A Small Mammal Trapping Study of the Floating Freshwater Marshes Surrounding Lake Boeuf, Louisiana

Robert K. Abernethy
Louisiana State University

Gary W. Peterson
Louisiana State University

James G. Gosselink
Louisiana State University

Follow this and additional works at: https://aquila.usm.edu/goms

DOI: 10.18785/negs.0702.10

Recommended Citation

Retrieved from https://aquila.usm.edu/goms/vol7/iss2/10

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.
A SMALL MAMMAL TRAPPING STUDY OF THE FLOATING FRESHWATER MARSHES SURROUNDING LAKE BOEUF, LOUISIANA

Floating marshes, known locally as "flotant" comprise about 100,000 ha of Louisiana's 1.6 million ha of marsh (O'Neil, 1949). With the exception of the game and furbearing species, very little is known about the fauna of these marshes. Since these marshes are rarely if ever inundated by high water they may have higher populations of mammals than non-floating marshes.

The objectives of this study were to document which small mammal species occur in the areas around Lake Boeuf and to determine if the species composition is different in floating marsh, floating wax myrtle thicket, spoil bank, and cypress-tupelo swamp habitats. Species composition in the Lake Boeuf marshes was also compared to other habitats in Louisiana and across the nation.

DESCRIPTION OF STUDY AREA

Three thousand ha of freshwater floating marsh surround Lake Boeuf, a 640 ha freshwater lake located 19 km east of Thibodaux, LA. (Fig. 1). Cypress-tupelo swamp encircles the marsh. Oil access canals cross the lake and marsh at several points. There are three major habitat types in the marsh surrounding Lake Boeuf: floating marsh, floating wax myrtles, and spoil banks.

Floating mats of marsh cover approximately 2700 ha peripheral to the open water. The mats are 10-60 cm thick and float as much as 1.5 m above the lake bed. Maidencane (Panicum hemitomon) is the dominant species, comprising 70% of the total dry biomass. Marsh fern (Thelypteris palustris) and royal fern (Osmundo regalis) account for an additional 10%, and the vines yellow cowpea (Vigna luteola) and tear-thumb (Polygonum sagittatum) produce another 5% of the total dry biomass of the plant community. Other less important yet commonly occurring species are arrowhead (Sagittaria latifolia), swamp loosestrife (Decodon verticillatus), rice cutgrass (Leersia oryzoides), and goldenrod (Solidago sp.) (Sasser et al., 1982). These floating marshes are burned in the winter on an irregular schedule.

Floating stands of wax myrtle (Myrica cerifera) cover 320 ha. These stands occur both as islands and as stands within the maidencane marsh, and are generally so dense that few understory plants grow.

The lake and marsh are crossed by 41 km of oil access canals. These canals have spoil banks along one or both sides. The banks are not floating and may be either submerged or up to 0.5 m above the level of the marsh. They average 4-5 m wide and support dense stands of black willow (Salix nigra) and blackberry...
(Rubus sp.).

A mature cypress-tupelo swamp surrounds the entire lake and marsh. Dominant tree species are baldcypress (Taxodium distichum), water tupelo (Nyssa aquatica), and red maple (Acer rubrum). Up to one meter of water covers the swamp much of the year with only a few areas of high ground exposed. The areas trapped were old spoil banks approximately 8-m wide and 0.5 m above the water. Sugarberry (Celtis laevigata), sweetgum (Liquidambar styraciflua), and black willow joined cypress and tupelo as dominant species. There was no underbrush and these spoil banks were the only dry ground within sight.

METHODS AND MATERIALS

Two U-shaped transects were established in each of the floating marsh and wax myrtle habitats and two straight transects were established on the spoil banks in 1982. These transects consisted of 40 sample points, 20-m apart in the floating marsh and spoil bank and 10-m apart in the wax myrtle thicket. In 1983, two new transects of 20 points each were established in each habitat including the swamp forest which was not sampled in 1982. Three museum special snap traps were placed within 2 m of each sample point in places likely to catch mammals (Austin et al., 1976; Petticrew and Sadleir, 1970; Gentry et al., 1968). This size trap catches mammals up to the size of rats. The number of traps set daily varied from 57 to 120 per transect, due to loss, removal by raccoon (Procyon lotor) or nutria (Myocastor coypus), and available time. All traps were baited with peanut butter in 1982 and with a peanut butter, bacon grease and oatmeal mixture in 1983.

