
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Honors Theses Honors College

Spring 5-2011

Row Reduction of Macaulay Matrices Row Reduction of Macaulay Matrices

Lorrin Debenport
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/honors_theses

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Debenport, Lorrin, "Row Reduction of Macaulay Matrices" (2011). Honors Theses. 184.
https://aquila.usm.edu/honors_theses/184

This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital
Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila
Digital Community. For more information, please contact Joshua.Cromwell@usm.edu, Jennie.Vance@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/honors_theses
https://aquila.usm.edu/honors_college
https://aquila.usm.edu/honors_theses?utm_source=aquila.usm.edu%2Fhonors_theses%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=aquila.usm.edu%2Fhonors_theses%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/honors_theses/184?utm_source=aquila.usm.edu%2Fhonors_theses%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu,%20Jennie.Vance@usm.edu

The University of Southern Mississippi

ROW REDUCTION OF MACAULAY MATRICES

by

Lorrin Debenport

A Thesis

Submitted to the Honors College
of The University of Southern Mississippi

in Partial Fulfillment
of the Requirements for the Degree of

Bachelor of Science
in the Department of Mathematics

May 2011

ii

Approved by

John Perry
Assistant Professor of Mathematics

Joseph Kolibal
Chair, Department of Mathematics

Dave Davies, Dean
Honors College

iii

iv

Contents

Chapter 1. Description of the Problem 1

Chapter 2. Background Material 2

1. Sparse and Dense Matrices 2

2. Row-Reduction 3

3. Avoiding column swaps 5

4. Exact Computation 7

5. Applications 8

6. Macaulay Matrices 8

Chapter 3. Strategy 13

1. Computer Languages 16

Chapter 4. Results 17

1. Abandoned Algorithms 17

2. Description of Algorithms 18

3. Conclusions 20

Bibliography 25

Appendix 27

Matrices Tested 27

Matrices Plotted 29

Sage Code 30

v

vi

CHAPTER 1

Description of the Problem

A computer can use a matrix to represent a system of non-linear multivariate polynomial equa-

tions. The fastest known ways to transform this system into a form with desirable computational

properties rely on transforming its matrix into upper-triangular form [8, 9]. The matrix for such a

system will have mostly zero entries, which we call sparse [7]. We propose to analyze several meth-

ods of performing row-reduction, the process by which matrices are reduced into upper-triangular

form [2].

What is special about row-reducing matrices in this context? When row-reducing a matrix, swap-

ping rows or columns is typically acceptable. However, if the order of the terms in the polynomials

must be preserved as in nonlinear systems, swapping columns of its matrix would be unacceptable.

Another thing to consider is the “almost” upper-triangular structure of these matrices. Therefore,

we want to adapt methods of performing row-reduction to allow swapping rows but not columns

and perform the least amount of additions and multiplications..

1

CHAPTER 2

Background Material

We want to find an efficient way to transform a sparse matrix into upper-triangular form without

swapping columns. What does this mean?

1. Sparse and Dense Matrices

A vector is a list of numbers, written horizontally between parentheses and without commas.

For example,

(5 3 8 1 0)

is a vector of length 5. A matrix is a list of vectors of the same length written vertically between

parentheses. For example,

A =




−5 8 7

2 −10 9
3 9 8





is a matrix of 3 vectors of length 3. Each vector corresponds to a row of the matrix. The second row

of A is

(2 − 10 9)

which corresponds to the second vector in A. The list of ith entries in each vector is the ith column

of the matrix. For example, the third column of A is



7
9
8



 .

The size of a matrix is the number of rows by the number of columns. For A, the size would be 3×3.

A sparse matrix is a matrix with almost all zero entries. More precisely, a sparse matrix can be

defined as having approximately c ·m nonzero entries (where c is significantly smaller than m). This

is different from a dense matrix that has closer to m2 nonzero entries.

2

2. ROW-REDUCTION 3

EXAMPLE 1. The matrix




0 3 0 0 0
1 0 0 0 4
0 0 0 1 0
0 8 0 0 0
0 0 7 0 0





is sparse. On the other hand, the matrix




−5 8 7

2 −10 9
3 9 8





is dense.

It is known that sparse matrix computations can be more efficient than dense matrix computa-

tions [7]. An especially important computation is transformation into upper-triangular form.

2. Row-Reduction

A matrix is in upper-triangular form if all entries below the main diagonal are zero entries. For

example,



1 7 2
0 −5 1
0 0 10





is a matrix in upper-triangular form. To transform a matrix into upper-triangular form, we use the

process of row-reduction, a method to reduce a matrix into upper-triangular form using elementary

row operations [2]:

• swapping rows or columns,

• adding a multiple of one row to another, and

• multiplying the entries of a row by a number.

When adding a multiple of one row to another, we are trying to “clear” a column. The entry chosen

to clear other entries in the column for row-reduction is called the pivot.

2. ROW-REDUCTION 4

EXAMPLE 2. The origin of reducing matrices into upper-triangular form is the need to solve a

system of linear equations. As an example, consider the system of linear equations

2x + 2y + 12z = −22

6x + 8y + z = 49

−8x + 10y + 2z = 28.

This corresponds to the matrix



2 2 12 −22
6 8 1 49
−8 10 2 28



 .

With the matrix representation of this system of linear equations, we can use row reduction to

solve the system. By multiplying the first row by −3 and adding it to the second row (the pivot is

the entry in row 1 and column 1), we get



2 2 12 −22
0 2 −35 115
−8 10 2 28



 .

Then we multiply the first row by 4 and add it to the third row (the pivot is the entry in row 1 and

column 2) to get



2 2 12 −22
0 2 −35 115
0 18 50 −60



 .

Finally, we multiply the second row by −9 and add it to the third row (the pivot is the entry in row

2 and column 2) to get



2 2 12 −22
0 2 −35 115
0 0 365 −1095



 .

Thus, we get a matrix that has been row-reduced into upper-triangular form. This corresponds to

the system of equations

2x + 2y + 12z = −22

2y − 35z = 115

365z = −1095.

3. AVOIDING COLUMN SWAPS 5

Using matrices, we have rewritten the system in a nice form that is easy to solve. Solving the third

equation gives

z = −3.

