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ABSTRACT  

 Thermosetting polymers comprise a significant part of polymer research that is in 

progress today because thermosets are especially critical in the field of aerospace 

composites. In this context the proposed research project is designed to develop a novel 

method to detect and quantify chain scission and thermal degradation of matrix materials 

using profluorescent nitroxide probes as well as, to study the interaction of the thermoset 

with its environment during utilization and property degradation.  Acquisition of this 

knowledge will allow for a better understanding of early, i.e., premacroscopic, thermoset 

degradation and to establish whether these early events are predictive of material 

lifetimes during real applications.  
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CHAPTER I.  INTRODUCTION  

1.1  INTRODUCTION  

Polymers are classified in a variety of ways; one such classification divides 

polymers into thermoplastics and thermosets.  The difference between thermosets and 

thermoplastics originates from the unique molecular structure of thermosets known as 

crosslinking.  The degree of crosslinking, i.e., the extent to which polymer chains are 

connected with each other to create a network, governs the structure of a thermoset 

polymer, which in turn strongly influences the polymer properties.  As crosslinking 

increases, the density of the connected polymer network increases, the mobility of the 

polymer chains decreases, and the polymer glass transition temperature (Tg) increases.
 1  

The Tg is the temperature at which a polymer structure gains enough mobility to 

transition from a rigid glass to a soft, rubbery material.
 1

  The Tg is a property unique to 

polymers that, more so than any other property, determines whether a polymer is suitable 

for a given application.  While thermosets lose their rigidity above Tg, they do not flow 

like thermoplastics because of their infinite molecular weight network, a characteristic 

unique to thermoset networks.
 1
 

Thermoset polymers are found in a variety of products such as coatings, 

adhesives, and composite resins.
 1

  Prior to complete crosslinking and cure, thermosetting 

systems can be set into a desired shape for a specific function.  Once a thermoset network 

is cured however, it cannot be reshaped without destroying or degrading the network 

integrity.
 1

  In this study, we will employ one of the most commonly used thermoset 

resins, i.e., epoxy-amine resins. 
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1.2  DEGRADATION IN THERMOSET NETWORKS 

 By definition, polymer degradation includes both chemical and physical changes 

to the polymer network.
 2

  Degradation can be induced in several ways: physically 

(mechanically), thermally, or chemically, i.e. exposure to an organic solvent or corrosive 

material.  Physical degradation can occur in a variety of ways, all of which involve the 

breakage of chemical bonds.
 2

  Motyakin et al. showed that thermal degradation causes 

relatively homogenous degradation within an entire polymer sample whereas other forms 

of degradation can be localized within a polymer sample.
 3

  Schlick et al. observed that an 

oxygen atmosphere increases the rate of sample degradation specific to the surface during 

elevated thermal temperatures.
 4

  Generically, shown in Scheme 1.1, chemical bonds can 

be produced and broken in two ways, i.e., homolytic bond cleavage (also called chain 

scission) that creates radical species in the polymer sample or heterolytic bond cleavage 

that creates ion species.
 1  

 

Scheme 1.1. Homolytic (top) and heterolytic (bottom) bond cleavage. 

 While macroscopic damage to a thermoset network can be detected using a 

variety of methods, there are no reports of an accurate and efficient method to detect 

damage at a molecular level with the exception of EPR.
 5
  However, carbon-centered 

radicals created by homolytic bond cleavage of the thermoset polymer’s backbone enable 

polymer degradation to be detected at the molecular level by the use of radical probes.
 6, 7 
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1.3  NITROXIDES AS RADICAL PROBES 

A particularly useful radical for probe purposes is the nitroxyl radical because 

nitroxides are excellent radical scavengers.  The resonance structures of a nitroxide are 

shown in Scheme 1.2.  

  

Scheme 1.2. Resonance structures of a nitroxide. 

 Nitroxides are divided into four basic classes depending on the molecule from 

which they are derived.
 
2  Figure 1.1 shows the four base molecules: non-cyclic di-tert-

butylnitroxide (1); 2,2,5,5-tetramethylpyrrolidin-1-yloxyl (2); 2,2,5,5-

tetramethylpiperdin-1-yl-oxyl (3); and 1,1,3,3-tetramethylisoindoline-2-yloxyl (4). 

Nitroxides derived from 4, known as isoindoline nitroxides, tend to be more stable than 

other types of nitroxides.
 2
 

 

Figure 1.1. Base nitroxide molecules.
 