The traps were set on March 25, 1982 and they were checked and rebaited each morning for 3 days. Weather during the trapping period was overcast and rainy with temperatures ranging from 4°C to 16°C. A 15-30 kph wind blew constantly from the north and the moon was dark. In 1983, the traps were set on March 10 and checked and rebaited each morning until they were retrieved on March 13. The weather was clear and temperatures ranged from 4°C-15°C. A 30 kph wind blew from the north constantly and the moon was dark.

RESULTS AND DISCUSSION

Table 1 lists the numbers of mammals trapped by species and habitat. All species seem to be habitat dependent. When a species was captured in two or more habitats, a chi-square test was run to determine if captures among habitats deviated from a random distribution.

Fulvous harvest mice (Reithrodontomys fulvescens) were captured fairly uniformly throughout the marsh, wax myrtle, and spoil bank habitats (\(\chi^2 = 3.53, \text{NS} \)). They were absent from the swamp transects. Chatagnier's study (1971) of small mammals in St. Martin Parish, LA found fulvous harvest mice to prefer dense dry cover. We found them to prefer dense cover but not necessarily dry.

Rice rats (Oryzomys palustris) were not captured in the swamp forest. Their capture rates were fairly uniform in the floating marsh and wax myrtle habitats and they seemed to prefer the spoil banks (\(\chi^2 = 7.76, p<.05 \)). Chatagnier (1971) again found similar results. Rice rats could survive in very wet conditions but needed thick cover, shunned wooded areas, and preferred dryer areas.

House mice (Mus musculus) were captured only on spoil banks and were found to be more common near oil rigs.
Table 1. Numbers of mammals trapped, and captures per 100 trap nights (CTN) by species and habitat. Species trapped were fulvous harvest mouse (FHM), rice rat (RR), house mouse (HM) and white-footed mouse (WFM).

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Floating Marsh</th>
<th>Wax Myrtle</th>
<th>Spoil Bank</th>
<th>Swamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transect</td>
<td>Year</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Floating Marsh</td>
<td>82</td>
<td>13</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Wax Myrtle</td>
<td>82</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Spoil Bank</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Swamp</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>83</td>
<td>15</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Trap Nights</td>
<td>295</td>
<td>13</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>CTN</td>
<td>5.1</td>
<td>4.1</td>
<td>3.9</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Fourteen were caught on one transect near a rig. They were noticeably absent from one transect that had a hunting camp on it. House mice seemed to prefer dry, dense cover areas. Chatagnier (1971) placed greater emphasis on close proximity to human dwellings.

White-footed mice (*Peromyscus leucopus*) were most often captured in the swamp ($\chi^2 = 31.75$, p < .001). None were caught in the marsh or wax myrtles. The only spoil bank to produce them was over one meter high with large (> 30 cm DBH) sugarberry and willow trees. This spoil bank was also the only one connected to the swamp surrounding Lake Boeuf. Chatagnier (1971) found white-footed mice associated with trees and

Table 2. Comparison of captures per 100 trapnights (CTN).

<table>
<thead>
<tr>
<th>Habitat</th>
<th>CTN</th>
<th>State</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating Marsh</td>
<td>3.7</td>
<td>LA</td>
<td>This study</td>
</tr>
<tr>
<td>Fresh Marsh</td>
<td>7.0</td>
<td>LA</td>
<td>Brown and Helm, 1978.</td>
</tr>
<tr>
<td>Wax Myrtle</td>
<td>4.7</td>
<td>LA</td>
<td>This study</td>
</tr>
<tr>
<td>Spoil Bank</td>
<td>7.3</td>
<td>LA</td>
<td>This study</td>
</tr>
<tr>
<td>Spoil Bank</td>
<td>27.0</td>
<td>LA</td>
<td>Brown and Helm, 1978.</td>
</tr>
<tr>
<td>Cottonwood-willow</td>
<td>.3</td>
<td>LA</td>
<td>Hebert, 1977.</td>
</tr>
<tr>
<td>Swamp</td>
<td>1.9</td>
<td>LA</td>
<td>This study</td>
</tr>
<tr>
<td>Bottomland Hardwood</td>
<td>2.0</td>
<td>LA</td>
<td>Hebert, 1977.</td>
</tr>
<tr>
<td>Cypress-tupelo</td>
<td>.2</td>
<td>LA</td>
<td>Hebert, 1977.</td>
</tr>
<tr>
<td>Swamp and Upland</td>
<td>8.0</td>
<td>NC</td>
<td>Pardue et al., 1975.</td>
</tr>
<tr>
<td>Upland Hardwood</td>
<td>2.4</td>
<td>SC</td>
<td>Golley et al., 1965.</td>
</tr>
<tr>
<td>Grasslands</td>
<td>1.5-9.7</td>
<td>IN</td>
<td>Krebs et al., 1971.</td>
</tr>
<tr>
<td>Western NC Mtns.</td>
<td>8.6</td>
<td>NC</td>
<td>Gentry et al., 1968.</td>
</tr>
</tbody>
</table>
our study concurs.