Substituting into the second equation gives

2y − 35 (−3) = 115

2y + 105 = 115

2y = 10

y = 5.

Substituting into the first equation gives

x = 2.

3. Avoiding column swaps

As mentioned before, we use row-reduction to transform matrices into upper-triangular form,

thus making solving the system of linear equations easier. The operations used to achieve this form

include being able to swap rows or columns of the matrix; however, some applications of matrix

triangularization do not allow for the swapping of columns. Since we need to preserve the order of

the terms, we need to forbid swapping columns.

Avoiding swapping columns, however, forces us to perform more operations.

EXAMPLE 3. Consider the matrix




3 1 0 1
1 0 2 0
1 0 0 0
0 1 0 0




.

Swapping columns 1 and 3 gives




0 1 3 1
2 0 1 0
0 0 1 0
0 1 0 0




.

3. AVOIDING COLUMN SWAPS 6

Then, if we swap rows 1 and 2 we get




2 0 1 0
0 1 3 1
0 0 1 0
0 1 0 0




.

Swapping columns 2 and 4 gives us 



2 0 1 0
0 1 3 1
0 0 1 0
0 0 0 1




,

which is in upper-triangular form.

Row-reducing the matrix using no column or row swaps significantly increases the number of

operations from four swaps to ten arithmetic operations.

If there are more calculations, then what is the advantage of avoiding column swaps? An impor-

tant application of this work is computing Gröbner bases [13, 3], where reducing sparse matrices to

upper-triangular form reveals new basis elements. If column swaps were allowed, these new basis

elements would not be revealed.

EXAMPLE 4. Each entry of the matrix below corresponds to the coefficients of the monomials of
the equations.

x2y3 + y5 − 4y3 = 0

x2y3 + x3 − 4x2y = 0

y5 + y2x− 4y3 = 0

x3 + x2y − 4x = 0

←→

0

BBBBBB@

x2y3 y5 x3 x2y xy2 y3 x

1 1 −4

1 1 −4

1 1 −4

1 1 −4

1

CCCCCCA

If this matrix were reduced to upper triangular form using no column swaps, we would have




x2y3 y5 x3 x2y xy2 y3 x

1 1 −4
1 1 −4

1 1 −4
−5 1 4




.

The first rows correspond to three of the polynomial equations given, and the last row corresponds

to a new equation: −5x2y+xy2+4x. This process has revealed a new basis element that is necessary

for the Gröbner basis.

If the matrix were reduced and column swaps were allowed, we would have
0

BBBBB@

xy2 y5 y3 x x2y3 x3 x2y

1 1 −4

1 −4 1

−4 1 1

1 1 −4

1

CCCCCA
←→

y5 + y2x− 4y3 = 0

x2y3 + y5 − 4y3 = 0

x3 + xy2 − 4x = 0

x2y3 + x3 − 4x2y = 0

,

4. EXACT COMPUTATION 7

which corresponds to the polynomial equations from the original matrix. This has failed to reveal

the new basis element necessary for the Gröbner basis.

The goal of this project is to compare different methods of row-reduction of sparse matrices without

swapping the columns.

4. Exact Computation

In computational algebra, we are concerned with exact computations and not with floating point

numbers. Because of this, we are not concerned with the stability of the information contained in

the matrices. To keep the integers from growing too large in computation, the coefficients in the

systems correspond to elements of finite fields [12]. In a finite field, arithmetic behaves as it does

on a clock: if the numbers grow too large or too small, we divide and take the remainder.

EXAMPLE 5. Consider the finite field Z7. The elements of Z7 are

{0, 1, 2, 3, 4, 5, 6}.

Within this finite field, for example,

2 + 3 = 5,

2× 3 = 6,

and for numbers that grow too large,

6 + 1 = 7 → 0,

3× 4 = 12 → 5.

Division corresponds to multiplication of the multiplicative inverse of the element. For example,

3 ÷ 4 = 3× 2 = 6

because 2 is the multiplicative inverse of 4:

2× 4 = 8 → 1.

6. MACAULAY MATRICES 8

It is beyond the scope of this work to describe the reasons finite fields are preferred in computational

algebra, and how we reconstruct the correct answers in a different field when necessary. However,

this is an important problem with several important applications.

5. Applications

Some applications of the research include

• cryptology [1, 10]

• decoding gene expression [11]

• F4 algorithm, which uses sparse matrix reduction with fixed columns to compute Gröbner

bases [8].

6. Macaulay Matrices

6.1. Ideals and Gröbner Bases. As mentioned in Example 4, an important application of avoid-

ing swapping columns during the triangularization of a matrix is computing Gröbner bases. In order

to understand Gröbner bases, an understanding of ideals is needed. Let F[x1, . . . , xn] be the set of all

polynomials in x1, . . . , xn with real coefficients. Let f1, . . . , fm ∈ F[x1, . . . , xn]. The ideal generated

by f1, . . . , fm, written �f1, . . . , fm�, is the set I consisting of all expressions h1f1 + . . .+hmfm where

each hi is some element of F[x1, . . . , xn].

EXAMPLE 6. Consider F =
�
xy − 1, x2 + y2 − 4

�
. Appropriately, we label the polynomials f1 =

xy − 1 and f2 = x2 + y2 − 4. An element of the ideal generated by F and h1 = x2 and h2 = −xy is

h1 (xy − 1) + h2

�
x2 + y2 − 4

�
=

�
x2

�
(xy − 1) + (−xy)

�
x2 + y2 − 4

�

= x3y − x2 − x3y − xy3 + 4xy

= −x2 − xy3 + 4xy.

A Gröbner basis is a “nice form” for the generators of an ideal. By “nice form,” I mean it can

answer important questions of commutative algebra and algebraic geometry easily and quickly [5].

Before we go any further in the explanation of Gröbner bases, we need to discuss ordering and

leading terms. Normally, when we deal with monomials with one variable, we order the terms of

6. MACAULAY MATRICES 9

a polynomial in order of decreasing degree. However, we can see that this is more difficult when

there are several variables involved. There are two commonly use orderings for monomials with

more than one variable. Lexicographic ordering puts the variables in order alphabetically first,

then by degree. The other commonly used ordering for polynomials is total degree (or graded

reverse lexicographic). This ordering involves putting monomials of highest total degree first. If

there are two monomials of the same degree, the variable in the monomial that is last alphabetically

is “removed” and the degree is determined again.