 Though nitroxides will react with oxygen-centered radicals, stable reaction 

products are generated only when nitroxides react with carbon-centered radicals.
 8

  The 

ability to create stable alkoxyamine species (Scheme 1.3) with carbon-centered radicals is 
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the reason why nitroxides are excellent radical scavengers and are commonly used as 

hindered amine light stabilizers (HALS) in coatings
. 9, 10 

The process by which nitroxide 

radicals react with radical degradation products is known as the Denisov cycle.
 11 

A 

nitroxide radical will only enter the Denisov cycle when presented with a radical caused 

by some type of degradation or physical damage to the network.  

 

 

Scheme 1.3. Alkoxyamine formation.
 

 Another important characteristic of nitroxides is their paramagnetism.  

Paramagnetism is the property of a molecule that causes it to be susceptible to magnetism 

and is caused, in the case of the nitroxide, by the unpaired electron.
 2

  Nitroxide 

paramagnetism offers two important advantages: a) nitroxides can be detected via 

electron paramagnetic resonance spectroscopy (EPR),
 12, 13

 and b) nitroxides can quench 

excited state fluorescence in fluorophores.
 14, 15, 16 

 If a nitroxide contains a fluorophore, 

the fluorophore will only fluoresce after the nitroxide has scavenged a radical and created 

an alkoxyamine because the molecule becomes diamagnetic, and fluorescence can be 

detected.
 17  

1.4  PROFLUORESCENT NITROXIDES  

 Nitroxides coupled with a fluorophore for indicating the presence of radicals are 

known as profluorescent nitroxides (PFN).  Bottle and colleagues have shown that PFN, 

specifically isoindoline PFN, are useful in indicating degradation in polypropylene.
 6, 9, 18 
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The success of using PFN in polypropylene has led to other investigations of the 

application of PFN, including this study on the use of PFN in thermoset networks.  

 As previously stated, isoindoline nitroxides are typically more stable than other 

types of nitroxides; such stability ensures that the addition of an isoindoline nitroxide as a 

probe would not interfere with the degradation process experienced by the epoxy-amine 

network. Consequently, the isoindoline nitroxide 10-(phenylethynyl)-9-(1,1,3,3-

tetramethylisoindolin-2-yloxyl-5-ethynyl)anthracene (TEPEA, Figure 1.2) was chosen for 

this research.  TEPEA was first developed by Fairfull-Smith et al. in 2008 and is now 

available commercially.
 19

  

 

Figure 1.2. TEPEA.  

Bottle et al. employed less than 0.1% w/w of PFN in testing thermal oxidative 

degradation in polypropylene.
 6

  No reports were found that discuss the use of TEPEA (or 

any other PFN) in an epoxy-amine system to monitor degradation.  It is believed that in 

thermoset (specifically epoxy-amine) networks, homolytic chain scission events occur 

during macroscopic fracture and that chain scission can be exacerbated by thermal or 

chemical degradation; such chain scission could potentially be captured and detected by a 

profluorescent nitroxide probe (TEPEA).  
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CHAPTER II.  GOALS AND OBJECTIVES  

2.1  RESEARCH GOALS  

 This study will probe three questions not studied extensively in current literature: 

1)  What is the effect of an oxygen atmosphere on the degradation and chain scission 

processes in a thermoset network? 

 2)  What degradation conditions are most useful and consistent for TEPEA to indicate 

homolytic chain scission in the thermoset network? 

3)  Does solvent swelling have an effect on the mobility and reactivity of the TEPEA in a 

degraded network? 

 Answering these three questions will provide new insights into the 

degradation processes of thermoset networks and enable the understanding of how 

thermoset networks must be treated throughout their lifetime for maximum lifespan and 

effectiveness in use.  
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CHAPTER III.  EXPERIMENTAL  

3.1  INTRODUCTION  

An epoxy-amine system based on diglycidyl ether of bisphenol-A (DGEBA), 

specifically Epon 828, and 2-methylpentane-1,5-diamine (MPMD) was chosen for this 

study.  Figure 3.1 shows the molecular structures of Epon 828 and MPMD. 

 

Figure 3.1. Epon 828 (top) and MPMD (bottom) 

Epon 828, supplied by Momentive, is a 185 g/mol functional weight epoxy resin 

with a molecular weight of 380 g/mol.
 
20  The difunctional amine, MPMD, is supplied by 

TCI America.  TEPEA was procured from SpinFX Probes of Australia—TEPEA is sold 

as Monofairoxyldiyne. The following methods were employed to evaluate the utility of 

TEPEA in indicating homolytic bond cleavage in epoxy-amine systems. 

