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Abstract 

Staphylococcus aureus is an important human pathogen that causes a wide variety 

of diseases. Many S. aureus strains have emerged which are resistant to the penicillin 

class of antibiotics. Of primary importance is methicillin-resistant S. aureus (MRSA), 

which has cause frequent hospitalizations due to infections. In the past, MRSA was 

typically confined to hospital settings, but recently, community-associated MRSA (CA-

MRSA) have been reported. CA-MRSA poses a major public health threat because of 

increased virulence and success in infecting otherwise healthy individuals. Previously we 

discovered a gene, msa, which plays a critical role in biofilm formation and regulation of 

the disease process. Recent studies indicate that msa is part of a three open reading frame 

operon and that the upstream neighboring genes may play a role in the regulation of the 

msa operon. In this study, we investigated the possibility that genes 1294-1298 regulate 

virulence factors of S. aureus.  We constructed a 1294-1298 mutant in CA-MRSA 

USA300 strain LAC using the allelic replacement vector pKOR1 and found that it 

produced a weaker biofilm in addition to increased autolysis, protease production, 

pigmentation production, hemolysin production and lipase production-all indicators that 

genes 1294-1298 play a role in the virulence of S. aureus. We hope to explore the 

possibility of exploring the regulatory network of the msa operon and its neighboring 

genes and exploit them as a target for therapy for recalcitrant staph infections. 
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Introduction 
 

Staphylococcus aureus emerged as an important human pathogen in the 

nineteenth century and continues to be a major cause of hospital acquired infections 

worldwide. S. aureus are gram positive, facultative anaerobes that can metabolize 

carbohydrates (glucose, xylose, lactose, sucrose, maltose and glycerol) to produce a white 

to deep yellow pigment on solid media (1,2,4). S. aureus is differentiable from other 

Staphylococci by its ability to metabolize the sugar mannitol, the production of protein A 

and the enzymes coagulase-which converts fibrinogen to fibrin-and deoxyribonuclease 

(DNase) (1,2,4).  

Humans are a natural reservoir of S. aureus, with about 25-50% of healthy 

individuals having been persistently colonized, usually on the skin, nasal or vaginal 

passages however S. aureus is capable of surviving on nonliving surfaces (1,2,3,4).        

S. aureus is able to adhere and grow on nearly any surface in multicellular communities 

called biofilm (4). Certain factors can predispose individuals to colonization: diabetes, 

indwelling medical devices, intravenous drug use and AIDS, for example (3,4). Local 

infection occurs from the inoculation of organisms on the skin or hair follicles and the 

subsequent inflammatory response results in skin abscesses or furuncles (2,3). Infections 

commonly occur from an individual’s own colonies but S. aureus can be directly 

transmitted through contact with other colonized individuals or environmental surfaces 

(2,4). Invasive infections can occur if S. aureus gains access to the bloodstream or 

surrounding tissue and spreads to other organ systems of the body, causing organ specific 

infections such as endocarditis, osteomyelitis, pneumonia and septicemia (2,3,4). Finally, 

certain syndromes, such as food poisoning, toxic shock syndrome and scalded skin 
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syndrome, can result from secreted S. aureus toxins without the need for an established 

colony (2,3,4). Although it is usually extracellular, S. aureus can survive inside a variety 

of cell types such as osteoblasts, endothelial cells and phagocytes, and replicate in their 

cytoplasm (5). This survival strategy is thought to contribute to S. aureus’ success in 

evading host immune responses and anti-microbial effects (5).  

In 1941 penicillin, one of many β-lactam antibiotics, was introduced to the mass 

market for S. aureus treatment (4). β-lactams operate by disrupting with the biosynthesis 

of bacterial cell walls, specifically the cross linkage of the rigid macromolecule 

peptidoglycan catalyzed by transpeptidase (9). β-lactams are able to bind to 

transpeptidase and form a stable intermediate, thereby disrupting cell wall synthesis (9). 