For the purpose of these examples, I will use total degree ordering. This leads to the definition of

the leading term. The leading term of a polynomial is simply the term that is first in the polynomial

after an ordering has been applied to the polynomial.

EXAMPLE 7. One might expect that every element of an ideal would have a leading term divisible

by the leading term of the generator. In reality this is not always true. For example, consider F from

the previous example and h1 = x and h2 = y, so

h1 (xy − 1)− h2

�
x2 + y2 − 4

�
= x2y − x− x2y − y3 − 4y

= −x− y3 − 4y.

Notice the leading term y3 is not divisible by the leading terms of the generator F .

Gröbner bases are often computed using a matrix. In the case of this research, this is the Gröbner

basis computation of concern.

The most common algorithm used to compute Gröbner is the Buchberger algorithm [3] . The

Buchberger algorithm takes a finite set of polynomials and outputs a Gröbner basis of the ideal

generated by a generator called F . Let G = F . Then repeat the following until all distinct pairs

(f, g) in the finite set of polynomials has been considered:

• Pick an unconsidered pair

• Reduce its s-polynomial with respect to G (comparable to taking a row of a matrix and

performing elimination on it)

• If result is non-zero, add it to G

6. MACAULAY MATRICES 10

The s-polynomial is the sum of the smallest term multiples of the polynomials in the pair that cancel

the leading terms.

Here is an example of using Buchberger’s algorithm with a matrix

EXAMPLE 8. Consider F =
�
x2 + 2x + y2 − 3, xy − 1

�
. Each time a step is taken to compute the

Gröbner basis, the following question must be asked: What must be multiplied to the polynomials

in F in order to cancel the leading terms? The first terms to be multiplied to the polynomials must

be h1 = y and h2 = −x. Then,

h1f1 + h2f2 = y
�
x2 + 2x + y2 − 3

�
− x (xy − 1)

= x2y + 2xy + y3 − 3y − x2y + x

= 2xy + y3 − 3y + x.

When we multiply h1 and h2 to f1 and f2 respectively, we represent the resulting polynomials as

follows: yf1 and −xf2. Each time we multiply the polynomials in F by different elements to try to

cancel the leading terms, we look at each of the terms produced during the multiplication. If it is

a term that is not already in F , we add it to F . Ultimately, we cease to get any new polynomials.

When this happens, we put each different monomial included in the polynomials in F into the list

T . The following terms are included in all the polynomials generated:

T =
�
x2y3, xy3, y5, y3, x3y, x3, x2y, x2, y2, xy, x, y, xy2, 1

�
.

In the matrix representation of the set of polynomials in F , the columns are labeled by the mono-

mials in T in the order deter mind by total degree ordering. The rows are labeled according to

the polynomials formed when multiplying values of hm to values of fm to include all the resulting

polynomials without repeating any two identical polynomials. The entries of the matrix are the

coefficients of the monomials listed in T that are included in each of the polynomials listed as row

labels. The polynomials containing these terms are represented by the following matrix, called a

6. MACAULAY MATRICES 11

Macaulay matrix [14]:





x2y3 xy3 x3y xy3 x3 x2y xy2 y3 x2 xy y2 x y 1
y3f1 1 1 0 2 0 0 0 −3 0 0 0 0 0 0

−x2f3 −1 0 −1 0 −1 3 0 0 1 0 0 0 0 0
y2f2 0 0 0 1 0 0 0 0 0 0 −1 0 0 0
−xf3 0 0 0 −1 0 −1 0 0 −1 3 0 −1 0 0
y2f3 0 1 0 1 0 0 1 −3 0 0 1 0 0 0

f3 0 0 0 0 0 0 0 1 0 1 0 1 −3 1
x2f2 0 0 1 0 0 0 0 0 −1 0 0 0 0 0
xf1 0 0 0 0 1 0 1 0 0 2 0 −3 0 0
xf2 0 0 0 0 0 1 0 0 0 0 0 −1 0 0
f1 0 0 0 0 0 0 0 0 1 0 1 2 0 −3
f2 0 0 0 0 0 0 0 0 0 1 0 0 0 −1

yf2 0 0 0 0 0 0 1 0 0 0 0 0 −1 0





Buchberger’s algorithm used was the first to explain Gröbner basis computation; however, it

was not the most efficient way of calculating them. Since Gröbner computation is a very lengthy

process, a more efficient process was needed. The normal strategy was one solution to this problem.

The normal strategy involves taking the pair (f, g) with lcm (lm (f) , lm (g)) (where lcm is the least

common multiple and lm is the leading monomial). This strategy was understood to work well

because of the Buchberger’s lcm criterion [4] which allows one to skip many s-polynomials. The

normal strategy was experimentally very effective and was the most used strategy until very recently.

Notice the structure of the matrix in Example 8. Since the goal of each step of computing the

Gröbner basis is to eliminate the leading terms of the generator, putting the polynomials in the order

they are found shows that the matrix is in a form very similar to upper-triangular form. Performing

Gaussian elimination from right-to-left might be more effective because of this structure. This could

be due to the normal strategy. When going right to left, we go from smallest monomial to largest

and any elimination is the lcm of two monomials. Instead of looking at lm’s we are looking at

non-leading monomials, which references the normal strategy.

EXAMPLE 9. Here is a matrix, which, by performing Gaussian elimination from right-to-left,

takes many calculations to be triangularized:

6. MACAULAY MATRICES 12





1 −1 0 1 0 0
1 −1 0 2 0 4
1 −1 0 3 0 5
0 1 1 1 1 1




.

When reduced, the resulting matrix is




1 0 1 0 1 0
0 1 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1




.

However, the number of multiplications and additions for the left-to-right method is 43, compared to

69 for the right-to-left method. This illustrates how the type of matrix I am dealing with (specifically

Macaulay matrices) is a very special case such that the structure suggests that choosing a pivot from

right-to-left would be more efficient.

