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ABSTRACT 

FIRE AND FUELS: VEGETATION CHANGE OVER TIME IN THE ZUNI 

MOUNTAINS, NEW MEXICO 

by Luke Anthony Wylie 

May 2016 

The Zuni Mountains are a region that has been dramatically changed by human 

interference. Anthropogenically, fire suppression practices have allowed a buildup of 

fuels and caused a change in the fire-adapted ponderosa pine ecosystem such that the new 

ecosystem now incorporates many fire-intolerant species. As a result, the low-severity 

fires that the ecosystem once depended on to regenerate the forest are much reduced, and 

these low-severity fires are now replaced by crown-level infernos that threaten the forest 

and nearby towns.  In order to combat these effects, land managers are implementing fuel 

reduction practices and are striving to better understand the local ecosystem.   

In this study, a predictive fire spread model (FARSITE) was implemented to 

predict spatio-temporal distribution of fire in the Zuni Mountains based on change in 

vegetation types that are most prone to fire. Using Landsat imagery and historical fire 

spread data from 2001 to 2014, the following research questions were investigated: (1) 

What variables are responsible for fire spread in the Zuni Mountains, New Mexico? (2) 

Which areas are prone to destructive and canopy level fires? and (3) How have the fuel 

model types that are most conducive to fire spread changed in the past twenty years? The 

utilization of spatial modeling and remote sensing to understand the interaction of 

meteorological variables and vegetation in predicting fire spread in this region is a novel 

approach. This study showed that (i) fires are more likely to occur in the valleys and high 
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elevation grassland areas of the Zuni Mountains, (ii) certain vegetation types including 

grass and shrub lands in the area present a greater danger to canopy fire than others, and 

(iii) that these vegetation types have changed in the past sixteen years.  
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CHAPTER I 

INTRODUCTION 

1.1. Overview 

While fire has been a part of many forests in the American southwest, the fire 

regime of this region has changed due in large part to Euro-American settlement. This 

large scale change of fire regimes has greatly affected the environment of the Zuni 

Mountains and is a major cause of concern today.  The Sedgewick fire which ignited on 

May 10th in the northern part of the Zuni Mountains burned more than 8,000 acres and 

cost more than $900,000 dollars (Albuquerque Journal 2004).  Because of this fire and 

other smaller fires in the Zuni Mountains, land managers have started implementing 

prescribed burning in this area to reduce fuel loads. In this study, vegetation types and 

meteorological variables were used to predict the spatio-temporal distribution of fire in 

the Zuni Mountains based on vegetation types that are prone to fire. 

This chapter provides a brief history of wildfire throughout the United States, in 

American southwest, and specifically in the Zuni Mountains. A discussion of causes and 

consequences of wildfire, the trend of wildfire in the U.S., the role of climate change in 

the occurrence of wild fire is also presented here. Finally, the goals and objectives, 

research questions explored, and the significance of this research are discussed. 

1.2. Wildfire in the United States 

With the end of the Wisconsin Glaciation around 10,000 years ago, it is 

estimated that modern plant communities became comparatively stable for the past 6,000 

years (Frost 1998).  Thus, wildfire has been present in the United States’ forest 

ecosystems since long before European settlers arrived in the 1500’s on the continent, 
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and many ecosystems evolved to become dependent on fire’s rejuvenating properties. In 

the eastern United States, vegetation types evolved in sync with the occurrence of 

frequent fire and many of the plant species like the jack pine became dependent on it 

(Nowacki and Abrams 2008).  The arrival of Europeans altered these fire regimes by 

either drastically increasing the occurrence of fire in some cases or by removing its 

presence all together (Figure 1) (Nowacki and Abrams 2008). In the south, fire regimes in 

the Holocene epoch were likewise characterized by low intensity brushfires that were 

utilized by Native Americans primarily for hunting and later for clearing fields for maize 

production (Fowler and Konopik 2007).  With the advent of industrialization and 

widespread logging across the country, historical fire regimes were further shifted as 

loggers cut down entire stands, giving rise to more early succession forest types 

(Nowacki and Abrams 2008). 

Federal involvement in fire protection began in 1886 when the U.S. Army 

became responsible for the management of Yellowstone National Park (Rothman 2005).  

After weathering some heavy fire seasons in Yellowstone, the National Park Service was 

created in 1916 and the U.S. Forest Service’s policy of complete fire suppression began 

and remained the dominant policy until 1967 (Rothman 2005). In 1963, the Leopold 

Report questioned the fire suppression policy, and pointed out the negative effects of fire 

suppression efforts, most notably the overgrowth of thick underbrush that led to larger 

and more destructive fires, which eventually led to the passage of the Wilderness Act in 

1964 (Rothman 2005).  Now, the United States Department of Agriculture (USDA) 

Forest Service and other land managers strive to understand fire ecology and implement 

best practices of fire management in these critical ecosystems. 
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Figure 1. Fire regime change in the eastern United States (Nowacki and Abrams 2008). 

The history of fire in the Southwest spans long before Euro-American settlement 

in this region. Native Americans in the region utilized fire to clear underbrush, replenish 

soils, and rejuvenate agricultural lands (Euler 1954; Petersen 1985). In northern New 
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Mexico, Hispanos used fire to clear areas for farmland and pastures (Allen 1984; Raish 

2005).  Many of these native groups including the Zuni Indians also used fire to aid in 

hunting, and produced large fires in the process (Raish 2005). A culmination of these 

activities could have produced large-scale effects on the fire regimes in this region even 

prior to westward expansion of human settlement.  

Although the fire regimes in the Southwest shifted with Euro-American 

settlement, prior to this between 1870 and 1890 C.E., the region had experienced many 

low-intensity burns that regenerated the ecosystem (Fule 1997; Rother 2010). The first 

major suppression of fire occurred in 1880 due to cattle grazing by settlers and heavy 

logging with the arrival of the railroad (Dick-Peddie 1993). This suppression was 

followed by a complete halt in fires around 1940, which is linked to improved practices 

of fire suppression including smoke jumping by land managers in the area (Grissino-

Mayer and Swetnam 1997).  Since these suppression practices have been implemented, 

forest density has increased and species composition has shifted to a greater density of 

fire intolerant species (Fule 1997).  These changes also caused more high-severity 

wildfires that damaged the ecosystem and settlements around it, and most researchers 

voiced the need to return these forests to their pre-settlement conditions (Fule 1997; 

Grissino-Mayer and Swetnam 1997). 

         An unintended consequence of this large scale ecological change in historically 

fire-prone ecosystems is a buildup of fuel sources which often result in catastrophic fires 

that damage the ecosystem and resets the process of ecological succession. This has 

resulted in the replacement of low-severity fires that the ecosystem once depended on by 

crown-level infernos that destroy the forest and many cities/towns in the West (Rother 
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2010).  The primary ignition source of wildfire in this region is lightning with the 

majority of large fires originating on the highest peaks. In order to mitigate the effects of 

fuel buildup and decrease the number of crown level fires, crews in the Cibola National 

Forest are actively working to reduce potential fuels (USDA Forest Service 2014).  In a 

widely supported proposal by the Collaborative Forest Restoration Program, the Forest 

Guild proposed to restore historic fire regimes “removing small excess trees” while 

protecting “old and large trees” (Zuni Mountain 2012). There have also been numerous 

Collaborative Forest Restoration Program grants issued for the purpose of returning the 

landscape to a more natural fire regime including the 2001 CFRP: Zuni-Cibola Forest 

Restoration Initiative, the 2004 Zuni Healthy Forest and Watershed Initiative, and the 

2010 Bluewater Village Wildland Urban Interface and FireWise Project (Zuni Mountain, 

2012).  

