally, we plot the Lorentz invariant spacelike surface X of CMC H = 1.
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plot3d(X,u=-3..4.2,v=-1..1,grid=[85,85],style=patchnogrid,

shading=zhue,orientation=[62,64]);

The output is Figure 3.2 (b).
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