CHAPTER 3

Strategy

To look at the different methods used to transform a matrix into upper-triangular form, we will

produce several computer programs that implement well-known methods of row-reducing sparse

matrices. We will then analyze the programs’ behavior, and adapt them to perform row-reduction

without swapping columns. Then we will analyze the programs’ behavior again, and determine the

best algorithm to use in this context.

Table 3.1 describes the typical strategy used in numerical methods to solve a linear system. We,

however will not use every step described there.

Following the steps of Table 3.1, we will implement the Analyze and Factorize phases for each

algorithm. The Analyze phase of the program will create the matrix structure and determine what

TABLE 3.1. Solving sparse matrices.[7].

Phase Key Features
ANALYZE 1. Transfer user data to internal data structures.

2. Determine a good pivotal sequence.
3. Prepare data structures for the efficient execution
of the other phases.
4. Output of statistics.

FACTORIZE 1. Transfer new numerical values to internal data structure format.
2. Factorize the matrix using the chosen pivotal sequence.
3. Estimate condition number of the matrix.
4. Monitor stability to ensure reliable factorization.

SOLVE 1. Perform the appropriate permutation from user order
to internal order.
2. Perform forward substitution and back-substitution using
stored L\U factors.
3. Perform the appropriate permutations from internal order
to user order and return the solution in user order.

13

3. STRATEGY 14

approach needs to be taken to reduce it. This approach will help to determine how the next step—

factorize—is done. One reason we need the analyze phase is because sparse matrices tend to be

very large. Some of these sparse matrices could take a very long time to factorize if we do not first

analyze their structure. This reduces the possibility of unnecessary calculations. Some methods are

more efficient with certain shapes than other methods are.

The Analyze phase has four main steps. The first step involves putting the given matrix into

a structure appropriate to the computer language. Most of the algorithms we will use will help

with the next step: “determining a good pivotal sequence.” Determining the pivotal sequence will

involve analyzing the matrix structure to see if it fits with a specific algorithm. Then the next step

will involve preparing this matrix for the algorithm to perform reduction. Finally, the Analyze phase

ends with the output of the statistics collected while determining the pivotal sequence.

The Factorize phase is the most computationally intensive. This is where the row-reduction will

take place to transform the matrix into upper-triangular form. The second phase also involves four

steps. The first step is nearly identical to the first of the Analyze phase except that the matrix will be

copied to a new structure. At the end of the Factorize phase, we have a matrix in upper-triangular

form. We do not need to determine the condition number of the matrix since condition numbers are

not needed with exact mathematics [15]. The final step is not needed in my research.

Since the long-term application of my research is computing Gröbner bases, we will only be

dealing with exact computations and not the approximation common in numerical methods so sta-

bility is not a concern. Moreover, we only need to reduce the matrices into upper-triangular form

and not solve them.

Some well-known algorithms we will study are CSparse, the Doolittle Algorithm, Markowitz

Criterion, the Sargent and Westerberg algorithm, Tarjan’s algorithm, Tinney Scheme 2, and an algo-

rithm for band matrices [7, 6].

When looking at the CSparse algorithm for reducing matrices into upper-triangular form I found

that it is an implementation of several different algorithms. The part of CSparse I am concerned

with is the implementation of the LU factorization algorithm. LU factorization is similar to Gaussian

3. STRATEGY 15

elimination in that part of LU factorization puts the matrix in upper triangular form (what we want).

However, it also involves putting the matrix in lower triangular form, but we are not concerned with

this part. While looking at the code for this algorithm, I found that LU factorization assumes that the

matrices are square, or n×n matrices [6]. Then I found that all the algorithms I will be researching

assume square matrices [7] as inputs. At first glance, this seems to be a problem because these

algorithms would have to be adapted to allow for the input of n ×m matrices because, in general,

the matrices I am concerned with will not be square matrices. However, I have determined that the

algorithm can still work with a square matrix by taking the non-square matrices and partitioning

them into a square matrix and the remaining part of the matrix. The basic structure of the matrix

would be similar to this:

�
A | B

�

where A is the n × n component of the matrix and B is the remaining n × (m − n) part of the

matrix. This partition would require only a slight adaptation to the algorithms. The B partition of

the matrix would still require all the calculations, but is not needed in the major implementation of

the algorithms. Also, since I am adapting the algorithms to avoid swapping columns, the calculations

and row swaps will not affect the structures of the partitions since it is partitioned by the column

only. These algorithms can all be used to transform matrices into upper-triangular form. Each uses

different methods of reduction, so we may not be able to adapt all of them since some may rely

fundamentally on swapping columns. Here are brief descriptions of the previously listed algorithms:

• CSparse [6]

– CSparse performs Gaussian elimination on a matrix that has been analyzed by an-

other function within the CSparse package.

• The Doolittle algorithm

– The Doolittle algorithm is an algorithm that performs Gaussian elimination and has

no analysis function.

• Markowitz Criterion

1. COMPUTER LANGUAGES 16

– Markowitz criterion chooses a pivot in the following way. For each of the remaining

columns to clear in the matrix, the algorithm checks each of the possible pivots using

the following equation:

(ri − 1)(cj − 1),

where ri is the number of entries in row i and cj is the number of entries in column

j. The pivot will be the entry that minimizes that expression. The purpose of the

previous expression is to reduce fill-in when row-reducing by choosing the row and

column with the smallest possible calculations to be performed.

• The Sargent and Westerberg

– The Sargent and Westerberg algorithm involves looking at matrices that are symmet-

ric permutations of triangular matrices.

• Tarjan’s Algorithm

– Tarjan’s algorithm is similar to the Sargent and Westerberg, making only one change

in the storage of data.

• Tinney Scheme 2

– The Tinney Scheme 2 algorithm deals with a special case of the Markowitz Criterion

when the matrix is symmetric.

• Band matrices

– A band matrix is a matrix whose bandwidth (defined in the results section) is signifi-

cantly smaller than the number of rows or columns in the matrix.

1. Computer Languages

When implementing these algorithms, we will first work in the Sage computer algebra system.

Sage has built-in commands for building matrices and performing the different techniques of row-

reduction [16].

