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ABSTRACT 

DEVELOPMENT OF DUAL-CURE HYBRID 

POLYBENZOXAZINE THERMOSETS 

by Jananee Narayanan Sivakami 

December 2015 

Polybenzoxazines are potential high performance thermoset replacements for 

traditional phenolic resins that can undergo an autocatalytic, thermally initiated ring - 

opening polymerization, and possess superior processing advantages including excellent 

shelf-life stability, zero volatile loss and limited volumetric shrinkage. The simplistic 

monomer synthesis and availability of a wide variety of inexpensive starting materials 

allows enormous molecular design flexibility for accessing a wide range of tailorable 

material properties for targeted applications. Despite the fact, once fully cured, 

benzoxazines are difficult to handle due to their inherent brittleness, leaving a very little 

scope for any modifications. The motivation of this dissertation is directed towards 

addressing the common limitations of polybenzoxazines and to enable tailor made 

material properties for expanding the scope of future applications. 

In this work, a unique approach has been demonstrated incorporating a dually 

polymerizable bifunctional benzoxazine based monomer; designed to form a sequentially 

addressable intermediate B-staged network, followed by the formation of a final hybrid 

network via thermal curing of benzoxazines. This strategy offers a systematic route to 

study the formation of glassy polymeric materials in discrete, orthogonal steps, and a 

handle to access a broad range of material properties within the same system. The 

dissertation study is focused on manipulating the monomer design, to study different cure 
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chemistries, in conjunction with benzoxazines. These cure chemistries included - rapid 

UV curable thiol-ene click chemistry, thermally curable ring-opening metathesis 

polymerization of norbornene, and free radical photo-polymerization of meth(acrylate) 

functionalities. A strong fundamental understanding of structure-property relationships 

with respect to network structure, kinetics, processing control and material properties of 

the hybrid networks was established.
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CHAPTER I 

INTRODUCTION 

Phenolic Resins 

Among the most widespread commercial class of high-performance polymers are 

the phenolic resins, which have found numerous applications from commodity 

construction materials to high technology applications in electronics and aerospace 

industry. The widespread use of phenolic resins can be attributed to their outstanding 

performance characteristics such as excellent heat and chemical resistance, dimensional 

stability, flame retardancy, and good electrical properties. Nevertheless, they suffer from 

severe processing limitations including poor shelf life of the precursors, brittle nature of 

the materials, release of volatiles during polymerization leading to shrinkage, and void 

formation, and the use of harsh catalyst causing corrosion of the processing equipment.1-4 

Polybenzoxazines 

Polybenzoxazines are an emerging class of non-halogen based high performance 

thermosetting resins that offer properties comparable and even superior to conventional 

phenolic, epoxy, bismaleimide and polyimide resins.5-7 Strikingly, the molecular structure 

of benzoxazine resins obtained via simple synthetic methodologies offer enormous design 

flexibility enabling a broad range of tailorable material properties for desired 

applications. 

Monomer- Synthesis and Mechanism 

Benzoxazines, a subclass of phenolic resins, are formed by the Mannich 

condensation of primary amines with phenols and formaldehyde. The synthesis of 

benzoxazines was first established by Holly and Cope8 in 1944. Burke et al.9-15 
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significantly contributed to the fundamental understanding of the small molecular weight 

benzoxazine chemistry in 1949. The studies conducted by Burke showed that formation 

of the oxazine ring occurred via substitution at the free ortho position of a phenolic 

compound resulting in the formation of the Mannich bridge structure.9 Later, Reiss et 

al.16, and Schreiber17 studied the possibility of oligomer formation and polymer 

development. In 1985, Higginbottom18-20 initially developed a cross-linked 

polybenzoxazine based on multifunctional benzoxazine monomers. However, it was not 

until 1994 that Ning and Ishida21 shed light on the material properties of cross-linked 

polybenzoxazines, and they have since significantly contributed to the gain in 

fundamental understanding of structure-property relationships for numerous 

polybenzoxazines materials. Several companies, including Huntsman Advanced 

Materials, have commercialized benzoxazine resins. Also, a variety of benzoxazine-based 

prepregs, polymeric products, composites and filled resins have been developed and 

commercialized by Henkel Company. 

A typical benzoxazine synthesis involves the use of simple starting materials: a 

phenolic derivative, formaldehyde and an amine (aliphatic or aromatic) as represented in 

Scheme 1. A variety of benzoxazine monomers can be designed using substituted phenols 

and amines to influence the cure kinetics and the network structure, so as to attain a broad 

range of tailorable material properties. Cross-linked benzoxazine materials for advanced 

materials applications have been synthesized by employing multifunctional/bifunctional 

amine or phenol precursors in combination with their respective monofunctional 

analogues. 
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Scheme 1. Typical monomer synthesis of a) Monofunctional benzoxazine b) Bis 

functional benzoxazine. 

Several chemical methodologies have been adopted for benzoxazine monomer 

synthesis using low cost and commercially available raw materials, which allows 

significant synthetic flexibility.22-25 The preferred route of benzoxazine synthesis is the 

Mannich condensation reaction of phenol, formaldehyde and amine, mixed together in a 

molar ratio of 1:2:1.9, 26 However, several variations of the Mannich condensation route 

to benzoxazines have been reported in literature. The condensation reaction in solution 

was carried out by first reacting amine with formaldehyde at lower temperature to form 

N, N-dihydroxymethylamine derivative –N (-CH2-OH) 2, which then undergoes an 

electrophilic aromatic substitution with phenol, preferably at the ortho position, followed 

by ring closure with the phenolic hydroxyl group.14 Alternatively, a mixture of p-

substituted phenol, amine and formaldehyde was reacted in a molar ratio of 1:1:1 to yield 

phenolic Mannich base, which was followed by reaction with formaldehyde in the 

presence of base.14 
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The course of the condensation is dictated by various factors including the 

stoichiometry, temperature, nature, position and size of the substituents attached to 

phenols, and basicity of amines. Consequently, depending on these conditions, the 

formation of other by-products - N,N-bis(hydroxybenzyl) amine bridge structure and 

Mannich bases (free base) may be favored more or less relative to the benzoxazine 

monomer.9 Bulky substituents at the free ortho position of phenol have been shown to 

hinder the formation of benzoxazine ring by restricting the free motion of hydroxyl 

group by steric hindrance and consequently, the N,N-bis(hydroxybenzyl) amine bridge 

structure is favored over the benzoxazine.15 On the other hand, the basicity of amine has 

a significant effect on the course of the condensation. Example, for benzoxazines 

derived from 2,4-dichlorophenol, strong amines, such as methyl amine favored the 

formation of N,N-bis(hydroxybenzyl) bridge structure and Mannich base; whereas the 

use of weak amines, such as benzyl amine led to the isolation of Mannich base in high 

yield along with some benzoxazines.27 Generally, a weak electrophile – derived from 

amines bearing electron-withdrawing groups and formaldehyde – needs high electron 

density on the aromatic ring of the phenol to easily undergo electrophilic aromatic 

substitution. Benzoxazines synthesized from weak amines and phenolic precursors 

bearing weak, but electron donating groups, such as bisphenol-A or 4,4’-thiodiphenol, 

were easily formed in contrast to 4,4’-dihydroxybenzophenone or 4,4’-

dihydoxydiphenylsulfone.28 

The synthesis of benzoxazine monomer can be conducted using either a solvent 

or solventless procedure. The course of condensation is strongly influenced by the 

nature of solvent employed for synthesis of benzoxazine resin. Ning and Ishida21 found 
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a strong dependence of the yield of the benzoxazine on the polarity of the solvent. The 

use of nonpolar solvents, such as 1,4-dioxane and chloroform largely favored the 

formation of the closed ring over ring-opened structures as compared to the polar 

solvents, such as water and alcohol. Liu et al.28 reported that solvents with low dielectric 

constant favored ring closure; example, the yield of a fluorinated benzoxazine monomer 

was 80% in 1,4-dioxane (ε = 2.2), 70% in ethyl ether (ε = 4.2) and 20% in methanol (ε = 

32.7). Studies conducted by Ishida and Low29 demonstrated a minimal effect of 

dielectric constant for nonpolar solvents in contrast to the polar solvents, where the 

effect was significant. Moreover, the use of high boiling point, nonpolar solvents such 

as xylene, drives the equilibrium towards ring closure by removing the water - a 

primary condensation by-product, which promotes ring opening of benzoxazine.30 The 

solvent-based benzoxazine synthesis is associated with numerous disadvantages, such as 

slow reaction rate, cost ineffectiveness, environmental problems, poor solubility of the 

precursors, and solvent residue, which causes processability issues in benzoxazine 

resins. Ishida et al.31 developed an alternative route by developing solventless synthesis 

under melt conditions. The solventless synthesis was carried out in one pot, simply by 

physically mixing and melting the monomer precursors – phenol, paraformaldehyde and 

amine – to complete the ring formation. Short reaction times and fewer side reactions 

were the major highlights of the melt-based solventless procedure. 

Stability and reactivity of benzoxazine 

The stability of benzoxazines is highly influenced by the nature of the 

surrounding medium and the substituents present on them. Benzoxazines have been 

observed to be quite stable in hot aqueous alkali, but unstable in acid.9, 26 Some  
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benzoxazines have been shown to undergo a ring opening reaction in the presence of 

active hydrogen containing compounds (HY), such as imide, phenol (one of the starting 

materials), carbazole and aliphatic nitro compounds, to yield a Mannich bridge structure, 

as shown in Scheme 2. 

 

 

 

 

 

Scheme 2. Ring opening of benzoxazine in the presence of active hydrogen containing 

compound (HY). 

The nature and position of substituents have a key effect on the stability of 

benzoxazines. Benzoxazine structures bearing a carbonyl group are generally liable to 

undergo base hydrolysis. The presence of more than one ortho reactive site on 

benzoxazine may cause another aminoalkylation reaction, eventually resulting in 

polymerization under appropriate conditions.32 Likewise, benzoxazines possessing ortho 

substituents (C-8 position) ring-open more readily to yield a significant amount of ortho 

aminoalkylated products. The basicity of amine used in the synthesis of benzoxazine has 

been found to exhibit a correlation with their amino alkylation ability i.e., the ability to 

undergo ring-opening. The reactivity of benzoxazine based on the basic strength of 

amines has been found to decrease in the following order: methylamine>cyclohexyl 

amine>benzyl amine.28 

Ring opening polymerization of benzoxazines 

Benzoxazines undergo thermally accelerated ring opening polymerization with 

or without an added initiator to yield Mannich Bridge (-CH2-NR-CH2-) and phenolic 
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repeating units as an integral part of the backbone. Ring-opening polymerization of 

benzoxazines has been demonstrated using various cationic initiators including acids33-

36, photo-cationic initiator37, thiols38 and phenols16. To date, several mechanisms for 

benzoxazine polymerization have been proposed; however, a broadly accepted 

mechanism has not been established. In view of the high basicity of the oxygen and 

nitrogen center of the oxazine ring, the ring opening polymerization of benzoxazine has 

been proposed to take place via cationic mechanism.33-34 In 1968, McDonagh and 

Smith39 suggested that benzoxazine polymerization occurred by the formation of 

iminium ion via the oxygen-nitrogen proton transfer and subsequent ring-chain 

tautomerism. Reiss et al.16 proposed that the benzoxazine polymerization proceeds by 

the condensation of amines with the iminium ions. Later in 1999, Ishida and Dunkers36 

proposed a two-step pathway for the benzoxazine polymerization. The first step 

involves the formation of iminium ion via the protonation of oxygen existing in 

equilibrium with the carbocation, which is followed by electrophilic aromatic 

substitution, taking place preferentially at the free ortho and para position of the 

phenolic group.  

Catalyst-free thermally activated ring opening polymerization of benzoxazine is 

the most preferred and effective route, as it involves no volatiles or use of corrosive 

catalyst. The proposed mechanism for the thermal route can be envisaged as a) breakage 

of –O-CH2- bond b) tautomerism and finally, electrophilic aromatic substitution,40 

which is represented in Scheme 3. 
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Scheme 3. Mechanism for thermally activated ring - opening polymerization of 

benzoxazine a) Initiation via oxazine ring-opening b) Electrophilic aromatic substitution 

reaction.40 

The presence of trace amounts of phenolic starting materials and/or benzoxazine 

oligomers acts as cationic initiator and catalyst. Thus, the rate of polymerization is 

affected by the purity of the monomers and other starting materials. During the course 

of polymerization, a large amount of acidic phenolic components are produced, which 

acts as an additional initiator and catalyst, thus enabling an autocatalytic curing 

process.41 

Features and applications 

With a rich flexibility in molecular design, polybenzoxazines stand out among 

other traditional thermosetting polymers, featuring a number of unusual and useful 

properties for a wide variety of industrial applications. The high char yield, lack of 

smoke generation, and low total heat release during combustion are key characteristics 

of benzoxazines as excellent flame retardant materials. Their excellent three-

dimensional stability, high glass transition temperature, and superior processing 

advantages make polybenzoxazines suitable for structural matrix composite applications 

in the aerospace industry.  
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The ambient storage stability, ease of processability, low water retention, excellent 

chemical resistance and near-zero volumetric shrinkage offer wide applicability as 

coatings, adhesives and laminating systems.6 

Limitations 

Despite multiple advantages, polybenzoxazines possess some shortcomings on 

their use in practical applications. Highly cross-linked polybenzoxazine thermosets 

typically suffer from severe brittleness due to the presence of low molecular weights 

between the crosslinks. For many applications, polybenzoxazines require impractically 

high cure temperatures in the range of 160 °C – 220 °C. Furthermore, most benzoxazine 

monomers are “brick dust” solids, which presents a major processing challenge for thin 

film coating applications. Several strategies have been investigated in an attempt to 

overcome the limitations of polybenzoxazines and for performance enhancement 

including i) designing novel benzoxazine precursors with additional functionalities 

(allyl42, propargyl43, acetylene44, nitrile45-46) ii) incorporation of benzoxazine into 

polymer chain as main-chain precursors47, side-chain precursors48-49 and cross-linkable 

telechelics50 and iii) physical modification via rubber toughening51, and fabrication of 

composites with nanofillers (POSS52,53, silica54, titania55), carbon fibers56 or clay57,58. 

One of the salient features of benzoxazine is their capability to synergistically blend 

with non-benzoxazine monomers (epoxies59,60, polyurethane61,62) via reactive phenolic 

groups, which act as both reactants and catalyst. Moreover, the presence of hydrogen 

bonding centers – phenolic hydroxyl groups and nitrogen of the Mannich base – in 

benzoxazines facilitates synergism between other hydrogen bonding polymers including 

poly (-caprolactone)63-64, polycarbonate65 and polyurethane61. 
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In an attempt to improve the properties of polybenzoxazines, the challenge lies 

in maintaining the integrity of the network without sacrificing significant properties of 

polybenzoxazine. Therefore, the most promising strategy is to intrinsically alter the 

structure of monomer through careful choice of starting materials. Ishida and Allen66-68 

successfully utilized molecular design to achieve inherent flexibility in polybenzoxazine 

thermosets by synthesizing a series of aliphatic diamine-based bisbenzoxazines that 

showed improved flexural properties and excellent processing control. In this direction, 

Baranek et al.69 designed a series of flexible aliphatic-bridged bisphenol based 

benzoxazines – a strategy that enabled a broad design space to incorporate a variety of 

easily assessable amine derivatives. 

Molecular Design Flexibility 

The simplistic synthetic methodology, and the wide availability of phenols and 

amines in benzoxazines offer enormous molecular design flexibility, enabling access to 

a broad range of tailorable material properties. Scheme 4 illustrates the vast synthetic 

versatility of bifunctional benzoxazine monomers; where each of the design constituents 

– FG, R, and R- can be varied to influence polymerization kinetics, network structure, 

processing control and thermo-mechanical properties. 
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Scheme 4. Demonstration of rich molecular design flexibility in polybenzoxazines. 

 

Benzoxazine chemistry with other orthogonal chemistries 

 

The ring-opening addition polymerization chemistry of benzoxazine allows it to 

be combined with a vast number of other groups that can polymerize via different 

mechanisms. The order of formation of the oxazine and functional polymer network 

(sequential or simultaneous) can be controlled by the choice of functionalities and 

polymerization conditions such as UV, thermal, or moisture. 

To date, numerous reactive crosslinking functional groups have been introduced 

into benzoxazines, which fall into following categories- thermally curable groups 

(allyl42, propargyl43, acetylene44, maleimide70-71, methylol72), free-radical UV 

polymerizable groups (methacrylate73, maleimide74), ionically polymerizable groups 

(epoxy75, oxazoline76, nitrile77) and photo-curable groups (coumarin78). The 

incorporation of additional polymerizable groups has a profound effect on final network 

properties. Thermal stability studies by Low and Ishida79-83 have revealed that the 

Mannich bridge (-CH2-NR-CH2-) is the weakest link in polybenzoxazine matrix, and 

this linkage decomposes via loss of amine fragments. The end capping of amine with 

cross-linkable groups consequently enhances thermal stability by stabilizing early amine 
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degradation. Also, additional polymerizable moieties contribute to crosslinking density, 

which enhances the glass transition temperature and stiffness of the final polymer 

network. For example, acetylene-terminated benzoxazines exhibited an exceptionally 

high char yield (81%) and high glass transition temperature (320-370 °C) compared to 

typical difunctional benzoxazines due to the presence of highly cross-linked network 

arising from additional acetylene crosslinking.44 In another example, Agag and 

Takeiechi42 synthesized allyl-functionalized benzoxazines, in which the curing behavior 

displayed a dual cure pattern consisting of the thermal addition polymerization of allyl 

group (ca. 145 °C), followed by benzoxazine polymerization (ca. 220 °C). Thereby, the 

introduction of allyl group in benzoxazines enhanced the stiffness and thermal stability 

as compared to non-allyl functional benzoxazines. 

UV-curing technology in polybenzoxazines 

Photo-initiated polymerization represents state-of-the-art curing technology that 

has found myriad of applications, especially in the areas of UV-curing of inks, coatings, 

and adhesives, and photolithography84-85. One of the striking features of UV curing 

processes is rapid and efficient curing, which can be executed without the use of solvent 

and at ambient temperatures. Photo-initiated polymerization processes fall into two 

categories – free radical and cationic – both of which have widely been employed 

because of the wide availability of monomers and photo-initiators that can operate in the 

near-UV or visible range. 

In contrast to rapidly occurring photo-initiated polymerization, thermally curable 

benzoxazines exhibit a slow rate of polymerization, which makes the combination of the 

two rather appealing. Moreover, the high UV resistance of benzoxazine resins compared 
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to epoxies further broadens the scope of applications.86 To date, very few photo-

polymerizable groups have been studied with the benzoxazine system, mostly focusing 

on the synthesis of linear polymers bearing pendant thermo-labile benzoxazine groups, 

where some of the examples include radical-mediated polymerization of styrene-co-

maleimide74, methacrylate-co-styrene87, and methacrylate73-based benzoxazine polymer 

systems. Additionally, the photo-initiated cationic polymerization and free-radical -

promoted cationic polymerization of benzoxazine monomer37, and its application as 

hydrogen donor for conducting free radical mediated photo-polymerization of vinyl-

based compounds88 have been documented. 