As early as 1944, penicillinase-producing strains of S. aureus had already been identified, 

although from hospitalized patients, and had become commonplace in hospitals by the 

early 1950’s (4). The first epidemiological study of drug resistant strains of S. aureus was 

performed with 2,000 isolates collected between 1957 and 1969 in the Statens Serum 

Institute in Copenhagen, Denmark (4). It supported the high prevalence of penicillinase-

producing S. aureus in hospitals at 85%-90% but surprisingly, reported that 65%-70% of 

strains were also prevalent in the community. By 1970, penicillinase-producing strains of 

S. aureus were prevalent at 70%-85% in and out of the United States (US) from rural to 

urban areas, effectively equaling nosocomial rates (4).  

This pattern of resistance closely follows that of methicillin-resistant S. aureus 

(MRSA). Methicillin was introduced in 1961 as the first penicillinase-resistant 

manufactured form of penicillin but MRSA strains were isolated from hospitals in the 

United States sooner than one year after its’ introduction (4). Since then, reports from all 
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over the world indicate that the prevalence of MRSA is growing at an alarming rate. In 

various health centers in the US, reports showed that MRSA prevalence increased from 

30%-50% from 1988 to 1990 and that prevalence of MRSA out of all bacterial isolates 

increased from 6%-50% from 1998 to 2002 (6). In France, Mangeney et al. reported that 

an increase of MRSA prevalence from 33%-62% in their hospital wards, with similar 

trends being reported elsewhere in Europe (6). Studies from Asia show a high increase in 

the prevalence of MRSA with up to 70% in South Korea and 54% in Japan (6). Although 

there are poor surveillance systems in place for MRSA in Africa, studies carried out in 

the sub-Saharan countries of Nigeria, Cameroon and Kenya reported prevalence rates of 

21%-30% among them (6). Additionally, hospital-acquired MRSA (HA MRSA) has had 

an increasing economic impact on both healthcare and patients. Outbreaks of HA MRSA 

between 1971 and 1980 were investigated by the CDC in the US and reported that 

infection of HA MRSA was associated with longer hospital stays (approximately twice as 

long) and other studies showed an association with higher hospital costs (250% increase) 

and treatment with antibiotics (7).   

 However, in the early 1990’s, reports detailing patients who acquired MRSA in 

the community or were outside traditional definitions for at risk individuals began 

surfacing and prompted the recognition of community-acquired MRSA (CA MRSA) 

(4,6,8). CA MRSA strains were reported to be much more aggressive than hospital-

acquired MRSA i.e. severe skin infections, large and/or recurring abscesses and 

necrotizing pneumonia were typical (8). Their resistance profiles were also unique: CA 

MRSA strains appeared to be resistant to only β-lactam antibiotics and susceptible to 

other classes of antibiotics, whereas HA MRSA was resistant to multiple classes of 
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antibiotics (8). Initially, patients were athletes, members of the military, prisoners and 

those individuals who lived in close communities (8). However, surveys of daycare 

centers in Dallas, Texas in 1998 found up to 25% of children were colonized and a 

survey of children admitted to hospital in Chicago found a 25 fold increase in 

colonization (4). In 1999, the deaths of four children in the US brought increased 

awareness to the issue (4,8).  

The β-lactam resistance of MRSA is due to the production of penicillin-binding 

protein 2a (PBP2a) which has a much lower affinity for β-lactams, allowing MRSA to 

continue synthesizing cell wall even in the presence of β-lactams (9). In 1987, the mecA 

gene was isolated and sequenced in Japan and found to encode for PBP2a. Additionally, 

the staphylococcal chromosomal cassette mec (SCCmec) was identified as a genomic 

island within which mec is embedded (10). Six major subtypes of SCCmec have been 

identified (SCCmec I-VI).  Types I, II and II are larger and found in HA MRSA and the 

smaller types IV, V and VI are found in CA MRSA (8,9). Common to all subtypes is the 

insertion sequence IS431mec and cassette chromosomal recombinase gene complex (crr), 

responsible for the excision and integration of the transposon into the target site of the 

chromosome (8). Unique to SCCmec type II is the transposon Tn544, which encodes 

multiple antibiotic resistance to the macrolide-lincosamide-steptogramin antibiotics and 

spectinomycin, and the mec complex, composed of mecA and the regulatory genes 

mecR1-mecI, which is found as a truncated form in SCCmec type II (8).  