3.2  EPOXY SYNTHESIS AND PREPARATION  

Prior to synthesis, Epon 828 was heated to 90 °C in a vacuum oven and degassed 

before use.  The epoxy-amine system was formulated to stoichiometric equivalency and 

0.005% w/w concentration of TEPEA.  Table 3.1 lists the formulation weights (Appendix 

A details the calculations for the formulation).  
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Table 3.1. Epoxy-amine Formulation 

Reagent Amount (g) 

Epon 828 5.95 

MPMD 0.978 

TEPEA 0.000346 

 

 TEPEA was incorporated in the form of its solution in acetonitrile (supplied by 

Fisher Scientific); calculations for the solution are in Appendix B.  To formulate the 

epoxy-TEPEA blend, 1.0 mL of the TEPEA solution was added to 5.95 g of Epon 828 

and mixed in the Flacktek
®
 speed mixer at 1,700 rpm for two minutes to ensure even 

distribution of TEPEA into the epoxy. The epoxy-TEPEA blend was then heated to 85 °C 

for 24 hours to drive off the acetonitrile.  All acetonitrile must be driven off before the 

MPMD can be added to begin the polymerization.  Once it was ensured that no more 

acetonitrile was present in the epoxy, 0.978 g of MPMD was added to the epoxy-TEPEA 

blend and mixed in the Flacktek speed mixer for five minutes at 1,700 rpm.  The epoxy-

amine system was then centrifuged at 46,000 xg for four minutes to remove all the 

bubbles that entered the system during the mixing process.  The epoxy-amine system was 

cast via a syringe injection pump into pre-made silicone molds in the form of eight bars 

(20 mm x 6 mm x 0.5 mm). The epoxy-amine is injected at 0.03 mL/min for three hours.  

covered with aluminum foil, and allowed to cure for 24 hours. The injection set up is seen 

below in Figure 3.2. As can be seen in the image four needles are used to inject the eight 

samples. A schematic of each injection site into the mold is seen in Figure 3.3.  
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Figure 3.2. Injection pump set up for sample casting. 

 

Figure 3.3 Sample injection flow and mold. 

The bars were then cured for one hour at 60 °C followed by post-cure for two hours at 

120 °C. (The cure and post-cure times do not include the twenty-five minute temperature 

equilibration times, so the full times are eighty-five and 145 minutes, respectively.) The 

bars were removed from oven, weighed on an analytical balance, and placed into labeled 

containers for baseline characterization and conditioning.  
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3.3  SAMPLE CHARACTERIZATION AND CONDITIONING  

 The samples were analyzed on the TECAN
®
 Infinite M1000 UV/Vis fluorimeter 

at the optimal excitation/emission wavelengths (bandwidth of 5 nm) for TEPEA, i.e., 440 

nm and 486 nm, respectively. The fluorimeter was set to 10 flashes (scans) from a z 

position of 20,000 μm and a gain of 70 during fluorescence intensity testing. The 

fluorescence intensities were documented as initial (baseline) fluorescence.  Table 3.2 

indicates the conditions to which the samples were exposed.  

Table 3.2. Annealing Conditions 

Condition Number Condition 

A Ambient atmosphere annealing at 135 °C (24 hours) 

B Ambient atmosphere annealing at 135 °C (48 hours) 

C Ambient atmosphere annealing at 135 °C (72 hours) 

D Nitrogen atmosphere annealing at 135 °C (24 hours) 

E Nitrogen atmosphere annealing at 135 °C (48 hours) 

F Nitrogen atmosphere annealing at 135 °C (72 hours) 

G Control (No conditioning) 

 

After annealing, the samples were removed from the oven, cooled to ambient 

temperature, and analyzed again with the TECAN fluorimeter. The non-conditioned 

control samples were re-evaluated every 24 hours to determine any variation in 

fluorescence upon storage at ambient conditions.  

3.4  SOLVENT SWELLING  

For solvent conditioning, each sample was placed in its respective vial with 5 mL 

of acetonitrile for one hour after thermal annealing.  The samples were then placed under 
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vacuum for 24 hours to remove excess acetonitrile. Subsequently, each sample was 

analyzed again using the aforementioned TECAN fluorimeter settings to note any 

changes in fluorescence.   

3.5  SAFETY 

 A review of the Material Safety Data Sheets of the materials used in this research 

indicated that the largest health hazard lay in the use of solvents and amines.  Therefore, 

the handling of acetonitrile and MPMD was restricted to the confines of a fume hood.  

Any unused solvent was disposed of as hazardous organic waste.  Solid epoxy samples 

not considered to be an environmental hazard were disposed of accordingly.  
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CHAPTER IV.  RESULTS AND CONCLUSIONS  

4.1  SAMPLE ANNEALING 

 Due to slight variance in dimensions between sample sets, fluorescence intensity 

(I) values were normalized to the change in intensity for each sample as seen below. 