         Analysis of historical fire impact areas indicated that certain areas of the Zuni’s 

are more susceptible to catastrophic burns than others. Therefore, this study focused on 

understanding the spatial and temporal variation of the vegetation types that are 

susceptible to fires will help forest managers target their efforts to reduce the buildup of 

fuels in specific areas and mitigate damage from future fires. On average, fuel reduction 

treatments can save $238-$600 per acre in suppression costs alone (Snider 2006; Zuni 

Mountain 2012). The methodology implemented in this study demonstrates the change in 

fire prone vegetation areas over time, which can be used to predict areas susceptible to 

fire, provide the forest service with valuable data to restore the ecosystem to a more 

sustainable fire regime, and help reduce fire suppression cost.    
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1.3 Causes of Fire and Fire Impacts 

Most natural wildfires are caused by lightning; however human activity is now 

the foremost cause of wildfires.  Some of these ignitions are intentional in cases like 

Native American’s hunting methods, land clearing, or even arson.  Other times accidental 

ignitions can occur due to careless hikers or campers. Climatically, it is believed that the 

future global warming trends will increase wildfire potential in much of the world (Liu et 

al. 2010).  Fire potential is calculated using the Keetch-Byram Drought Index (KBDI), 

and when calculated using current general circulation models (GCMs), the current fire 

potential is shown to increase from low to medium in the United States ( Liu et al 2010).  

If the trend of warming temperatures and decreased precipitation in the Southwestern 

United States continues, the prevalence and intensity of wildfire in the region can be 

expected to increase as well. 

  

Figure 2. Sizes and causes of wildfires from 1988-1997 (“Wildland Fires” 2000). 

A wildfire can impact society in different ways — ecologically, socially, and 

economically. Ecologically, a crown level fire, one that makes its way into the canopy, 

can cause severe damage to an ecosystem and significantly disrupt its ecological 

succession. A severe crown level fire can decimate the soils of an ecosystem and leave 

the area void of vegetation post-fire. However, a surface level fire that tends to remove 
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clutter can prove beneficial to some ecosystems as it will encourage regrowth (“Wildland 

Fires” 2000). 

Socially, it is important to address the issue of wildfire hazard as more people 

move closer to the wildland urban interface (WUI). During the 1990’s, 13.6 million new 

housing units were built throughout the United States many of which were in areas 

adjacent to protected wilderness areas, leading one to believe that housing development 

in the WUI is bound to be of greater concern in the future (Radeloff et al 2005). During 

the 2013 fire season, 1,093 residences were destroyed by wildfires nationally; however, 

this is below the annual 10-year average of 1,394 residences (National Interagency 

Coordination Center 2013).  The safety of fire crews is also of great concern with over 

1,000 crews being dispatched in year 2013 alone (National Interagency Coordination 

Center 2013).  A greater understanding of fuel reduction and mitigation techniques will 

enable planned evacuations and reduction of loss of life of both firefighters and civilians. 

Economically, fire suppression is a huge expense to the Forest Service and other 

government agencies.  In 2013, an estimated $1.7 billion of federal funds was spent in 

fire suppression to fight about 47 fires that burned approximately 4,319,546 acres of land 

(National Interagency Coordination Center 2013).   The 2013 Rim Fire in the Sierra 

Nevada region of California alone was estimated to have cost $127 million in fire 

suppression (National Interagency Coordination Center 2013).  The economic impact of 

wildfire is not limited to suppression cost alone.  A wildfire may also disrupt economic 

activity in affected areas and/or destroy both commercial and residential buildings and 

infrastructures that will need to be rebuilt by the affected communities.  
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Figure 3. Significant Wildfires and their impacts (“Wildland Fires...” 2000). 

1.4 Research Questions 

 Both climatic and anthropogenic disturbances to the ecosystem in the Zuni 

Mountains have been well documented and thoroughly explored. Oscillations in synoptic 

climatology like the El Nino Southern Oscillation (ENSO) and the Pacific Decadal 

Oscillation (PDO) drive wet and dry periods in this area, which directly influence the 

frequency and severity of forest fire (Grissino-Mayer et al., 1997).  The implementation 

of fire suppression practices also allow a buildup of fuels and contribute to the growth of 

many fire-intolerant hardwood species.  The result is crown-level infernos that have the 

potential to destroy the forest and nearby towns and cities in the West (Rother 2010).  

Although the causes of fire in this region have been well documented, the consequence of 

ecosystem changes on fire occurrence and spread is yet to be explored. The objectives of 
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this study were to (1) implement a predictive fire spread model (FARSITE) to spatially 

and temporally model fire in the Zuni Mountains; (2) determine temporal variation of 

vegetation types susceptible to fire; and (3) propose management practices that are 

effective in reducing wildfire hazard based model outputs. The research questions that 

were examined in this study include: 

1. What variables drive fire spread in the Zuni Mountains, New Mexico? 

2. Which areas are prone to destructive and canopy level fires? 

3. How have the fuel model types that are most conducive to fire spread changed in 

the past twenty years? 

1.5 Outcomes and Significance 

         The data sets and maps resulting from this study will be shared with the land 

managers working for the Cibola National Forest to manage the Zuni Mountains.  These 

outputs containing information about the areas susceptible to fire occurrence, the 

vegetation types responsible for fire occurrence, and potential fire spread zones will help 

land managers take appropriate mitigation actions to prevent future fire spread along the 

forest-urban interface and protect communities from fire impacts. Also, by displaying the 

spatial distribution of ignition points, these outputs will enable managers to efficiently 

target high risk areas for fuel reduction. Since land managers in the area understand the 

importance of reducing fuels and restoring the forest to its natural state, the findings will 

help them improve their restoration/mitigation plan. 

         This study will also pave the way for future studies exploring the expansion of 

fuel types using remote sensing imagery.  Since most national forests have suppressed 

wildfires since the 1940’s, the problem of fuel buildup and canopy fires is not one that is 
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unique to the Zuni Mountains. By sharing the methodology with the Cibola National 

Forest GIS team, this study will help them and the USDA Forest Service implement such 

strategies in other similarly disturbed ecosystems. Furthermore, the methodology can be 

implemented longitudinally to explore the temporal variability of fire occurrence and fire 

spread in the Zuni Mountains after specific fire reduction policies and techniques have 

been implemented to determine the effectiveness of such policies and techniques. 

1.6 Summary 

         A large crown fire has the potential to cost millions of dollars in suppression 

efforts and damages.  Crown level fires also decimate vegetation leading to a disruption 

in ecological succession and a rapid increase in soil erosion.  Thus, it is imperative to 

study this topic to allow planners to develop improved mitigation strategies for this 

region.  The 2014 IPCC report identifies wildfire-induced loss of ecosystem integrity, 

property loss, human morbidity, and mortality as having a medium risk in the present and 

near term (2030-2040) and a very high risk in the long term due to global warming 

(Smith and Bustamante 2014).  By integrating remote sensing and fire modeling 

techniques in this study, a methodology was developed that demonstrates how to identify 

areas in need of fuel reduction and track their growth over time. 

         This manuscript is organized into five chapters. The next chapter provides a 

comprehensive literature review of climatic and anthropogenic changes to fire regimes in 

the Zuni Mountains followed by a discussion of fire modeling and data sources needed to 

run the models.  The methodology chapter provides an introduction of the study site, and 

discusses the research methodology used in this study (data sets, model parameters, 

image processing, and analysis). The findings of data analysis–remote sensing analysis, 
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and fire prediction model–are presented and discussed in the results and discussion 

section following which the conclusion chapter summarizes the pertinent findings with 

regard to the research questions, identifies limitations and future research, and provides 

recommendations for forest managers from a policy perspective to reduce fire impact.  

 

         

 

 

 

 

 

 

 

 

 

 

 

  



 

 

12 

 

CHAPTER II 

LITERATURE REVIEW 

2.1 Overview 

This chapter describes the complex relationship between climate and wildfire, 

explores the history of fire modeling, and provides an overview of data sources needed to 

run these models.  A discussion about fire modeling and advancements in this area are 

presented to lay the foundation for implementing such models.  Since remote sensing is 

critical to the production of many ecological data layers needed for this kind of modeling, 

a thorough discussion of the techniques used and their limitations are provided in this 

chapter as well.  