CHAPTER 4

Results

1. Abandoned Algorithms

After looking at each of the algorithms mentioned in the previous chapter, I have determined, for

several reasons, that some of them are incompatible with the Macaulay matrices I am working with.

CSparse [6] uses Gaussian elimination from left-to-right to row-reduce a matrix whose structure is

indicated by a parameter passed to the function. Also, the main concern of [6] is to store the matrices

most efficiently, which is not the point of this research. The Doolittle algorithm is also essentially

an algorithm written for Gaussian elimination. The Sargent and Westerberg algorithm and Tarjan’s

algorithm both involve working with symmetric matrices, and, therefore, are not applicable to this

research. Although the Tinney Scheme 2 is an algorithm that uses Markowitz Criterion, it only works

with symmetric matrices; again, this is not applicable to this research. Due to the structure of the

Macaulay matrices, I initially thought some methods of reducing band matrices may be applicable.

However, after computing the bandwidth of the matrices of concern, I determined any method of

reducing band matrices is not applicable to this research.

Table 4.1 shows the bandwidths of each of the matrices I am working with. According to [7],

for a matrix to be considered a band matrix, the bandwidth must be significantly lower than the

TABLE 4.1. Bandwidths

Matrix Bandwidth
8× 11 9
13× 16 13
15× 14 12
13× 16 15
11× 14 13
2× 5 4

17

2. DESCRIPTION OF ALGORITHMS 18

number of rows in the matrix, where the bandwidth is 2m + 1 where m is the smallest integer such

that aij = 0 whenever |i− j| > m [7]. In Table 4.1, it is shown that the bandwidths of the matrices

are significantly larger than the number of rows in the matrices! Thus, any methods of reducing

band matrices are not applicable to this research.

The methods of choosing a pivot I will discuss are the “textbook” left-to-right method, a right-

to-left method, and Markowitz Criterion. The algorithms I wrote to implement these methods are

discussed in the next section.

2. Description of Algorithms

Each algorithm implemented uses the method of Gaussian elimination to triangularize an n×m

matrix. The algorithm to choose a pivot from left-to-right or right-to-left takes the matrix and the

direction to choose a pivot specified by a Boolean value as inputs. The true value will make the

algorithm triangularize from left to right, and false will make the algorithm triangularize from

right to left. When choosing the pivot, if there is more than one row eligible to be the pivot, the

one with the fewest non-zero entries, and thus the fewest calculations is chosen. If left-to-right

is the direction, the pivot is chosen by searching rows for the leading nonzero numbers. This is

shown in Algorithm 1. For the right-to-left method, the last column is searched first and the first

is searched last. This is shown in Algorithm 2. The direction, in other words, determines how the

pivot is chosen. Once the pivot is determined, the way the calculations are done is the same for both

methods.

Algorithm 3 involves Gaussian elimination using Markowitz criterion (Algorithm 4) to choose a

pivot.

Markowitz criterion is implemented according to the description in Chapter 3.

Algorithm 5 and Algorithm 6 are both functions used within the Gaussian elimination algo-

rithms. Algorithm 5 is used to find the entries that must be cleared within the right-to-left and

left-to-right algorithms. Algorithm 6 is used to eliminate the entries in the column of the pivot using

the pivot.

2. DESCRIPTION OF ALGORITHMS 19

ALGORITHM 1.

algorithm Gaussian Elimination Left-to-Right

inputs
M ∈ Fm×n

outputs
N , upper-triangular form
c, number of calculations
s, number of row swaps

do
let N = M
let s = c = 0
for j ∈ {1, . . . , n} do

let i be the row whose first nonzero entry is in column j
— Get a one in the first entry

if Ni,j �= 1 then
let inv = N−1

i,j

for � ∈ {j, . . . , n} do
let Ni,� = Ni,� · inv
increment c

— Clear this column

let N, c = Clear Column(N, c, i, j)
for i ∈ {1, . . . ,m− 1} do

let j = min {j : Nij �= 0}
if ∃k such that j > min {� : Nk� �= 0} then

swap rows i, k
increment s

return N, c, s

The reason for developing the algorithm for both directions was to determine which direction

would produce fewer calculations. Since the matrices representing Gröbner bases have a structure

very close to a matrix that is already in upper triangular form, working from right to left appeared to

produce fewer calculations than working from left to right. I also wanted to include the Markowitz

criterion algorithm to determine if it is more efficient than the other two for computing Gröbner

bases.

To test this hypothesis, I implemented and tested the three algorithms using 6 different matrices.

The matrices are part of a system, called Cyclic-4, that is based on the relationship between the roots

and the coefficients of the polynomial x4 + 1. Tables 4.2 and 4.3 show the results of the test, over

the fields specified. The numbers for each direction and heuristic for pivot choice are the number of

additions and multiplications and the number of row swaps, respectively.

3. CONCLUSIONS 20

ALGORITHM 2.

algorithm Gaussian Elimination Right-to-Left

inputs
M ∈ Fm×n

outputs
N , upper-triangular form
c, number of calculations
s, number of row swaps

do
let N = M
let s = c = 0
let j = n
while j �= 0 do

let next_j = j − 1
if ∃i such that the first nonzero entry of row i is in column j then

if Nij �= 1 then
let inv = N−1

ij

for � ∈ {j, . . . , m} do
if Ni� �= 0 then

let Ni� = Ni� · N−1
ij

increment c
let N, c = Clear Column(N, c, i, j)
let next_j = n

let j = next_j
for i ∈ {1, . . . ,m− 1} do

let j = min {j : Nij �= 0}
if ∃k such that j > min {� : Nk� �= 0} then

swap rows i, k
increment s

return N, c, s

TABLE 4.2. Additions and Subtractions over the Field Q

Q
Matrix Left to Right Right to Left Markowitz Criterion
8× 11 84, 10 66, 10 66, 7
13× 16 375, 36 344, 31 362, 35
15× 14 286, 20 230, 19 232, 12
13× 16 313, 19 193, 26 197, 28
11× 14 156, 10 151, 9 156, 10
2× 5 8, 1 8, 1 8, 1

3. Conclusions

The success of the right-to-left algorithm in Q (compared to the other algorithms) can possibly be

explained by the success of the normal strategy (using Buchberger’s lcm criterion) and the structure