The spoil banks produced the greatest trapping success with captures per 100 trap nights (CTN) of 7.3 and all species were present. This could be due to the edge effect. On spoil banks three diverse habitats, floating marsh, dry forest, and open water meet in a small area. The swamp produced the poorest trapping success at 1.9 CTN, possibly due to the lack of cover and the flooding water.

This is the first report of small mammal densities from floating marshes. Trapping success varied from 1.9 CTN in the swamp to 7.3 CTN on the spoil banks with an average of 4.9 CTN. The capture rates of 3.7 to 4.7 are lower than Brown (1978) found in fresh marshes in the Atchafalaya delta. The swamp habitat yielded more captures than Hebert (1977) achieved in his study of swamp forest the Atchafalaya basin. Rates over all habitats were quite similar to those Golley (1965) found in South Carolina and Chatagnier (1971) found in St. Martin Parish, LA (Table 2).

LITERATURE CITED

Robert K. Abernethy, Gary W. Peterson and James G. Gosselink, Center for Wetland Resources, Louisiana State University, Baton Rouge, LA 70803-7503.
The following scientists volunteered their services as referees during 1983 and 1984 for contributions submitted to Northeast Gulf Science. To them we are most grateful.

Bill Alevizon..Florida Institute of Technology
Bill Anderson..College of Charleston
Charles Barans...South Carolina Dept. of Wildlife and Marine Resources
Herbert Boschung......................................University of Alabama
Steve Bortone...University of West Florida
Steve Branstetter.....................................Texas A&M University
Ed Cake..Gulf Coast Research Laboratory
Doug Clarke...U.S. Army Corps of Engineers, Vicksburg
Mike Dardeau...Dauphin Island Sea lab
Charles D’Asaro..University of West Florida
C.E. Dawson..Gulf Coast Research Laboratory
James Dooley...Adelphi College
Darryl Felder...University of Southwestern Louisiana
John Finucane...NMFS, Panama City
Joseph Fitzpatrick....................................University of South Alabama
Doug Gilbert..Florida Dept. of Environmental Regulation
Bob Gore..Academy of Natural Sciences of Philadelphia
Elmer Gutherz..NMFS, Pascagoula
Bill Hawkins...Gulf Coast Research Laboratory
Dannie Hensley...University of Puerto Rico
Dan Holliman...Birmingham Southern College
Mike Howell...Samford University
Maurice Jones..U.S. Army Corps of Engineers, Mobile
B.J. Kjerfve...University of South Carolina
Jim Layne..Archbold Research Station
Mike Lelong..University of South Alabama
Winston Menzel..Florida State University
Timothy Modde..South Dakota State University
David Nelson...University of South Alabama
Doug Nester...U.S. Army Corps of Engineers
Robin Overstreet......................................Gulf Coast Research Laboratory
Benny Rohr...NMFS, Pascagoula
Steve Ross...University of Southern Mississippi
Carl Saloman...NMFS, Panama City
Frank Schwartz..University of North Carolina
Joe Simon...University of South Florida
Peter Sheridan...NMFS, Galveston
Austin Swift...Clemson University
Bruce Thompson.......................................Louisiana State University
John Thompson...Continental Shelf Associates
John Valentine...University of Alabama
Jeffrey Williams......................................United States National Museum