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The moisture anomaly index, Z, represents wetness or dryness of an area in a single 

month and does not account for the current precipitation trends. Z is calculated using 

Equation (9). 

Equation (9): 𝑍 = 𝑑𝐾 

The SC-PDSI (X) calculation is performed with the following equation:  

Equation (10): 𝑋𝑖 = 𝑝𝑋𝑖−1 + 𝑞𝑍𝑖 

Where 𝑝, 𝑞, and 𝑍𝑖 are: 

Equation (11): 𝑝 = (1 −  
𝑚

𝑚+𝑏
) 

Equation (12): 𝑞 =  
𝐶

𝑚+𝑏
 

Equation (13): ∑ 𝑍𝑖
𝑖
𝑖−1 = 𝑚𝑡 + 𝑏 

The variables p and q, known as the duration factors, are derived from the linear 

relationship between the summation of the Z index and the recorded PDSI, where C is the 

calibration index (C = -4). The line of best fit is determined giving the slope and intercept 

values m and b, and the duration factors are computed using the least squares method 

with those parameters. Equation (13) is calculated for both extremely wet spells and 

extremely dry spells. The threshold values for the extreme spells of the PDSI range from 

-4.0 and below for an extreme drought and from 4.0 and above for extremely wet 

conditions. Once the thresholds of -4.0 and 4.0 have been reached, a “spell” has been 

established (either dry or wet for the respective value).  

 All SC-PDSI calculations were performed with a tool written in C++ and 

provided by The GreenLeaf Project (2014). This tool also calculates the PDSI which is 

used for the final comparison among all the indices. 
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Final Index Calculations 

The SC-PDSI value at each meteorological station was calculated using the tool, 

and then the values were used and interpolated to create a continuous surface of the SC-

PDSI values. The two interpolation techniques, Kriging and IDW, were implemented on 

the SC-PDSI dataset at a 30m resolution. The results were then compared by using cross-

validation graphs and the Root Mean Square Error (RMSE) values. The interpolation 

technique producing the lowest RMSE was used for the creation of surfaces for 

temperature and precipitation. The soil moisture data was also interpolated across the 

study site at a 30m resolution. Because soil moisture data points were sparsely distributed 

across the study site than the meteorological data, the nearest neighbor interpolation 

technique was used. 

After all the surfaces were created using interpolation, the values for each variable 

were extracted within each block group using the block group centroid in the study 

counties. The block group population shape file layer was converted to a raster layer at a 

30m resolution to get the population density data for the proposed index. 

Multi-Criteria Evaluation (MCE) and Weighted Linear Combination (WLC) 

Multi-Criteria Evaluation (MCE) is a tool used to simplify decision-making tasks 

that may involve a number of stakeholders, have a diverse set of possible outcomes, and 

be influenced by numerous qualitative and quantitative criteria (Proctor and Drechsler 

2003; Drobne and Lisec 2009). As the goal of this research is to develop an index 

combining social and meteorological factors for the purpose of predicting future locations 

susceptible to droughts, a GIS-based Weighted Linear Combination (WLC) technique 

was employed to accomplish this goal which is one of the most commonly used MCE 
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approaches (Voogd, 1983; Carver, 1991). The WLC allows stakeholders to weigh a set of 

factors based on certain criteria (Kar and Hodgson 2008; Drobne and Lisec 2009). The 

ratings of each factor are then multiplied with corresponding weights and all layers are 

then added to determine a ranked spatial distribution of final weights (Malczewski 2000; 

Kar and Hodgson 2008; Drobne and Lisec 2009).This approach allows the results to 

show varying degrees of suitability for the chosen factors.  

In this study, population density, precipitation, temperature and soil moisture (for 

2011 only) were included with the SC-PDSI to determine the intensity rating of droughts. 

The results depict the influence of certain variables on the variance of the SC-PDSI. Each 

factor was assigned an associated factor rating (FR) value and multiplied with a 

respective weight (w). Finally, all the weighted layers were added to create a layer 

depicting spatial distribution of drought severity for the region. Equation 15 depicts the 

implementation of WLC (Kar and Hodgson 2008): 

Equation (15): Score = (
n

j

FRj * wj) 

Where Score = drought severity rating, FRj = factor rating for factor j, n = number of 

factors included in the model and wj = weight assigned to factor j such that each weight is 

the factor’s coefficient from the regression analysis. 