3. CONCLUSIONS 21

ALGORITHM 3.

algorithm Gaussian Elimination using Markowitz Criterion

inputs
M ∈ Fm×n

outputs
N , upper-triangular form
c, number of calculations
s, number of row swaps

do
let N = M
let s = c = 0
let C = Find Columns (N, 1)
while C �= ∅ do

let i, j = Markowitz Criterion(N,C)
— Get a one in the first entry

if Ni,j �= 1 then
let inv = N−1

i,j

for � ∈ {j, . . . , n} do
if Ni,� �= 0 then

let Ni,� = Ni,� · inv
increment c

— Clear this column

let N, c = Clear Column(N, c, i, j)
let C = (C ∩ {1, . . . , j − 1}) ∪ Find Columns(N, j + 1)

return N, c, s

ALGORITHM 4.

algorithm Markowitz Criterion

inputs
M ∈ Fmxn

C ⊆ {1, . . . , n}
— columns that need to be reduced

outputs
i, j ∈ {1, . . . , n}

do
let (i, j) = (0, 0)
let score = ∞
for � ∈ C do

let c� = number of non-zero entries in column �
for k ∈ {1, . . . ,m} do

if Mk� is a leading entry then
let rk� = number of entries in row k
if (rk� − 1) (c� − 1) < score then

let (i, j) = (k, �)
let score = (rk� − 1) (c� − 1)

return (i, j)

3. CONCLUSIONS 22

ALGORITHM 5.

algorithm Find Columns

inputs
M ∈ Fm×n

j ∈ {1, . . . , n}
outputs

C ⊆ {1, . . . , n}
do

let C = ∅
for � ∈ {j, . . . , n} do

let pos = nonzero positions in column
if |pos| > 1 then

for i ∈ pos do
let �̂ = first nonzero pos in row
if �̂ = � then

add � to C
return C

ALGORITHM 6.

algorithm Clear Column

inputs
N ∈ Fm×n

— calculation count

c ∈ N
i ∈ N
j ∈ N

do
for k ∈ {1, . . . ,m} \ {i} do

if Nk,j �= 0 then
let mul = Nk,j

for � ∈ {j, . . . , n} do
if Nk,� �= 0 or Ni,� �= 0 then

let Nk,� = Nk,� −Ni,� · mul
increment c

return N, c

TABLE 4.3. Additions and Subtractions over the Field F2

F2

Matrix Left to Right Right to Left Markowitz Criterion
8× 11 72, 10 60, 10 60, 7
13× 16 274, 42 294, 36 318, 38
15× 14 240, 20 196, 19 192, 12
13× 16 256, 19 156, 26 152, 28
11× 14 132, 10 120, 9 112, 9
2× 5 8, 1 8, 1 8, 1

3. CONCLUSIONS 23

of Macaulay matrices. This is somewhat surprising because the Markowitz criterion is best for a

generic matrix, and as Example 9 showed, right-to-left is spectacularly bad for a generic matrix.

However, this result is not all that surprising due to the structure of the matrix. We can separate

the matrix into several partitions, for example,




A

b1

b2

0 b3

C





so that A contains rows only up to the column of the last leading entry, the center column (containing

b1, b2 and b3) contains the last column with a leading entry (b3), and C contains the remaining

entries. When performing row-reductions, the calculations done in C should be the about the same

no matter the method used to choose the pivot. However, the calculations in the center column

would be affected by the pivot choice.

Choosing from left-to-right, we would clear the left most columns first. For example, choosing a

pivot in A would create the following matrix




A�

b�1
b�2

0 b3

C �



 .

Each time we performed a reduction, b�1 and b�2 would probably still contain nonzero entries, and

next time a reduction is done, more calculations will be performed on the same entries again. The

Markowitz criterion can work the same way, repeating calculations on rows.

However, when choosing a pivot from right to left, since there are no nonzero values to the left

of the leading entry (the pivot), when reductions are performed, calculations are only performed

on entries in the column of the chosen pivot. For example, if b3 were the pivot, the center column

(b-column) would contain only b3 after the reduction:




A

0
0

0 b3

C �





Moving to the next pivot will not perform any extra calculations in column b.

3. CONCLUSIONS 24

The success of the Markowitz criterion in F2, however, may not be as easily explained as the

previous results. Since the field F2 could make the matrices I tested more sparse (by make entries

divisible by 2 go to zero), this could make the Markowitz criterion method more successful than the

other methods.

Ultimately, some possible explanations for the success of the right-to-left method in Q are the

structure of the Macaulay matrices and the normal strategy, while the possible explanation for the

success of Markowitz criterion in F2 is the increasing sparsity when a matrix has entries in F2. These

possible explanations are limited to the matrices in the Cyclic 4 system (the matrices tested); how-

ever, since these matrices are relatively small compared to the general case of Macaulay matrices,

the success of Markowitz criterion over F2 may increase as the size (and sparsity) of the matrix

increases.

Bibliography

[1] Peter Ackermann and Martin Kreuzer. Gröbner basis cryptosystems. Applicable Algebra in

Engineering, Communication and Computing, 17(3):173–194, 2006.

[2] Howard Anton and Chris Rorres. Elementary Linear Algebra: Applications Version. Anton Text-
books, Inc., ninth edition, 2005.

[3] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach

einem nulldimensionalem Polynomideal (An Algorithm for Finding the Basis Elements in the

Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical
Insitute, University of Innsbruck, Austria, 1965. English translation published in the Journal
of Symbolic Computation (2006) 475–511.

[4] Bruno Buchberger. A criterion for detecting unnecessary reductions in the construction of
Gröbner bases. In E. W. Ng, editor, Proceedings of the EUROSAM 79 Symposium on Symbolic and

Algebraic Manipulation, Marseille, June 26-28, 1979, volume 72 of Lecture Notes in Computer

Science, pages 3–21, Berlin - Heidelberg - New York, 1979. Springer.

[5] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms. Undergraduate
Texts in Mathematics. Spring-Verlag New York, Inc., second edition, 1998.

[6] Timothy A. Davis. Direct Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, 2006.