2.2 Climate and Wildfire Relationship 

The exploration of the relationship between climate and fire in the Southwest is 

fairly a recent trend. A reconstruction of precipitation by Grissino-Mayer (1995, 1996) in 

the Southwest revealed that fire has historically been correlated to oscillations of wet and 

dry periods with increased fire frequency associated with periods of below average 

rainfall (Grissino-Mayer and Swetnam 2000).  This idea of synoptic climatology 

influencing fire in the region was also propagated by Swetnam and Betancourt (1996) 

who demonstrated that changes in the amplitude and frequency of the wet-dry periods of 

the ENSO are highly correlated with fire frequency and severity in the Southwest.  The 

biggest fires most often occurred when the ENSO switched from wet to dry periods 

(Grissino-Mayer and Swetnam 2000; Swetnam and Betancourt 1996). 

Grissino-Mayer and Swetnam (2000) developed a tree-ring reconstruction of 

wildfire from a tree-ring chronology in northwestern New Mexico and compared it to a 
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thousand year douglas fir and ponderosa pine reconstruction of precipitation to analyze 

the relationship between precipitation and fire in the Southwest (Grissino-Mayer 

1995,1996).  They defined three long term precipitation regimes. The first, with average 

rainfall, occurred between 1000 and 1400 C.E. and is associated with the Medieval Warm 

Period; the second, a period of below average rainfall between 1400 and 1790 C.E., 

which is associated with the Maunder Minimum (“The Little Ice Age”); and a period of 

above average rainfall between 1790 and 1992 C.E.  This final period of above average 

rainfall was correlated with a decrease in fire frequency suggesting precipitation regimes 

play a heavy role in fire occurrence in the area. On a smaller temporal scale, Grissino-

Mayer and Swetnam (2000) examined the importance of moisture in the years before fire 

to the production of fuels to be burned in wildfire and found that increased forest growth 

associated with wet years in the southwest produce more ground litter to be burned in dry 

years. Historically, fires resumed from 1795 to 1880 and then dropped off during 1881 

and 1892, which indicates that settlement in the area, the introduction of cattle grazing, 

and anthropogenic fire suppression activities have influenced fire regimes in this region. 

Past research about fire regime supports that climate is a primary factors in fire 

occurrence, thereby leading to researches examining the ecosystem in the face of climate 

change.  

Swetnam and Betancourt (1997) correlated multi-century, from 1700 to 2000, 

tree-ring reconstructions of multiple variables like drought, population change, and 

disturbance history to climate events across multiple temporal scales (from annual to 

decadal) and multiple spatial scales (from local, areas less than 10 square kilometers, to 

mesoscale, areas between 10,000 and 1,000,000 square kilometers) in the American 
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Southwest.  The authors found that the proposed inter-decadal changes in fire-climate ran 

parallel to shifts in frequency and amplitude of the SO (Southern Oscillation) over the 

past three centuries — 1700 to 2000.  When the SO experienced a rapid switch from wet 

to dry periods, the American Southwest experienced an increase in the frequency of fires.  

The greatest amplitude switch from wet to dry in the SO was from 1747 to 1748, and the 

largest fire observed in the study site occurred in 1748 (the fire was present in nearly ⅔ of 

all sampled sites). Swetnam and Betancourt (1997) also suggested that these synoptic 

fluctuations in climate may be aggravated by anthropogenic effects. The increase in fuels 

from fire suppression and shifts in the SO may be responsible for increases in area burned 

in both Canada (van Wagner 1988; Auclair and Carter 1993) and the American 

Southwest (Sackett et al 1994). 

Rother (2010) explored the effects of climate and anthropogenic influences on 

ponderosa pine forests in the Zuni Mountains, New Mexico.  She cross-dated over 800 

fire scars on 75 tree-ring cross-sections to reconstruct fire regimes in the forests over 

three sites.  Rother found that low severity wildfires occurred naturally in the area 

between 1700 and 1800 before the settlement of Euro-Americans in this region.  

Climatically, there was no relationship between fire and PDO (Pacific Decadal 

Oscillation), which indicates shorter term climate fluctuations between wet and dry 

periods were more often responsible for fires historically.  Due to human settlement, fire 

frequency decreased during the 19th century in the Zuni Mountains and has been 

completely absent from all sites after 1920 because of anthropogenic disturbances like 

livestock grazing and fire suppression. While returning these forests to their pre-

anthropogenic conditions sounds desirable, Rother errs on the side of caution, warning 
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that due to the nature of climate change, returning to these conditions may not be possible 

or be the best option. 

2.3 Wildfire Models 

Wildfire modeling is an inter-disciplinary research are that draws from computer 

science, forestry, geography, mathematics, among others to mathematically model fires 

and their occurrence and spreading based on surroundings and climatic conditions 

(Andrews et al, 2003).  Being a long standing discipline, a number of models have been 

developed over the years. While some of the earliest cell-based raster models were coarse 

in spatial resolution and lacked the complexity needed to accurately model the physics of 

a wildfire (Kourtz et al, 1977), the introduction of Percolation modeling in 1990, which 

assigns random barriers in a grid through which fire cannot pass, led to the development 

of more accurate and precise fire models. 

One of the first computer models of forest fire was developed by Peter Kourtz, 

Shirley Nozaki, and William O’Regan in 1977, which was built in FORTRAN to run on a 

32-bit personal computer. Their model pioneered the cell based wildfire model by 

partitioning the forest floor into a grid of two-hectare cells with homogeneous fuel types 

(Kourtz et al, 1977).  The fire spreads through adjacent cells and the rate of spread is 

calculated based on fuel types, moisture content, and wind conditions (Kourtz et al, 

1977).  Despite its usability, several admitted shortcomings of this model include lack of 

spatial precision (with ½ a hectare grids being the smallest option); no conversion to 

crown level fire which burns hotter and is more destructive than a normal wildfire; no 

consideration of terrain conditions which is important to determining fire spread; and lack 

of simulation of spotting, where one fire turns into two.  
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The next major step in fire modeling occurred in 1986 with the introduction of 

percolation modeling that was applied to fire spread by Albinet et al (1986) and the 

accuracy of this model was later assessed by Tom Beer and I.G. Enting in 1990.  The 

basic principle behind percolation modeling pertains to the statistical description of 

connectivity between random networks; this is applied to fire modeling to reflect 

uncertainty in spread through a regular landscape (Finney, 2004).  For example, a user 

could input that 70% of the area is unburnable and the model would randomly select 70% 

of the grid cells and make them impassable, the model would then calculate how the fire 

“flowed” from the origin outward (Figure 4, 5, 6 ).  In this model, the user specifies the 

size of a grid for analysis, percentage of unburned sites, the neighborhood size for fire to 

spread, number of desired time steps for burning, and threshold for ignition. Threshold 

for ignition is determined by heat input that is expressed as the number of burning 

neighbors. (Albinet, 1986; Beer and Enting 1990).  When tested, the model did not 

reproduce laboratory results of burning matchsticks in the same grid pattern, a test which 

was meant to recreate the theory of fire modeling via percolation (Beer and Enting, 

1990). The results of the study conducted by Beer and Enting (1990) indicated that 

“bushfire-spread models based on a two-dimensional grid with nearest neighbor ignition 

rules are also too naïve.” 
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Figure 4. Low spread of fire, unburnable areas set at 70%. 

Source: http://www.jeromecukier.net/projects/models/percolate.html. 
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Figure 5. Medium spread of fire, unburnable areas set at 52%. 

Source: http://www.jeromecukier.net/projects/models/percolate.html. 
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Figure 6. High spread of fire, unburnable areas set at 30%. 

Source: http://www.jeromecukier.net/projects/models/percolate.html. 
 