                   

Such normalization allows for comparison between samples of various sets and under 

different conditions. The annealing results for ambient atmosphere, nitrogen atmosphere, 

and control samples are seen below in in Figures 4.1, 4.2, and 4.3, respectively. 

 

Figure 4.1. Ambient atmosphere annealing fluorescence intensities. 
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Figure 4.2. Nitrogen atmosphere annealing fluorescence intensities. 

 

Figure 4.3. Control sample fluorescence intensities. 
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 Figures 4.1 and 4.2 indicate that fluorescence intensity decreased with continued 

exposure at 135 °C.  The initial increase in fluorescence intensities at 24 hours indicates 

that high temperature causes degradation and bond cleavage in epoxy networks.  

However, the decrease in ΔI as exposure time increases suggests the presence of a second 

mechanism.  The greater changes and steeper slope of the ambient atmosphere data 

suggests that the aforementioned mechanism is exacerbated by the presence of oxygen. 

One possibility is the degradation of the TEPEA molecule itself. Exposure to high 

temperature could cause a change in the electron density of the fluorescent tail and thus 

affect the fluorescent response of the molecule. Also, thermo-oxidative degradation is 

known to cause a darkening of color in epoxy samples, and it is expected that such a 

color change would interfere with fluorescence intensity. 

 Appendix B shows photographs of the samples soon after they were removed 

from the oven and the drastic difference in color is apparent.  The nitrogen atmosphere 

samples initially appeared slightly green, which is indicative of the higher fluorescence 

intensity. The ambient atmosphere samples darkened and changed from clear to brown 

with increasing exposure at 135 °C. The color change limits the usefulness of TEPEA as 

an indicator of thermo-oxidative degradation in this system.  

 The control samples, shown in Figure 4.3, exhibited wide variations in intensity 

and did not present a clear trend of increase or decrease in ΔI.  The oxygen content of 

ambient atmosphere could also affect the sample fluorescence intensity. The similarity of 

the shape of the each sample’s respective plot would seem to indicate that all three 

samples were exhibiting the same response to the atmosphere even if that response did 

not show a noticeable trend in relation to the changing intensity.  
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4.2  SOLVENT SWELLING  

 Figures 4.4, 4.5, and 4.6 show the change in fluorescence intensity of the 24, 48, 

and 72 hour samples, respectively, after solvent conditioning.  

 

Figure 4.4. Intensity change: 24 hour samples. 

 

Figure 4.5. Intensity change: 48 hour samples. 
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Figure 4.6. Intensity change: 72 hour samples. 

 Solvent swelling increased the fluorescence intensity in ~ 78% of the samples, 

most likely due to increased mobility of the TEPEA molecules upon swelling. It is 

critical to note, however, that just TEPEA mobility is not what increases fluorescence, 

but rather the increased likelihood that TEPEA will encounter a radical with which it can 

react and thus fluoresce. Swelling increased the I values in all the 24 hour samples, 

while two samples in each of the 48 and 72 hour sets showed a decrease. Because 

samples in both the nitrogen and ambient atmosphere showed a fluorescence decrease 

after swelling, it would seem that whatever caused the decrease in fluorescence intensity 

is a fundamental aspect of the epoxy network. The increased crosslinking resulting from 

annealing at 135 °C is expected to limit the ability of the TEPEA to move in the solvent 

swollen samples.   
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CHAPTER V.  CONCLUSIONS   

 The effectiveness of TEPEA as an indicator of thermal degradation decreases 

with increased exposure to high temperatures.  Color changes caused by degradation in 

the epoxy network render fluorescence spectroscopy and PFN ineffective in establishing 

the extent of network degradation.  Degradation in an ambient atmosphere occurs more 

rapidly than in an inert (nitrogen) atmosphere.  Solvent swelling increases TEPEA 

mobility and thus increases the propensity for the TEPEA to encounter a radical within 

the polymer network with which to react and cause an increase in fluorescence intensity 

but such an increase is less evident as samples are exposed to higher temperatures.  
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CHAPTER VI.  FUTURE WORK  

 Additional studies are recommended in the areas of exposure at ambient 

conditions, inert atmosphere as well as high temperature. Also, other thermoset networks 

need to be employed at high temperatures to determine if other network chemistries are 

more conducive to the use of TEPEA for the indication of high temperature degradation.  

Studies into TEPEA diffusion within the network would also be pertinent to gain a 

complete understanding of the usefulness of this indicator in thermoset networks.   
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APPENDIX A   

FORMULATION CALCULATIONS  

 

Note: Due to constants used in Mathcad 15, the unit of gram is abbreviated “gm” not “g”.  
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