The diversity and virulence of S. aureus infection can be attributed to the 

production of a variety of virulence factors that are involved in every stage of the 

infection process, from initial binding to host cells, invasion of host tissue and evasion of 
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the host immune system (2, 3, 12).  Virulence factors include surface-associated proteins, 

which are mainly expressed during the exponential growth phase of the culture, and 

extracellular proteins, which are produced as the culture enters the post-exponential 

growth phase (2). The expression of virulence factor genes is tightly controlled by global 

regulators that can adapt to changing environments, thereby allowing organisms to 

survive and express virulence factors at an appropriate time (2,3). Several regulators are 

produced in response to quorum sensing: the perception of the relative density of secreted 

signaling molecules by nearby bacterial cells and the adjustment of gene expression 

accordingly (11). The accessory gene regulator (agr) is one such system, regulating the 

expression of several virulence genes as a result of quorum sensing by way of a 

regulatory RNA molecule called RNAIII that can serve as both a repressor and as an 

activator (5).  RNAIII production is also controlled by another global regulator, 

staphylococcal accessory regulatory locus (sar), among its other functions as a regulator 

of biofilm formation and systemic infections (5,12,13). Three promoters generate 

transcripts that terminate at the same point downstream of the sarA open reading frame 

and together, encode sarA which can bind to enhancer elements of agr and has been 

shown to have regulatory functions independently of agr (5,12).  

 As previously mentioned S. aureus can exist as planktonic cells or as an aggregate 

of microorganisms within an extracellular matrix called biofilm (4). Biofilms can arise 

from a single cell or as phenotypically distinct populations due to differences in gene 

expression as the biofilm develops (15). Biofilms contribute to the ubiquity of bacteria as 

they can form anywhere and recently, biofilm formation on medical instruments has 

contributed to difficult-to-treat infections (15). The extracellular matrix can be composed 
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of various components such as polysaccharides, DNA and proteins which contribute both 

a structural barrier to unfavorable environmental conditions and can confer antibiotic 

resistance (15). Biofilm formation is also composed of several steps which begin with the 

initial attachment and adhesion of the microorganism to a surface, the accumulation of 

cells within the extracellular matrix, maturation of the biofilm and the detachment of cells 

that can travel to other sites of infection (15,17,20). Microbial surface components 

recognizing adhesive matrix molecules (MSCRAMM) represent a class of adhesin 

proteins that bind tightly to specific host proteins to initiate attachment to surfaces 

including fibrinogen, fibronectin and collagen (16).  Most strains of S. aureus have either 

a polymer of the polysaccharide N-acetyl glucosamine (PNAG) or otherwise known as 

polysaccharide extracellular adhesion (PIA) to form biofilm and/or biofilm associated 

proteins (Bap) that attach to neighboring cells within the biofilm (15). Also, the 

controlled cell lysis of some cells within the biofilm releases genomic DNA into the 

biofilm (15,17). This extracellular DNA (eDNA) has been shown to contribute stability to 

the biofilm and confer antibiotic resistance by inducing expression of antibiotic resistance 

genes (15,17). In S. aureus, the icaADBC operon encodes for the enzymes that are 

required for the synthesis of PIA and whose mutation results in a reduced ability to form 

biofilm (15,16). Two such regulators of the icaADBC operon are agr and sarA (16). 

Beenken et al. demonstrated that mutation of sarA of S. aureus results in a decreased 

binding to fibronectin, increased production of proteases and a biofilm-deficient 

phenotype that has a reduced capacity to form biofilm in both plates and when exposed to 

shear forces in a flow cell (16). On the other hand, mutation of agr resulted in an 
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enhanced capacity to bind to fibronectin and little effect in biofilm formation in most 

strains tested (16).  

 For now, the reasons for the effect of sarA on biofilm formation are unclear but 

nevertheless, new genes are characterized that modulate the expression of sarA. 

Previously, Sambanthamoorthy et al. identified and characterized a novel gene, msa, that 

modulates the expression of sarA along with several other virulence factors (18). It has 

been postulated that msa is a membrane protein with three transmembrane regions and 3 

phosphorylation sites, two outside the membrane and one in the cytoplasm, suggesting 

that msa is involved with signal transduction if those sites are phosphorylated by kinases 

(19). Sambanthamoorthy et al. demonstrated that mutation of msa resulted in a twofold 

and 2.85-fold decrease in sarA expression in S. aureus strains RN6390 and UAMS-1, 

showing that msa mutation of sarA is not strain-dependent (18).  Furthermore, mutation 

of msa resulted in altered expression of genes that are regulated by sarA including those 

that are essential for biofilm formation, such as decreased expression of genes encoding 

fibronectin-binding protein A (18). Sambanthamoorthy et al. also studied the role of msa 

in biofilm formation by constructing an msa mutant in the S. aureus strain COL (20). 