The FARSITE model was first built in 1994, and is commonly used among 

practicing foresters and land managers. Unlike most fire models that use cell-based raster 

calculations, the FARSITE model of 1994 is built on an elliptical model of fire spread 

based on Huygen’s principle (Finney, 1994). This model has been in development for 

over twenty years and is now on its fourth major release.  
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The Huygen’s principle of elliptical spread resolves some of the problems of cell 

based fire models such as changing wind speed and fuel moisture (Figure 7).  The 

mathematical principles used to model fire based on Hyugen’s principle were expounded 

by Richards (1995), which include a number of variables such as orientation of the vertex 

(the point at the foremost edge of fire), direction of maximum spread, shape of the fire 

calculated from fuel, and weather conditions at each vertex.  Surface fire ellipsoids’ rate 

of spread are calculated using Rothermel’s spread equation which calculates fire spread 

by dividing the product of reaction intensity (determined by energy in kilojoules (kJ) per 

square meter, and wind and slope) by the product of dry bulk density and heat of pre-

ignition  (Rothermel 1972). The criteria for the surface fire to transition to a crown level 

fire is determined by Van Wagner’s conditions laid out in his 1989 paper (Van Wagner 

1988).  This model incorporates fuel weights and moisture content, and if the rate of 

spread exceeds the “critical spread rate”, the equation determines the fire has converted 

from a ground fire to a crown fire. If this condition is met, then the model will compute 

crown fire at the next computed vertex where the rate of fire spread across the canopy 

will be computed based on canopy bulk density (CBD) measured in kg/m^3. The required 

meteorological variables for this model include total daily precipitation, maximum and 

minimum temperatures, maximum and minimum relative humidity, and elevation. The 

elevation is used to adjust for adiabatic process across the landscape such that 

temperature decreases by 1°C per 100m of height and by 0.2°C per 100m humidity 

(Finney, 2004).  Wind speed calculated hourly in (mph) is used along with its direction 

and is assumed to be parallel to the terrain.  Both weather and wind variables are applied 

consistently across the landscape.  Overall, the necessary inputs to run the model are 
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extensive and include gridded datasets of: elevation, slope, aspect, canopy variables, and 

weather and wind data (Figure 8). 

Figure 7. Hyugen’s principle of elliptical spread (Finney, 2004). 
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Figure 8. Raster inputs necessary to the FARSITE model (Finney, 2004). 

The development of fire models has continued beyond the development of the 

FARSITE model into more specialized models.  A good example of this growth can be 

found in Phillip Dennison’s and Tom Cova’s WUIVAC (Wildland Urban Interface 

Evacuation) Model.  This model creates evacuation triggers, a long standing tradition in 

hazards research, when a wildfire reaches a certain point in a landscape.  Using 

traditional inputs like wind, fuels, and topography, WUIVAC determines the amount of 

time a fire will take to spread to a protected zone, which is used to set the evacuation 

trigger buffer.  An evacuation trigger is a point that once crossed by a wildfire will trigger 

an evacuation response for a community (Dennison et al, 2007).  WUIVAC incorporates 

FLAMMAP (a part of the FARSITE suite) to determine rate of spread along a landscape, 
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and then reversing it to travel from a community cell until the specified trigger time is 

reached (Dennison et al, 2007).  

Figure 9. A representation of the WUIVAC model (Dennison et al, 2007). 

2.4 Data and Variables for Wildfire Modeling 

One of the main issues in wildfire modeling is obtaining accurate data to run and 

validate the model.  Some data sources include historic fire atlases, dendrochronology, 

remote sensing data (e.g., fuel types), biophysical variables (e.g., canopy bulk density), 

and physiographic information (e.g., elevation) (Morgan 2001; Schmidt 2002; Keane, 

2001).  Modeling fuels is a complex endeavor and since much of the practice relies on the 

usage of space born remote sensing satellites, identifying ground based fuels can prove 

troublesome.  The USGS’s LANDFIRE program also provides geo-spatial products 

describing vegetation, fire regimes, and fuel across the United States (LANDFIRE 2010).  

One of the most important products generated by this program is the fuel model layer(s) 
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critical to fire modeling.  The methodology for developing these fuel models using a 

combination of remote sensing, biophysical variables, and local experts is discussed in 

Reeves et al (2006).  However, there have also been research undertaken to model fuel by 

using only remote sensing. For instance,  Van Wagtendonk and Root (2003) used 

Normalized Difference Vegetation Index (NDVI — an index that provides information 

about the greenness and health of vegetation) calculations over the course of a year to 

group vegetation types according to their phenological cycles, which represented fuel 

layer for fire modeling. Regardless of the methods used, the data produced by these fire 

models are valuable as they can be used by both land managers and citizens to more 

accurately predict future fire spread and help mitigate the damage. 

Keane et al.  (2001) described the challenges of modeling fuels, canopy 

complexity, fuel type diversity, fuel variability, and fuel model generalization, and 

offered insights about overcoming these challenges. The authors also mentioned that 

aerial imagery and satellite based sensors are unable to capture surface fuels because the 

ground is often obscured by a thick canopy. Also, a single weather event can alter the fuel 

load in an area dramatically by increasing the amount of dead and downed materials, 

thereby increasing the fuel load (Keane et al, 2001).  The authors, therefore, identified 

four approaches to mapping this difficult phenomenon – (1) field reconnaissance, (2) 

direct remote sensing methods, (3) indirect remote sensing methods, and (4) biophysical 

modeling.  The reconnaissance method involves traversing a landscape and recording fuel 

conditions on a map or on a notebook.  However, this method is extremely cost 

ineffective and somewhat subjective.  Using remote sensing to classify fuel types is a 

straightforward method and easy to ground reference, but typically it results in vegetation 
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classification rather than fuels and is prone to canopy obstruction. Remote sensing maps 

ecosystem characteristics and uses them as surrogates for fuels; however, this method 

typically produces polygons too large to be of any use for accurate models.  Finally, 

biophysical modeling uses environmental gradients like climate, topology, and 

disturbance to create fuel maps.  Biophysical modeling shines when simulating fuel 

changes over time, but is extremely complex and requires lots of data, modeling, and 

analysis. Keane et al. (2001) proposed a method incorporating contemporary remote 

sensing and image processing techniques to model fuel distribution based on biophysical 

setting, species composition, and stand structure.  They stressed the importance of these 

models to fire and land managers because of their applicability in modeling fire hazard. 

However, Keane et al. (2001) also discussed the need for more accurate fuel modeling by 

using specific and high quality geo-spatial data, high resolution remote sensors that can 

penetrate canopy layers, better field data, and more comprehensive ecosystem models. 

Reeves et al (2006) pioneered a methodology to develop fuel products through the 

LANDFIRE project. Their methodology relies on: existing vegetation type (EVT), 

canopy cover (CC), canopy height (CH), environmental site potential which represents 

vegetation that could be supported at a given site (ESP), Landsat ETM imagery, and 

Digital Elevation Models (DEM).  The authors, in conjunction with local fire experts, 

created rules to classify vegetation types for Fire Behavior Fuel Models (FBFM).  For 

instance: EVT provides information about potential ground litter and vegetation type; 

canopy cover corresponds to the understory; canopy height provides information to 

distinguish between FBFMs; and ESP is sometimes used to determine xeric fuel beds 

(with little to no moisture) from mesic fuel beds (those with a moderate amount of 
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moisture) (Reeves, 2006).  All these data are available from the LANDFIRE project 

website. By combining EVT, CC, CH, and ESP and using rule sets for classification 

derived by local fire and fuel experts, the Anderson Fuel Model 13 is developed at 30x30 

meter pixel size. Once the Fuel Model layer is created, the results are submitted to local 

experts for verification and fine tuning.   

Figure 10. FBFM 13 and 40 assignments from Reeves et al’s methodology (Reeves, 

2006). 
 