Dual-cure/hybrid-cure methodology 

Dual-cure/hybrid-cure methodologies – processes that combine two independent 

curing mechanisms – facilitate the formation of a multicomponent polymer network with 

versatile tailoring of thermo-mechanical properties of final network.  Hybrid cure systems 

are associated with two polymerization/crosslinking reactions occurring simultaneously; 

whereas in dual-cure systems, the cure mechanisms take place serially. Whether the two 

curing mechanisms occur serially (dual-cure) or simultaneously (hybrid-cure) are 

determined by the choice of curing chemistries and curing parameters, such as the source 

of trigger, type and concentration of initiator, and the environmental factors. 

Dual cure/hybrid-cure systems based on UV radiation curing are widely employed 

because of their many advantages, including ambient temperature cure capability, high 

selectivity, rapid reaction kinetics, and broad tailorability by virtue of the choice of 

monomers and photoinitators89. Many different dual-cure/hybrid-cure systems have been 

proposed and/or developed.  Some of the proposed systems include the combination of 
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UV radical polymerization (example of acrylates) with a variety of other processes 

including cationic UV curing (vinyl ethers, oxetanes and epoxides), radical thermal 

curing (acrylates), cationic thermal curing (epoxides), thermal curing via polyaddition 

(isocyanates with polyols), air curing (alkyds) and moisture curing (siloxanes, 

isocyanates).90 The practical applicability of hybrid-cure/dual-cure processes would 

depend on the nature of substrate, application technique, and the desired material 

properties of the finished product. Furthermore, the order of cure sequence and monomer 

composition/ratio has been shown to have a profound effect on the polymerization 

kinetics, network formation and final material properties.91,92,93 

The utilization of hybrid systems offers access to a broad range of tailorable 

material properties through a careful choice of monomer composition/functionality and 

curing conditions. Aside from unique network characteristics, the hybrid system could be 

considered as a potential solution in overcoming the limitations of the pure systems. For 

example, UV-initiated radical polymerizations of acrylates are widely employed owing to 

their rapid rates, and wide choice of monomers. However, acrylates are inhibited by 

oxygen, and exhibit high viscosity, skin toxicity, and unpleasant odor. In contrast, 

cationic photo-initiated polymerizations – mainly based on epoxides and vinyl ethers – 

combine high reactivity and absence of oxygen inhibition with low toxicity and irritation 

properties.94 Studies based on the hybrid-cure systems of acrylates/vinyl ethers95,96 or 

acrylates/epoxides97, when compared to individual systems, showed improved 

polymerization kinetics with less sensitivity to oxygen and moisture in the respective 

radical and cationic processes, yielding materials with superior performance 

characteristics. 
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Unlike a hybrid system, a dual-cure system offers an additional advantage of 

controlled network formation that can be employed to overcome the common limitations 

of coating systems. For example, high crosslink density often results in a brittle coating 

unsuitable for substrates that must be subsequently stamped or bent into final form. The 

dual-cure systems can provide an opportunity to first apply the coating formulation on 

flat substrates and execute a first stage cure to yield an easily deformable, flexible 

coating. Subsequently, the B-stage coating can be deformed to the final form, and fully 

cured to produce a hard coating with desired final properties. Examples of two-step cure 

processes based on different polymerization mechanisms include UV-initiated radical 

polymerization (acrylates) followed by UV-mediated cationic polymerization 

(epoxides98, oxetane99,100,101), wherein two photo-initiators with different spectral 

absorptivity were employed. Another type of system is based on the combination of UV 

free-radical polymerization (acrylates) and thermal-initiated polymerization (vinyl 

ethers102, epoxides103,104). Additionally, the dual-cure systems combining thermal (based 

on polyaddition of isocyanate and alcohol) and UV cure processes are advantageously 

employed in the curing of dark areas that are inaccessible by UV light, thus promoting an 

efficient cure throughout the thickness of the film.105 

The hybrid networks can be classified into two main categories: interpenetrating 

networks (IPNs) and covalently cross-linked networks. Interpenetrating networks are 

composed of two or more networks which are at least partially interlocked on a molecular 

scale, but are not covalently bonded to each other.106 The concept of a dual-cure/hybrid-

cure approach is not new and indeed, has been studied for various interpenetrating 

networks developed either via sequential or simultaneous cure mechanisms.92, 107-109 
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Much less studied are hybrid systems that incorporate orthogonal cure mechanisms 

within the same molecule.  

Unlike IPNs and blends, a covalently cross-linked hybrid network potentially 

improves phase homogeneity and reaction kinetics by the virtue of chemical bonds 

between the two networks during or after the first curing step. Another possible way to 

develop a hybrid network is to copolymerize functionally different monomers/polymers 

utilizing a common curing mechanism. The copolymerization method offers a 

straightforward and easy route to access a broad range of network properties, tailored 

through the careful selection of co-monomers and their relative ratios. Another route to 

develop a one-component system is where both the networks are derived from the same 

molecule bearing different reactive functional groups. An example by Itoh et al.110 

showcased a new hybrid system derived from a multifunctional vinyl monomer bearing 

both cationic and free radical polymerizable vinyl groups. Other examples of one-

component hybrid networks based on a multifunctional monomer systems include 

acrylate-oxetane100, acrylate-polyester99, acrylate-vinyl ether110,111 and acrylate-epoxy104. 

Dual cure hybrid methodology in polybenzoxazines 

In view of the aforementioned advantages, the dual-cure hybrid methodology 

could be used to render processing advantages in polybenzoxazines, which are brittle and 

difficult to handle. The dual cure process could be used to prepare easy-to-handle, B-

staged films prior to the full final cure. Moreover, the final properties of the network 

could be manipulated by various parameters including choice of monomers with varying 

cross-linkable functionalities associated with the primary network, curing conditions, 

cure time and temperature, source of trigger, and type and concentration of the initiator. 
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Overall, this approach could yield fundamentally different network structures, 

polymerization kinetics, thermo-mechanical properties, and processing control from 

benzoxazines. 

To date, few studies of the application of dual-cure hybrid methodology to 

polybenzoxazines have been reported. Lu et al.112 developed polyacrylate-

polybenzoxazine interpenetrating networks via sequential UV-induced polymerization of 

trimethyoylpropane triacrylate and thermal ring-opening polymerization of benzoxazines. 

Rapid UV-induced polymerization resulted in improved miscibility within fully 

interpenetrating polyacrylate and polybenzoxazine networks; however the system 

exhibited substantial phase inhomogeneity at high benzoxazine content because of 

presence of strong intra-molecular hydrogen bonding interactions within the PBZ 

network. Although no studies on mechanical properties were reported, the authors 

showed the ability to tailor both thermal and surface energy properties of interpenetrating 

network structures. Recently, Beyazkilic et al.113 synthesized benzoxazine polymer 

precursors via simultaneous thiol-ene photo-polymerization (radical-mediated) and thiol-

mediated ring opening of benzoxazine. Beyazkilic et al.113 initially targeted the synthesis 

of main-chain benzoxazine precursors by employing allyl functional bis-benzoxazine and 

difunctional thiol.  They found, however, that the primary reaction products were cross-

linked rather than linear, and that additional crosslinking subsequently occurred owing to 

the presence of residual benzoxazine functionalities. Sponton et al.114 developed 

polybenzoxazine/polysiloxane hybrid material based on trimethoxysilane-functionalized 

benzoxazine, wherein a partially condensed polysiloxane hybrid precursor was formed by 

sol-gel process (hydrolysis followed by condensation) followed by polycondensation of 
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the residual siloxane groups and thermal ring opening polymerization of benzoxazine. 

Although, the two curing processes could not be completely separated due to incomplete 

sol-gel process, the authors demonstrated the utility of incorporating dual-cure orthogonal 

mechanisms to produce homogeneous hybrid materials with enhanced thermal stability, 

thermo-mechanical properties, and excellent flame-retardancy compared to that of typical 

polybenzoxazine. 

Summary 

Simple synthesis and rich molecular design flexibility provide the impetus for 

development of improved and novel polybenzoxazine materials for a variety of 

applications. Considering this body of literature, there are bountiful possibilities to utilize 

a variety of versatile chemistries with the catalyst-free thermal polymerization of 

benzoxazines. The application of dual-cure hybrid methodology in polybenzoxazines is a 

potentially promising solution to the limitations of polybenzoxazines, and as well, offers 

access to a broad array of improved and tailorable material properties. Moreover, a 

fundamental understanding of structure-property relationships in dual-cure hybrid 

networks, especially as affected by reaction kinetics and conversion would be highly 

beneficial. This information would provide a platform to develop tailor made solutions 

for specific end-use applications in the areas of coatings, adhesives, sealants and high 

performance composites. 
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CHAPTER II 

RESEARCH OBJECTIVES 

The goal of this dissertation is to incorporate different orthogonal cure 

mechanisms in conjunction with benzoxazine for the design of a unique class of dual cure 

hybrid polybenzoxazine thermosets with an aim to improve processability and achieve a 

broad range of tailorable material properties in polybenzoxazines. The unique high 

performance characteristics and unprecedented molecular design flexibility of 

benzoxazines are essentially unparalleled by conventional thermosetting materials. 

Motivation of this dissertation emerges from addressing the common limitations of 

glassy thermosets such as polybenzoxazines, which suffer from high brittleness and 

difficulty to process into mechanically robust thin films.  

The dual cure hybrid approach used in this study relies on the design of a bis-

functional benzoxazine monomer bearing a suitable cross-linkable functionality- the one 

which can primarily be addressed by an independent curing mechanism to form an 

intermediate B-staged network (stable and easy to handle), followed by thermally 

initiated polymerization of benzoxazines at a high temperature, as illustrated in Scheme 

5. The sequential intermediate network formation aids in ease of handling/application- 

with a handle to manipulate the properties using a variety of parameters including cure 

chemistry and choice of trigger, structurally different co-monomers and co-monomer 

compositions, and cure time and temperature. Aside from unique network characteristics, 

the sequential formation of network synthesis offers opportunities to provide 

transformative fundamental knowledge of network formation and structure in glassy 

polymeric materials.  
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Scheme 5. Research methodology design for development of dual-cure hybrid 

polybenzoxazine thermosets. 

 

The dual-cure hybrid polybenzoxazine thermosets serve as potential candidates 

for use in a variety of applications including coatings, inks, adhesives, electronics, and 

high performance composite materials. The objectives of this dissertation include: 

1. Development of dual cure hybrid polymer networks via sequential 

thiol-ene photo-polymerization and thermal polymerization of 

benzoxazines. 

2. Synthesis and characterization of covalently linked dual-cure hybrid 

cross-linked materials bearing polynorbornene and polybenzoxazine 

network. 

3. Structure-property relationship studies of development of dual-cure   

hybrid polybenzoxazine network based on UV curable 

meth(acrylate) and thermally curable benzoxazine moieties. 

The main chapters in this dissertation are either published in a peer-

reviewed journal or in the process of submission to a scholarly journal.  
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Objective 1 (Chapter III) of this dissertation focuses on combining 

orthogonal UV mediated thiol-click and thermally activated benzoxazine 

chemistries for the design of a unique class of hybrid cure network. The two-staged 

network comprising of covalently linked low and high modulus components, 

yielded high glass transition thiol-ene materials, while offering improved 

processability and the flexibility to tailor the properties of the final hybrid 

polybenzoxazines. 

Objective 2 (Chapter IV) involves the utilization of versatile ROMP (ring-

opening polymerization) curing chemistry and thermally curable benzoxazines. 

The norbornene functional bis-benzoxazine monomer was synthesized and co-

polymerized with varying concentrations of two different reactive co-monomers: 

DCPD and ENB, using Grubbs 3rd catalyst. The combined network characteristics 

of polynorbornene and polybenzoxazine networks yielded homogeneous networks 

with excellent thermal stability and high glass transition temperature. 

Objective 3 (Chapter V) involves the development of hybrid networks 

based on UV curable meth(acrylate) in combination with benzoxazine chemistries. 

Monofunctional n-butyl acrylate was used as a reactive diluent and incorporated in 

varying concentrations to tailor and establish structure property relationship of 

structural composition, viscosity, reaction kinetics and final material properties. 

The incorporation of varying concentrations of highly flexible and reactive co-

monomer enabled excellent processability and flexibility with an attainment of a 

broad range of thermo-mechanical properties in both of the sequential cured stages 

of network formation. 
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CHAPTER III 

HYBRID DUAL-CURE POLYMER NETWORKS VIA SEQUENTIAL THIOL-ENE 

PHOTOPOLYMERIZATION AND THERMAL RING-OPENING POLYMERIZATION 

OF BENZOXAZINES  

Introduction 

Cross-linked polymer networks, or thermosets, are used extensively as structural 

materials in a vast array of applications.  As a class of thermosets, thiol-ene networks 

have garnered significant interest as candidates for a broad range of applications 

including coatings, adhesives, optics, dental materials, and imprint lithography.1-3 Thiol-

ene networks are readily synthesized via photopolymerization of multifunctional thiols 

and alkenes. One of the prominent features of thiol-ene photopolymerizations is that 

practically any type of ene can participate in the reaction. This feature enables, through 

judicious choice of the chemical structure of the thiol and ene, precise tailorability of 

physical, mechanical, thermal, and optical properties of the network.  The appealing 

aspects of thiol-ene materials arise from their unique combination of attributes including 

high gel-point monomer conversions, low shrinkage, photoinitiator-free formulations,4 

high tolerance to oxygen inhibition and homogeneity in mechanical properties – all of 

which result from a radical-mediated step-growth polymerization mechanism.   

The inherent flexibility of the thioether linkages comprising the structure of most 

thiol-ene networks results in low glass transitions, which are generally observed at or 

below room temperature. Consequently, applications requiring high Tg materials such as 

naval/aerospace composites are inaccessible by thiol-ene polymerizations – as there are 

relatively few viable options within traditional thiol and ene combinations capable of 
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achieving high Tg.  In this direction, several approaches have been reported with the aim 

of improving thermomechanical properties including thiol-norbornene networks (Tg > 80 

°C),5 thiourethane-based networks (Tg ~ 100 °C),6 thiol-alkyne networks (Tg ~ 60 °C),7 

and hybrid, dual-cure thiol-ene/thiol-epoxy networks.8 Other approaches to improve the 

range of thermal applicability include hybrid inorganic-organic thiol-ene networks.9-11 

Nonetheless, thiol-ene materials that exhibit Tg above 100 °C are all but non-existent in 

the literature.  The development of such high glass transition networks would certainly 

expand the scope of thiol-ene photopolymerization and open the door to new application 

opportunities.  In this direction, we are interested in the application of dual chemistries 

for synthesizing multicomponent networks that exhibit properties unachievable with 

traditional thiol-ene systems. 

Polybenzoxazines are a relatively new class of thermoset resins, which provide 

attractive alternatives to traditional phenolic and epoxy resins for a variety of high 

performance and high temperature applications.12-15 Benzoxazine monomers are 

synthesized via the Mannich condensation of phenolic and primary amine derivatives and 

formaldehyde.16 The simplistic nature of benzoxazine synthesis and the broad availability 

of starting materials offer unprecedented flexibility in the molecular design of monomers. 

Benzoxazines undergo thermally activated ring-opening polymerization in the absence of 

the catalyst yielding a polymer backbone consisting of a phenol and a tertiary amine 

bridge as the repeating motif. Consequently, polybenzoxazines exhibit advantageous 

properties such as high glass transition temperatures, near-zero shrinkage (zero volatile 

byproducts), high thermal stability, excellent flame resistance (high char yields), low 

surface energy and low water absorption. Despite these advantageous properties, 
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polybenzoxazines suffer from several disadvantages including poor mechanical 

properties and poor processing particularly into thin films and coatings.  To address these 

shortcomings, benzoxazines have been incorporated into polymeric precursors as pendent 

moieties – via thermal and photochemical polymerization of benzoxazine pendant 

monomers (allyl,17-19 acetylene,20 propargyl ether,21 nitrile,22 maleimide23-26 and 

methacrylate27-28) or through postpolymerization modification – and as linear main-chain 

derivatives – via condensation reactions, Pt-catalyzed hydrosilylation,18, 29 and copper-

catalyzed azide-alkyne click reactions.30-31 Thus far, the incorporation of benzoxazines 

into sequentially addressable (i.e. dual-cure), multicomponent networks has been scarcely 

reported. Lu and coworkers32 recently reported interpenetrating 

polyacrylate/polybenzoxazine networks that could be sequentially cured by 

photochemical polymerization of a multifunctional acrylate and thermal polymerization 

of a bisfunctional benzoxazine.  Although no mechanical properties were reported, the 

authors showed the ability the tailor both thermal and surface properties of the 

interpenetrating network materials.  While the current manuscript was under review, 

Beyazkilic and coworkers33 reported the synthesis of benzoxazine precursor polymers 

using simultaneous radical-mediated thiol-ene photopolymerization and thiol-mediated 

benzoxazine ring-opening reactions.  In an effort to prepare linear main-chain 

benzoxazine precursors from a difunctional allyl-benzoxazine and a difunctional thiol, 

Beyazkilic found the reaction products were cross-linked, rather than linear, due to the 

occurrence of competing thiol-ene and thiol-benzoxazine reactions, and that these 

materials could undergo additional thermal polymerization via residual, unopened 

benzoxazines.  The results reported by Beyazkilic et al.33 are consistent and 
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complementary to our approach reported herein using tetrafunctional thiols to 

deliberately establish a dual network structure.  The reaction of benzoxazines with thiols 

was recently elucidated as the COLBERT (catalytic opening of lateral benzoxazine rings 

by thiols) reaction (vide infra) by Gorodisher and coworkers34 towards materials with 

potential adhesive applications. 

In this work, we describe the combination of thiol-ene and polybenzoxazines for 

the development of hybrid, dual-cure polymer networks.  Our approach, as illustrated in 

Figure 1, relies on the use of a multifunctional, dually-polymerizable monomer 

possessing both bis-“ene” and bis-benzoxazine moieties within the same molecule.  

This represents a unique approach to polymer network chemistry since both networks 

are derived in a semi-sequential manner through a common monomer constituent, i.e. a 

primary thiol-ene network sequentially templates a secondary polybenzoxazine 

network.  Although complicated by the COLBERT reaction, the functional moieties are 

sequentially addressable via distinct polymerization mechanisms – photoinitiated thiol-

ene polymerization followed by thermal ring-opening polymerization of benzoxazines – 

resulting in hybrid polymer networks (the term “hybrid” is used since the resulting 

networks cannot be classified as traditional interpenetrating networks).  Hybridized, 

these materials combine advantages of thiol-ene reactions (photoinitiated, rapid reaction 

rates, low shrinkage/stress) with advantages of polybenzoxazines (high glass transition 

temperature, near-zero shrinkage, excellent flame resistance, low surface energy and 

low water absorption) yielding a sequentially processable, high Tg thermoset (150 °C) 

of interest for coatings, adhesives and composite applications. 
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Figure 1. Ideal representation of the approach for dual cure thiol-ene/polybenzoxazine 

networks. For simplicity, the thiol-benzoxazine ring-opening reaction is not represented 

in the network structure. 