Under both steady-state and shear force conditions, the msa mutant was unable to form as 

thick and complete of a biofilm as the wild-type COL strain and the complemented msa 

mutant and those biofilms that were formed by the msa mutant did not persist and 

dispersed quickly (20).  Although there was no discernible difference in the initial 

attachment to surfaces of test strains, the absence of a thick biofilm in the msa mutant 

suggested a defect in the accumulation stage of biofilm formation (20). Whether msa 

plays a role in the maturation or detachment stage is yet to be studied. In addition, 
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preliminary results show that msa is a part of an operon that may play role in biofilm 

formation, cell death and antibiotic resistance.  

In this study, we attempt to delete a putative gene fragment containing the msa 

gene using a method adapted from Bae et al. in which a new allelic replacement vector 

was constructed, pKOR1 (21). pKOR1 is a Escherichia coli/ S. aureus shuttle vector that 

uses antisense secY RNA expression and the lambda recombination cassette to generate 

allelic replacement(21). secY is a membrane protein that functions as a subunit of the 

preprotein translocase pathway of gram-negative bacteria and is essential for gram-

negative growth so transcription of antisense secY RNA would inhibit growth (21).  The 

lambda recombination cassette is comprised of several genes that function to permit rapid 

cloning of mutant genes (21). Some key components include the gene sites of attP and 

attB which when transformed inhibits growth of cells that lack the recombinant plasmid 

using ccdB, which encodes for a gyrase inhibitor, which blocks relaxation of supercoiled 

DNA, a requirement for transcription and translation (21). The plasmid is electroporated 

into S. aureus strain RN4220 and grown at 43°C, a non-permissive temperature for 

pKOR1 replication, to select for plasmid integration into the cells chromosome (21). 

Then growth at 30°C with anhydrotetracycline (ATC), which induces antisense secY 

transcription via the Pxyl/tetO promoter, selected for cells that had removed the plasmid 

(21).  If successful, further work can study the effect of deletion of the msa operon on 

biofilm formation, cell death and antibiotic resistance as a potential target for therapy. 
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Figure 1 Gene map showing deletion sites. 

  

Materials and Methods 

Bacteria and growth conditions: The community-associated methicillin –

resistant S. aureus (CA-MRSA) strain USA300 LAC was used in this study. Five genes 

were deleted from the USA300 LAC strain, designated as 1294-1298. Strains were grown 

on tryptic soy agar (TSA) and in tryptic soy broth (TSB) at 37 °C with constant aeration 

and shaking. For electro transformation, strains were inoculated in B2 broth: 1% casein 

hydrolyzate (Sigma Inc.), 2.5% yeast extract (Difco Inc.), 0.5% glucose, 0.1% KHPO4, 

0.5% NaCl at pH 7.5. Agar was occasionally supplemented with chloramphenicol (10 

μg/ml) and used to grow the complemented 1294-1298 mutant to ensure maintenance of 

the plasmid carry the 1294-1298 genes.  

Electro-transformation of pKOR1 construct into S. aureus RN4220: Electro-

competent S. aureus RN4220 cells were first prepared. Briefly, RN4220 was inoculated 

in 5mL of B2 broth at 37°C for 24 hours with shaking. Then, the culture is inoculated 

with 100mL of fresh B2 broth and incubated at 37° with shaking and the absorbance is 

monitored until mid-exponential phase is reached (OD560 of 0.6-1.2). Cells are then 

centrifuged at 10,000 rpm for 5 minutes then resuspended in 100 mL of cold deionized 

water and centrifuged at 10,000 rpm for 5 minutes. This wash is repeated 3 times then the 
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cells are washed again in 20 mL of deionized water containing 15% glycerol and finally 

resuspended in 10 mL of deionized water containing 15% glycerol. 100 µL aliquots are 

made for storage at -80°C. For the transformation, one aliquot for 100 µL is thawed on 