  In contrast to Reeve’s method of integrating EVT, CC, CH and ESP to 

determine fuel models, van Wagtendonk and Root (2003) analyzed multi-temporal  

Landsat Thematic Mapper data to map fuel models in Yosemite National Park.  The 

authors used six images from May, June, July, September, October, and November 1992 

and calculated their NDVI .  First, to eliminate areas without significant vegetation the 

NDVI values with a maximum of 109 were masked, which typically indicate that some 

vegetation is present, but not enough for a fire.  The authors then ran an ISODATA 

unsupervised classification in ENVI to define 30 unique spectral classes (van 

Wagtendonk and Root, 2003).  NDVI mean and maximum values over time were plotted 

to see how the vegetation changed throughout the season and shapes of the curve were 

used to group similar classes.  Elevation maps and a Digital Ortho Quadrangle were used 
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to distinguish between fuel types with similar vegetation responses. Finally, 370 field plot 

locations were used to validate the findings, which resulted in 54.3% accuracy with a 

kappa coefficient of .391 (van Wagtendonk and Root, 2003).  Overall, their method is 

useful for separating vegetation types with unique characteristics over time, but similar 

types and mixed stands prove problematic.  

While a useful tool, an ISODATA classification like the one used by van 

Wagtendonk and Root (2003) can negatively impact the accuracy of a remote sensing 

classification.  A more common image classification technique used in remote sensing is 

a supervised classification which utilizes training data and machine learning algorithms 

to classify pixels in a remotely sensed image.  While there are a variety of methods and 

algorithms for this process, the methodology is almost always the same: decide on 

desired classification types, choose training data for each of the desired classes, use the 

training data to estimate a spectral signature for each class, use the trained algorithm to 

label every pixel in the image into one of the defined classes, and finally, visualize the 

spatial distribution of classes (Richards and Jia, 1994).  The most commonly used 

algorithm for running a supervised classification is the Maximum Likelihood 

Classification algorithm.  At its most basic, the Maximum Likelihood Classifier is a 

supervised classifier that uses the discriminant function to classify a pixel to the group 

with the highest spectral likelihood based on provided training data (Ahmed and Quegan, 

2006).   

 

  



 

 

28 

 

Figure 11. NDVI values for the short grass group (van Wagtendonk and Root, 2003). 

2.5 Wildfire Prediction 

The long history of wildfire models and their data requirements have long been 

stuck in the realm of research.  However, with the development of Graphical User 

Interface (GUI) based programs and increased use of Geographic Information Systems 

and geo-spatial data, wildfire modeling is increasingly becoming useful to land managers 

and other professionals.  In general, these models prove very useful for researching fire as 

an ecosystem process across an entire landscape (Finney, 1995).  Now that most of the 

data to run these models is available from USGS’s LANDFIRE project, a user can 

quickly predict the canopy-fire prone areas in a landscape and prescribe fuel treatment 

options to mitigate the risk.  Stephens et al. (1997) used the FARSITE model to 

investigate how different forestry and fuel treatment practices affect potential fire 

behavior in the North Coast Creek watershed of Yosemite National Park.  The authors 
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used twelve categories of severity for the vegetation types, ranging from no treatment (0) 

to Group Harvest, Slash Treatment, and Fuel Management (12).  The authors found that 

prescribed burns, thinning and biomassing before prescribed burns, and group selection 

with slash and fuel treatments produced the best results in terms of area burned, rate of 

fire spread, and heat (Stephens, 1997).  When results like these are available to forest 

managers, the significance of wildfire prediction models is hardly understated. 
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CHAPTER III 

METHODOLOGY 

3.1 Overview 

This chapter discusses the methodology implemented in this study.  The first 

section of this chapter introduces to the study site, and discusses the reasoning behind 

choosing this specific location and outlines some of the ecological history of the 

area.  The second section discusses data sources and data processing steps implemented 

in this study. The third section of this chapter provides an in-depth discussion of the 

methodology employed to investigate the research questions: (1) What variables drive 

fire spread in the Zuni Mountains, New Mexico? (2) Which areas are prone to destructive 

and canopy level fires? and (3) How have the fuel model types that are most conducive to 

fire spread changed in the past twenty years? The last section discusses the reference data 

and steps implemented to validate the research findings.  

3.2 Study Site 

The Zuni Mountains are located at the southeastern edge of the Colorado Plateau 

and are a typical southwestern ecosystem dominated by ponderosa pine and douglas fir 

forests.  The Zunis run southeast to northwest and range in elevation from around 2,000 

meters to 2,800 meters at their highest point on Mt. Sedgewick. The area around the 

Zunis is sparsely populated with the presence of small towns of Grants and Gallup 

nearby.  Precipitation in this mountain range is scarce with an annual average 

precipitation of 340mm and is very seasonal with a springtime drought followed by 

wetter conditions in summer and early fall (Sheppard et al 2002).   
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The area, which was mainly populated by Native Americans, experienced rapid 

change with the arrival of the Atlantic & Pacific Railroad through Grants, New Mexico in 

1881.  The arrival of the railroad facilitated the arrival of more settlers and an increase in 

livestock, namely sheep (Magnum, 1997).  The arrival of the railway and subsequent 

population increase in Grants gave rise to logging in the Zuni’s as well. On June 30, 1890 

about 314,668.37 acres of land owned by William and Austin Mitchell were sold with the 

intent to use the land for its lumber (Glover and Hereford, 1986).  Because of problems 

with logging activities, logging in this area was ceased in 1892 (Glover and Hereford, 

1986).  In 1901, the American Lumber Company purchased the rest of the Mitchell 

brothers’ land and began a very successful timber harvesting venture that included the 

completion of the Zuni Mountain Railway that started by the Mitchell brothers (Figure 

12)(Glover and Hereford, 1986).  Numerous studies of fire that have been conducted in 

this area have demonstrated that fire was prevalent in the area until the late 1920s and has 

since been reduced in both frequency and spatial extent (Rother, 2010; Grissino-Mayer 

and Swetnam, 2000). This drop in fire hazard events could be due to an increased effort 

of fire suppression, and improvements in fire suppression techniques such as smoke 

jumping, timber harvesting and livestock grazing that reduce biomass, thereby reducing 

fuel sources in the area (Rother, 2010).  

The imagery of the Zuni Mountains in 2010 (Figure 13) taken in shows that this 

area is occupied by a densely vegetated range that is surrounded by the New Mexico 

desert.  Figure 14 shows the 2010 LANDFIRE fuel classifications of the Zuni Mountains 

and Table 1 shows a quick overview of each fuel model (Anderson 1982). According to 

the Anderson fuel model, the main fuel present in this area is fuel model 9 - a closed 
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stand of trees with sparse surface litter like pine nettles (Anderson 1982; Albini 1976) 

followed by an abundance of fuel model 2 – an open stand of herbaceous materials like 

grasses between trees (Anderson 1982).  The fuel model 5 (low dense shrublands), and 

fuel model 8 (closed canopy stands with surface litter like leaves and dead and downed 

wood) are also present in many of the valleys (Anderson SS1982).  

 

Figure 12. The American Lumber Company railroad route that ran from the heart of the 

Zuni’s to the mill in Albuquerque (Glover and Hereford, 1986). 
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Figure 13. The Zuni Mountains. 
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 Figure 14. Fuel Models Present in the Zuni Mountains (LANDFIRE 2010). 

Table 1  

Fuel Model Descriptions present in the Zuni’s (Albini 1976; Anderson 1982) 

Fuel model Description 

FBFM1 Short Grass (1 foot) 

FBFM2 Grass understory and some canopy cover 

FBFM4 Chapparral, high shrub 

FBFM5 Lower brush ( 2 feet) 

FBFM6 Dormant brush or hardwood slash 

FBFM8 Closed canopy with surface litter 

FBFM9 Timber litter with dead and downed 

FBFM10 Heavy downed material 
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3.3 Data Sources and Processing 

 Because this study focused on predicting the spatial distribution of potential 

future fire events, a large number of datasets were used to implement the fire and the fuel 

model, and validate the model output(s).  Data about fuel types was collected in August 

2014 for 220 points in the Zuni Mountains for supervised classification of the fuel types 

(Figure 15).  In addition, the following spatial data sets were collected from different 

sources.  