Experimental 

    Materials 

All the solvents and reagents were obtained at the highest purity available from 

Aldrich Chemical Company or Fisher Scientific and were used as received unless 

otherwise specified.  Pentaerythritol tetra(3-mercaptopropionate) (PETMP) and glycol di-

(3-mercaptopropionate) (GDMP) were obtained from Bruno Bock.  The allyl 

functionalized bis-benzoxazine monomer (B-allyl)35-36 and  bisallyl ether of bisphenol A 

(bisallyl-BPA)37 were synthesized according to the published procedures.  Araldite© 

MT-35600 was obtained as a complimentary sample from Hunstman Advanced 

Materials. The abbreviations pB-allyl, B-allyl-PETMP, pB-allyl-PETMP are used to 

represent the thermally cured allyl functionalized bis-benzoxazine network in the absence 

of thiol, the UV cured allyl functionalized bis-benzoxazine/PETMP network, and the dual 

UV/thermally cured allyl functionalized bis-benzoxazine/PETMP network, respectively. 
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Characterization and Measurements 

1H- NMR and 13C-NMR measurements were performed in deuterated chloroform 

(CDCl3) using a Varian Mercury Plus 300 MHz NMR spectrometer operating at a 

frequency of 300 MHz with tetramethylsilane as an internal standard.  The number of 

transients for 1H and 13C are 32 and 256, respectively. A relaxation time of 5 s was used 

for the integrated intensity determination of 1H NMR spectra. Kinetic analysis was 

conducted using real-time FTIR spectroscopy to determine the conversions of thiol and 

ene functional groups. FTIR studies were conducted using a Nicolet 8700 FTIR 

spectrometer with a KBr beam splitter and an MCT/A detector with a 320-500 nm 

filtered (λmax = 365 nm) ultraviolet light source (Omnicure S1000). A thiol/B-allyl 

solution mixture consisting of 0.5 wt% 2,2-dimethoxy-2-phenyl acetophenone (DMPA) 

photoinitiator was spin coated on a NaCl plate at 1800 rpm for 60 s and exposed to UV 

light with an intensity of 36.0 mW cm2 using a liquid light guide. Series scans were 

recorded, where spectra were recorded approximately 4 scans/s, each with a resolution of 

4 cm-1.  All FTIR experiments were carried out under a nitrogen atmosphere.  Plots 

shown are representative data of a repeatable process.   Differential scanning calorimetry 

(DSC) was performed on a TA instruments DSC Q200 differential scanning calorimeter 

at a heating rate of 15 °C/min and a nitrogen flow rate of 50 mL/min.  Samples were 

crimped in hermetic aluminum pans with lids.  Thermogravimetric analysis (TGA) was 

performed using a TA Instruments Q50 thermogravimetric analyzer with a platinum pan.  

Samples were heated at 20 °C/min from 40 °C to 800 °C under a nitrogen atmosphere.  

Thermomechanical analysis (TMA) was performed using a TA Instruments Q400 

thermomechanical analyzer equipped with a penetration probe at a heating rate of 5 

°C/min from 25 °C to 350 °C, where the sample was subjected to a force of 0.08 N.  
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Dynamic mechanical analysis (DMA) was performed on a TA Instruments Q800 DMA in 

tension film mode with a heating rate of 2 °C/min from 25 °C to 250 °C at 1 Hz. Samples 

were prepared using a silicone rubber mold and the dimensions of a rectangular specimen 

were 6.2 x 5.3 x 0.8 mm (Length x Width x Thickness).  

Preparation of dual-cured polymer films 

The thiol-ene/benzoxazine dual cure hybrid networks were developed by 

sequential thiol-ene photopolymerization followed by thermal ring-opening of 

benzoxazine as represented in Scheme 6. The allyl functionalized bis-benzoxazine (B-

allyl) monomer (1.0 g, 2.56 mmol) was dissolved in a minimal amount of THF (1.0 mL), 

followed by the addition of 0.5 wt % of DMPA photoinitiator and stoichiometric amount 

of PETMP (0.6 g, 1.28 mmol) (ene : thiol 1:1).  The solution was degassed by 

ultrasonication and casted onto a silicone mold.  The films were kept at 45 °C for 30 min 

under vacuum to remove residual THF, and were then exposed to UV light for 30 min 

yielding a yellow transparent, tack-free film (film thickness 1 mm). The UV cured film 

was used for DSC analysis to study the thermal curing behavior. The UV cured films 

were kept at 65 °C under vacuum overnight to remove traces of residual solvent.  UV 

cured films were subsequently cured step-wise at 100 °C, 120 °C, 140 °C for 1 h each, 

160 °C, 180 °C for 2 h each and 200 °C, 220 °C for 1 h each in an air-circulating oven. 

The samples were then post cured at 240 °C for 1 h in an air circulating oven. 
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Scheme 6.  (a) Preparation of B-allyl monomer and (b) pB-allyl-PETMP dual cure hybrid 

networks. (c) Structures of glycol di-(3-mercaptopropionate) (GDMP), bisallyl-

bisphenol-A (bisallyl-BPA), and Araldite MT-35600. 

Results and Discussion 

 

Monomer Synthesis 

 

The allyl based bis-benzoxazine monomer (B-allyl) was initially prepared by the 

Mannich condensation of bisphenol A, allyl amine and paraformaldehyde using a 

solventless method reported by Ishida and coworkers.36 This approach provided B-allyl at 

75 – 80% yield; however, purification by column chromatography was necessary to 

remove partially ring-opened oligomers, which significantly reduced the yield of the final 

high purity product (18%).  Consequently, an alternate synthetic methodology was 

adopted where the synthesis of allyl functionalized bis-benzoxazine was carried out in 

xylene in an attempt to minimize the formation of oligomeric side products.35 The use of 

a high boiling non-polar solvent allows increased solubility of the reactants at high 

temperature and facilitates removal of water, which is influential in inducing ring 

opening of benzoxazine leading to the formation of oligomers. Moreover, the 

benzoxazine ring formation is found to be more efficient in a reaction medium with a 
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lower dielectric constant.  Also, the use of a high boiling solvent facilitates lowering of 

dielectric constant with increase in the reaction temperature.35 The reaction conditions 

were optimized to achieve the best conversion to benzoxazine ring formation (30% 

yield).  The details of the optimized synthetic procedure for the B-allyl monomer are 

given in Appendix A (Figure A1 and Figure A2). 

Photopolymerization behavior of the B-allyl-PETMP system 

Thiol-ene photopolymerization kinetics of the B-allyl-PETMP system were 

monitored using real-time FTIR (RTIR).  For these measurements, the formulated resins 

were sandwiched between two NaCl windows (5 mm × 25 mm) and irradiated with UV 

light (filtered 320-500 nm) with an intensity of approximately 36 mW/cm2. 

                         

Figure 2. FTIR spectra for the uncured (upper) and UV cured B-allyl-PETMP resins 

(lower). 

 

Figure 2 shows exemplary FTIR spectra for the uncured and photocured resins. 

Thiol conversion was monitored using the –SH absorption peak at 2567 cm-1, while the 

allyl group conversions were monitored using the carbon-carbon double bond absorption 

peak at 1643 cm-1 (similar conversions were also obtained using the alkene peak at 3076 
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cm-1) The aromatic out-of-phase C-H deformation vibration from DMPA photoinitiator at 

824 cm-1 was used as an internal standard, since this peak remained unchanged during the 

course of the experiment.  Conversions values were calculated as the change in the area 

under the peaks related to the thiol and alkene moieties.  Conversion vs. irradiation time 

plots for thiol and alkene functional groups are shown in Figure 3.  Under ambient 

conditions, the high viscosity of the resin and rapid vitrification of the films under UV 

irradiation yield rather slow reaction kinetics (compared to typical thiol-ene systems) and 

less than quantitative –SH and C=C conversions.     

 

Figure 3. Real-time conversion plots of the thiol-ene photopolymerization with B-allyl 

and PETMP  using 0.5 wt % DMPA photoinitiator exposed to UV irradiation (36.0 

mW/cm2) at room temperature.  

 

Although stoichiometric conditions were utilized, a disparity was observed between thiol 

and ene conversion values leading to approximately 30% greater thiol conversion than 

ene conversion at 30 min. The presence of the benzoxazine ring is indicated by the out of 

plane C-H vibration of the aromatic ring attached to the oxazine ring observed at 927 cm-

1. The conversion of the benzoxazine ring of B-allyl at 927 cm-1 and inequality in thiol 

and ene conversions previously mentioned can be predominately attributed to a ring-
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opening reaction between the thiol and benzoxazine ring.  As shown in Figure 3, the 

benzoxazine conversion (42% conversion at 30 min) closely approximates the excess 

thiol conversion observed under UV irradiation.  It should also be noted that Jin and 

coworkers27 have shown exposure to UV light results in minimal ring-opening of the 

benzoxazine ring, but this is nonetheless contributor to the observed benzoxazine 

conversion in Figure 3.  Similar results were obtained for thiol and benzoxazine 

conversions in model studies using a non-functional aniline-based benzoxazine (i.e. one 

that should not participate in the radical-mediated thiol-ene reaction; see Figure A3 of 

Appendix A).  The recent work of Gorodisher et al.34 describing the catalytic opening of 

lateral benzoxazine rings by thiols showed that thiols readily react with benzoxazines 

under ambient conditions.  The ring-opening reaction appears to proceed via protonation 

of the benzoxazine nitrogen to create an ammonium cation 2, followed by nucleophilic 

attack by the thiolate anion at the methylene carbon adjacent to the benzoxazine oxygen 

to give intermediate 3.  Proton transfer from the ammonium cation to the phenoxide 

yields the adduct 4 (Scheme 7). 

Our own model studies involving the reaction of B-allyl with a difunctional thiol 

structurally similar to PETMP (the difunctional thiol GDMP was employed to avoid 

cross-linking and facilitate facile solution characterization by 1H NMR) support the 

observations reported by Gorodisher and confirm the occurrence of the thiol-benzoxazine 

reaction during the previously described photopolymerization studies.  A THF solution 

containing a stoichiometric amount of allyl based bisbenzoxazine (B-allyl) and GDMP 

were stirred at room temperature for 6 h.  Figure 4 shows the 1H-NMR spectrum of ring-

opened adduct of benzoxazine with thiol at initial 0 h and after 6 h. The progress of the 
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reaction was monitored by observing the disappearance of the characteristic peaks of 

oxazine ring at 4.83 and 3.94 ppm corresponding to -O-CH2-N- and Ar-CH2-N-, 

respectively, and the thiol peak (-SH) at 1.56 pm (triplet). Whereas after 6 h, two new 

peaks appeared at 3.99 ppm and 3.81 ppm which can be attributed to Ar-CH2-N- and -N-

CH2-S- , respectively of the Mannich bridge of the ring opened adduct. 

 

Scheme 7. Mechanism for ring-opening of benzoxazine with thiol (adapted from 

Gorodisher et al.34 

The results obtained were found to be in good correlation with the proposed 

structure (4, Scheme 7) confirming the ring-opening of benzoxazine with thiol.  As a 

result of the mechanism, it should be possible to suppress the thiol-benzoxazine ring-

opening reaction by addition of a base stronger than the benzoxazine, such as 

triethylamine, thereby impeding the protonation of the benzoxazine by the thiol.  Indeed, 

Gorodisher et al.34 showed a significant decrease in the rate of the thiol-benzoxazine ring-

opening in the presence of pyridine, and essentially no reaction in the presence of 

triethylamine. Although the addition of triethylamine interferes with the radical mediated 

thiol-ene polymerization, ongoing work in our lab suggests this strategy is a viable 

approach to combine base-catalyzed thiol-ene (i.e. thiol-methacrylate) with thermal ring-
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opening polymerization of benzoxazines for the sequential synthesis of well-defined 

hybrid networks. 

                             

         Figure 4. 1H-NMR spectrum of solution of allyl based benzoxazine (B-allyl) with GDMP 

stirred at room temperature in THF in the absence of UV light a) initial 0 h b) after 6 h. 

 

         Thermal ring-opening polymerization of B-allyl-PETMP system 

 

The thermal polymerization behavior of the UV cured resin was investigated by 

FTIR by stepwise heating at 120, 140, and 160 °C for 1 h each, 180 and 200 °C for 2 h 

each, and 220 and 240 °C for 1 h each. Figure 5 shows the FTIR spectra for the UV cured 

B-allyl-PEMTP resin during each of the aforementioned stages of the thermal cure. The 

intensities of the characteristic benzoxazine peaks – one at 927 cm-1 due to out of plane 

C-H vibrations of benzene ring attached to oxazine ring and another at 1498 cm-1 
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assigned to the vibration of the tri-substituted benzene ring – decrease gradually until 

both peaks disappear by the end of the 240 °C cycle. 

 

Figure 5. FTIR plots of B-allyl-PETMP resin after each cure stage. 

Additionally, a new peak appears at 1479 cm-1 corresponding to the tetra-substituted 

benzene ring that results from thermal ring-opening polymerization of the benzoxazine.  

The appearance of a broad band around 3400 cm-1 with increasing temperature is also 

consistent with the phenolic OH resulting from the formation of a polybenzoxazine 

network.  

The thermal polymerization behavior of the UV cured B-allyl-PETMP was also 

investigated using DSC analysis. The DSC thermograms of B-allyl-PETMP after each 

stage of cure are shown in Figure 6. DSC of UV cured B-allyl-PETMP showed two 

exothermic peaks. The onset of the first exotherm occurred at 142 °C with an exotherm 
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peak maximum at 202 °C, while the peak maximum of the second exotherm was 

observed at 266 °C.   

 

Figure 6. DSC thermograms of B-allyl-PETMP after each stage of cure.  

The total heat of polymerization was 154.9 J/g.  The first exotherm recorded at lower 

temperature can be attributed predominately to the thermal polymerization of the residual 

allyl functional groups within the network. Thermal polymerization of the N-allyl group 

is known to occur at lower temperature and the results shown are consistent with 

previously reported thermal polymerization of B-allyl.17, 38 The second exotherm can be 

attributed to the polymerization of residual fraction of benzoxazine functional groups 

within the thiol-ene network. The presence of the thiol-ene network restricts the mobility 

of the benzoxazine units and shifts the second exotherm maximum to 266 °C – a higher 

temperature range than typically observed for non-functionalized benzoxazine 

monomers.  
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As shown in Figure 8, the first exotherm gradually decreases and disappears after 

the cure at 160 °C, while the second exotherm is no longer observed after the cure at 220 

°C. 

 

Figure 7. a) TGA degradation profiles and b) derivatives of pB-allyl, pB-allyl-PETMP 

and Araldite MT- 35600. 

 

Thermal stability of dual cure hybrid networks 

Figure 7 shows the results of thermogravimetric analysis for pB-ally-PETMP and 

pB-allyl, compared with a commercially available polybenzoxazine derived from 

Huntsman’s aniline-based bis-benzoxazine (Araldite® MT-35600).  The data are also 

summarized in Table 1.  The 5 % (T5%) and 10 % (T10%) weight loss temperatures of pB-

allyl-PETMP were 347 °C and 360 °C, respectively. These values were lower in 
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comparison to pB-allyl which showed T5% and T10% temperatures at 353 °C and 379 °C, 

respectively. 

Table 1.  

TGA analysis of dual cure hybrid network pB-allyl-PETMP, thermal cured pB-allyl and 

thermal cured Araldite MT-35600 

Sample T5% (°C)a T10% (°C)b Char Yield (800 °C) 

pB-allyl 353 379 26 

pB-allyl-PETMP 347 360 31 

Araldite MT-35600 330 362 38 
a Temperature at which 5% weight loss occurs; b Temperature at which 10% 

weight loss occurs  

 

In the thermally cured pB-allyl network, the cross-linking of the allyl group augments the 

thermal stability by preventing the loss of Mannich bridge during the early stages of 

decomposition of polybenzoxazine,39 whereas in the hybrid thiol-ene benzoxazine 

network, incorporation of the aliphatic PETMP significantly reduces the aromatic content 

within the network and likely contributes to the lower thermal stability of the hybrid 

network.  Both pB-allyl-PETMP and pB-allyl showed improved onset of degradation in 

comparison to the Araldite® MT-35600.  The char yield at 800 °C for pB-allyl-PETMP 

(31 %) was slightly more than that of pB-allyl (26 %). This increase can be attributed to 

the sulfur content in the pB-allyl-PETMP network; sulfur is known to promote char 

formation upon thermal degradation of sulfur-containing polymers.40-41  The char yields 

of pB-allyl-PETMP and pB-allyl were both lower than the aniline-based bis-benzoxazine 

(Araldite® MT-35600) owing to the presence of aliphatic crosslinks and a reduction in 

aromatic content of the polymer network.  While lower char yields for the hybrid thiol-

ene benzoxazine networks may indicate a reduction in flame resistance typically 
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associated with polybenzoxazines, the hybrid approach improves film processability and 

enables tailoring of thermomechanical properties as discussed in the TMA section. 

Thermomechanical Analysis of pB-allyl-PETMP 

Thermomechanical transitions of the dual-cured thiol-ene/polybenzoxazine 

networks were investigated using dynamic mechanical analysis in tension mode and 

thermomechanical analysis in penetration mode. DMA was used to obtain storage (E’) 

and loss moduli (E”) as a function of temperature.  The ratio E”/E’ of the loss and storage 

moduli gives tan δ, a damping term, which relates the energy dissipation relative to the 

energy stored in the material upon periodic deformation.  The glass transition temperature 

(Tg) was determined from the peak maximum of the tan δ curve.  Figure 8 shows the 

temperature dependence of the tan delta (Figure 8a) and storage modulus (Figure 8b) for 

the UV cured B-allyl-PETMP and the dual cured pB-allyl-PETMP.  Prior to thermal ring-

opening polymerization of the benzoxazine, the UV cured B-allyl-PETMP network 

showed a Tg at 33 °C, which is comparable to the Tg of a pure thiol-ene bisallyl-BPA-

PETMP network at 40 °C.  The bisallyl-BPA-PETMP network is derived from a 

structurally similar bisphenol-A based diallyl ether derivative – a derivative that only 

undergoes radical thiol-ene polymerization and is shown for comparison.  The tan δ curve 

for the B-allyl-PETMP network is broader than that of the bisallyl-BPA-PETMP material 

due to the thiol-benzoxazine ring-opening reaction as previously discussed.  Upon 

thermal cure of the B-allyl-PETMP network, a broad glass transition was observed at 150 

°C from the maximum of the tan δ curve. As expected, the Tg value for pB-allyl-PETMP 

is much higher than transitions typically reported for pure thiol-ene networks (i.e. 

bisallyl-BPA-PETMP), but lower than that of the pure, conventional polybenzoxazine 
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thermosets due to the hybrid composition of the network (i.e. flexible thioether and rigid 

polybenzoxazine constituents).  

 

Figure 8. Dynamic mechanical analysis showing (a) tan delta versus temperature and (b) 

storage modulus versus temperature for the thiol/benzoxazine UV cured B-allyl-PETMP 

network (■), thiol/benzoxazine dual cured pB-allyl-PETMP network (□), and pure thiol-

ene UV cured bisallyl-BPA-PETMP network (○).  The bisallyl-BPA-PETMP network is 

structurally similar to B-allyl-PETMP and is shown for comparative purposes.   