Tables 6 through 10 indicate the factor ratings for each variable ranging from 0 to 

10, where 10 indicates the strongest drought conditions and 0 indicates no drought. These 

classes were used because it is easier to implement the WLC on a standardized scale of 0 

to 10. The SC-PDSI factor ratings (Table 6) are based off of the U.S. Drought Monitor’s 

(2013) defined PDSI severity classes. The U.S. Drought Monitor (2013) uses 5 severity 
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classes on a single unit interval to classify the PDSI, but for this research each class is 

based off of a half-unit interval instead creating factor rating classes ranging from 0 to 10, 

where 10 depicts the most intense droughts (Table 6). The population density factor 

ratings were determined using the Jenks Natural Breaks Classification method on the 

2010 U.S. Census block group data (Table 7). This method was chosen over the equal 

interval classification because the equal interval classification showed very little 

distinction between the highly populated and less populated areas. The maximum 

temperature (Table 8), precipitation (Table 9) and soil moisture (Table 10) factor ratings 

were determined using the equal interval classification. Because temperature and 

precipitation vary from month to month, each case study month has its own set of factor 

ratings per variable.  
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Table 6 

SC-PDSI Factor Ratings 

   

SC-PDSI Factor Rating Drought Description 

   

   

> -1.0 0 No Drought 

   

-1.0 – -1.5 1 Abnormally Dry 

   

-1.5 – -2.0 2 Abnormally Dry 

   

-2.0 – -2.5 3 Moderate Drought 

   

-2.5 – -3.0 4 Moderate Drought 

   

-3.0 – -3.5 5 Severe Drought 

   

-3.5 – -4.0 6 Severe Drought 

   

-4.0 – -4.5 7 Extreme Drought 

   

-4.5 – -5.0 8 Extreme Drought 

   

-5.0 – -5.5 9 Exceptional Drought 

   

<-5.5 10 Exceptional Drought 
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Table 7  

Population Density Factor Ratings  

   

Population Density Factor Rating  

   

   

0 – 239 0  

   

240 – 599 1  

   

600 – 1000 2  

   

1001 – 1426 3  

   

1427 – 1903 4  

   

1904 – 2483 5  

   

2484 – 3271 6  

   

3272 – 4635 7  

   

4636 – 7219 8  

   

7220 – 11792 9  

   

>= 11793 10  
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Table 8 

Maximum Temperature Factor Ratings (Fahrenheit) 

    

June 1990 September 2000 October 2011 Factor Rating 

    

    

< 85.28 < 83.67 < 77.96 0 

    

85.28 – 86.81 83.67 – 85.06 77.96 – 79.42 1 

    

86.81 – 88.34 85.06 – 86.44 79.42 – 80.88 2 

    

88.34 – 89.86 86.44 – 87.83 80.88 – 82.34 3 

    

89.86 – 91.39 87.83 – 89.22 82.34 – 83.80 4 

    

91.39 – 92.91 89.22 – 90.61 83.80 – 85.26 5 

    

92.91 – 94.44 90.61 – 92.00 85.26 – 86.72 6 

    

94.44 – 95.96 92.00 – 93.38 86.72 – 88.18 7 

    

95.96 – 97.49 93.38 – 94.77 88.18 – 89.64 8 

    

97.49 – 99.02 94.77 – 96.16 89.64 – 91.10 9 

    

> 99.02 > 96.16 > 91.10 10 
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Table 9  

Precipitation Factor Ratings (Inches) 

    

June 1990 September 2000 October 2011 Factor Rating 

    

    

> 3.25 > 3.01 > 4.97 0 

    

2.93 – 3.25 2.74 – 3.01 4.57 – 4.97 1 

    

2.61 – 2.93 2.46 – 2.74 4.16 – 4.57 2 

    

2.29 – 2.61 2.19 – 2.46 3.76 – 4.16 3 

    

1.97 – 2.29 1.91 – 2.19 3.36 – 3.76 4 

    

1.65 – 1.97 1.63 – 1.91 2.95 – 3.36 5 

    

1.33 – 1.65 1.36 – 1.63 2.55 – 2.95 6 

    

1.01 – 1.33 1.08 – 1.36 2.15 – 2.55 7 

    

0.69 – 1.01 0.80 – 1.08 1.74 – 2.15 8 

    

0.37 – 0.69 0.53 – 0.80 1.34 – 1.74 9 

    