1. Weather data: To simulate the LANDFIRE’s FARSITE fuel model, data about 

maximum and minimum temperature and precipitation were obtained from weather 

stations located at Grants, New Mexico (latitude of 35.17 and longitude of -107.9) for 

the duration of 1970 - 2014. Data about temperature (mean, min, and max), relative 

humidity (mean, min, and max), precipitation amount, precipitation duration, wind 

speed, and wind direction were also obtained from the NOAA’s National Climatic Data 

Center from year 2000 onwards.  

2.Geo-spatial data: Topographic data, especially, elevation layers depicting change in 

topography in this area is essential to implement the FARSITE model.  The elevation 

data was obtained from the LANDFIRE project in 2010 (LANDFIRE 2010).  A historic 

fire polygon layer - digitized by the USDA and workers in the Cibola National Forest – 

was obtained from the USDA Forest Service’s GIS dataset (Figure 16). These fire 

polygons include all fires that impacted an area greater than 10 acres since 1970, and 

contain information about fire size, cause of ignition, date of fire occurrence and method 

of digitization. Ignition points for all fires in the Zuni Mountains containing the same 
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attribute data as the fire polygons were also obtained from the USDA Forest Service’s 

GIS dataset. 

3. Vegetation data: Fuel models required to run the FARSITE model were procured 

from the LANDFIRE project.  All the topographical and biophysical data for the model 

were acquired from the LANDFIRE project which included: LANDSAT data, elevation 

data, and plot level measurements from volunteers (Figure 17) in many sites to 

accurately predict the fuel types that are present in the area.  All the data obtained from 

LANDFIRE projects are listed in Table 2 and the spatial extent shown in Figure 17. 

4. Reference data: To validate the classification, the National Land Cover Dataset was 

obtained from the Department of Interior and the USGS Multi-Resolution Land 

Characteristics Consortium (MRLC), and Landsat multi-spectral imagery were obtained 

from the USGS’s Earth Explorer. These data were used to determine the extent of 

vegetation change and specifically, determine the change in fuel models that is 

paramount for fire spread. Also, spectral signatures for different vegetation were 

obtained during sampling in order to classify the vegetation types into the Anderson 

Fuel Model classes.   
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Table 2 

Spatial FARSITE Inputs 

Layer Source-Date Spatial 

Resolution 

Info 

Forest Canopy 

Cover 

LANDFIRE 

2010 

30m x 30m Percent cover of tree 

canopy per pixel 

Forest Canopy 

Height 

LANDFIRE 

2010 

30m x 30m Average height of top 

of vegetated canopy 

Forest Canopy Bulk 

Density 

LANDFIRE 

2010 

30m x 30m Density of available 

fuel in canopy 

Forest Canopy Base 

Height 

LANDFIRE 

2010 

30m x 30m Average height from 

forest floor to canopy 

bottom 

Anderson FBFM LANDFIRE 

2010 

30m x 30m Anderson Fuel Model 

type 

Elevation LANDFIRE 

2010 

30m x 30m Height above sea level 

Aspect LANDFIRE 

2010 

 

30m x 30m Azimuth of sloped 

surfaces 

Slope LANDFIRE 

2010  

30m x 30m Percent change 

elevation over an area 
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Figure 15. Locations of the four plots sampled August 2014. 
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Figure 16. Historical Fires in the Zuni Mountains. 
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Figure 17. Locations covered and ground measurements taken in the LANDFIRE 

Reference database. 

 

3.4 Research Methods and Techniques 

 An exploratory research design was implemented to examine the research 

questions.  Integrating fire modeling with a vegetation change analysis is a novel 

approach in fire research that has broader impacts for a number of stakeholders. To 

determine the main drivers of large scale fires in the study area, climate variables were 

statistically analyzed.  To discover the areas in the Zuni Mountains most prone to 

destructive fires, the FARSITE model was implemented.  Finally, to track the changes in 

vegetation types most prone to canopy level fires, a vegetation change analysis was 

implemented using Remote Sensing techniques. 
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3.4.1 Statistical Methods 

 To address the first research question, it is necessary to provide a quantitative 

analysis of meteorological variables and past fire in the Zuni Mountains.  The 

meteorological data contained daily weather observations beginning during 1970 from 

the nearby airport in Grants, New Mexico. Prior to 2000, the data contained only 

measurements for maximum temperature, minimum temperature, and total precipitation. 

However, since 2000, more observations like wind speed and wind direction have been 

included in the dataset. In order to analyze the climatic drivers of fire spread, statistical 

techniques including quadrat analysis, Pearson-R correlation, and discriminant analysis 

were implemented to compare the historic fire polygons to climatic variables. 

 To model fire based on weather conditions that facilitate the largest spread 

possible, it is important to determine the climatic factors that have historically been 

associated with large fires in the area. To determine fire spread, the climatic variables that 

produce a wildfire and burn the most area were identified by using weather data and fire 

polygon information in a discriminant analysis. The 145 fire events that occurred during 

2010 – 2012 due to lightning (the most common cause of fire in the area) were used in 

the discriminant analysis to categorize fires into the following groups - small fires that 

burn between 0 and .25 acres, medium fires between .26 and 9.9 acres, larger fires 

between 10 and 99.9 acres, and extremely large fires greater than 100 acres. The 

following climatic variables: maximum relative humidity, minimum relative humidity, 

wind speed, wind direction, minimum temperature, maximum temperature, precipitation 

amount, and precipitation duration for the day of ignition were used as independent 

variables and matched with their respective fires (dependent variable) in the discriminant 
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analysis. To investigate the correlation between these meteorological variables before a 

fire and area burned during a fire, a Pearson-R correlation was implemented between 

acreage burned (dependent variable that was estimated from the historic fire polygons in 

the Zuni’s) and independent variables (meteorological data - mean of the maximum 

temperature, minimum temperature, and precipitation averages for the day of ignition and 

the three days prior to 28 major fire events).   

Finally, a pattern analysis was conducted to determine the spatial pattern of 

natural fires (not caused by humans) in relation to specific fuel types in the Zuni’s. The 

ignition point data obtained from the USDA was used to extract ignition points 

representing ignition from lightning. A quadrat analysis was conducted to identify if the 

points are dispersed or clustered.  A variance to mean ratio and chi-square value were 

calculated to determine if clustering occurred, and if it was statistically significant.   

3.4.2 FARSITE Modeling 

 To address the second research question, the FARSITE fire model was 

implemented.  The model was run using a weather (WTR) file that contained no 

precipitation, and temperatures ranging from 90 and 95 degrees Fahrenheit. Because 

statistical analysis revealed that relative humidity has a negative correlation with fire size 

and August temperatures hover around 90 degrees Fahrenheit (Figure 21).  A Wind File 

(WND) was held constant with winds blowing west at 15mph. After entering all the 

weather and biophysical data [table 2] into the FARSITE model, the fuels on the ground 

were “conditioned” using weather data described above for three days prior to running 

the model.  When setting the parameters for the model, a 15 minute interval was used as a 

timestamp to calculate new ellipsoids, and each fire simulation was run for 24 hours. 
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Weather data was held constant throughout each 24 hour period.  Once the model was 

initiated, fire growth was calculated by: aggregating the fires environment, calculating 

fuel moistures, finding the orientation angles of each vertex, calculating surface fire if 

there is no canopy cover, calculating crown fire if there is canopy cover, and then 

computing fire area and perimeter for that timestamp (Finney, 2004). After the simulation 

was run, fire polygons were saved, and area burned and perimeter of each fire after the 24 

hour simulation were recorded.    