  

For example, the Tg of the thermally cured Araldite® MT-35600 and pB-allyl material 

have been reported as 180 °C and 322 °C, respectively.17, 42 The broadness of the thermal 

transition for pB-allyl-PETMP may be attributed to network heterogeneity which results 

in a broad distribution of mobilities or relaxation times. The heterogeneity arises from the 

ring-opening of the benzoxazine with the thiol – a side reaction previously discussed in 

section 3.2.  As shown in Figure 8b, the storage moduli for B-allyl-PETMP and pB-allyl-

PETMP are 2.5 GPa (-30 °C) and 2.2 GPa (35 °C).  The storage modulus for B-ally-
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PETMP decreased sharply at 5 °C and showed a rubbery modulus of 9.4 MPa at 90 °C, 

similar to that of the pure thiol-ene bisallyl-BPA-PETMP material.  The storage modulus 

for pB-allyl-PETMP showed a gradual decrease from 2.2 GPa at low temperature (ca. 35 

°C) to 41 MPa at higher temperature (ca. 250 °C) approaching the rubbery plateau 

regime.  Albeit higher than the UV cured B-allyl-PETMP, the low elastic modulus and 

hence low cross-linking density is indicative of a more loosely bound network arising 

from incomplete cross-linking associated with the side reaction of benzoxazine with thiol.  

The thermomechanical analysis curves for pB-allyl-PETMP and pB-allyl are shown in 

Figure 9. 

 

Figure 9. TMA curves of pB-allyl and pB-allyl-PETMP. The inset shows the TMA curve 

for the bisallyl-BPA-PETMP network. 

  

A slight expansion of the pB-allyl-PETMP film was noted before a negative 

dimensional change (penetration) occurs at 156 °C; this transition correlates well with the 

Tg measured with DMA. At higher temperature (240 °C), a second negative dimensional 

change was observed further indicating the structural heterogeneity of the network.  The 

softening temperature of pB-allyl at 270 °C was much higher than the pB-allyl-PETMP 

system due to the increased rigidity and cross-linking of the allyl groups and absence of 
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the flexible PETMP constituent. For comparison, the TMA curve for the bisallyl-BPA-

PETMP network is shown in the Figure 9 inset. Bisallyl-BPA-PETMP showed a much 

lower softening temperature (ca. 29 °C) consistent with DMA analysis and typical for a 

pure thiol-ene network.  TMA of B-allyl-PETMP could be obtained due to thermal curing 

during the measurement resulting in adhesion of the material to probe. 

Conclusions 

Hybrid dual-cure polymer networks were synthesized by combining thiol-ene 

photopolymerization with thermal ring-opening polymerization of benzoxazines.  Real-

time FTIR conversion studies showed that less than quantitative conversion of thiol and 

allyl functional groups was achieved during the radical-mediated thiol-ene 

photopolymerization.  Non-stoichiometric consumption of thiol and allyl functional 

groups results from a competing nucleophilic ring-opening thiol-benzoxazine reaction 

with the radical-mediated thiol-ene reaction.  These competing reactions ultimately yield 

a heterogeneous polymer network following the sequential thermal ring-opening 

polymerization the benzoxazines.  Nonetheless, thermomechanical analysis of the hybrid 

networks showed the achievement of a high glass transition temperature (150 °C); one of 

the highest glass transitions reported to date for a thiol-ene based material.  The hybrid 

polymer networks exhibited good thermal stability and could easily be processed into thin 

films by spin-coating (Figure A4, Appendix A) the resin prior to the photopolymerization 

and thermal cure process.  Work is underway to reduce the occurrence of the competing 

thiol reactions, which will lead to more well-defined polymer networks with tunable 

thermal and mechanical properties. 
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CHAPTER IV 

DEVELOPMENT OF DUAL-CURE HYBRID COVALENTLY CROSSLINKED 

NETWORKS OF POLYNORBORNENE AND POLYBENZOXAZINES 

Introduction 

Thermosetting resins have long been in the forefront in development of 

composites for the fabrication of high-performance aerospace and electrical engineering 

structural components. Their significance arises from a large number of advantageous 

properties such as lightweight, high strength, high stiffness, good chemical resistance and 

good corrosion resistance. With the aforementioned features, the versatility and 

accessibility of tailor made polymers becomes an added advantage as it broadens the 

scope of applications. In this aspect, the olefin metathesis chemistry such as Ring 

Opening Metathesis Polymerization (ROMP) has emerged as a powerful tool towards the 

synthesis of macromolecules with wide range of complex architectures.1-3 ROMP follows 

a catalytically triggered, chain growth mechanistic pathway, which is thermodynamically 

driven by the relief of ring strain - converting strained cyclic olefins to linear polymers 

containing olefins in the backbone.4 Initiation occurs by the formation of 

metallocyclobutane intermediate via [2+2]-cycloaddition, which is facilitated by the co-

ordination between a transition metal alkylidene complex with the cyclic olefin. 

Subsequent cycloreversion of the intermediate yields a new metal alkylidene centre, 

which propagates by inserting new monomers, until the polymerization ceases either by 

the monomer consumption or addition of an external reagent. The degree of ROMP 

polymerization is determined by several parameters including- monomer composition 

and functionality, catalyst activity and concentration, experimental conditions – solvent, 
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temperature and atmospheric conditions (oxygen, moisture). ROMP reactions, initiated 

by well-defined ruthenium-based Grubbs catalysts are associated with high metathesis 

activity, functional group tolerance and stability under reaction conditions (solvents, air 

and moisture).5-9 The aforementioned advantages of Grubbs catalyst enable access to a 

wide variety of polymeric and co-polymeric materials with advanced topologies for 

potential applications. From the material-processing standpoint, ROMP offers several 

advantages including long shelf life, low monomer viscosity and volatility, fast 

polymerization, and low shrinkage upon polymerization. A variety of well-defined linear 

and cross-linked materials, possessing a broad range of tailorable material properties have 

been developed using ROMP mixtures of monofunctional and bifunctional cyclic olefin 

monomers.10,11 ROMP thermosetting materials possessing cyclic olefins in their 

backbone are associated with numerous advantageous properties including high glass 

transition, high optical transparency, excellent chemical and electrical resistance, and 

superior thermal stability (> 400 °C). 

Another genre of widely studied and versatile class of non-halogen based 

thermosetting resins is polybenzoxazines, which offer excellent high performance 

replacements for conventional phenolic and epoxy resins, while retaining their 

advantageous properties.12-15 Polybenzoxazines can undergo thermally activated, ring 

opening addition reaction under catalyst-free conditions, which renders them excellent 

processing advantages including no release of volatiles or void formation, limited 

volumetric shrinkage, and excellent ambient temperature shelf-life stability. However, 

despite all, they suffer from brittleness, making them difficult to handle and process into 

mechanically robust thin films.  
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To date, the incorporation of polybenzoxazines in a dual-curable hybrid system 

has limitedly been established. The dual-cure hybrid methodology utilizing two or more 

orthogonal curing mechanisms affords sequentially processable films with an access to 

a broad range of tailorable material properties. Dual-cure interpenetrating networks 

(IPNs) incorporating benzoxazine with acrylates16 or urethane acrylates17 have been 

developed via sequentially addressable UV photo-polymerization of acrylates and 

thermally initiated polymerization of benzoxazines. The resulting IPNs possessed an 

advanced set of hybrid material properties, however were largely dependent on the 

presence of hydrogen bond forming groups to establish homogeneity between the 

networks. Unlike IPNs, a covalently cross-linked hybrid network - which is derived 

from the same monomer bearing both the cross-linkable functionalities offers improved 

phase homogeneity and reaction kinetics at a molecular level. Sponton et al.18 developed 

polybenzoxazine-polysiloxane hybrid network from a dually functional siloxane bearing 

benzoxazine monomer – first a partial cured polysiloxane network was formed utilizing 

a sol-gel process, which consists of hydrolysis and condensation, followed by the 

thermally activated benzoxazine polymerization. The resultant homogenous hybrid 

materials showcased superior thermo-mechanical properties compared to that of a 

typical polybenzoxazine. Recently, our group19 developed a dual-cure hybrid 

polybenzoxazine network consisting of a primarily formed UV-induced thiol-ene 

network which templates a secondary polybenzoxazine network. The covalently linked 

components of low modulus thiol-ene and high modulus polybenzoxazines afforded 

single, high Tg thiol-ene networks (150 °C), while the sequential nature of network 

formation promoted ease of handling and processing of the polybenzoxazine 

thermosetting resins. In the current work, we have extended the dual-cure hybrid 
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methodology to combine ROMP and benzoxazine curing chemistries for developing a 

hybrid polynorbornene-polybenzoxazine network. Tasdelen et al.20 synthesized linear 

benzoxazine side-chain functional polyoxnorbornene precursors utilizing ROMP curing 

technique - which upon subsequent thermally induced oxazine curing resulted in a 

cross-linked network with superior thermal properties. Although no thermo-mechanical 

properties were reported, the authors showed the feasibility of developing a dual-cure 

hybrid system based on ROMP and benzoxazine curing processes.  

Our approach, as illustrated in Scheme 8, relies on the use of a multifunctional, 

dually polymerizable monomer possessing both bis-norbornene and bis-benzoxazine 

moieties within the same molecule. The two orthogonal cure processes- catalytically 

triggered ROMP curing of norbornene (25 °C – 160 °C) followed by benzoxazine ring-

opening polymerization ( 200 °C) were systematically addressed on the account of 

relative differences in the cure chemistry and kinetics. Norbornene functional 

benzoxazine monomer (Bz-Nor) was separately blended with two co-reactive ROMP 

monomers- DCPD and ENB at varying concentrations, each differing in their reactivity 

and cross-linkable functionality. The goal of this study is aimed towards establishing 

structure-property relationships by studying the effect of a variety of parameters 

including catalyst concentration, co-monomer type and co-monomer concentration on the 

network formation, structural composition and thermo-mechanical properties. Dual-cure 

covalently linked hybrid material derived from polynorbornene and polybenzoxazine 

networks combine the attributes of ROMP curing chemistry (fast polymerization, self-

sustaining, no release of volatiles, excellent heat and chemical resistance, high thermal 

stability) and polybenzoxazines (catalyst-free polymerization, high glass transition 

temperature, excellent flame retardancy, low water retention), yielding high Tg materials 
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with excellent thermal stability for use as - structural matrix composites in aerospace, 

naval applications, flame retardant materials, and printed circuit boards for electronic 

applications. 

 

Scheme 8. Schematic representation of the methodology for dual-cure hybrid 

polynorbornene/polybenzoxazine networks utilizing thermal ROMP curing and thermally 

activated ring-opening addition reaction of benzoxazines. 

Experimental 

Materials  

All solvents and reagents were purchased at the highest purity available from 

Sigma Aldrich or Fischer Scientific and were used as received unless otherwise stated. 

DCPD and 5-norbornene-2-carbonitrile were received as a mixture of exo- and endo- 

isomers from Sigma Aldrich Company. Araldite MT®-35600 was obtained from 

Huntsman Advanced Materials as a complimentary sample. Grubbs third generation 

catalyst was synthesized according to the published procedure reported elsewhere.21 The 

abbreviations used in our study are as follows: (1) Bz-Nor and p(Bz-Nor) – norbornyl 
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functional benzoxazine monomer and corresponding polybenzoxazine network (2) Bz-

Nor:DCP / Bz-Nor:ENB – uncured co-monomer mixtures of Bz-Nor and DCPD/ENB (3) 

p(Bz-pNor:DCP) and p(Bz-pNor:ENB) – the dual-cured hybrid network (thermal ROMP 

+ thermal activated ROP of benzoxazine) of Bz-Nor with DCPD and ENB, respectively. 

(4) p(DCPD) and p(ENB) – ROMP cured polymers of dicyclopentadiene and ethylidene 

norbornene, respectively. 

Characterization 

1H- NMR and 13C-NMR measurements were performed in deuterated chloroform 

(CDCl3) using a Varian Mercury Plus 300 MHz NMR spectrometer operating at a 

frequency of 300 MHz with tetramethylsilane as an internal standard.  The number of 

transients for 1H and 13C are 32 and 256, respectively. A relaxation time of 5 s was used 

for the integrated intensity determination of 1H NMR spectra. FTIR studies were 

conducted using a Nicolet 8700 FTIR spectrometer with a KBr beam splitter and an 

MCT/A detector with a 320-500 nm filtered (λmax = 365 nm) ultraviolet light source 

(Omnicure S1000). The catalyst powder was dissolved in a co-monomer solution of Bz-

Nor and DCPD/ENB in dichloromethane (0.2 g/0.2 mL), previously maintained at 0 °C, 

and the solution was spin coated on a NaCl plate at 1800 rpm for 60 s. All FTIR 

experiments were carried out under nitrogen atmosphere. Differential scanning 

calorimetry (DSC) was performed on a TA instruments DSC Q200 differential scanning 

calorimeter at a heating rate of 10 °C /min and nitrogen flow rate of 50 mL/min.  For 

DSC analysis, the samples were prepared by the addition of catalyst powder to a solution 

of monomer in dichloromethane (1.0 g/mL) with vigorous stirring over dry ice. A thin 

layer of solution was applied on a Teflon film to avoid bulk exothermic reaction and 
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subjected under vacuum for 5 min for solvent removal and to obtain the catalyzed 

mixture. The catalyzed mixture was crimped in T-zero hermetic aluminum pans with lids. 

The pans were stored in a vial over a dry ice to avoid premature curing until they were 

loaded into DSC cell at a standby temperature of 25 °C. Thermogravimetric analysis 

(TGA) was performed using a TA Instruments Q50 thermogravimetric analyzer with a 

platinum pan.  Samples were heated at 20 °C /min from 25 °C to 800 °C under a nitrogen 

atmosphere. Dynamic mechanical analysis (DMA) was performed on a TA Instruments 

Q800 DMA in tension film mode with a heating rate of 2 °C/min from 25 °C to 350 °C at 

1 Hz. Samples were prepared using a glass mold and the dimensions of a rectangular 

specimen were 6.4 x 5.7 x 0.75 mm (Length x Width x Thickness). An average value of 

three replicates of each sample was taken. Rheological measurements were performed on 

a strain controlled ARES rheometer (Rheometric Scientific), using a 50.0 mm parallel 

plate assembly in dynamic oscillation mode. A combined temperature ramp/time sweep 

experiments were carried out at an angular frequency of 10 rad/s and a controlled strain 

of 15%. For rheological studies, a catalyst concentration of 0.25 wt% for ENB and 0.5 

wt% for DCPD based co-monomer system were employed. The reaction mixture was 

prepared by the addition of the catalyst powder to the co-monomer solution in 

dichloromethane (1.0 g/mL), pre-maintained at 0 oC with vigorous stirring. The sample 

was immediately loaded onto the plate at room temperature, ramped until 70 oC at 2 

oC/min for a timeframe of 1000 s. The experimental conditions were chosen in such a 

way to reduce the effect of solvent evaporation during the curing stage, while getting 

reliable signal from the curing process. The gap between the plates (or sample thickness) 

was maintained at 0.5 mm during all the measurements. Gel time (tgel) of the reactive co-
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monomer mixtures was roughly determined at the crossover of the shear storage (G′) and 

loss moduli (G″) in the corresponding rheological curves. 

Preparation of dual-cured polymer films 

The dual cure hybrid networks were prepared by semi-sequential ring-opening 

metathesis polymerization of norbornene followed by thermal ring-opening 

polymerization of benzoxazine. Bz-Nor:DCP and Bz-Nor:ENB co-monomer mixtures 

were prepared separately at different co-monomer loadings of DCPD and ENB, ranging 

from 25 to 75 mol%. A catalyst concentration of 1.5 wt% was chosen for all 

compositions of Bz-Nor:DCP and Bz-Nor:ENB, unless otherwise stated. The co-

monomer compositions were dissolved in dichloromethane (1.0 g/mL) and degassed by 

ultrasonication. To the solution of Bz-Nor:DCP, pre-maintained at 0 °C and Bz-

Nor:ENB, pre-maintained in a dry ice bath (-80 °C), a solid catalyst was added with 

vigorous stirring to ensure complete dissolution of the catalyst and avoid premature 

gelation. Subsequently, the catalyzed mixture was immediately poured into a glass mold 

and subjected to a two-stage curing. The samples were cured at 25 °C for 1 h, 35 °C and 

50 °C for 0.5 h, each and 70 °C for 2 hrs. At this stage, the partially cured network films 

possessed enough green strength for easy handling and cutting into desired mold 

specimens. The intermediate films were subsequently cured step-wise at 100 °C, 120 °C, 

140 °C for 1 h each, 160 °C, 180 °C for 2 h each and 200 °C, 220 °C for 1 h each in a 

programmable nitrogen circulating oven. The samples were then post cured at 240 °C for 

1 h in a programmable nitrogen circulating oven. Pure p(DCPD) and p(ENB) were 

prepared at -40 °C in a dry ice/acetonitrile cooling bath (50/50 w/w) using the cure 

schedule as follows: 25 °C for 1 h, 35 °C and 50  for 0.5 h each, 70 °C for 2 h, and post 
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cured at 170 °C for 1.5 h. It should be noted that pristine monomer (Bz-Nor) resin could 

not be processed into mechanically stable films for DMA characterization due to the 

foaming nature of monomers at the late curing stage. 

Monomer synthesis 

Synthesis of exo,endo-5-Norbornene-2-ylmethylamine (NorNH2). Synthesis of 5-

norbornene-2-methylamine was carried out using lithium aluminum hydride reduction 

method.22  Lithium aluminum hydride (7.20 g, 0.189 mol) was weighed in a 500 mL 

round bottom flask inside a nitrogen-filled glove box, sealed and removed from the box. 

To this, 300.0 mL of anhydrous diethyl ether was added via a two-way cannula transfer 

and maintained at 0 oC, followed by a slow drop-wise addition of 5-norbornene-2-

carbonitrile (15.00 mL, 0.126 mol) for a period of 20-30 minutes. The septum was 

removed and the reaction mixture was quenched by successive addition of 5 mL of 

deionized H2O, 4.0 mL of 20% NaOH and 15.0 mL of deionized H2O with stirring and 

continuous cooling, converting aluminium hydroxide to a water-soluble sodium 

aluminate residue. The ether solution was decanted from the white, granular sodium 

aluminate residue and residue was washed thrice with ether. The solution was dried over 

MgSO4, filtered and the solvent was distilled out under reduced pressure to afford a 

colorless liquid (15.19 g, 98 %). 1H-NMR (300 MHz, CDCl3): δ (ppm) = 5.92-6.10 (m, 

2H, -CH=CH-, H2 and H3), 2.63-2.88, 2.10 (m, 3H, -CH2NH2, H7, -CH, H4), 2.36, 1.81 

(m, 1H, -CH H1), 1.06-1.47 (m, 5H, -CH2 H5, H8, CH H6). 

Synthesis of norbornenyl functionalized bis-benzoxazine (abbreviated as Bz-Nor). 

5-norbornene-2-methylamine (NorNH2) (15.20 g, 0.123 mol), bisphenol-A (14.1 g, 0.062 

mol) and paraformaldehyde (7.41 g, 0.247 mol) were taken in a 250 mL round bottom 
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flask. The mixture was heated at 120 oC for 20 minutes and cooled to room temperature. 

The product was dissolved in diethyl ether (150 mL), extracted with 3N NaOH (3 × 150 

mL) to remove phenolic impurities and finally washed with distilled water (3 × 150 mL). 

The organic layer was stirred over anhydrous magnesium sulfate, filtered over basic 

alumina to further remove phenolic impurities and the solvent was distilled under reduced 

pressure to afford a creamish solid. The product was dried under vacuum at 35 °C 

overnight (28.0 g, 84%). 1H-NMR (300 MHz, CDCl3), ppm: δ = 6.59-7.10 (m, 6H, 

Aromatic-H), 5.83-6.32 (4H, m, -CH=CH-, H2 and H3), 4.85 (4H, s, -N-CH2-O-, H10), 

3.95 (4H, s, -Ar-CH2-N-, H9), 1.59 (s, 6H, -CH3, H11).  