< 0.37 < 0.53 < 1.34 10 
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Table 10 

Soil Moisture Factor Ratings (m3 water/m3 soil) 

   

Soil Moisture Factor Rating  

   

   

> 0.4120 0  

   

0.3723 – 0.4120 1  

   

0.3325 – 0.3723 2  

   

0.2928 – 0.3325 3  

   

0.2531 – 0.2928 4  

   

0.2133 – 0.2531 5  

   

0.1736 – 0.2133 6  

   

0.1338 – 0.1736 7  

   

0.0941 – 0.1338 8  

   

0.0543 – 0.0941 9  

   

< 0.0543 10  

   

 

 To determine the factors’ weights, a multi-variate regression analysis was 

conducted using the regular values for SC-PDSI as dependent variable and population 

density, precipitation, maximum temperature, and soil moisture as independent vairables. 

The resulting beta coefficients that indicate the impact of each independent variable on 

the dependent variable and its statistical significance was used as the factor weighting for 

each independent variable. Because the study counties are not geographically 

neighboring a regression was implemented for each county separately to examine the 



   49 

 

 

 

impact of each independent variable including population density on SC-PDSI (i.e. 

drought severity) based on the county’s water supply source. 

 After implementing the regression analysis, each input variable was reclassified to 

the defined factor ratings (discussed above), and then multiplied with its respective 

weight (coefficient) determined in the regression. The weighting factor (regression 

coefficients) for population and temperature were inverted before implementing WLC. 

While population and temperature appear to influence drought severity, the original 

regression coefficients indicate that an increase in temperature and population density 

relates to a stronger drought that is represented by lower SC-PDSI. Just based on the sign 

of the drought severity factor ratings, this appears to be an inverse relationship. However, 

once the factor ratings were applied, the directionality changed. Now, an increase in 

population density or temperature gave a higher factor rating, but to keep its relationship 

the same with the SC-PDSI factor ratings as observed in the original coefficients, the 

newly converted SC-PDSI factor rating value should also increase to indicate a stronger 

drought. The conversion resulted in these variables having a positive relationship with 

one another. For the WLC computation, the sign of the coefficients found for these two 

variables during the regression analyses had to be inversed to maintain the correct 

relationship between the SC-PDSI and temperature and population density.  

The precipitation and soil moisture weighting factors directly equal the 

coefficients found in the regression. Both of these variables were expected to have 

positive relationships with the SC-PDSI found in the regression results, indicating that an 

increased value also increased the SC-PDSI value (showing weaker drought conditions). 

After the factor ratings were applied, the higher precipitation and soil moisture values got 
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Table 11 (continued).    

     

     

Year  

County 
Variable R Square 

Standardized 

Coefficient 

Coefficient 

Significance 

     

     

Regression 

Equation: 

SCPDSI = –  0.158*(Pop) + 0.372*(Temp) + 0.482*(Precip)  

                  – 0.140*(SoilMois) 

     

2011 

Dallas 

Total 59.0%   

 Population* 0% 0.077 0 

     

 Max Temperature* 56.0% -1.069 0 

     

 Precipitation* 11.9% 0.117 0 

     

 Soil Moisture* 49.5% 0.357 0 

     

Regression 

Equation: 

SCPDSI = – 0.077*(Pop) – 1.069*(Temp) + 0.117*(Precip)  

                  + 0.357*(SoilMois) 

     

2011 

Tarrant 

Total 89.7%   

 Population* 2.8% -0.051 0 

     

 Max Temperature* 16.1% -0.543 0 

     

 Precipitation* 69.5% 0.582 0 

     

 Soil Moisture* 7.7% 0.667 0 

     

Regression 

Equation: 

SCPDSI = – 0.051*(Pop) – 0.543*(Temp) + 0.582*(Precip)  

                 + 0.667*(SoilMois) 

  
 

Note. All independent variable R Square values were determined by analyzing each variable separately with the SC-PDSI. 