3.4.3 Vegetation Change Analysis 

 The third question requires tracking the spatial distribution of vegetation types 

most prone to canopy fires over time.  For this purpose, Landsat multispectral imagery 

was used to explore the temporal and spatial change of the vegetation types identified by 

the LANDFIRE project.  Since major fires, those greater than 100 acres, occurred on 

average every 4.25 years between 1993 and 2010, vegetation type was analyzed using 

cloud free imagery at approximately five year intervals. If cloud free imagery was not 

available, seasonal imagery from the next available year was used. The remote sensing 

imagery was obtained between July 15th and September 15th because the ground 

reference data was obtained during this time period in 2014.  For classification of these 

imagery to identify fuel types and their spatial distribution, the spectral signatures were 

acquired from the JPL spectral library, which were then used to run a supervised 

classification to identify the grasslands, ponderosa pine forests, shrublands, deserts, and 

Malpais Lava in each image.  The fuel classification outputs obtained for the years 2014, 

2011, 2006, and 2001 were compared to the LANDFIRE fuel classifications in the Zuni 

Mountains. 
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For supervised classification, five distinct land cover types including desert, 

Malpais lava, grasslands, shrub lands, and ponderosa pine/douglas fir forests were 

identified, and cloud free imagery was obtained from the USGS’s Earth Explorer, for all 

years, where cloud free imagery was available, and spectral bands were stacked using the 

composite bands tool.  Training/spectral data were gathered using the 220 sample points 

taken in the field to assist in classification of the 2014 imagery and high resolution 

imagery from Google Earth was used to assist in classification of the older 

imagery.  Once training data was aggregated, reference polygons were drawn on the 

Landsat imagery to define classes for the maximum likelihood classifier.  The ArcGIS 

image analyst extension was used to apply a maximum likelihood classification to 

Landsat 5 images collected for 2011, 2006, and 2001. 

 

Figure 18. Spectral Signatures generated for fuel classes 2, 5/8, 9, and Desert land cover 

types. 
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Figure 19. Flow diagram of study methodology. 
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Figure 20. Supervised Classification workflow. 

3.5 Validation 

 Validating the classified output from remote sensing imagery is critical to 

ensuring the accuracy of the final results before using it for other purposes. The in situ 

data were collected in 2014 and used for validation. Specifically, the best available 

imagery of the Zuni’s around late August were classified using maximum likelihood 

classifier, and the accuracy of the results of the classification model were assessed using 

a confusion matrix to determine where type I and type II errors occurred in the 

probabilistic classifier. An independent data set – fuel classifications from the 

LANDFIRE program – was compared with the maximum likelihood classification output 
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using pattern analysis to further assess the accuracy of the supervised classification. 

Validation using these measures helped quantitatively assess accuracy without a-priori 

information as well as determine where the maximum likelihood classifier produced 

erroneous output. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 Overview 

 Statistical results revealed that there is a statistically significant clustering of 

ignition points in the Zuni Mountains in areas of higher elevation and that fire size is 

primarily affected by relative humidity on the day of original ignition.  The fire modeling 

results demonstrated that fuel types 1 and 2 (grasslands) (Figure 26) are responsible for 

large fires, types 5 and 8 (shrub dominated areas) (Figure 27) result in moderate fires, and 

type 9 (typically ponderosa pine) (Figure 28) generally cause small fires in the Zuni’s 

when climatic variables are held constant. A discussion of all results generated from 

statistical and spatial analyses is presented in the following sections.  

4.2 Statistical Results 

The first test was run to discern if there was a significant difference between the 

climatic drivers of large and small fires in the Zuni Mountains.  The analysis revealed 

that the only variable that made it into the function was the maximum relative 

humidity.  While minimum relative humidity and precipitation duration had higher 

correlations with fire size, they never met the criteria for inclusion.  The Eigenvalue for 

the function is .097 and explains 100% of the variance.  Using this strong negative 

correlation as a basis, when running the FARSITE model, the fuels with no prior 

precipitation were used; thus keeping the relative humidity very low for maximum fire 

spread in the model.   
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Figure 21. Structure Matrix showing correlations from the Discriminant Analysis.  

 

Figure 22. Eigenvalues showing the percent of variance found in the Discriminant 

Analysis. 
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Figure 23.  Classification results for discriminant analysis. 

 

A Pearson-R correlation was run to determine if there was a relationship between 

acres burned (in square meters), and precipitation, minimum temperature, and maximum 

temperature for three days prior to 28 major fire events in the Zuni Mountains.  All three 

variables had a negative correlation with acres burned, but no results proved to have 

statistical significance.  Therefore, the null hypothesis that there is no significant 

correlation between acres burned (dependent variable) and precipitation, minimum and 

maximum temperature, and acreage burned for three days before a major fire event 

(independent variables) in the Zuni Mountains was accepted.    
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Figure 24. Pearson R correlation between Acres Burned, Precipitation, Minimum 

Temperature, and Maximum Temperature. 
 

 The next test was designed to determine if ignitions caused by lightning in the 

Zuni Mountains are random or clustered in certain areas.  The points per quadrat were 

tallied and used to calculate a mean point density of 9.05 points per quadrat, a List 

variance of 44.79, a variance to mean ratio of 4.95, and a chi-square value of 425.7, 

which translates to a significance value less than .000.  The Variance to Mean Ratio 

(VMR) and small p-value indicate that the point pattern for lightning based ignitions is 

significantly more clustered than random.  Visual analysis also revealed that many of 

these ignitions are clustered around the peaks of the Zuni’s, offering valuable insight for 

where fuel reduction is most needed. These results indicate that the fire risk is higher in 

the higher elevations.   
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Figure 25. Clustered Lightning ignitions in the Zuni Mountains since 1970. Source: 

USDA Forest Service. 

 

4.3 FARSITE Modeling 

 

The results of FARSITE modeling of fires based on different fuel types in the 

Zuni Mountains revealed distinctly different fire sizes.  The first simulation (Figure 26) 

simulated a fire in a grassland environment (FBFM 2), which is typically found in lower 

elevations in the Zuni’s and used for  cattle grazing.  The largest area burned because of 

this fuel type was found to be an area of 1,033.26 hectares. In the next simulation (Figure 

27), fire spread was determined based on fire in a shrub land environment with sparse 

trees, typical of a ponderosa pine forest that has not been cleared naturally or otherwise, 
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represented by FBFM 5 and FBFM 8.  The largest area burned by this fuel type was 

414.29 hectares within a 24 hour period. The third simulation modeled fire in a typical 

ponderosa pine/douglas fir forest (Figure 28), which resulted in 64 hectares of maximum 

area that burned by this fuel type over a 24 hour simulation. 

These results indicate that the areas occupied by fuel type FBFM 2 are at high risk 

for catastrophic fires, areas occupied by fuel type FBFM 5 and FBFM 8 are at medium 

risk, and areas occupied by FBFM 9 are at low risk.  These results also support the theory 

that anthropogenically induced changes to the fire regime (cattle grazing and fire 

suppression) lead to larger and more dangerous fires than would be possible in a 

ponderosa pine forest with natural fire regimes.  The next step of this research was to 

track and extrapolate the spread of the high risk vegetation types to help mitigate the risk 

of crown level fires in these areas.   
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Figure 26. A FARSITE Simulation of fire run for 24 hours in FBFM 2 vegetation. 
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Figure 27. A FARSITE Simulation of Fire run for 24 hours in FBFM 5 and 8 vegetation. 
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Figure 28. A FARSITE Simulation run for 24 hours in FBFM 9 vegetation. 

4.4 Supervised Classification 

Using a remote sensing approach to study vegetation change in the Zuni Mountains 

presented some unique challenges. Since the Oso Ridge is part of the continental divide, 

orographic lift is commonplace, which makes availability of cloud free images difficult. 

Also, using Landsat imagery to study an area through the early 2000’s requires either 
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correcting for Scan Line Failure of the Landasat 7 project, or settling for Landsat 5 imagery.  