13C-NMR (CDCl3) : δ = 152.03, 142.82, 126.24, 126.17, 125.47, 119.46, 115.81, 

115.77 (12C, Aromatic-C), 137.23, 136.75, 136.67, 132.52 (4C, -CH=CH-, C2 and C3), 

82.68, 82.62 (2C, -N-CH2-O-, C10), 57.26 (2C, -Ar-CH2-N-, C9), 55.70 (2C, -CH2-N, C7), 

50.941, 50.84 (2C, -CH2, C8), 49.53 (2C, -CH, C1), 45.31 (1C, -C (CH3) 2, C12), 44.69 

(2C, -(CH3) 2, C11), 42.43, 41.94, 41.71, 41.62 (2C, -CH, C4), 37.44, 37.33 (2C, -CH, C6), 

31.49, 31.20, 30.85 (2C, -CH2, C5). 

Results and Discussion 

Norbornenyl functional bis-benzoxazine (Bz-Nor) cross-linker was synthesized 

using the Mannich condensation of Bis-phenol-A, 5-norbornene-2-methylamine and 

paraformaldehyde in 1:2:4 molar ratio using Ishida’s solventless synthesis in melt state23 

as depicted in Scheme 9.  
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Scheme 9. Schematic representation of the synthesis of Bz-Nor.  

 

 
 

Figure 10. 1H-NMR spectrum of 5-norbornene-2-methylamine (Nor-NH2) and 

norbornenyl functional bis-benzoxazine (Bz-Nor). 

The melt synthetic route employed afforded Bz-Nor monomer with high yield (84%) 

within short reaction time (20 min). The structure of the monomer was confirmed using 

1H-NMR analysis, as depicted in Figure 10. The formation of benzoxazine monomer was 

confirmed by the occurrence of two characteristics peaks corresponding to methylene 
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protons of the oxazine ring, -N-CH2-O- at 4.85 ppm and Ar-CH2-N- at 3.95 ppm. The 

characteristic olefin protons attached to the norbornene ring appeared as a multiplet 

between 5-6 ppm. 

For ROMP copolymerization, commercially available DCPD and ENB 

comonomers were chosen due to their distinct curing kinetics and mode of 

polymerization. Scheme 10 illustrates the formation of intermediate ROMP cured 

network of Bz-Nor cross-linker blended with DCPD/ENB using Grubbs 3rd generation 

catalyst.  

  

Scheme 10. Schematic representation of formation of intermediate ROMP cured network 

of Bz-Nor:DCP and Bz-Nor:ENB using Grubbs 3rd generation catalyst. 

Dicylopentadiene (DCPD) is capable of forming highly cross-linked structure 

with high toughness, excellent impact strength resistance, and corrosion resistance 

properties.24 The additional cyclopentene bond in DCPD is known to subsequently impart 

crosslinking either by olefin metathesis or olefin addition.25 On the other hand, 5-

ethylidene-2-norbornene (ENB) has much higher ROMP activity than DCPD and forms a 

linear polymer through ROMP.26 These attractive features, along with their low cost and 
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ease of fabrication influenced our choice of co-monomers employed in this study. Our 

preliminary DSC studies on ROMP curing of Bz-Nor cross-linker showed that a higher 

extent of Bz-Nor crosslinking was favored at a much higher catalyst concentration as 

compared to that typically employed for DCPD and ENB monomers in literature 

studies.27,28,29 Due to relatively large differences in the co-monomer reactivity and high 

metathesis activity of Grubbs 3rd generation catalyst, an intermediate catalyst 

concentration (1.5 wt%) for all compositions were chosen for this study. The reason for 

the choice of the aforementioned concentration was to allow time for sufficient 

interaction between the co-monomers to minimize the possibility of reaction induced 

phase separation arising due to differences in the ROMP reactivity of Bz-Nor and 

DCPD/ENB co-monomers. Moreover, due to the exothermic nature and rapid reaction 

kinetics, ROMP polymerizations are often associated with premature gelation, 

accompanied with incomplete catalyst dissolution; hence, the moderate use of a catalyst 

would facilitate a better process control either during the film fabrication process or while 

performing cure kinetic studies. During film formulation, the catalyst and the monomer 

solution were vigorously mixed so as to facilitate short initial mixing time to prevent 

unwanted premature exothermic reaction, particularly in the ENB or ENB-rich systems. 

Thermal rheological curing studies 

The time evolution of viscoelastic behavior during the ring-opening metathesis 

polymerization of Bz-Nor:DCP and Bz-Nor:ENB blends were investigated using parallel 

plate oscillatory rheometer. Lower catalyst concentrations were chosen for rheological 

studies so as to allow enough induction time for evaluating viscoelastic properties under 

the experimental conditions.  Figure 11 shows the time dependence of shear storage 
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modulus (G’) and shear loss modulus (G’’) and Figure 12 shows the comparison curves 

of G’ and Tan delta vs. time for various co-monomer mixtures of Bz-Nor:DCP. Gelation 

time marks the transition from viscous liquid to elastic solid with a three-dimensional (3-

D) network formation, and is an important processing parameter for thermosetting resins. 

Gelation time for all the samples was measured as the crossover point of storage shear 

modulus (G’) and loss shear modulus (G’’). The samples containing 100% Bz-Nor 

monomers showed no change in the rheological values over the timescale of the 

experimental conditions, suggesting that the combination of longer curing time and 

higher temperature is needed to establish viscoelastic behavior for low reactive systems. 

As seen in Figure 11, in the beginning of the cure time, the initial phase of both G’ and 

G’’ is associated with low S/N ratio because of solvent evaporation, which is then 

followed by a gradual steady increase with time and temperature as the polymerization 

proceeds. The onset of gelation time was marked by the crossover of G’ and G’’, where 

tan δ equals 1, beyond which the shear storage modulus levels off upon reaching the 

plateau regime indicating the formation of a glassy polymer network. Although the 

gelation time is a frequency dependent parameter in rheological experiments, however in 

this study the observed gelation times are specific at the frequency used for the 

experiment. Nevertheless, the rheological experiments were used to study the gelation 

kinetics, and evaluate final plateau value of the storage modulus, which is an indication 

of the degree of crosslinking in the final cured film.  

A drastic decrease in the gelation time from 702 to 171 s was observed with an 

increasing fraction of DCPD from 25 to 75 mol%, respectively. Furthermore, this trend 

was accompanied by faster and superior development of mechanical properties, as 
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observed from the slope of the shear modulus curve and limiting shear modulus value in 

the vitrification regime (Figure 12). 

 

Figure 11. Rheological time-sweep experiments for ROMP curing of Bz-Nor:DCP 

blends using Grubbs 3rd generation initiator (0.5 wt%) ramped to 70 oC at the rate of 2 
oC/min for 1000 s. 
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Figure 12. Comparison curves of G’ and Tan delta vs. cure time for ROMP curing of Bz-

Nor:DCP blends. 

 
Figure 13. Rheological time-sweep experiments for ROMP curing of Bz-Nor:ENB 

samples using Grubbs 3rd generation initiator (0.25 wt%) ramped to 70 oC at the rate of 2 
oC/min for 1000 s. 

 



 

 

81 

 

Figure 14. Comparative plots of G’ and Tan delta vs. cure time for ROMP curing of Bz-

Nor:ENB samples. 

Dicyclopentadiene is a low viscous monomer, which can instantaneously undergo ROMP 

reaction with the Grubbs catalyst at room temperature. Moreover, DCPD is capable of 

forming a cross-linked polymer through the ROMP reaction of initial norbornene ring 

(more strained and active), followed by the reaction of additional crosslinking site (less 

strained) at a higher temperature - which aids in the network formation with more 

pronounced viscoelastic properties. The reactivity of DCPD plays a dominant role in 

determining the gelation behavior irrespective of their low crosslinkable functionality in 

relative to the Bz-Nor crosslinker. Bz-Nor:DCPD copolymer possessing high 

concentration of DCPD (75 mol%) displayed highest shear modulus value in the glassy 

region (~105 dyne/cm2), suggesting the occurrence of greater extent of crosslinking. 

Figure 13 shows the time dependence of shear storage modulus (G’) and shear 

loss modulus (G’’) and Figure 14 shows the comparison curves of G’ and Tan delta vs. 

cure time for various co-monomer mixtures of Bz-Nor:ENB. In comparison to Bz-

Nor:DCP, Bz-Nor:ENB blends possessing higher concentrations of ENB (above 50 
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mol%) showed rather fast gelation kinetics even at lower amount of catalyst 

concentration. Unlike DCPD, ENB polymerizes via the formation of a linear polymer, 

and have studied to exhibit faster cure kinetics.29 Liu et al. reported that the inclusion of 

ENB in the blends of DCPD and ENB had an accelerating effect on the polymerization 

kinetics, even at low catalyst loadings, with increasing ENB content.28 As seen from 

Figure 13, the Bz-Nor:ENB samples containing 75 mol% of Bz-Nor showed no change in 

viscoelastic properties under the experimental conditions employed. However, the 

addition of ENB co-monomer exhibited an accelerating effect on the curing behavior of 

Bz-Nor:ENB blends, as the gelation drastically reduced from 383.5s to 98s with an 

increasing ENB concentration from 50 to 75 mol%, respectively.  The highest shear 

modulus values in the plateau regime were shown by Bz-Nor:ENB blends at 65 and 75 

mol% of ENB concentration (~104 dyne/cm2), implying the rigidity of the glassy 

viscoelastic network.  

Step-curing studies: FT-IR and DSC  

 

The dual-cure hybrid films were cured using stepped cure procedure in a nitrogen 

atmosphere. The polynorbornene backbone is susceptible to oxidation on the account of 

high density of alkenes in the polymer backbone,30 because of which curing was 

conducted under inert atmospheric conditions. The step - cure method was employed so 

as to ensure complete removal of volatiles, and establish a good balance between low and 

high temperature cure, as lower stress will be induced due to the slower formation of 

cross-links, while a higher level of network formation will be attained as the higher 

temperature is reached. Based on the FT-IR and DSC step-cure curing studies, an 
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optimum cure schedule was designed so as to achieve the best ultimate network 

properties. 

FTIR studies: Structural elucidation 

The structure of Bz-Nor monomer was confirmed using FT-IR analysis, as shown 

in Figure B3 in Appendix B. The absorption peaks centered at 1230 cm-1 and 1030 cm-1, 

and 1121 cm-1 and 864 cm-1 correspond to the asymmetric and symmetric stretching 

vibrations of C-O-C and C-N-C, respectively. The peak centered at 1322 cm-1 is ascribed 

to –CH2 wagging mode of the oxazine ring. The characteristic benzoxazine peaks at 935 

cm-1 and 1498 cm-1 corresponds to the out-of-plane and in-plane bending modes of C-H 

vibration of the benzene ring attached to the oxazine ring, respectively. Additionally, the 

peak at 822 cm-1 is due to out-of-plane C-H bending mode of tri-substituted benzene ring. 

The absence of bands corresponding to hydroxyl stretching frequency suggests high 

purity of Bz-Nor resin. The characteristic bands of the norbornene skeleton at 720 cm-1 

with a shoulder at 714 cm-1, and 1569 cm-1 is designated to the out-of-plane deformation 

of the -CH=CH- moiety and C=C stretching vibrations of the norbornene ring, 

respectively. 

FT-IR thermal cure studies of Bz-Nor monomer was performed in an air-

circulating oven using the aforementioned cure cycle and the structural evolution after 

each stage of cure was qualitatively monitored, as illustrated in Figure 15.  
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Figure 15.  FT-IR spectra of thermal cure of Bz-Nor after each stage of oxidative cure.  

.   

During thermal step-cure of Bz-Nor, as the cure temperature increased, the characteristic 

benzoxazine peaks assigned to the tri-substituted benzene ring at 935 cm-1 (out-of-plane 

C-H bending) and 1498 cm-1 (in-plane C-H bending) started to decrease in intensity at 

120 oC, and completely disappeared at 240 oC, indicating consumption of closed oxazine 

ring of benzoxazine. Furthermore, in conjunction with this decrease, the appearance of a 

new absorption band at 1493 cm-1 corresponding to the tetra substituted benzene ring, and 

a broad band around 3300 cm-1 assigned to –OH stretching vibrations of phenolic 

hydroxyl groups formed during oxazine ring-opening polymerization, confirmed the 

completion of the polymerization. Interestingly, beginning at 160 oC two new bands 

originated at 1636 cm-1 and 1674 cm-1 and increased in intensity as a function of cure 

temperature. The observed bands were previously assigned in literature as the carbonyl 

peaks of the substituted benzoquinones- a major oxidation product formed during UV 

oxidative degradation of bisphenol-A based polybenzoxazines.31 
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Figure 16. FT-IR spectra of dual-cure of Bz-Nor50:DCP50 after each stage of oxidative 

cure. 

FT-IR spectra of thermally induced two-stage crosslinking of Bz-Nor50:DCP50 

and Bz-Nor50:ENB50 blends after each stage of oxidative cure are shown in Figure 16 and 

17, respectively. The extent of ROMP polymerization of Bz-Nor and DCPD was 

monitored using the characteristic IR peaks of norbornene skeleton of Bz-Nor (714 cm-1 

and 720 cm-1) and DCPD (678 cm-1, 708 cm-1 and 755 cm-1), corresponding to the out-of-

plane =C-H bending vibration. 
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Figure 17. FT-IR spectra of dual-cure of Bz-Nor50:ENB50 after each stage of oxidative 

cure. 

Similarly, for Bz-Nor:ENB blends, changes in the IR intensities of Bz-Nor and 

ENB (714 cm-1 and 750 cm-1 ) corresponding to bending mode of =CH of norbornene 

ring were monitored during the thermal step-cure. As the cure stage progressed from 

room temperature to 180 °C, the characteristic IR bands of corresponding to C-H 

deformation of norbornene started to decrease in intensity, and disappeared by end of 180 

°C cure cycle, confirming the formation of metathesis product. A broad peak at 720 cm-1 

characteristic for the cis isomer of the =CH bending vibrations of polynorbornene for 

both Bz-Nor:DCP and Bz-Nor:ENB blends was observed. 

During the second stage cure involving thermally induced ring opening 

polymerization of benzoxazine in Bz-Nor50:DCP50 and Bz-Nor50:ENB50 blends, the 

previously assigned (Figure 15) absorption peaks associated with the closed oxazine ring 
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completely disappeared by end of cure at 240 °C, while a new absorption peak appeared 

at 1493 cm-1, signifying the formation of polybenzoxazine network. 

DSC studies: Thermal step-curing 

 

Figure 18. DSC cure studies of thermally activated ring opening polymerization of 

pristine Bz-Nor monomer at each stage of cure. 

Figure 18 shows DSC thermal cure profile of the pristine Bz-Nor monomer at 

each stage of cure. Uncured Bz-Nor monomer demonstrated a typical cure exotherm 

corresponding to thermally activated ring-opening polymerization of benzoxazines with 

the onset and peak maxima at 166 °C and 250 °C, respectively. Bz-Nor showed a melting 

endotherm at 57 °C, and a wide gap (c.a. 110 °C) between the melting point of Bz-Nor 

(57 °C) and the onset of ring opening polymerization of Bz-Nor (250 °C) is an indicative 

of an excellent processing advantage for practical applications. A broad and asymmetric 

exotherm in Bz-Nor can be attributed to the fact that the presence of a small amount of 

phenolic oligomer impurities in the monomer resin may initiate thermally accelerated 

cationic ring-opening polymerization of benzoxazines at a lower temperature. Moreover, 
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the presence of mixtures of endo and exo-isomers of Bz-Nor, each differing in their 

reactivity could varyingly affect the rate of the benzoxazine polymerization.32 The total 

heat of reaction for Bz-Nor, 124.8.0 J/g was comparatively lower than the typical range 

exhibited by polybenzoxazines in literature (150-600 J/g).33 As seen from Figure 18, 

when heated above ca. 275 °C, DSC exothermic processes were flanked by baseline noise 

interruptions that may have resulted from evaporation of volatile cycloaliphatic amines of 

the cured Bz-Nor, and is clearly evidenced by TGA analysis of thermally cured p(Bz-

Nor) described in the following discussion (Figure 26). Thus, the lower cure exotherm 

recorded for the polymerization of Bz-Nor could be a result of the interference of thermal 

data acquisition process by the early Mannich base degradation of p(Bz-Nor). 

DSC step-cure studies showed a gradual decrease in the total heat of enthalpy 

(H) until about 160 °C, followed by a substantial decrease at 180 °C -200 °C, until it 

finally disappeared after post cure at 240 °C, thereby indicating completion of cure. The 

total heat of polymerization of Bz-Nor reduced from 125 J/g for the uncured resin to 5.0 

J/g at 200 oC.  

Figures 19 and 20 represents DSC step-cure profile of thermal dual-cure 

processes of Bz-Nor50:DCP50 and Bz-Nor50:ENB50  blends, respectively. After initial 

ambient temperature cure, DSC thermogram of Bz-Nor:DCP showed two exotherms. The 

first exotherm with the onset at 67 oC and peak maxima at 124 oC can be primarily 

attributed to ROMP co-curing of the cyclic olefin units appended to the co-monomers. 

The 1st exotherm diminishes rapidly and disappears by the end of curing at 120 oC (1 h). 

The broad nature of exotherm could be attributed to the unequal reactivity of the co-

monomers and their related endo- and exo-isomers. Rule and Moore 32 showed that the 
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kinetics of ROMP curing of exo-DCPD isomer was much faster than endo-DCPD and 

occurred at relatively lower temperature, primarily for steric reasons. The second 

exotherm – predominantly attributed to the ring-opening polymerization of benzoxazine 

in addition to the residual ROMP reaction appeared at a much higher temperature with 

the onset at 172 °C and peak maxima at 235 °C. A bimodal trend was observed in the 

second exotherm by the end of 70 °C cure cycle, which suggested the presence of at least 

two reactions in this temperature range. DSC ROMP curing studies of exo- and endo 

isomers of DCPD showed the occurrence of two distinct exothermic peaks for exo-

DCPD, and one broad peak for endo-DCPD, wherein the first peak was attributed to ring-

opening of norbornene ring (more strained) and the second peak at a higher temperature 

was related to metathesis of additional cyclopentene ring (less strained).26 Thus, the 

existence of a bimodal curve can be related to the additional crosslinking of the 

cyclopentene units in DCPD occurring alongside benzoxazine polymerization. The total 

heat of reaction of the second exotherm gradually decreased with increase in the cure 

temperature, as the first peak of the bimodal curve disappeared by the end of cure at 180 

°C, followed by the complete disappearance of the second peak at 240 °C, thereby 

confirming the completion of the polymerization. 

In Figure 20, initial DSC curing of Bz-Nor50:ENB50 blends at 25 °C revealed two 

distinct exothermic peaks: the first exotherm with lower onset of exotherm at 60 °C and 

peak maxima at 104 °C can be assigned to the ROMP co-curing of Bz-Nor and ENB, and 

the second exotherm, around 250 °C is ascribed to benzoxazine polymerization. 
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Figure 19. DSC of thermal dual-cure processes of Bz-Nor50:DCP50 blends at each stage 

of cure. 