In 2011, there were severe drought conditions in the study site. Dallas and Tarrant 

Counties had the highest total R Square values compared to Bexar and Harris Counties 

due to the temperature, precipitation and soil moisture variables (Table 11). There is a 

pattern to when and where population density impacted drought. Bexar and Harris 
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Counties draw from the subsurface water sources, which the SC-PDSI accounts for, 

explaining the higher R Square values for population density. Bexar County had a higher 

R Square than Harris County which could be explained by Bexar County’s strict use of 

subsurface water, while Harris County only acquires 29% of its water from the 

subsurface. Dallas and Tarrant Counties draw their water from lakes (surface water 

supplies) due to fracking in the region and therefore, the population density showed little 

influence (lower R Square) on the SC-PDSI. The population density was a statistically 

significant factor for all counties except Dallas. Soil moisture had no influence in Bexar 

County and was not statistically significant in this county, which could be attributed to 

the karst geology of the county. Temperature and precipitation had less influence on 

drought severity in Bexar and Harris Counties. Bexar County’s precipitation variables 

showed a negative coefficient which is opposite than expected, and Harris County’s 

temperature coefficient also had a sign opposite than what was expected. The expected 

signs should show a positive coefficient for precipitation (an increase in precipitation 

increases the SC-PDSI value indicating a weaker drought), and a negative coefficient for 

temperature (an increase in temperature decreases the SC-PDSI value indicating a 

stronger drought). 
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Table 12 

September 2000 Regression Results 

     

Year  

County 
Variable R Square 

Standardized 

Coefficient 

Coefficient 

Significance 

     

     

2000  

Bexar  

 

Total 24.4%   

    

Population* 0.5% 0.019 0.503 

    

Max Temperature* 16.8% -0.563 0 

    

Precipitation* 0.2% -0.315 0 

     

Regression 

Equation: 
SCPDSI = 0.019*(Pop) – 0.563*(Temp) – 0.315*(Precip) 

     

2000 

Harris  

Total 69.1%   

    

Population* 0.2% -0.069 0 

    

Max Temperature* 51.2% 0.376 0 

    

Precipitation* 60.3% -0.547 0 

     

Regression 

Equation: 
SCPDSI = – 0.069*(Pop) + 0.376*(Temp) – 0.547*(Precip)  

     

2000 

Dallas 

Total 56.4%   

 Population* 3.0% -0.137 0 

     

 Max Temperature* 0.3% -0.245 0 

     

 Precipitation* 49.4% 0.747 0 

     

Regression 

Equation: 
SCPDSI = – 0.137*(Pop) – 0.245*(Temp) + 0.747*(Precip)  
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Table 12 (continued).    

     

     

Year  

County 
Variable R Square 

Standardized 

Coefficient 

Coefficient 

Significance 

     

     

2000 

Tarrant 

Total 26.6%   

 Population* 1.6% 0.127 0 

     

 Max Temperature* 9.7% -0.235 0 

     

 Precipitation* 20.3% 0.394 0 

     

Regression 

Equation: 
SCPDSI = 0.127*(Pop) – 0.235*(Temp) + 0.394*(Precip)  

  

  
Note. All independent variable R Square values were determined by analyzing each variable separately with the SC-PDSI. 

 Although Texas experiences a drought in September of 2000, this drought was 

overall weaker than the 2011 drought, and the results indicate that population seemingly 

had very little influence on this drought’s severity in the study counties. Population 

density was not even a significant factor for Bexar County in 2000. Soil moisture was not 

used for this year, or 1990, because there was an insufficient amount of data available for 

the study counties. Bexar County results showed the expected directionality of the 

coefficient for temperature, but the opposite for precipitation with a very low R Square 

value. The results for Harris County showed that temperature and precipitation 

contributed to the majority of the total R Square but both variables had the opposite 

coefficient sign than the typical relationships seen between those variables and drought 

conditions. Temperature should have seen a negative coefficient indicating that higher the 

temperature, the stronger the drought (i.e. the lower the SC-PDSI value). Precipitation 
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should have had a positive coefficient indicating a relationship in which higher amounts 

of rainfall lead to a lesser drought (higher SC-PDSI values). Temperature and 

precipitation coefficient patterns were consistent for Dallas and Tarrant Counties, and 

precipitation was found to be most influential for these two counties in 2000. 