ice for 15 minutes then 50 µL of competent cells are mixed with 2 µL of DNA in a 

microcentrifuge tube and left to incubate for 30 minutes at room temperature.  On ice, 

place one 2mm eletroporation cuvette (bio-rad) and 1 mL of B2 broth that has been 

aliquoted into a microcentrifuge tube. After incubation, the DNA and cell mixture was 

transferred to the cold cuvette, placed into the micropulser holder and electroporated 

using the S. aureus settings. At the end of the pulse, quickly take out the cuvette and 

resuspend with 1 mL of B2 broth and transfer the mixture to a 15 mL culture tube and 

incubate it at 30°C with shaking for 1 hour. Spread 50 µL, 100 µL and 500 µL of the 

mixture on both TSA and TSA with 10 µg/mL of chloramphenicol and incubate at 30°C 

for 24 hours. Finally, isolate the plasmid using the Spin MiniPrep Kit (Qiagen Inc.) and 

verify by electrophoresis on agarose gel.  

Deletion of 1294-1298 in S. aureus strain USA300 LAC: A previous described 

mutagenesis protocol (21) was used to construct a nonpolar, in-frame deletion of 1294-98 

in USA300 strain LAC. Briefly, the flanking regions of the 1294-1298 genes were 

amplified by polymerase chain reaction using the Taq DNA Polymerase Mix (Qiagen 

Inc.) and ligated together at an introduced BamHI restriction site (New England Biolabs 

Inc.). This PCR product was inserted into the temperature-sensitive plasmid pKOR, 

which confers chloramphenicol resistance, using Gateway BP Clonase Enzyme Mix 

(Invitrogen Inc.). The pKOR1 plasmid was transduced into LAC using phage lysate 

previously prepared and the transduced strain was grown on TSA with 10 µg/mL of 
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CAM at 30ºC, the permissive temperature for pKOR1 replication, for 24 hours. Then, 

colonies were transferred to culture tubes with 5mL TSB with 10 µg/mL CAM and 

grown at 43ºC, a non-permissive temperature for pKOR1 replication, for 24 hours with 

220rpm shaking (21). A loopful of the broth culture was then inoculated on TSA plates 

10 µg/mL CAM and incubated at 43ºC for 24 hours and afterwards, colonies were 

transferred to 4 culture tubes with 5mL TSB and grown at 30 ºC for 24 hours with 220 

rpm shaking. Then the cultures were diluted to 10
-4

 with sterile H2O and 50 μL was 

spread onto TSA plates with 100 ng anhydro-tetracyclin (ATc), which induces antisense 

secY RNA expression and promotes loss of plasmid. Another 50 μL was spread onto 

plain TSA as a positive control. Both sets of plates were incubated at 30 ºC for 24 hours. 

Colonies were then streaked to a TSA plate and using the same swab, streaked on TSA 

with 10 µg/mL of CAM and incubated at 30 ºC for 24 hours. CAM sensitive colonies 

were spread onto TSA plates and incubated 37 ºC for 24 hours. Chromosomal DNA from 

said colonies was harvested, and regions surrounding 1294-1298 were amplified by PCR 

with primers containing attB sites for upstream and downstream sequences and visualized 

using gel electrophoresis with a 1kb ladder for verification. 

Microtiter plate biofilm assay: Microtiter plate analysis of biofilm formation. 

Wells were coated with human plasma and incubated overnight at 4°C. The human 

plasma was carefully removed by pipetting and the wells were then inoculated with 1mL 

of 1:200 diluted overnight S. aureus cultures that were grown in TSB with 0.5% dextrose 

and 3.0% NaCl. Control wells contained only the described media. Plates were incubated 

overnight at 37°C. Bacterial cultures were then removed by pipetting and washed three 

times with sterile phosphate buffered saline (PBS). The wells were then fixed with 100% 
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ethanol, which was then immediately aspirated and left to air dry in a sterile hood. The 

biofilm was then stained with crystal violet, then removed and washed three times with 

PBS then left to dry overnight. Then, the crystal violet was eluted with 100% ethanol for 

10 minutes then the eluted stain was gently transferred to a new microtiter plate and the 

absorbance was measured at OD595 using an ELISA plate reader.  

Autolysis assay. Autolysis assays were performed as described by (22). 