          
 

Figure 20. DSC of thermal dual-cure processes of Bz-Nor50:ENB50 blends at each stage 

of cure. 
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Unlike Bz-Nor:DCP blends, the appearance of a singular second exotherm in Bz-

Nor:ENB can be attributed to the absence of additional crosslinking in ENB, as it 

possesses only one strained, active double bond. The first exotherm disappeared by end 

of cure at 120 °C, while the second exotherm decreased gradually until 180 °C curing 

cycle, followed by the complete disappearance at 240 °C, suggesting cure completion. 

DSC curing studies: Effect of catalyst concentration  

Figure 21 shows DSC thermograms of Bz-Nor after 10 min of cure at room 

temperature, and the related thermal data are shown in Table 2. Bz-Nor monomer with no 

catalyst exhibited a melting endotherm at 57 °C and exotherm at 250 °C, corresponding 

to the previously assigned thermally activated ring-opening polymerization of 

benzoxazine, At 0.5 wt% catalyst concentration, a small exotherm with H = 8.0 J/g 

appeared with maxima at 137 °C corresponding to the ring-opening metathesis 

polymerization of norbornene. As the catalyst concentration increased, the appearance of 

first exotherm became more distinct with an expected rise in total heat of polymerization 

from 8.0 J/g (0.5 wt%) to 68 J/g (4.5 wt%), while both the onset and peak of exotherm 

shifted to a lower temperature. However, the extent of ROMP polymerization reached a 

maximum at 4.5wt% catalyst concentration, above which there was only a minimal 

change in the total heat of reaction. As the monomer was converted to a relatively stable 

polymer, the masking of benzoxazine exotherm at ca. 275 °C (as previously observed in 

Figure 18) was reduced. 

On the other hand, the second exotherm exhibited a lower shift in the onset and 

peak exotherm temperature, wherein the total heat of exotherm gradually increased from 

124.8 J/g (0 wt%) to 157 J/g (3.5 wt%). These observations could be attributed to the 
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ROMP crosslinking of residual norbornene units occurring alongside benzoxazine 

polymerization, which additionally contributes to the overall heat of reaction. As a higher 

extent of ROMP crosslinking was attained above 3.5 wt% catalyst loading, the 

concentration of unreacted ROMP entities reduced, thus leading to a decrease in the 

overall heat of reaction of the second exotherm. 

DSC curing studies: Effect of catalyst concentration 

 
 

Figure 21. DSC thermal studies showing the effect of catalyst concentration on the dual-

cure behavior of Bz-Nor after 10 min of cure at room temperature. 
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Table 2  

 

Results of DSC thermal data of ROMP curing of Bz-Nor monomer using different catalyst 

loadings 

 

DSC studies: Effect of co-monomer composition 

 
 

Figure 22. DSC thermograms of dual-cure of Bz-Nor:ENB samples cured for 5 mins at 

room temperature.  

 

  

1st exotherm 

 

 

2nd exotherm 

Catalyst 

loading 

(wt%) 

Onset of 

exotherm 

(oC) 

Peak of 

exotherm 

(oC) 

Total 

heat of 

enthalpy 

(H, J/g) 

Onset of 

exotherm 

(oC) 

Peak of 

exotherm 

(oC) 

Total 

heat of 

enthalpy 

(H, J/g) 

0 - - - 166.0 249.6 124.8 

0.5 76.4 136.6 8.0 172.0 246.3 125.4 

1.5 71.9 124.9 19.6 184.4 240.5 139.5 

2.5 71.2 123.3 41.2 184.6 239.6 149.3 

3.5 69.5 120.9 52.2 180.3 239.0 157.4 

4.5 67.3 116.9 68.3 179.1 236.7 146.6 

5.5 61.2 115.0 74.4 176.8 239.3 132.0 
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Table 3  

Summary of DSC thermal data of dual-cure compositions of Bz-Nor:ENB 

 

DSC cure profiles of dual cure processes of varying compositions of Bz-Nor:ENB 

blends after 5 min cure at room temperature using 1.5 wt% catalyst loading are shown in 

Figure 22 and the corresponding DSC thermal data are summarized in Table 3. All blends 

of Bz-Nor:ENB exhibited two distinct exotherm - the first exotherm previously assigned 

to the ring-opening cross-metathesis polymerization of norbornene monomers is driven 

by the relief of ring strain associated with the norbornene ring. The incorporation of 

highly reactive ENB co-monomer led to an overall increase in the co-monomer 

reactivity– as both the onset and peak exotherm were shifted to a lower temperature with 

an increase in the total heat of reaction from 20 J/g (0% ENB) to 111 J/g (75% ENB). 

The second exotherm – primarily attributed to the thermal ring opening polymerization of 

benzoxazine and residual ROMP crosslinking – showed a slight increase in the onset of 

exotherm and peak maxima owing to the rigidity incurred by the primary polynorbornene 

crosslinks. The total heat of polymerization for the benzoxazine polymerization 

Sample 1st exotherm 

 

2nd exotherm 

BzNor:

ENB 

Onset of 

exotherm 

(oC) 

Peak of 

exotherm 

(oC) 

Total 

heat of 

enthalpy 

(H, J/g) 

Onset of 

exotherm 

(oC) 

Peak of 

exotherm 

(oC) 

Total 

heat of 

enthalpy 

(H, J/g) 

75:25 54.4 115.6 38.5 176.1 247.0 109.8 

50:50 37.7 93.5 80.3 177.4 246.6 99.6 

35:65 31.2 86.6 101.6 177.6 250.4 96.3 

25:75 23.3 75.7 110.9 181.2 250.4 95.9 
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decreased from 140 J/g (0% ENB) to 96 J/g (75% ENB) in relation to the reduction in the 

benzoxazine mole content. 

 

Figure 23. DSC thermograms of dual-cure of Bz-Nor:DCP samples cured for 5 min at 

room temperature. 

 

Table 4 

 

Summary of DSC thermal data of dual-cure compositions of Bz-Nor:DCP 

 

Likewise, Bz-Nor:DCP blends displayed a similar qualitative trend in the DSC 

cure behavior, as shown in Figure 23.  The corresponding thermal data are tabulated in 

Table 4. The addition of DCPD led to a systematic decrease in the onset and peak 

Sample 1st exotherm 

 

2nd exotherm 

BzNor:

DCP 

Onset of 

exotherm 

(oC) 

Peak of 

exotherm 

(oC) 

Total 

heat of 

enthalpy 

(H, J/g) 

Onset of 

exotherm 

(oC) 

Peak of 

exotherm 

(oC) 

Total 

heat of 

enthalpy 

(H, J/g) 

75:25 65.2 113.1 41.5 169.2 233.6 119.0 

50:50 51.4 105.9 76.3 174.5 232.3 112.1 

35:65 36.2 98.0 101.8 176.4 235.5 108.5 

25:75 32.0 93.9 125.1 176.1 234.1 102.9 
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temperature of ROMP exotherm, while the total heat of enthalpy increased from 20 J/g 

(0% DCPD) to 125 J/g (75% DCPD). For the second exotherm - the rigidity, originating 

from the formation of primary ROMP crosslinks, led to a shift in the onset and peak 

maxima to a higher temperature, whereby the total heat of enthalpy decreased from 140 J 

/g (0% DCPD) to 102.9 J/g (100% DCPD) with a relative decrease in the benzoxazine 

mole content. 

Thermal stability studies: TGA 

Thermal stability of the cured compositions was investigated by TGA under 

nitrogen. To elucidate the effect of catalyst concentration on thermo-mechanical 

properties, the dual cure hybrid networks of Bz-Nor:DCP(1.5) and Bz-Nor:DCP(3) were 

prepared using two different catalyst concentrations at 1.5 wt% and 3.0 wt%, 

respectively. TGA curves of dually cured Bz-Nor:DCP(1.5) and Bz-Nor:DCP(3) are 

shown in Figure 24 and 25, respectively, and the corresponding data are summarized in 

Table 5 and 6, respectively. All thermosets exhibited superior thermal stability with high 

initial degradation temperature above 300 °C. The dual-cured p(Bz-pNor) network 

exhibited higher initial degradation temperatures (T5 and T10) compared to the pure 

analogue p(Bz-Nor), and commercially available p(Araldite 35600) (Figure 26 and Table 

7). The enhanced thermal stability of the dual-cured thermosets can be attributed to the 

formation of rigid crosslinks that prevents the early Mannich base degradation, which is 

shown to occur during the initial degradation step of bisphenol-A based 

polybenzoxazines derived from aliphatic amines (260300 °C).34 A systematic increment 

in the initial weight loss temperatures (T5 and T10) was observed with the incorporation of 

DCPD concentration.  
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Figure 24. a) TGA degradation profiles and b) derivatives of compositions of dual cure 

hybrid network p(Bz-pNor:DCP-1.5). 

 

Table 5  

 

Summary of the thermal stability data of the samples of dual cured hybrid network p(Bz-

pNor:DCP-1.5) under N2 

p(Bz-pNor:DCP-1.5) T5% (°C)a T10% (°C)b Char Yield (800 °C) 

100:0 349 378 22.0 

75:25 360 385 22.9 

50:50 364 404 21.5 

35:65 378 407 23.5 

25:75 386 408 23.6 

a Temperature at which 5% weight loss occurs; b Temperature at which 10%  

  weight loss occurs  
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Figure 25. a) TGA degradation profiles and b) derivatives of compositions of dual cure 

hybrid network p(Bz-pNor:DCP-3). 

 

Table 6  

Summary of thermal stability data of the samples of dual cured hybrid network p(Bz-

pNor:DCP-3) 

p(Bz-pNor:DCP-3) T5% (°C)a T10% (°C)b Char Yield (800 °C) 

100:0 348 370 21.2 

75:25 361 377 20.9 

50:50 374 389 20.4 

35:65 386 405 21.9 

25:75 391 414 22.3 

a Temperature at which 5% weight loss occurs; b Temperature at which 10%  

  weight loss occurs  
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Figure 26. TGA degradation profile and derivative of thermally cured p(Bz-Nor). 

 

Table 7  

 

Summary of the TGA results of the ROMP cured pDCPD and pENB, thermally cured 

pristine p(Bz-Nor) and Araldite-35600 under N2 

Sample T5% (°C)a T10% (°C)b Char Yield (800 °C) 

p(Bz-Nor) 303 360 25.9 

p(Araldite-35600)c 330 362 38.0 

p(ENB)d 410 432 7.9 

p(DCPD)d 483 493 16.4 

a Temperature at which 5% weight loss occurs; b Temperature at which 10%  

  weight loss occurs; c Ref.19; d Figure B4 in Appendix B 

 

Pure pDCPD network possess superior thermal stability with relatively high initial weight 

loss temperature at 483.52 °C (T5%) and 493.37 °C (T10%) (Figure B4, Appendix B), on 

the account of stable, unsaturated cycloaliphatic crosslinks, and show the absence of early 

degradation events that are prevalent in polybenzoxazines as mentioned earlier. 

Additionally, the higher reactivity of DCPD in relative to Bz-Nor co-monomer facilitates 
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effective crosslinking, and minimizes the amount of loose chain-ends and unreacted 

monomer residues, thereby preventing early degradation. 

All the hybrid compositions of Bz-Nor:DCP(1.5) showed a marginal difference in 

char yield at 800 °C with a slight increase relative to DCPD content. As seen from Table 

5 and 7, the char yield at 800 °C of p(Bz-Nor) (26%) and Araldite 35600 (38%) were 

higher than that of dual-cure hybrid networks of Bz-Nor:DCP(1.5) (22%) and ROMP 

cured p(DCPD) (16%). The char yield of polybenzoxazines is determined by several 

factors including the cure atmosphere, structure of the polymer backbone and nature of 

the phenol/amine substituents, molecular weight, and degree of crosslinking. 

Polybenzoxazines typically possess an excellent char yield due to stable aromatic 

composition, and the presence of hydrogen bonding interactions between the Mannich 

base and phenolic –OH groups have been shown to contribute to the network structure 

and influence their thermo-mechanical properties.35-36 Consequently, the char yield of 

p(Bz-Nor:DCP-1.5) was lowered with the addition of relatively less stable cycloaliphatic 

units within the polybenzoxazine matrix. 

A similar qualitative trend was observed for Bz-Nor:DCP(3) blends (Figure 25 

and Table 6). A systematic increase in the initial weight loss temperatures (T5% and T10%) 

was observed with an increase in DCPD content, accompanied by a slight variation in the 

char yield at 800 °C. The effect of catalyst concentration on thermal stability was 

reflected in the initial weight loss temperatures of the hybrid networks. The initial weight 

loss temperature (T5%) for all compositions of p(Bz-pNor:DCP-3) were higher than that 

of p(Bz-pNor:DCP-1.5). This could be explained by the fact that the higher catalyst 

concentration enhances the rate of polymerization and final conversion, subsequently 
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minimizing the amount of unreacted molecules and loose chain ends/ branches 

responsible for early degradation. 

Figure 27 and Table 8 shows the TGA profile and the corresponding thermal data 

of dual-cured p(Bz-pNor:ENB) thermosets, respectively. The thermosets displayed an 

increase in initial weight loss temperatures (T5% and T10%) with the addition of ENB. The 

increase in T5 and T10 can be attributed to the combination of the inherent thermal 

stability of p(ENB), which possess a significantly high initial weight loss temperatures 

T5% (410 °C) and T10% (432 °C) (Figure B4, Appendix B), and the formation of effective 

crosslinks due to high reactivity of ENB. These results can be correlated to viscoelastic 

measurements (Figure 13), which showed a decrease in gel fraction time, and increase in 

extent of crosslinking with the addition of ENB co-monomer. Overall, the char yield at 

800 °C of p(Bz-pNor:ENB) thermosets showed a decrease with the addition of p(ENB) 

segments for the reasons discussed previously. The observed trend in the char yield 

explains the resultant effect of both the network composition and degree of crosslinking 

in p(Bz-pNor:ENB) thermosets. 

As compared to p(Bz-pNor:DCP), p(Bz-Nor:ENB) system exhibited higher initial 

degradation temperature values and lower char yield, and can be attributed to the 

differences in the reactivity and network composition of ENB and DCPD co-monomers. 

The ability of DCPD to form rigid crosslinks leads to higher char yield in p(Bz-

pNor:DCP), while the higher reactivity of ENB accelerates the conversion and shifts the 

onset of degradation to a higher temperature in p(Bz-pNor:ENB) thermosets. 

To better understand the thermal stability, the derivative weight loss curves of 

thermosets were systematically evaluated. Figure 26 shows the TGA thermogram and 
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derivative curve of thermally cured p(Bz-Nor). The derivative curve of p(Bz-Nor) 

revealed two well-resolved degradation events, which is a typical of bisphenol-A based 

polybenzoxazines shown in literature.34 The first degradation stage between 220-320 °C 

represents a slow decline and corresponds to the loss of volatile amine fragments, while 

the second stage (320600 °C) centered at 430 °C is assigned to the degradation of 

different substituted phenolic moieties. Finally, the final degradation stage above 600 °C 

can be associated with oxidation of residual char. In comparison with p(Bz-Nor), the 

derivative curve of p(DCPD and p(ENB) showed high degradation resistance between 

400-600 °C for the decomposition of main-chain polynorbornene units (cleavage of C=C 

bonds). 

The degradation events in dual-cure hybrid thermosets p(Bz-pNor:DCP-1.5), 

p(Bz-pNor:DCP-3)  and p(Bz-pNor:ENB) (Figure 24b, 25b and 27b, respectively)  

occurred in three successive stages. The first stage between 300400 °C may be 

correlated to the decomposition of lightly cross-linked chain segments or branches, 

including volatization of amines in polybenzoxazines as discussed previously. The 

second stage ranging between 400500 °C corresponds to the degradation of main-chain 

polynorbornene units and phenolic derivatives of polybenzoxazines. The final stage, 

which extends above 650 °C can be attributed to the oxidation of residual char. A 

systematic shift in the onset of degradation events to a higher temperature was observed 

with the rise in DCPD/ENB content. 



 

 

103 

 

Figure 27. a) TGA degradation profiles and b) derivatives of all compositions of dual 

cure hybrid network p(Bz-pNor:ENB). 

 

Table 8 

 

Summary of the thermal stability data for samples of the dual cured hybrid network p(Bz-

pNor:ENB) 

p(Bz-pNor:ENB) T5% (°C)a T10% (°C)b Char Yield (800 °C) 

100:0 348 378 22.0 

75:25 363 382 17.7 

50:50 371 393 17.9 

35:65 394 416 18.9 

25:75 395 415 14.8 

a Temperature at which 5% weight loss occurs; b Temperature at which 10%  

  weight loss occurs  
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Dynamic Mechanical Analysis 

 

 
 

Figure 28. Plots of temperature dependence of storage modulus and tan delta of dual 

cross-linked Bz-Nor:DCP(1.5) compositions. 

 

 
  

Figure 29. Plots of temperature dependence of storage modulus and tan delta of dual 

cross-linked Bz-Nor:DCP(3) compositions, 
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Table 9 

 

Summary of the thermo-mechanical analysis data for samples of the dual cured hybrid 

network p(Bz-pNor:DCP-1.5) and p(Bz-pNor:DCP-3) 

 

 

Thermo-mechanical properties of the copolymers were investigated by dynamic 

mechanical analysis (DMA). The storage modulus relates to the ability of materials to 

store energy, while the loss modulus is attributed to dissipative and viscous losses in the 

materials. The ratio of E’’ to E’ is the mechanical damping (tan δ). The peak of tan δ was 

used to mark the glass transition temperature (Tg). 

All compositions of Bz-Nor:DCP (1.5) and Bz-Nor:DCP (3) were optically 

transparent and showed a single Tg, indicating no phase separation. Figure 28 and 29 

represent DMA plots of dual-cured Bz-Nor:DCP(1.5) and Bz-Nor: DCP(3) blends, 

respectively. The related thermo-mechanical analysis data are tabulated in Table 9. The 

storage modulus of a solid sample in the glassy state - an indicative of material’s stiffness 

under shear deformation decreases with increasing DCPD content of the Bz-

Nor:DCP(1.5). The storage modulus for all the compositions maintained constant until a 

high temperature around 250 °C, which is an indicative of high rigidity and degree of 

Sample 

p(Bz-pNor:DCP-1.5) 

Tg 

(oC) 

Peak tandelta 

value 

E’ at 30 oC [MPa] 

75:25 291 0.24 2292 

50:50 287 0.22 1742 

35:65 275 0.20 1591 

25:75 276 0.16 1638 

p(Bz-pNor:DCP-3)    

75:25 279 0.24 2901 

50:50 285 0.21 2291 

35:65 274 0.23 1806 

25:75 265 0.20 2087 
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crosslinking. The sample containing 75 mol% Bz-Nor exhibited a glassy storage modulus 

of 2.3 GPa at 30 °C, and this value was close to that observed for most of the commonly 

studied polybenzoxazines, B-a (2.2 GPa).37 The glassy storage modulus values of 

thermosets reduced as a function of increasing DCPD content owing to the inclusion of 

lesser rigid cycloaliphatic crosslinks. A decrease in the peak height was observed with the 

addition of DCPD. Peak tan delta is the ratio of viscous to elastic components and a 

suppression in peak height suggests a reduction in segmental mobility and hence, an 

indication of increase in the degree of crosslinking in Bz-Nor:DCP (1.5) blends. The 

addition of DCPD (above 50%) resulted in a stable plateau modulus regime, which is an 

indicative of higher extent of crosslinking and the resultant high thermal stability. As 

evidenced by the DSC and rheological curing studies, both the rate and degree of ROMP 

curing were greatly enhanced with the inclusion of highly reactive DCPD co-monomer, 

which thereby minimizes the amount of unreacted molecules and dangling chain ends 

leading to a greater stabilization of a rubbery plateau modulus. Also, the improvement in 

thermal stability of p(Bz-pNor:DCP-1.5) was further supported by TGA analysis (Figure 

24) , which showed a systematic increase in the onset of degradation temperature with the 

addition of DCPD. 