Table 13 

June 1990 Regression Results 

     

Year  

County 
Variable R Square 

Standardized 

Coefficient 

Coefficient 

Significance 

     

     

1990 

Bexar  

 

Total 41.1%   

    

Population* 13.2% 0.269 0 

    

MaxTemperature* 22.7% 0.621 0 

    

Precipitation* 0.2% 0.373 0 

     

Regression 

Equation: 
SCPDSI = 0.269*(Pop) + 0.621*(Temp) + 0.373*(Precip) 

     

1990 

Harris  

Total 38.5%   

    

Population* 1.2% -0.083 0 

    

Max Temperature* 34.9.% -0.490 0 

    

Precipitation* 20.3% 0.192 0 

     

Regression 

Equation: 
SCPDSI = – 0.083*(Pop) – 0.490*(Temp) + 0.192*(Precip)  

     

1990 

Dallas 

Total 65.6%   

 Population* 2.0% 0.035 0.012 
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Table 13 (continued).    

     

     

Year  

County 
Variable R Square 

Standardized 

Coefficient 

Coefficient 

Significance 

     

     

 Max Temperature* 39.4% -0.406 0 

     

 Precipitation* 51.5% 0.552 0 

  

Regression 

Equation: 
SCPDSI = 0.035*(Pop) – 0.406*(Temp) +0.552*(Precip)  

     

1990 

Tarrant 

Total 73.1%   

 Population* 0% 0.049 0.002 

     

 Max Temperature* 72.7% -0.860 0 

     

 Precipitation* 0.8% -0.032 0.046 

     

Regression 

Equation: 
SCPDSI = 0.049*(Pop) – 0.860*(Temp) – 0.032*(Precip)  

  

  
Note. All independent variable R Square values were determined by analyzing each variable separately with the SC-PDSI. 

June 1990 experienced weaker drought conditions than that of 2011 as well, 

which resulted in a weak influence from population density. While Bexar County had a 

relatively high R Square value for population and temperature, the coefficients had the 

opposite directionality than what was expected. Tarrant County experienced an atypical 

coefficient sign for precipitation, but the variable was almost not significant and showed 

a very low R Square value. Temperature had the highest R Square for every county, 

except Dallas where the highest R Square came from precipitation. The standardized 

coefficients listed in the above tables were used as the weighting factors in the WLC, as 

previously discussed. 
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Final Index 

Results and Discussions 

For this study, population density was chosen as the only social variable that will 

have an impact on drought severity, and hence, was analyzed at the block group level to 

see the distribution within each county. The regression analysis was performed using the 

interpolated values of each variable: SC-PDSI, maximum temperature, precipitation and 

soil moisture. Based on the significance value of the standardized coefficients of each 

variable, the variables that were not significant were omitted from being used in the 

index. Next, all variables were reclassified to their assigned factor ratings. Once this was 

completed, the identified coefficient became the weighting factor for each variable. Two 

variables, population density and maximum temperature, required the sign of their 

corresponding coefficients to be inversed to determine the associated weighting factor. 

As previously discussed, this was done to keep the same relationship between the two 

variables, that was seen prior to converting them to factor ratings. The coefficients were 

then multiplied by the factor ratings determined for each variable then summed using the 

WLC equation (Equation 15). The process was repeated for September 2000 and June 

1990 to determine how well this index depicts drought conditions over time and during 

varying drought conditions.  

 The final index was compared to the PDSI and SC-PDSI in the Paired Samples T-

Test. To most accurately compare these indices, the SC-PDSI and PDSI values were 

converted to the same factor rating values used for the SC-PDSI in the WLC since these 

values were used to create the final index. Table 14 lists the results of the Paired Samples 

T-Test between all the indices. 2011 and 2000 show weak negative correlations between 
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the new index and the existing two. The SC-PDSI and PDSI display strong positive 

correlations, which is to be expected since the only difference between them is that one 

accounts for the region’s historical climatological data (SC-PDSI) and the other uses 

derived constants (PDSI). There is also a statistically significant correlation between 

them. The correlation significance for the new index and the SC-PDSI for 2011 is not 

significant, indicating they are independent and not similar. The data for 1990 was unable 

to produce a result for the correlation with two of the pairs. This is due to the SC-PDSI 

values all being zero for that month/year, and a “0” factor rating indicates no drought 

being present. For the new index and PDSI in 1990, there was a strong positive 

correlation between those two indices. The correlation was likely stronger due to the 

weaker drought conditions present. When stronger droughts are present, there should be 

more variation in the indices because of the added parameters. The Paired Samples T-

Test resulted in a statistically significant difference among each index for every year.  
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Table 14 

Paired Samples T-Test Results 

     

Year Variables 

Paired  

Samples 

Correlation 

Correlation 

Significance 

Paired  

Samples Test 

Significance 

     

     