[7] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford Science
Publications. Oxford University Press, 1986.

[8] Jean-Charles Faugére. A new efficient algorithm for computing Gröbner bases (F4). Journal of

Pure and Applied Algebra, 139:61–88, 1999.

[9] Jean-Charles Faugére. A new efficient algorithm for computing Gröbner bases without reduc-
tion to zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic

Computation, pages 75–83. ACM Press, 2002.

[10] Jean-Charles Faugère. Cryptochallenge 11 is broken or an efficient attack of the C* cryptosys-
tem. Technical report, LIP6/Universitè Paris, 2005.

[11] Rienhard Laubenbacher and Brandilyn Stigler. A computational algebra approach to the re-
verse engineering of gene regulatory networks. Journal of Theoretical Biology, (229):523–537,
2004.

[12] Niels Lauritzen. Concrete Abstract Algebra: From Numbers to Gröbner Bases. Cambrdge Univer-
sity Press, 2003.

25

Bibliography 26

[13] Daniel Lazard. Gröbner bases, Gaussian elimination, and resolution of systems of algebraic
equations. In J. A. van Hulzen, editor, EUROCAL ’83, European Computer Algebra Conference,
volume 162, pages 146–156. Springer LNCS, 1983.

[14] F. S. Macaulay. On some formulæ in elimination. Proceedings of the London Mathematical

Society, 33(1):3–27, 1902.

[15] John Perry. Numerical analysis. Unpublished, 2000. Class notes from Dr. Pierre Gremaud’s
lectures.

[16] William Stein. Sage: Open Source Mathematical Software (Version 3.1.1). The Sage Group,
2008. http://www.sagemath.org.

Appendix

Matrices Tested

FIGURE 4.1. M_2 (2× 5)
0 1 1 1 1

1 −1 1 −1 0

!

FIGURE 4.2. M_3 (8× 11)0

BBBBBBBBBBBBB@

1 −1 0 0 1 0 −1 0 0 0 0

0 0 0 0 1 0 0 1 0 1 1

−1 0 0 0 0 1 −1 0 1 0 0

−1 1 −1 0 0 1 0 0 0 0 0

0 1 0 0 0 0 2 0 0 1 0

1 0 0 1 0 0 1 1 0 0 0

0 0 0 1 0 0 0 2 0 0 1

0 0 1 0 0 0 1 0 1 1 0

1

CCCCCCCCCCCCCA

FIGURE 4.3. M_4 (14× 15)0

BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 1 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 1 1 0 0

−1 −1 0 0 0 0 −1 −1 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 −1 0 −1 0 −1 0 0 0

0 0 1 0 0 0 0 1 1 0 0 0 0 0 1

0 −1 0 0 −1 0 −1 0 0 0 −1 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 1

0 0 0 0 1 0 0 0 −1 0 1 0 −1 0 0

0 0 0 0 0 1 0 0 0 2 0 0 0 1 0

0 0 0 0 0 0 0 1 0 −1 0 1 0 −1 0

0 0 1 0 0 0 0 0 2 0 0 0 1 0 0

0 1 0 0 0 1 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0 1 1 0

0 1 0 1 0 0 0 0 1 0 0 0 0 0 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

27

MATRICES TESTED 28

FIGURE 4.4. M_5 (13× 16)0

BBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 −1 0 1 −1 −1 0 0 −1 0 0 −1 0 0

−1 1 0 0 −1 −1 0 0 0 −1 0 −1 0 0 0 0

0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 −1 0 1 1 −1 −1 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

−1 1 1 0 −1 0 0 0 0 0 0 −1 0 0 0 1

0 0 0 0 0 0 −1 1 1 0 −1 0 1 0 −1 0

0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0

0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 2 0 0 0 0 1 0 0 0

1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 −1 0 1 0 0 −1 0 0 0

−2 1 0 0 −1 0 −1 0 0 0 0 −1 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCA

FIGURE 4.5. M_6 (13× 16)0

BBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1

1 0 1 0 0 −1 0 0 1 0 0 −1 −1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0

2 −1 0 0 0 −1 1 0 0 0 0 −1 −1 1 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 −1 −1 0

0 0 0 0 −1 0 0 −1 0 0 −1 0 −1 0 0 0

0 0 −1 −1 0 0 0 0 −1 −1 0 0 0 0 0 0

0 0 0 0 1 0 −1 0 0 0 1 −1 0 0 −1 1

0 0 1 0 −1 0 1 0 1 0 −1 0 0 0 0 −1

0 0 0 0 1 0 0 0 0 0 1 0 −1 0 0 −1

0 0 0 0 0 1 1 0 0 0 0 0 0 0 −1 −1

1 0 0 0 −1 0 1 0 0 0 −1 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCA

MATRICES PLOTTED 29

FIGURE 4.6. M_7 (11× 14)
0

BBBBBBBBBBBBBBBBBBBB@

0 0 0 0 1 0 0 0 0 1 −1 0 1 −2

0 0 1 0 1 0 0 0 0 0 0 0 −1 −1

0 0 0 0 −1 0 0 1 0 −1 0 1 −1 1

0 0 0 1 0 0 0 0 0 2 0 0 1 0

0 1 0 1 −1 −1 0 0 1 1 −2 0 0 0

0 0 0 1 −1 −1 0 1 0 1 −2 1 0 0

1 0 −1 1 −1 −1 1 0 0 1 −2 0 1 0

0 0 0 0 0 1 0 0 0 0 2 0 0 1

1 −1 0 0 1 0 1 0 −1 0 0 0 0 −1

0 1 0 0 0 0 0 0 1 0 −1 0 0 −1

0 0 0 0 0 0 0 1 0 0 −1 1 0 −1

1

CCCCCCCCCCCCCCCCCCCCA

Matrices Plotted

FIGURE 4.7. M_4 (14× 15)

SAGE CODE 30

FIGURE 4.8. M_5 (13× 16)

FIGURE 4.9. M_6 (13× 16)

FIGURE 4.10. M_7 (11× 14)