According to the statistical theory of rubbery elasticity38 the crosslinking density 

can be derived from the plateau modulus using vc = Ge/3RTe, where Ge is the plateau 

modulus at Tg+40 °C, R is the gas constant, and Te is the temperature at Tg+40 oC. The 

equation is only valid for lightly cross-linked materials possessing a stable rubbery 

plateau regime. For highly cross-linked materials employed in our studies, the values 

were used for the purpose of qualitative comparison. The analysis of crosslinking 
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densities for Bz-Nor:DCP(1.5) blends was complicated by the thermal degradation 

immediately following the glass transition temperature. Hence, the plateau modulus 

values were unobtainable due to the absence of a stable rubbery plateau regime on the 

account of degradation, which is generally the case for polybenzoxazines owing to their 

high glass transition characteristics. Generally, the crosslinking often increases the Tg by 

reducing chain mobility. Conversely, the addition of DCPD showed a systematic 

decrease in glass transition temperature, which suggested a rather dominant effect of the 

composition of the network structure irrespective of the trend observed in peak tan delta 

values. DCPD is a known to form a lightly cross-linked network through the metathesis 

reaction of 20% of the less strained cyclopentene bond at high temperature.25 The 

reported glass transition temperature of pure pDCPD is in the range of 150-160 oC.39 The 

lowering of the glass transition temperature can be attributed to the incorporation of a 

relatively lesser rigid cycloaliphatic units of p(DCPD), and the non-planar structure of 

DCPD facilitates less efficient molecular packing, aiding in an increase in free volume. 

Furthermore, the formation of pDCPD can possibly affect the extent of hydrogen bonding 

interactions in polybenzoxazines, which are known to contribute to their high glass 

transition characteristics.35 

The width of tan delta peak increases in relative to the DCPD content, which is a 

result of increasing network heterogeneity - arising from a broad distribution of 

relaxation times, as would be expected from copolymerization. Thus, the incorporation of 

DCPD component in the brittle polybenzoxazine matrix could potentially act as a stress 

concentration site, aiding in energy damping characteristics towards better impact 

resistant properties in polybenzoxazines. 
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On the other hand, Bz-Nor:DCP(3) blends exhibited a similar qualitative trend in 

the glass storage modulus values and glass transition temperature relative to DCPD 

modification, as shown in Figure 29. Blends containing 25% DCPD exhibited the highest 

glassy storage modulus at room temperature (2.9 GPa at 30 °C), and showed a systematic 

decrease in glass transition temperature with a rise in DCPD content. The increase in 

glass transition temperature for blends containing 50% DCPD can be attributed to the 

initial rise in degree of crosslinking and rigidity offered by the bulky co-monomer 

structures. All compositions of p(Bz-pNor:DCP-3) showed a lower Tg in comparison to 

that of p(Bz-Nor:DCP-1.5). The catalyst concentration is shown to have a prominent 

effect on the rate and degree of network formation in a way that higher catalyst 

concentration leads to an increase in ROMP curing rate and final conversion.26 Moreover, 

the catalyst concentration can likely affect the molecular weight distribution and the 

resultant distribution of crosslinks. One possible explanation for Bz-Nor:DCP(3) 

exhibiting lower viscoelastic properties is that the high catalyst concentration and 

unequal reactivity of co-monomers may result in broadening of crosslink distribution. 

Misra et al.40 demonstrated that for a given average of crosslinking density, a wide 

distribution of crosslinks lowers the Tg as a result of increase in the length between the 

crosslinks as compared to those with narrow distribution. Moreover, an excess of catalyst 

concentration can act as a plasticizer and influence the viscoelastic properties of the cured 

thermosets. 

Figure 30 shows the dynamic mechanical analysis curves of dual-cured 

compositions of Bz-Nor:ENB, and the corresponding results are highlighted in Table 10. 

The storage modulus curves were maintained stable up to a high temperature (250 °C), 
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indicating high rigidity and thermo-mechanical stability. A systematic decrease in glassy 

storage modulus values was observed in direct proportion to the ENB content, and can be 

related to reduction in stiffness arising from the incorporation of the mobile linear 

poly(ENB) network chains. 

 
 

Figure 30. Plots of temperature dependence of storage modulus and tan delta of dual-

crosslinked p(Bz-pNor:ENB) compositions. 
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Table 10 

 

Summary of the thermo-mechanical analysis data for samples of the dual cured hybrid 

network p(Bz-pNor:ENB) 

Sample 

p(Bz-pNor:ENB) 

Tg 

(oC) 

Peak tandelta value E’ at 

25 oC [MPa] 

100:0 285 0.28 2056 

75:25 286 0.24 1443 

50:50 299 0.20 1345 

35:65 294 0.19 1323 

25:75 301 0.15 1300 

 

A decrease in peak tan delta values was observed with the increasing ENB 

concentration. Similar to DCPD-based system, the thermal stabilities of rubbery plateau 

modulus regime of p(Bz-Nor:ENB) thermosets were enhanced with the addition of ENB 

content, and was further supported by TGA studies. Again, in the view of a short-term 

stability of rubbery plateau regime, the measurements for crosslinking densities of p(Bz-

Nor:ENB) could not be estimated. The glass transition temperature of p(Bz-Nor:ENB) 

thermosets showed an increase from 0 mol% (285 °C) to 75 mol% (301 °C) of ENB 

concentration. This trend can be attributed to the fact that the high reactivity of ENB 

enables increase in the extent of network formation and thereby, decreasing the amount 

of loose dangling chain-ends and small molecules that act as a plasticizer and reduce the 

glass transition temperature. This is further supported by rheological curing studies, 

which showed an accelerating effect of ENB on gelation kinetics, wherein the 

compositions containing 75% ENB exhibited the highest limiting shear modulus value in 

short reaction time. 

In comparison to p(Bz-Nor:DCP) thermosets, the high glass transition 

temperatures of p(Bz-Nor:ENB) thermosets can be related to the reactivity differences of 
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DCPD and ENB co-monomers, which could varyingly influence the extent of network 

formation before the reaction becomes diffusion-controlled. Moreover, high conversion 

associated with ENB-based systems reduces the concentration of unreacted molecules 

and dangling chain-ends that induce plasticization and enable mobility of the chain 

segments. Another possible reason for this difference can be attributed to the extent of 

hydrogen bonding network formation in polybenzoxazines, which may vary for different 

co-monomer compositions. Kim and Ishida41 showed that in addition to the basicity, the 

steric aspect of the amine substituents has a profound effect on the extent of hydrogen 

bonding network formation, which in turn was correlated to the compactness of the 

network structure and glass transition temperature. Moreover, it was demonstrated that 

the bulkier amine substituents interfere with the extent of benzoxazine crosslinking 

because of extensive degradation processes during the polymerization of benzoxazines in 

addition to the steric effect, resulting in lowered Tg. Different compositions of Bz-

Nor:DCP and Bz-Nor:ENB vary in the extent of ROMP crosslinking and rigidity of the 

network attached to the nitrogen, which may interfere with the degree of oxazine 

polymerization and extent of hydrogen bond formation in polybenzoxazines, and 

varyingly affect the thermo-mechanical properties of the fully cured resin. 

Albeit the thermal curing of the studied films were performed in N2 atmosphere to 

prevent unwanted reactions, depending upon the purity of N2 gas, it could be expected 

that small amount of oxygen may participate during the cure process of 

polybenzoxazines. FT-IR curing studies of dual-cure compositions showed a strong 

carbonyl band at 1637 cm-1 related to the substituted benzoquinone, which has been 

previously assigned as the oxidation product of UV thermal degradation of 
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polybenzoxazines.31 Furthermore, the presence of oxidation products has been shown to 

vary the crosslinking density and distribution of hydrogen bonding interactions in 

influencing the final thermo-mechanical properties.42,43 Therefore, the effect of the 

formation of undesirable oxidation products during thermal cure on the final thermo-

mechanical properties of the cured thermosets could be taken into consideration. 

Conclusions 

A novel class of dual cross-linked hybrid network was developed incorporating 

both norbornyl and benzoxazine based polymer networks. The dual cross-linked hybrid 

networks were synthesized combining two independent curing mechanisms: thermally 

induced ROMP polymerization (25 °C to 180 °C) followed by ring opening addition 

polymerization of benzoxazines. Benzoxazine containing bisfunctional norbornene cross-

linker (Nor-BZO) was synthesized and blended separately with two different reactive 

comonomers – 5-ethylidene-2-norbornene (ENB) and dicyclopentadiene (DCPD) at 

varying concentrations. The addition of DCPD and ENB exhibited an accelerating effect 

on the viscoelastic properties of blends, among which ENB-based systems showed faster 

gelation kinetics due to the low viscosity and high reactivity of ENB co-monomer. On the 

other hand, no gel point was obtained for 100% Bz-Nor blends under the conditions 

investigated, suggesting low reactivity of Bz-Nor monomer and the use of a longer curing 

time and higher temperature for achieving viscoelastic transitions. DSC cure studies 

showed that a high catalyst concentration (> 3.5 wt%) was required to conduct an 

efficient ROMP reaction of Bz-Nor monomer. The onset and peak of exotherm of ROMP 

curing of Bz-Nor:DCP and Bz-Nor:ENB blends were shifted to a lower temperature in 

relative to the rise in DCPD and ENB content, respectively. The rigidity incurred by the 
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formation of primary polynorbornene crosslinks resulted in a higher temperature shift of 

the onset and peak maxima of oxazine polymerization. 

Albeit the flammability characteristics (char yield) of the dual cross-linked hybrid 

thermosets were lowered compared to that of the pristine p(Bz-Nor) due to reduction in 

aromatic content, a systematic increment in the initial weight loss temperatures was 

observed with increasing DCPD/ENB content. Dual-cure networks based on ENB-based 

blends showed higher initial degradation temperatures and lower char yield than that of 

DCPD-based blends. The incorporation of less rigid cycloaliphatic crosslinks of DCPD 

exhibited a relative decrease in stiffness and glass transition temperatures in addition to 

the enhancement of the thermal stability of rubbery plateau modulus. For ENB-based 

systems, a systematic reduction in stiffness was observed in direct proportion to the ENB 

content, while on the other hand the glass transition temperatures increased, and was 

relatively higher than that of DCPD-based networks.  

Irrespective of the semi-sequential nature of network formation, easily moldable 

partially cured polynorbornene films were obtained, which were then subjected to 

thermal step-cure to obtain final hybrid thermosets. Thus, the dual-cure hybrid approach 

offered a versatile platform to overcome the brittleness of polybenzoxazines with an 

access to a wide range of tailorable material properties within the same system. 
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CHAPTER V 

TUNABLE NETWORK PROPERTIES BASED ON DUAL-CURE HYBRID 

POLY(METHACRYLATE) AND POLYBENZOXAZINE NETWORKS 

Introduction 

Polybenzoxazines - a class of non-halogen based thermosetting resins serve as a 

potential contender in overcoming the limitations of traditional phenolic resins, yet 

retaining their advantageous properties.1-3 Polybenzoxazines undergo ring opening 

addition polymerization by thermal activation (180 °C220 °C) in the absence of catalyst, 

which renders them with excellent processing advantages including no release of 

volatiles, ambient temperature storage stability, low viscosity and near-zero volumetric 

shrinkage. However, the practical use of polybenzoxazines suffer from common 

limitations of thermosetting resins including high brittleness and difficulty to be 

processed into mechanically robust thin films on the account of rigidity incurred by bulky 

backbone structure and short molecular weight between the crosslinks.  

Photo-crosslinked materials represent state-of-the-art technology, which have 

found a myriad of applications in the areas of printing inks, graphic arts, adhesives and 

photolithiography.4-5 High-energy efficiency, low VOC, high productivity, and cost-

effectiveness are the major highlights of a photo curing technology. UV curable materials 

based on methacrylates/acrylates are widely used due to their rapid reaction kinetics, low 

viscosity, ambient temperature cure and solvent free formulations. Moreover, the wide 

choice of commercially available monomers/oligomers with different structural 

compositions, viscosities and functionalities provide an opportunity to tailor a variety of 

design constituents such as viscosity, cure rate and conversion, network formation. 
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In contrast to rapid kinetics observed in photo-initiated polymerization, thermally 

curable benzoxazine chemistry exhibit a slow rate of polymerization, which makes the 

combination of the two network chemistries rather appealing. Moreover, the high UV 

resistance of benzoxazine resins compared to epoxies further broadens the scope of 

applications.6 To date, few photo-polymerizable groups have been studied with the 

benzoxazine system, mostly focusing on the synthesis of linear polymers bearing pendant 

thermo-labile benzoxazine groups. Some of the examples include radical mediated 

polymerization of styrene-co-maleimide7, methacrylate-co-styrene8, and methacrylate9 

based benzoxazine polymer systems. Additionally, the photo-initiated cationic 

polymerization and free-radical promoted cationic polymerization of benzoxazine 

monomer10, and its application as hydrogen donors for conducting free radical photo-

polymerization of vinyl-based compounds11 have been documented. 

The selective and independent nature of cure chemistries (UV or moisture) can be 

sequentially addressed in conjunction with thermally activated ring-opening addition 

polymerization to develop dual-cure hybrid networks. Dual-cure hybrid networks render 

thermosets with processing advantages and offer a platform to access a broad range of 

tailorable material properties. To date, there are only limited examples based on dual-cure 

hybrid systems incorporating polybenzoxazine network. Sequential interpenetrating 

networks of polyacrylate/polybenzoxazine12 and polyurethane 

acrylate/polybenzoxazines13 have been developed via UV initiated free-radical 

polymerization of acrylates and thermally activated polymerization of benzoxazines. As 

opposed to IPNs and blends, a covalently cross-linked hybrid network derived from the 

same molecule bearing both the cross-linkable functionalities offers improved phase 



 

 

123 

homogeneity and network formation. Sponton et al.14 designed a dual-cure hybrid 

network based on polysiloxane-polybenzoxazine network, combining primary sol-gel 

chemistry (hydrolysis followed by condensation) involving siloxane groups followed by 

thermally activated polymerization of benzoxazines. The resultant hybrid materials were 

homogenous, and possessed superior thermal stability and dynamic-mechanical 

properties compared to that of conventional polybenzoxazines. Recently, our group15 

developed dual-cure hybrid polybenzoxazine network based on sequential UV induced 

thiol-ene polymerization and thermally activated polymerization of benzoxazines. The 

covalently linked components of low modulus thiol-ene and high modulus 

polybenzoxazine afforded a single, high Tg thiol-ene materials (~ 150 °C), while the ease 

of resin application, and high machinability of thiol-ene films allowed improved 

processability of polybenzoxazines. Lin et al.9 developed a dual-cure system based on 

methacryoyl functional benzoxazine to investigate the cure behavior of sequential 

photopolymerization of methacrylate functionality and thermally activated 

polymerization of benzoxazine. Although no thermo-mechanical properties were 

investigated, authors showed the feasibility of combining UV curable methacrylate 

chemistry with the thermally curable polymerization of benzoxazines. 

As an extension to our previous work, the current work is directed towards 

furthering the development of dual-cure hybrid polybenzoxazine networks by 

incorporating sequential UV curable methacrylate and thermally curable benzoxazine 

chemistries. For this study, the methacrylate functional bis-benzoxazine was synthesized 

and co-polymerized with different amounts of mono-functional butyl acrylate monomer 

to target a broad range of tailorable material properties. The independent cure processes 
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(UV and thermal) were serially employed to develop stable, easy to handle 

polymeth(acrylate) films after primary UV-cure process, followed by thermal-step cure 

curing to obtain the final hybrid form. The goal of this study was aimed at establishing a 

structure-processing-property relationship by evaluating the effect of different co-

monomer compositions on conversion, viscosity, network formation and thermo-

mechanical properties. With the advantages of photopolymerization combined with 

catalyst free thermal polymerization, the meth(acrylate) and benzoxazine chemistries 

offers enormous molecular design flexibility. 

 

Figure 31. Schematic representation of dual-cure hybrid methodology based on UV co-

polymerization of Bz-Meth:BA, followed by thermally activated polymerization of 

benzoxazines. 

 

Materials 

 

All the solvents and reagents were obtained at the highest purity available from 

Aldrich Chemical Company or Fisher Scientific and were used as received unless 

otherwise specified. Methacryloyl chloride was purified by distillation under reduced 

pressure (67 °C, 450 mm) and dichloromethane was distilled over anhydrous calcium 
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chloride before use. The abbreviations used for this study are as follows: Bz-Meth  

methacrylate functional benzoxazine monomer, p(Bz-Meth)  thermally cured network of 

Bz-Meth, Bz-pMeth:BA  UV cured co-polymer network of Bz-Meth and BA, and p(Bz-

pMeth:BA)  dually cured (UV+thermal) network of Bz-Meth:BA. 

Characterization and Measurements 

1H- NMR and 13C-NMR measurements were performed in deuterated chloroform 

(CDCl3) using a Varian Mercury Plus 300 MHz NMR spectrometer operating at a 

frequency of 300 MHz with tetramethylsilane as an internal standard.  The number of 

transients for 1H and 13C are 32 and 256, respectively. A relaxation time of 5 s was used 

for the integrated intensity determination of 1H NMR spectra. Kinetic analysis was 

conducted using real-time FTIR spectroscopy to determine the conversions of 

methacrylate functional group. FTIR studies were conducted using a Nicolet 8700 FTIR 

spectrometer with a KBr beam splitter and an MCT/A detector with a 320-500 nm 

filtered (λmax = 365 nm) ultraviolet light source (Omnicure S1000). Solvent-free 

formulations of co-monomer mixtures of Bz-Meth and BA, containing 3 wt% Irgacure 

2020 photoinitiator were spin coated on a NaCl plate at 1800 rpm for 60 s and exposed to 

UV light with an intensity of 20.0 mW/cm2 using a liquid light guide. Series scans were 

recorded, where spectra were recorded approximately 4 scans/s, each with a resolution of 

4 cm-1.  All FTIR experiments were carried out under nitrogen atmosphere.  Plots shown 

are representative data of a repeatable process. Differential scanning calorimetry (DSC) 

was performed on a TA instruments DSC Q200 differential scanning calorimeter at a 

heating rate of 10 °C/min and nitrogen flow rate of 50 mL/min. Samples were crimped in 

hermetic aluminum pans with lids.  Thermogravimetric analysis (TGA) was performed 



 

 

126 

using a TA Instruments Q50 thermogravimetric analyzer with a platinum pan.  Samples 

were heated at 20 °C /min from 25 °C to 800 °C under a nitrogen atmosphere. Dynamic 

mechanical analysis (DMA) was performed on a TA Instruments Q800 DMA in tension 

film mode with a heating rate of 2 °C/min at 1Hz from -40 °C to 150 °C for the UV cured 

films and -40.0 °C to 250 °C for the fully cured films. Samples were prepared using a 

silicone rubber mold and the dimensions of a rectangular specimen were 6.2 x 4.9 x 1.5 

mm (Length x Width x Thickness). Rheological characterization was performed using a 

Paar Physica MCR501 strain controlled rheometer equipped with parallel plate geometry 

(0.3 mm gap) and Peltier set up with glass bottom window for the purpose of 

transmission of UV light. An optical fiber connected to ultraviolet light source (Omnicure 

S1000) was used to illuminate the sample through the glass window, and a UV light 

intensity of 0.1 mW/cm2 was used.  After 30 seconds of pre-equilibration stage, the UV 

light was switched on and a dynamic oscillatory time sweep test was performed using 

0.7% strain and a frequency of 1 Hz and the evolution of storage and loss modulus of the 

network development process was monitored over time. 