2011 New Index – PDSI -0.420 0 0 

     

2011 New Index - SC-PDSI -0.018 0.150 0 

     

2011 SC-PDSI - PDSI 0.801 0 0 

     

2000 New Index - PDSI 0.081 0 0 

     

2000 New Index - SC-PDSI -0.178 0 0 

     

2000 SC-PDSI - PDSI 0.795 0 0 

     

1990 New Index - PDSI 0.812 0 0 

     

1990 New Index - SC-PDSI n/a 0 0 

     

1990 SC-PDSI - PDSI n/a 0 0 

     

 

 

Figure 7. New Index for 2011  
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Figure 8. SC-PDSI for 2011  

 

Figure 9. PDSI for 2011 

 

Figure 10. New Index for 2000 
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Figure 11. SC-PDSI for 2000  

 

Figure 12. PDSI for 2000 

 

Figure 13. New Index for 1990 
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Figure 14. SC-PDSI for 1990 

 

Figure 15. PDSI for 1990 

The new index was also compared to the SC-PDSI and PDSI visually.  Visual 

interpretations of drought severity are important because that is how many people 

interpret drought severity. The SC-PDSI and PDSI were first converted to their factor 

ratings. Then, all three indices were symbolized on the same scale for easier visual 

comparisons. Figures 7-15 depict the final results of the new drought index, SC-PDSI and 

PDSI for 2011, 2000, and 1990. For 2011 (Figures 7-9), the new index produced overall 

stronger drought values compared to the other two indices. It is important to note that the 

population density variable stood out in the new index because there was more variation 

in the index severity within each county. This was the strongest drought year selected for 

this study and was depicted well by the new index among all the years. 
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For 2000 (Figures 10-12), the new index still showed overall stronger drought 

values, except in Harris County, where the values appeared much lower in comparison. 

This can be attributed to the weak influence from population and the opposite signs of the 

coefficients for maximum temperature and precipitation for this year/county. Overall the 

patterns among the three indices were similar in Bexar County that had the strongest 

drought conditions. 

In 1990, the drought condition was the weakest, and based on SC_PDSI value of 

“0”, there was no drought in the study counties. The visual depiction of indices (Figures 

13-15) agreed with there being no correlation as per the Paired Samples T-Test results 

(Table 14). Once again, the new index produced slightly stronger drought severity than 

the other two indices, and it was especially noticeable for Harris County. 

Across the years, the new index displayed more variation due to population 

density though the influence of population was much more prominent in Bexar and 

Harris Counties. As previously mentioned this was due to their use of an underground 

water supply while Dallas and Tarrant Counties use surface water. It is expected that the 

counties using the subsurface water supplies show more of an impact from population 

density. The population impact appeared to be more influential in 2011 compared to the 

other years as well. This indicated that the stronger drought years experienced more 

impact from population. 

Limitations 

Drought is a complex phenomenon with many impacting factors, and it is 

important to note that this research only includes a select number of those factors, which 
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were analyzed for a small number of study counties. Further research is needed to 

incorporate more study sites and more case study droughts to further validate the research 

findings and prove that population is an impacting factor on a large scale. Another 

limitation is the scale at which this study was performed on. While examining drought 

severity at the block group level produced results at a finer resolution within each county, 

it is also a limitation because the census data at a block group level is only gathered every 

ten years. So, predicting a drought occurrence in between censuses will not produce 

accurate results as compared to this study in which drought severity was examined for the 

years when census data was available. The availability of meteorological data can also be 

considered a limitation. The SC-PDSI values are calculated at specific stations located 

throughout Texas, where the temperature and precipitation data are collected. These data 

were then interpolated for this study at a 30m resolution, thereby introducing error. 
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CHAPTER V 

CONCLUSIONS 

Overall Conclusions 

Incorporating social factors into a drought severity measurement is an innovative 

concept. While temperature and precipitation are the most commonly used factors for 

drought prediction, there are many others that should be considered as well, especially for 

regions with large and increasing populations because increasing population density is a 

cause for concern. This research indicated that population density in fact influences 

drought severity, and this impact is noticeable in areas relying on underground water 

supplies. There is no clear answer as to whether an index is classified as correct or not, 

and science is continually evolving to enhance previous research. Anytime new variables 

are added into an equation results are going to vary when compared to prior research.  

