
Duplicates in the repository:
remediation and
reconciliation in three
systems, including DataCite

Sunni Wong (Pratt Institute School of Information; Columbia
University Libraries, Ask a Librarian Intern)
Frédéric Duby (Columbia University Libraries)
Esther Jackson (Columbia University Libraries)
Kathryn Pope, (Columbia University Libraries)

Takeaways from
this presentation

➔ Everyone has dupes!

➔ What can you do to stop duplication

before it happens?

➔ What can you do to remediate dupes

efficiently, when they occur?

➔ Duplicates are their own ball of wax,

so any remediation process you

create is one that is outside of

canonical workflows, and can’t be

fully automated.

➔ Duplicate remediation will teach you

more about the interconnectedness

of your systems.

Where do duplicates come from?
● Self-upload form (Columbia authors)

● SWORD client batch-deposits (dissertations, articles)
○ Some scripts assume that if there is one failure in a batch, usually

due to max size being exceeded, then all other deposit attempts

within that batch are also failures, and will attempt to redeposit all

● Incorrect galleys from vendors

● Academic Commons catalogers (manual entry and bulk

deposit process)

Systems
relationship

Key terms:

● Hyacinth

● Academic Commons

● DataCite

Definitions
● Item: Parent metadata record for a work

● Asset: Child(ren) file(s) for a work (e.g. .pdf of an article,

.csv dataset for an article, .mp4 of a podcast)

● DOI: Digital object identifier (unique), registered, in our

case, through DataCite
○ In our repository, each published item and asset has a DOI

Our project
● The issue
● Project planning & preparation
● Process

○ Developing the dupes list (Google Sheets & Python script)
○ Remediating the duplicates

■ Academic Commons (Rails, Blacklight, Solr, MySQL)
● Rake task

■ Hyacinth (Rails, Fedora)
● Rake task

■ DataCite
● Python script

● Outcome
● Lessons learned
● Future work

Issue
➢ Over the course of 15 years, duplicate items have been introduced into

Columbia University’s institutional repository, Academic Commons.

Removing duplicates is not a simple process:
● Manual records review necessary

○ Identifying duplicates requires more than title-field matching
○ Difficult to create general rule about which copy to keep

● Dupes (usually) include a parent/item and one or more
child(ren)/asset(s)--but not always!

● Need to merge duplicate view and download usage stats w/ remaining
copy stats

● Varied status of duplicates: published w/ DOIs, not published, etc.
● Need to re-direct DOI of duplicate to point to remaining copy

Legacy process of identifying
duplicates
● Dupes identified by Libraries staff over time

● Added “!DNP--DUPLICATE record: ” in the titles

● Would not unpublish due to concerns of stats reports

● Tracked duplicates in shared Google Sheets

New Process

Planning and preparation
● Repository managers would create a final list of

duplicate items and assets to be remediated.
● Intern Sunni Wong would use Python to help

organize the required metadata.
● Repository developers would use this metadata

to delete items and assets and remediate
metadata in the following systems:
○ Repository application (Academic Commons)
○ Metadata management system (Hyacinth)
○ DOI registration service (DataCite)

Process 1: Revise the process of
Identifying duplicates
● Review metadata using OpenRefine clustering

○ Discovered more duplicates!!!

● Review asset file checksums
○ Even more duplicates!

● Examine and select the best item to keep
○ General points of consideration:

■ Submission date
■ Metadata quality
■ Child assets quality

○ Items were assessed manually because there was no simple rubric to
define which item to keep

● Continue to use Google Sheets to track duplicates as they are
discovered, for later batch remediation

● PID = internal identifier
● DOI = DOI
● First Published & Title used for assessing which copy to

keep and which to remove

Duplicates Review Spreadsheet (CSV)

Process 2: Mapping items & assets
1. Item level mapping

2. Look up child assets

3. Child level mapping

https://github.com/sunniw
/ColU_AcademicCommons

Lists generated by Python script (1 & 2)

Mapping duplicates to their retained equivalents for merging stats before removing from Hyacinth and AC

Asset level mapping that identifies the canonical, published asset of each item

Lists generated by Python script (3)

Mapping items’ DOI for the work on DataCite

A closer look at our systems

What is Academic Commons?
● “Provides open, persistent access to the scholarship

produced by researchers at Columbia University,

Barnard College, Jewish Theological Seminary, Teachers

College, and Union Theological Seminary.”

● Part of a network of open scholarly resources

Academic Commons process:
merging stats

● Items in Academic Commons have associated stats representing
the number of record views and file downloads.

● Deleting the duplicate items from Academic Commons would
entail losing the access stats associated with that item.
Therefore, before the deletion, a ruby rake task is executed
which merges the stats from the duplicate version into the stats
for the canonical/retained version of the work.

● The input CSV for this rake task contains the PID of the
duplicate version, as well as the PID for the canonical version.

duplicate_records.rake

What is Hyacinth?
● Hyacinth is CUL's digital library metadata management

and editing system. It was developed by the Libraries

Digital Program Division, working with partners in other

divisions of the Libraries.

● Hyacinth is a Rails application which uses Fedora as a

repository to store assets.

Hyacinth processing
● In Hyacinth, items and the associated assets representing

the duplicates are deleted/purged using the PID supplied in
the input CSV.

● This entails removing all the metadata from the database
associated with the application and the associated Fedora
record for each item and asset

What is DataCite?
● DataCite is a leading global non-profit organisation that

provides persistent identifiers (DOIs) for research data

and other research outputs.

Updating DataCite DOIs
● A python batch script is used to update the metadata and state for

the duplicate documents. The script uses the DataCite REST API
(https://support.datacite.org/reference/introduction). Metadata is
sent and received using the JSON format. The endpoint for the API is
https://api.datacite.org.

● During development and testing of the script, the DataCite test API
endpoint was used, https://api.test.datacite.org.

● Following updates are made to the DOIs for the duplicate
documents, using the information supplied in the input CSV:

○ Change the state of the duplicate DOI to Registered
○ Update the URL for the duplicate DOI to the DataCite DOI url

for the canonical document.
○ Add a note to the metadata for the duplicate DOI stating DOI is

a duplicate.

Outcomes - numbers
➔ ~966 item/asset stats were merged into non-dupe items

and preserved

➔ ~1374 duplicate items/assets were deleted

➔ ~1249 DOIs were remediated

Outcomes - workflows
➔ A fifteen year project was concluded

➔ A new workflow, along with robust cross-departmental

documentation, was created for future duplicate

remediation

Lessons learned -
What can you do

about dupes?

● Don’t be afraid of dupes–the
sooner you get a sense of the size
and scope of your duplicates
problem, the sooner you can move
forward.

● Speak with technical staff early
and often when planning a large
remediation project

● Incorporate a review process
(metadata or checksum) into your
cataloging process. Automate this
if you can.

● Document everything!
● Interns are awesome 😊

Future work
● Checksum review at upload?

● Accept the dupes. Fix the dupes on a schedule.

Acknowledgements
Jack Donovan, Eric O'Hanlon, Jeremiah Mercurio, Benjamin

Armintor, Brian Luna Lucero, Carla Galarza,

& all the Columbia University Libraries staff and students

who introduced and tracked duplicates over the past 15

years!