To overcome these challenges, the images obtained between July and mid-September were 

used every four years to find a balance between cloud free imagery and match the 

phenological cycle of the training data, which were captured in August.  Landsat 5 imagery 

was also chosen instead of Landsat 7 to avoid interference from Scan Line Correction. All 

images were captured at WRS2 Path 35 Row 36 to keep the study area the same.  As such 

the following images and sensors were used for classification: 

2014: Landsat 8 OLI captured August 11, 2014 

2011: Landsat 5 TM captured July 1, 2011 

2006: Landsat 5 TM captured September 6, 2006 

2002: Landsat 5 TM Captured September 7, 2001 

 A supervised classification was run on each of these images using the image analyst 

extension of ArcGIS 10.3.1. A training set and spectral signature were developed for each 

of the following classes: grasslands, shrublands, ponderosa pine/ douglas fir forests, old 

lava for the malpais lavaflow to the southwest, and desert for the large area surrounding 

the Zuni Mountains.  A study boundary was drawn around the southern boundary through 

the North West section of the Zuni Mountains to assess vegetation across different areas 

including farms, peaks, ridges, and valleys. 

 Once the supervised classification was complete, the classified raster layers were 

clipped to the defined study area and converted to integers in the raster calculator.   
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Figure 29.  Supervised Classification Study Area. 
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Figure 30. Supervised Classification Results 2014. 
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Figure 31. Supervised Classification Results 2011. 

 

 



 

 

61 

 

 

Figure 32. Supervised Classification Results 2006. 
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Figure 33 Supervised Classification Results 2001. 

These results suggest an interesting shift in vegetation types through the Zuni’s 

since the early 2000’s.  The estimated area for each fuel type (Table 3) as per the 

classification results within the study area demonstrate a decrease in the volume of 

ponderosa pine and douglas fir forests as well as shrublands and an increase in 

grasslands.  The fuel types and the area covered by them as per the LANDFIRE 

classifications of the same area (Table 4) show a similar trend, although less drastic than 

the supervised classification.  While the supervised classification showed an increase of 

1,075.70 hectares (119,522 pixels) for grasslands over the 13 year study period, the 

Landfire classification suggests the increase was only 205 hectares (22,833 pixels).  
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Similarly, while the supervised classification showed a decrease in fuel model 9 area by 

of 2,700 hectares (300,012 pixels), the Landfire classification suggested a decrease of 

only 341 hectaures (31,891 pixels) in ponderosa pine and douglas fir forests. 

Table 3  

Counts of classes within the Study Areas (in hectares)post classification 

Ground Class 2014 2010 2006 2001 

Clouds 2201.184 N/A N/A N/A 

PP/DF 

(FBFM9) 5,982 4,669 6,769 8,683 

Shrublands 

(FBFM5/8) 1,967 2,418 3,312 3,616 

Grasslands 

(FBFM2) 2,237 3,608 2,531 1,162 

Malpais Lava 170 684 220 21 

Desert 2,002 3,181 1,818 888 
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Table 4 

 Counts of classes within the corresponding LANDFIRE classifications (in hectares) 

Ground Class 2013 2010 2006 2001 

Clouds N/A N/A N/A N/A 

PP/DF 

(FBFM9) 7,055 7,056 7,072 7,342 

Shrublands 

(FBFM8) 1,359 1,366 1,548 1,346 

Grasslands 

(FBFM2) 17,211 1,761 1,547 1,516 

Shurblands 

(FBFM5) 3,396 3,438 3,325 3,625 

Desert N/A N/A N/A N/A 
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CHAPTER V 

CONCLUSION 

5.1 Overall Conclusions 

This chapter discusses what is going to happen in Zuni mountains moving 

forward in terms of fire given the changes in different tree species and the distribution of 

these potential fire zones with regard to population concentration. The specific answers to 

the research questions and recommendations for emergency managers to prevent fire 

spread and its potential impact are also presented here. 

There seems to be a slow decline of ponderosa pine and douglas fir forest within 

the Zuni Mountains.  Whether this change is anthropogenic or climatically induced is still 

unknown.  However, it is evident that a shift from fire tolerant forest compositions to less 

fire tolerant vegetation does not bode well for fire intensity or frequency in areas 

previously studied (Snider, 2006).  Fortunately, human settlement in the Zuni Mountains 

is sparse and is mainly populated by livestock farmers in the valleys, so large scale fires 

in the area do not pose a large threat to human populations.    

Climatically, there does not exist any significant correlation between climatic 

variables and acreage burned during historical fires in the area.  When investigating the 

first research question (What variables drive fire spread in the Zuni Mountains, New 

Mexico?), it was found that ignitions due to lightning in the area (the most common 

source of ignition) are statistically clustered around areas of high elevation.  Also, a 

higher maximum relative humidity has historically been associated with smaller fire size.  

These results give land managers an idea of where to target fuel reduction efforts to best 

reduce risk of canopy fire and a better understanding of fire risk due to relative humidity.   
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 Although fuel classifications like Anderson’s 1982 classification are well 

understood in how they contribute to fire spread, they have not been used to study fire in 

the Zuni Mountains at the time of this study (Anderson, 1982).  To answer the second 

research question (Which areas are prone to destructive and canopy level fires?), the 

FARSITE model was used to identify the areas and fuel types susceptible to fire spread. 

Fuel Model 2 was found to be responsible for spreading fire across large areas over a 

smaller time frame.  Fuel Models 5 and 8 were found to be moderately conducive to fire 

spread and Fuel Model 9 was the least conducive.  Although these results were expected, 

they provide a frame of reference when classifying fuel models through historic imagery 

of the area. 

 Implementing a remote sensing approach helped track the spread of these fuel 

types that are conducive to canopy fires back through time and answer the third research 

question (How have the fuel model types that are most conducive to fire spread changed 

in the past twenty years?).  By understanding fire spread based on spatio-temporal 

distribution of fuel types responsible for catastrophic canopy fire, the fire managers can 

make more informed decisions about fire management in the area moving forward.  

A gradual decline in ponderosa pine and douglas fir forests (Fuel Model 9), over 

the past 13 years was found.  These species have slowly been replaced with fuel types 

more conducive to fire spread (Fuel Models 5/8 and 2).  The classification results 

estimated a decrease of ponderosa pine and douglas fir forests by 31% in the past 13 

years whereas the LANDFIRE fuel classification estimated a decrease of 3.1%.  

Although these rates may be due to differences in the phonologic cycle in which the 

images were taken and cloud cover, the maximum likelihood classification implemented 
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in this study suggested a rapid encroachment of fuel types 5, 8, and 2 along the lower 

elevations in the Zuni Mountains in the southeastern and northern parts of the study area.   

It is also interesting to take note of the changing precipitation amounts in the Zuni 

Mountains over the study period.  A drought in 2000s in this area may have contributed 

to the decline of ponderosa pines (Figure 34).  The sharp decline in precipitation seen 

between 2002 and 2003 would likely have led to a decline in ponderosa pine in the 2006 

imagery. To illustrate this, annual precipitations for the Zuni Mountains were pulled from 

the National Climatic Data Center (NCDC) from a weather station located in Zuni, New 

Mexico (COOP:299897) Mountains at from 2001 to 2010 and graphed below. 

A supervised classification of fuel types on such a small scale as the Zuni 

Mountains is rarely performed. Increasing the spatial and spectral resolution of the 

remote sensing data could potentially yield a more detailed overview of vegetation 

change in the area.  Also, if private imagery at a high spatial resolution was available, a 

better validation could be performed instead of simply comparing one fuel model 

classification to another.  Since the accepted fuel type classification from LANDFIRE is 

performed on a continental scale, it would be interesting to see if accuracy could be 

increased by focusing their methodology on smaller areas.   
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Figure 34. Historical precipitation amounts in Zuni, New Mexico (NCDC 2015). 
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