Overnight cultures of S. aureus were diluted to an OD600 of 0.05 in TSB containing 1 M 

NaCl and allowed to grow at 37°C with shaking until an OD600 of 0.7 was reached. Cells 

were harvested by centrifugation, washed twice with ice-cold water, and then 

resuspended in the same volume of 0.05 M Tris-Cl (pH 7.2) containing 0.025% Triton X-

100. Cells were then incubated at 30°C with shaking. Absorbance (OD580) was measured 

every 30 minutes to quantify lysis.  

Protease assay: Assays were performed to quantify protease activity. Overnight 

cultures of S. aureus were diluted to an OD560 of 0.05. Cells were harvested and separated 

by centrifuging at 10,000 rpm for 5 minutes. The supernatant was collected; filter 

sterilized using a 0.45µm syringe filter, and inoculated with 3 mg/mL solution of 

azocasein in Tris buffered saline (pH 7.5).  TSB was used as a negative control. Solutions 

were incubated at 37°C with shaking in the dark for 24 hours. Un-degraded azocasein 

was precipitated by addition of 50% trichloroacetic acid solution. Solution was 

centrifuged for 10 minutes at 10,000 rpm and absorbance (OD340) was measured. 

Pigmentation assay. Assays for pigment production were performed. Overnight 

cultures of S. aureus were harvested and separated by centrifugation at 10,000 rpm for 1 

minute. Cells were washed in water and suspended in 200 µL of methanol. The solution 
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was heated at 55°C for 3 minutes and centrifuged at 10,000 rpm for 1 minute to remove 

cell debris. Supernatant was collected and methanol washing was repeated. Finally, the 

final volume was adjusted to 1 mL with methanol and absorbance (OD405) was measured.  

Hemolytic assay: Assays for hemolytic activity were performed.  Overnight 

cultures of S. aureus were diluted to an OD560 of 0.05. Cells were harvested and separated 

by centrifuging at 10,000 rpm for 5 minutes. The supernatant was collected; filter 

sterilized using a 0.45 µm syringe filter, and inoculated with 2% rabbit blood in 10mM 

Tris-HCl (pH 7.5) with 0.9% NaCl. TSB was used as a negative control and 1% sodium 

dodecyl sulfate was used as a positive control. Solutions were incubated at 37°C with 

shaking for 15 minutes. The unlysed blood cells were precipitated by centrifugation for 

10 minutes at 10,000 rpm and absorbance (OD405) was measured. 

Lipase assay. Overnight cultures of S. aureus were diluted to OD560 of 0.10. Cells 

were then inoculated on tributyrin agar plates with 1 mL tributyrin and incubated 

overnight at 37°C. 
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Results and Discussion 

Deletion of the five open reading frames, 1294-1298, was successful and confirmed 

by electrophoresis using primers containing attB1 and atttB2 sites for upstream and 

downstream sequences (Fig.2). The mutant’s biofilm was analyzed by growth on a 

microtiter plate and measurement by an ELISA plate reader and the mutant was found to 

be defective in biofilm formation (Fig.3). To further examine this phenotype, the rate of 

autolysis was measured in the presence of Triton-X-100. The 1294-98 mutant lysed at 

significantly higher rate than the wild type, S. aureus strain USA300 LAC, and the 

complemented mutant showed a rate of autolysis comparable to the wild type (Fig.4). 

Extracellular proteases were also measured and at four hours, the 1294-1298 mutant had 

significant higher levels of proteases compared to the wild type and the complemented 

mutant, both of which had comparable protease levels (Fig. 5). Pigment production was 

also analyzed by measuring absorbance and the 1294-1298 mutant was found to produce 

significantly less pigment than the wild type (Fig. 6). Hemolysin production was also 

analyzed by measuring absorbance and although the 1294-1298 mutant produced less 

hemolysin than the wild type, it wasn’t significantly less, and the complemented mutant 

showed a level of hemolysin production comparable to the wild type (Fig. 7). Finally, 

lipase production was measured by growth on tributyrin agar plates and there was no 

significant difference in lipase production between the mutant, wild type and the 

complemented mutant (Fig. 8).  
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Conclusion 