Sage Code

LISTING 4.1. markowitz.py
M i s an mxn matr ix

SAGE CODE 31

d i r e c t i o n = True imp l i e s t r i a n g u l a r i z e l e f t to r i g h t
d i r e c t i o n = Fa l se imp l i e s t r i a n g u l a r i z e r i g h t to l e f t
def mark(M) :

c = 0
s = 0
N = M. copy ()
m = M. nrows ()
n = M. nco l s ()
C = find_columns (N,0 , n)
while (len (C) != 0) :

i , j = markowi tz_c r i t e r ion (N, C)
i f N[i , j] != 1:

inv = (N[i , j])∗∗(−1)
fo r l in xrange (j , n) :

i f N[i , l] != 0:
N[i , l] = N[i , l]∗ inv
c = c + 1

f o r k in xrange (m) : #not sure how to take out i
i f (k!= i) and (N[k , j] != 0) :

mul = N[k , j]
f o r l in xrange (j , n) :

i f (N[k , l] != 0) or (N[i , l] != 0) :
i f (N[i , l] != 0) :

N[k , l] = N[k , l] − N[i , l]∗mul
c = c + 2

f ind = find_columns (N, j +1,n) #min(pos)
C = f ind . union (C . i n t e r s e c t i o n (range (j)))

f o r i in xrange (m) :
pos = N. nonzero_pos i t ions_ in_row (i)
i f (len (pos) != 0) :

j = min(pos)
f o r k in xrange (i + 1 ,m) :

pos = N. nonzero_pos i t ions_ in_row (k)
i f (len (pos) != 0 and min(pos) < j) :

N. swap_rows (i , k)
s = s + 1
j = min(pos)

re turn N, c , s

def markowi tz_c r i t e r ion (N, C) :
i = 0
j = 0
score = i n f i n i t y
f o r l in C:

pos = N. nonzero_pos i t ions_in_column (l)
c _ l = len (pos)
f o r k in pos :

pos2 = N. nonzero_pos i t ions_ in_row (k)
l ead ing_en t ry = min(pos2)
i f (l == lead ing_en t ry) :

SAGE CODE 32

r _ k l = len (pos2)
i f ((r_k l −1)∗(c_ l −1) < score) :

i = k
j = l
score = (r_k l −1)∗(c_ l −1)

re turn i , j

def f ind_columns (N, j , n) :
C = s e t ()
f o r l in xrange (j , n) :

pos = N. nonzero_pos i t ions_in_column (l)
i f len (pos)>1:

fo r i in pos :
p i vo t = min(N. nonzero_pos i t ions_ in_row (i))
i f p i vo t == l :

C . add(l)
re turn C

LISTING 4.2. testtriangularize.py
M i s an mxn matr ix
d i r e c t i o n = True imp l i e s t r i a n g u l a r i z e l e f t to r i g h t
d i r e c t i o n = Fa l se imp l i e s t r i a n g u l a r i z e r i g h t to l e f t
def t e s t _ t r i a n g u l a r i z e (M, d i r e c t i o n=True) :

c = 0
s = 0
count = 0
N = M. copy ()
m = M. nrows ()
n = M. nco l s ()
i f d i r e c t i o n :

f o r j in xrange (n) :
i = f ind_p ivo t_ row_ fo r_co l (N,m, j , 0)
i f i != −1:

make row s t a r t w/1
i f (N[i , j] != 1) :

mul = N[i , j]∗∗(−1)
f o r l in xrange (j , n) :

i f (N[i , l] != 0) :
N[i , l] = N[i , l] ∗ mul
c = c + 1

c l e a r t h i s column in other rows
f o r k in xrange (m) :

pos = N. nonzero_pos i t ions_ in_row (k)
i f (i != k) and N[k , j] != 0 and (len (pos) != 0) and (min(pos) <= j) :

mul = N[k , j]
f o r l in xrange (j , n) :

i f N[i , l] != 0: #or N[k , l] != 0:
N[k , l] = N[k , l] − mul∗N[i , l]
c = c + 2

f o r i in xrange (m) :

SAGE CODE 33

pos = N. nonzero_pos i t ions_ in_row (i)
i f (len (pos) != 0) :

j = min(pos)
f o r k in xrange (i + 1 ,m) :

pos = N. nonzero_pos i t ions_ in_row (k)
i f (len (pos) != 0 and min(pos) < j) :

N. swap_rows (i , k)
s = s + 1
j = min(pos)

e l s e :
t r i a n g u l a r i z e r i g h t to l e f t
j = n − 1
while j >= 0:

nex t_ j = j − 1
i = f ind_p ivo t_ row_ fo r_co l (N,m, j , 0)
i f (i != −1):

i f (N[i , j] != 1) :
mul = N[i , j]∗∗ (−1)
f o r l in xrange (j , n) :

i f N[i , l] != 0:
N[i , l] = N[i , l] ∗ mul
c = c + 1

f o r k in xrange (0 ,m) :
i f (k != i and N[k , j] != 0) :

mul = N[k , j]
f o r l in xrange (j , n) :

i f N[i , l] != 0: #or N[k , l] != 0:
N[k , l] = N[k , l] − mul∗N[i , l]
c = c + 2

nex t_ j = n − 1
j = nex t_ j

f o r i in xrange (m) :
pos = N. nonzero_pos i t ions_ in_row (i)
i f (len (pos) != 0) :

j = min(pos)
f o r k in xrange (i + 1 ,m) :

pos = N. nonzero_pos i t ions_ in_row (k)
i f (len (pos) != 0 and min(pos) < j) :

N. swap_rows (i , k)
s = s + 1
j = min(pos)

re turn N, c , s

def f ind_p ivo t_ row_ fo r_co l (N,m, j , k) :
N i s matr ix
m i s number of rows
j i s column
k i s f i r s t row to search
candidates = {}
f o r i in xrange (k ,m) :

SAGE CODE 34

pos = N. nonzero_pos i t ions_ in_row (i)
i f (len (pos) != 0) and (min(pos) == j) :

candidates [len (pos)] = i
i f len (candidates) != 0:

sho r t e s t _ cand ida te = min(candidates . keys ())
re turn candidates [sho r t e s t _ cand ida t e]

e l s e :
re turn −1

	Row Reduction of Macaulay Matrices
	Recommended Citation

	tmp.1376919366.pdf.JGEzf