The R Square values calculated from the regression for only population density 

was on the lower side ranging from 0% to 10.7%, indicating that this variable can only 

account for up to 10.7% of the variability of SC-PDSI. The highest R Square values were 

seen in Bexar County in 2011 during a very intense drought, and it is important to 

remember that Bexar County uses the subsurface water source. These overall values of R 

Square for population density were seemingly low compared to the other variables, but 

that was to be expected because many variables impact and contribute to drought 

intensity. The three meteorological and physical variables – temperature, precipitation 

and soil moisture were found to have higher impact on drought severity based on their R 

Square values. However, population density did appear to have contributed to drought to 
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some extent, and also found to be more influential in counties drawing from the 

subsurface water sources during the worst drought years.  

From these findings, it can be concluded that population density and SC-PDSI are 

more strongly related during more intense droughts. Furthermore, though population 

density appears to be a weaker predictive variable, it is still a cause for concern, 

especially, for counties experiencing an increase in population density and relying on 

sub-surface water sources. One major threat to the Edwards Aquifer, which supplies 

water for Bexar County, is pollution and extraction (The University of Texas at Austin 

2015). The increasing population creates a higher demand for water usage which could 

potentially affect the water levels of the aquifer. This could have been the reason for 

watering restrictions put in place in Bexar County. If people did not impact drought and 

enhance drought severity, these water restrictions would not be in place. Another current 

example of population density’s impact on drought can be seen in California. The state 

has been experiencing extreme drought conditions so far in 2015, which led to the state 

government to place a mandatory water usage reduction (James 2015).    

As discussed previously, the signs of the coefficients were important because they 

indicated the directionality of the variables and how they influence the SC-PDSI value. 

The sign for most of the coefficients was “typical” - what the expected relationship would 

be between the particular variable and the SC-PDSI. However, some variables did not 

display an expected relationship, for instance, the results for Harris County for the 2000 

drought condition. The absence of an expected relationship between drought severity and 

temperature and precipitation could have been due to the very high resolution. Drought is 

typically analyzed on a larger scale (i.e. state or climate division) and rarely analyzed at 



   70 

 

 

 

this fine resolution, i.e., at the block group level. Another possible explanation could be 

the use of interpolation technique. Insitu meteorological data was not gathered every 

30m, which would be ideal for this study but impossible to find. Interpolation itself is not 

perfect and the values are derived, which always introduces some error. Another issue 

was including all variables in one multi-variate regression analysis. According to 

Siminoff (2009), two collinear variables should be excluded from the regression analysis 

as a general rule of thumb, but there are instances in which collinear predictors are 

needed. In this case, temperature and precipitation are very important predictors of 

drought. Although these two variables are collinear, they did not display a strong 

collinear relationship. This could be an explanation to the opposite signs of the 

coefficients and the significant differences seen among all the indices in the Paired 

Samples T-Test results.  

The findings of this study reveal that population density does influence drought 

severity and hence should be included in drought prediction research. However, the 

extent to which population influences drought is a matter that needs further investigation. 

In counties where majority of the water supply depends on subsurface water sources, 

population appears to be a major factor in drought occurrence. Therefore, for these 

locations and locations experiencing significant population growth, drought related 

mitigation measures should account for population growth and subsequent water usage.  

This study is probably the first study to have included social variable to examine 

drought severity and its occurrence. Therefore, future research should focus on 

incorporating more study sites and a larger quantity of case studies to increase validity of 

the research findings. Although the methodology is easily replicable, one component that 
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should be paid more attention in future research is the identification of study sites 

drawing from subsurface water supplies. Another area where further research should be 

conducted is the impact of spatial scale of analysis on index computation. Many drought 

studies are performed on a larger scale, generally at the state or the climatic division 

level, but rarely at the block or block group level where most of the population growth 

analysis are conducted. Therefore, it would be crucial to examine how the spatial scale at 

which data are available and collected influence index computation and subsequently 

drought severity determination so that appropriate mitigation measures can be taken. 
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APPENDIX 

LIST OF COMMON ABBREVIATIONS 

Palmer Drought Severity Index (PDSI) 

Self-Calibrating Palmer Drought Severity Index (SC-PDSI) 

National Drought Mitigation Center (NDMC) 

Normalized Difference Vegetation Index (NDVI) 

Weighted Linear Combination (WLC) 

Drought Impact Reporter (DIR) 

Federal Emergency Management Agency (FEMA) 
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