The results presented here demonstrate that mutation of 1294-1298 genes in USA300 

strain LAC of S. aureus results in weaker biofilm formation. This defect is likely due to 

the reduced expression of sarA resulting from the mutation of msa, which is among the 

five open reading frames deleted. The 1294-1298 mutant also results in increased 

production of proteases and rates of autolysis, which could contribute to a reduced 

capacity to form biofilm. However, there was not an observed difference in the 

production of hemolysins and lipases. These proteins could be subject to protease-

mediated degradation, which has been demonstrated in sarA mutants in USA300 strain 

LAC (23). Previous studies show that msa is part of a 3 open reading frame operon and 

the upstream neighboring genes (1297-1298), which is another operon and spans in the 

opposite orientation, may also play a role in the regulatory functions of the msa operon. 

In order to understand how the msa operon works, genes 1294-1298 were deleted and 

phenotypically studied.  Further experiments could be performed using a flow cell assay 

for obtain a more representative model of biofilm formation. Experiments could also be 

performed with protease mutants, to mitigate the effect of protease mediated degradation. 

Finally, looking at the effect of genes 1294-1298 in an in vivo model would be the next 

step in determining whether these genes would be viable targets for vaccines. 
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Figures 

 

Figure 2. Conformation of 1294-1298 mutant. Lanes 2-7 are wild type USA300 strain 

LAC S. aureus. Lanes 8-19 are mutants. Lanes 1 and 20 are 1kb ladders. 
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Figure 3. Microtiter plate analysis of biofilm formation. Wells were coated with human 

plasma and incubated overnight at 4°C. The human plasma was carefully removed and 

the wells were then inoculated with 1mL of 1:200 diluted overnight S. aureus cultures 

that were grown in TSB with 0.5% dextrose and 3.0% NaCl. Plates were incubated for 96 

hours at 37°C. Bacterial cultures were then removed and washed with sterile phosphate 

buffered saline (PBS). The wells were then fixed with 100% ethanol, and then stained 

with crystal violet. The crystal violet was eluted with 100% ethanol then the eluted stain 

was gently transferred to a new microtiter plate and the absorbance was measured at 

OD595 using an ELISA plate reader. 

0.643 

0.35 

0.4305 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LAC Δ1294-98 compl Δ1294-98 

A
b

so
rb

an
ce

 a
t 

O
D

5
9

5
   

Organisms 



19 
 

 
 
 Figure 4. Autolysis assay. Overnight cultures of cells were diluted to an OD of 0.05 and 

grown to an OD of 0.7 at 37oC shaking at 220 rpm. Cells were harvested and washed 

twice with ice cold water and then resuspended in lysis buffer, 0.05M Tris (pH-7.5) with 

0.025% Triton-X 100 and rate of autolysis were measured as a rate of decrease in OD580 

every 30 minutes. 
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Figure 5. Protease assay. 4 hour cultures of S. aureus were diluted to an OD560 of 0.05. 

Cells were harvested and separated. The supernatant was collected, filter sterilized, and 

inoculated with 3mg/mL solution of azocasein in Tris-buffered saline (pH 7.5). Solutions 

were incubated at 37°C with shaking in the dark for 24 hours. Un-degraded azocasein 

was precipitated by addition of 50% trichloroacetic acid solution. Solution was 

centrifuged for 10 minutes at 10,000 rpm and absorbance (OD340) was measured. 
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Figure 6. Pigmentation assay. Overnight cultures were harvested and washed with water 

then methanol and heated in 55°C water for 3 minutes. Methanol wash was repeated then 

final volume was adjusted to 1mL with methanol and absorbance (OD465).          
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Figure 7. Hemolysis assay. Overnight cultures of S. aureus were diluted to an OD560 of 

0.05. Cells were harvested and separated by centrifuging at 10,000 rpm for 5 minutes. 

The supernatant was collected, filter sterilized, and inoculated with 2% rabbit blood in 

10mM Tris-HCl (pH 7.5) with 0.9% NaCl. Solutions were incubated at 37°C with 

shaking for 15 minutes. The unlysed blood cells were precipitated by centrifugation for 

10 minutes at 10,000 rpm and absorbance (OD405) was measured. 
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Figure 8. Lipase assay. Overnight cultures of S. aureus were diluted to OD560 of 0.10. 

Cells were then inoculated on tributyrin agar plates with 1mL tributyrin and incubated 

overnight at 37°C. 
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