Preparation of dual-cured polymer films 

The dual cure hybrid networks were developed by sequential UV initiated 

polymerization of meth(acrylates), followed by thermal ring-opening of benzoxazine, as 

represented in Figure 31. The methacrylate functional bis-benzoxazine (Bz-Meth) 

monomer was blended with different amounts of butyl acrylate at concentrations ranging 

from 25 mol% to 75 mol%. The mixture was homogenously mixed using a vortex stirrer, 

both before and after the addition of 3 wt % of Irgacure 2020 photoinitiator. The UV 

curable mixture was then casted onto a silicone mold and vacuumed for 10 min to 
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remove air bubbles. The casted reaction mixture was exposed to UV light for 20 min on 

one side first, followed by 10 min on the other side of the films. The resultant UV cured 

films were yellow transparent and tack-free (film thickness 1.5 mm), and were used for 

DSC analysis to study the thermal curing behavior and for DMA analysis for evaluating 

thermo-mechanical properties. UV cured films were subsequently cured step-wise at 100 

°C, 140 °C for 1 h each, 160 °C, 180 °C, 200 °C for 2 h each and 220 °C for 2 h in an air-

circulating oven. 

Monomer Synthesis 

Synthesis of hydroxyl functional bis-benzoxazine monomer (Bz-OH).  Synthesis of 

Bz-OH was carried out using the modified literature procedure reported elsewhere.8 

Bisphenol-A (12.0 g, 0.05 mol), paraformaldehyde (6.4 g, 0.2 mol) and 2-(2-

Aminoethoxy) ethanol (11.0 g, 0.1 mol) were dissolved in 120 mL of xylene and heated 

in open for 20 min in a 250 mL round bottom flask. The crude reaction mixture was 

cooled, transferred to a 250 mL conical flask, and stirred overnight with N2 purge to 

remove the solvent. The concentrated reaction mixture was dissolved in 120 mL of 

chloroform, extracted with 3N NaOH (3 × 120 mL) to remove the phenolic impurities 

and finally washed with distilled water (3 × 120 mL). The organic mixture was stirred 

over anhydrous magnesium sulfate and the solvent was removed under reduced pressure 

to afford viscous colorless oil (16.3 g, 62.5%). 1H-NMR (300 MHz, CDCl3): δ (ppm) = 

6.65-6.96 (m, 6H, Ar-H), 3.99 (s, 4H, -N-CH2-O-, Hb), 4.86 (s, 6H, Ar-CH2-N-, Hb), 

3.66-3.72 (t, 8H, -CH2-O-, He and Hf), 3.51 (t, 4H, -CH2-OH, Hg), 3.00 (t, -N-CH2-, Hd), 

1.57 (s, 6H, Ha). 
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Synthesis of methacrylate functional bis-benzoxazine (Bz-Meth). Bz-OH (16.0 g, 

0.03 mol) was dissolved in 110 mL dry dichloromethane under N2 purge and maintained 

at 0 °C. To this solution, triethyl amine (9.0 mL, 0.06mol) was added, followed by a 

drop-wise addition of methacryloyl chloride with continuous stirring. After the addition, 

the reaction mixture was slowly warmed to room temperature and stirred overnight. The 

crude reaction mixture was filtered to remove the white triethylamine hydrochloride salt 

and washed with minimal amount of cold dichloromethane. The mixture was extracted 

with 0.5 N NaOH (3 × 120 mL) to remove the phenolic impurities and unreacted 

methacryloyl chloride, followed by washings with distilled water (3 x 120 mL) and 

finally with brine solution. The mixture was concentrated by distilling off 

dichloromethane under reduced pressure. The concentrated mixture was treated to 

remove the residual salt by re-dissolving the mixture in diethyl ether (120 mL), and 

washed with distilled water (2 × 120 mL), finally with brine solution. The organic extract 

was dried over dry magnesium sulfate, filtered and the solvent was distilled off under 

reduced pressure to afford yellow viscous oil (18.7 g, 90%). The product was dried under 

high vacuum and immediately stored in a deep freezer to avoid premature gelation. A 

0.01 wt% of BHT inhibitor was added before the distillation step to prevent unwanted 

radical-mediated polymerization reaction. 1H-NMR (300 MHz, CDCl3): δ (ppm) = 6.62-

6.93 (m, 6H, Ar-H), 6.10, 5.55 (s, 4H, -CH=CH2, Hh and Hi), 4.83 (s, 4H, -N-CH2-O-, 

Hb), 4.27 (t, 4H, -CH2-O-CO, Hg), 3.98 (s, 6H, Ar-CH2-N-, Hc), 3.64-3.72 (t, 8H, -CH2-

O-, He and Hf), 2.96 (t, -CH2-N-, Hd), 1.92 (s, 6H, CH3-CH=CH2, Hj), 1.55 (s, 6H, -CH3, 

Ha) (Figure C1 in Appendix C). 
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13C-NMR (CDCl3) : δ = 161.11 (2C, -C=O-), 151.83, 142.82, 126.15, 125.68, 

125.29, 119.20, 115.81, 115.75 (12C, Aromatic-C), 136.07 (4C, -CH=CH), 82.68 (2C, -

N-CH2-O-), 69.83 (2C,-O-CH2-CH2), 68.91 (2C, -CH2-CH2-O), 63.70 (2C, -CH2-O-

C=O-), 51.03 (2C, -Ar-CH2-N-), 50.93 (2C, -CH2-N), 41.58 (1C, -C-), 31.00 (6C, -CH3), 

18.28 (6C, -CH3-CH=CH2) (Figure C2 in Appendix C) 

 

Scheme 11. Schematic representation of synthesis of methacrylate functional bis-

benzoxazine monomer (Bz-Meth). 

 

Results and Discussion 

Monomer synthesis 

Scheme 11 shows the overall synthetic scheme for the synthesis of Bz-Meth 

monomer used in this study. The synthesis of Bz-OH was performed in xylene, and the 

reaction conditions (120 °C, 20min) were optimized to achieve best conversion (62%). 

The polarity of the solvent used in benzoxazine synthesis is known to play a crucial role 

in determining the stability and yield of the benzoxazine ring.16 Nonpolar solvents 

including 1,4-dioxane and chloroform favor the oxazine ring formation as compared to 

polar solvents – i.e. water and alcohol – which allow side-reactions and initiate ring-

opening reaction of benzoxazines. Additionally, solvents with low dielectric constant are 
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known to favor the ring-closure and improve the yield of benzoxazine formation.17 

Xylene is a nonpolar solvent with a low dielectric constant, and has been previously 

shown to aid in an efficient synthesis of benzoxazines.18,15  The high boiling point of 

xylene allows improved solubility of the reaction components at high temperature, and 

drives the equilibrium towards ring-closure by removing the water- a chief condensation 

byproduct formed during the reaction. 

Methacrylate functional bis-benzoxazine monomer (Bz-Meth) was synthesized by 

esterification reaction of Bz-OH and methacryloyl chloride using triethyl amine as a base 

catalyst. A two-step extraction process was carried out, first using dichloromethane, 

followed by diethyl ether. Triethylamine hydrochloride salt – a byproduct in the 

esterification reaction – is quite soluble in dichloromethane, but is insoluble in diethyl 

ether. Following the extractions using dichloromethane, the product was concentrated and 

re-dissolved in diethyl ether to remove the residual salt. The structural elucidation of Bz-

OH and Bz-Meth monomers using 1H-NMR analysis (Figure C1 in Appendix C) 

confirmed the formation of the benzoxazine ring with the appearance of the characteristic 

benzoxazine peaks at 4.8 ppm and 3.9 ppm, assigned to protons of –N-CH2-O- and Ar-

CH2-N-, respectively. 

Real-time FTIR kinetics 

In-situ UV cure studies of Bz-Meth:BA compositions were carried out using real-

time FT-IR analysis (RTIR). Figure 32 shows the real-time FT-IR conversion plots of 

compositions of Bz-Meth:BA, and the corresponding data are tabulated in Table 11. The 

photo-curable compositions of Bz-Meth:BA were spin coated on a NaCl plate at 1800 

rpm for 60 s and irradiated with UV light (320-500 nm) using a light intensity of 20 

mW/cm2. The characteristic absorption peak of methacrylate group at 1637 cm-1, 
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corresponding to C=C vinyl double bond stretching was used to determine the 

conversion. The conversion was calculated based on the ratios of the relative areas of the 

peak at time t=0 and at any given time t during the polymerization. The changes in 

benzoxazine ring peak during UV cure was monitored using the characteristic 

benzoxazine peak at 945 cm-1 corresponding to the out-of-plane C-H vibration of benzene 

ring attached to the oxazine ring.  

 

Figure 32. Double-bond (1637 cm-1) conversion plots for Bz-Meth:BA formulations 

containing 3 wt% Irgacure 2020, irradiated with UV light (320-500 nm) for 1800 s using 

a light intensity of 20 mW/cm2 at ambient temperature. 

 

Pure BA exhibited higher extent of conversion (98%) relative to Bz-Meth 

monomer (87%). The copolymerization of BA and Bz-Meth resulted in an increase of 

final extent of conversion with the inclusion of BA mole content. During the early stages 

of polymerization, both the viscosity and the chemical structure have a profound effect on 

the segmental mobility of macro-radicals, affecting the rate of polymerization and final 

extent of conversion before diffusional limitations occur. Bz-Meth monomer represents a 
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bulky, hindered molecule with relatively high viscosity, and the incorporation of butyl 

acrylate co-monomer lowers the viscosity and enhances the polymerization rate before 

the mobility becomes restricted due to network formation. 

The nature of the kinetic plot represents a characteristic chain-growth 

polymerization reaction, exhibiting a rapid increase in polymerization rate at a low 

conversion. Initially, both rates of propagation and termination are chemically controlled. 

In the early stages of polymerization, as the viscosity increases, the mobility of macro-

radicals become restricted, which presents diffusional limitations to the termination 

kinetics (also referred as auto-acceleration effect), and increases the macro-radical 

concentration. During the course of the polymerization, as more cross-links are formed 

and the mobility of radicals continue to decrease; the propagation rate becomes diffusion-

limited (auto-deacceleration). Finally, the maximum rate of polymerization or limiting 

conversion is reached due to vitrification (solidification) and additional crosslinking, and 

the transformation takes place from the rubbery state to glassy state. 

FTIR: Thermal step-cure studies 

 FT-IR spectra of dual-cure of Bz-Meth:BA (50:50) after each stage of thermal 

cure is shown in Figure 33. After UV cure for 30 min, the representative peaks of the 

methacrylate double bond at 1637 cm-1 (in-plane C-H) and 3090 cm-1 (sp2 C-H stretching) 

significantly decreased. The shift in the carbonyl band from 1718 cm-1 to 1720 cm-1 

accompanied with a decrease in intensity after UV cure that suggested the loss of 

conjugation due to the formation of a saturated polymer. The characteristic benzoxazine-

related band at 937 cm-1 showed a decrease in intensity after UV cure (1800 s), indicating 

the occurrence of ring opening of benzoxazine during UV cure. Moreover, the 
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benzoxazine conversion values for the compositions varied from 26-31%, wherein the 

compositions with a higher amount of BA co-monomer presented slightly higher oxazine 

ring-opening (Figure C3 in Appendix C, Table 11). Conventional benzoxazines are 

known to exhibit high UV stability for the timescale used in this study.6  

 

Figure 33. FT-IR spectra of UV and thermal cure of Bz-Meth:BA (50:50) after each cure 

stage of oxidative cure. 

 

Since the RTIR studies were conducted in an inert atmosphere, there was a limited 

possibility for the oxidative degradation to occur, which was confirmed by the absence of 

the main oxidation product at 1655 cm-1 related to the formation of benzoquinone in 

benzoxazines.6 In addition, the absence of a broad band in the range 3400-3600 cm-1, 

corresponding to the stretching vibration of the phenolic hydroxyl peak, excludes the 

possibility of the ring-opening polymerization to take place.  Another possibility is that 

the closed ring is opening in a non-oxidative manner, which could likely form either 

radicals or other intermediate species, participating in the hydrogen abstraction or internal 
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reactions. Also, the exothermic heat from the methacrylate polymerization and the energy 

input from the UV curing light may promote ring opening of benzoxazine.  

The extent of benzoxazine polymerization was monitored using the characteristic 

benzoxazine-related bands at 937 cm-1 (out-of-plane C-H bending vibration) and 1495 

cm-1 (in-plane C-H bending vibration) of the benzene ring attached to the oxazine ring. 

As the cure temperature increased, the characteristic oxazine peaks gradually decreased 

and disappeared at 200 °C, suggesting the consumption of the oxazine ring. 

Correspondingly, a new peak appeared at 1476 cm-1 assigned to the formation of tetra-

substituted benzene ring appeared and a broad peak at 3400-3600 cm-1 assigned to the 

phenolic –OH stretching vibration, indicating the completion of benzoxazine 

polymerization. Beginning at 160 °C, two new bands originated at 1636 cm-1 and 1675 

cm-1 and increased in intensity as a function of cure temperature. The observed bands 

were previously assigned as the carbonyl peaks of the substituted benzoquinones- a major 

oxidation product formed during UV oxidative degradation of bisphenol-A based 

polybenzoxazines.6 

Rheological studies 

In combination with Real-time FTIR, in-situ rheological experiments were 

performed to monitor the cure kinetics of compositions of Bz-Meth:BA co-monomer 

blends. Gel time – an important processing parameter for thermosetting resins – marks 

the transition from viscous liquid to solid state. For this study, the gel point is taken as the 

value of the crossover of storage modulus (G”) and loss modulus (G’), where the loss 

factor no longer depends on the frequency (tan delta = G”/G’=1). Figure 4 describes the 

time evolution behavior of viscous and elastic moduli during the photo-curing of Bz-
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Meth:BA samples containing different amounts of butyl acrylate. The UV irradiation was 

started after 30 seconds of stabilization. During the initial stages of reaction, the elastic 

modulus (G’) was lower than viscous modulus, indicating the sample was still a viscous 

liquid. As the chain-growth polymerization proceeds, both elastic and viscous modulus 

increases with reaction time and eventually a point is reached where the crossover of 

elastic modulus and viscous modulus occurs, beyond which G’ becomes larger than G”. 

After the gelation regime, the modulus reaches a limiting shear modulus plateau 

indicating the formation of a highly cross-linked material. The vitrification occurred 

gradually extending over a wide range of conversion – a trend typically observed in a 

chain-growth systems such as meth(acrylates)/acrylates.  

The initial viscosity, chemical structure, functionality and relative reactivity of the 

co-monomers are all important parameters affecting the overall development of the visco-

elastic properties. As shown in Figure 4, the highest gel time was observed for pure Bz-

Meth system (117.0 s), and can be related to the high viscosity and mobility restrictions 

of a hindered Bz-Meth monomer, which negatively affects the propagation rate during 

the early stages of polymerization. The corresponding gel time of the Bz-Meth:BA blends 

decreased with the inclusion of BA co-monomer, wherein the lowest gel time was 

observed for the intermediate compositions of Bz-Meth:BA at 50 and 65 mol% BA 

concentrations. The presence of Bz-Meth in the co-monomer mixture restricts the 

mobility of reaction species, which significantly decreases the rate of termination during 

the early stages of polymerization. Subsequently, restricted termination allows for an 

enhanced auto-acceleration effect, which facilitates relatively rapid polymerization 

kinetics compared to the pure systems. On the other hand, BA is a non-viscous liquid 
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with a low Tg, and the initial rate of termination is high due to the segmental diffusion of 

monomer molecules, which lowers the rate of propagation. Additionally, the number of 

reactive functional groups in a monomer also affects the extent of network formation and 

the gelation kinetics. Higher functionality of a bifunctional crosslinker Bz-Meth would 

allow faster network formation and attainment of earlier gelation. The relatively lower 

gelation time observed for the intermediate compositions of Bz-Nor:BA (50:50 and 

35:65) can be ascribed to the interplay of higher functionality with an accelerated onset of 

reaction diffusion limited termination kinetics for Bz-Meth, in coherence with the higher 

mobility of propagating radicals facilitated by a more mobile BA. 

Figure 35a and 35b represent the logarithmic time dependence plots of shear 

moduli and complex viscosity during UV curing of Bz-Meth:BA co-monomer mixtures.  

The initial complex viscosity values of the Bz-Meth:BA co-monomer mixtures presented 

a systematic decrease in relative to the addition of BA content. It was inferred from the 

slope of G’ that pure Bz-Meth monomer showed slower reaction kinetics with the 

limiting shear modulus value of 0.8 x 105 Pa. This can be attributed to the retarded 

mobility of propagating chains arising from the high viscosity and diffusional limitations 

during vitrification. The polymerization reactivity of Bz-Meth was improved in the 

presence of BA monomer, where Bz-Meth35:BA65 system exhibited fastest 

polymerization kinetics due to the reasons previously discussed. The limiting shear 

storage modulus showed an initial increase, until it reached a maximum for the Bz-

Meth50:BA50 system, which thereafter decreased because of lower degree of network 

formation based on the lower functionality of BA co-monomer. 
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Figure 34. Plots of G’ and G” vs. UV exposure time of compositions of Bz-Meth:BA 

blends using frequency at 1Hz, strain at 7% and 0.3 mm gap thickness. UV light (0.1 

mW/cm2) was turned on after 30 seconds. 

Table 11  

 

Real-time FT-IR conversion and rheological data of UV cure of Bz-Meth:BA 

compositions 

 

 

Sample 

 Bz-Meth:BA 

   RTIR (%)      

1637 cm-1
 

 

    RTIR (%)        

945 cm-1
 

 

Gel time        

(s) 

Initial complex 

viscosity 

(Pa.s) 

Shear G’  

(105 Pa) 

100:0 87.1 26.6 117.0 11.0 0.8 

75:25   87.4 28.0 38.0 1.07     4.4 

50:50 88.7 29.0 32.0 0.19     4.5 

35:65 90.9 29.2 31.5 0.06     3.9 

25:75 92.4 31.7 37.0 0.02       2.6 
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Figure 35. Comparison plots of a) G’ and b) Complex viscosity vs. cure time for Bz-

Meth:BA samples using frequency at 1 Hz, strain at 7% and 0.3 mm gap thickness. 

 

DSC curing studies 

DSC thermogram of pristine Bz-Meth monomer is depicted in Figure 36, which 

presents two distinct exotherms. The first exotherm occurring at a lower temperature with 

onset at 113 °C and peak maxima at 155 °C can be attributed to thermal self-initiation 

polymerization of methacrylate group, which are known to undergo spontaneous thermal 

polymerization in the absence of extraneous initiating species.19 The higher temperature 

exotherm with the respective onset and peak maxima at 184 °C and 238 °C, can be 

attributed to thermally accelerated ring-opening addition polymerization of benzoxazines. 

The appearance of a shoulder at around 256 °C is a result of early degradation events of 

poly(methacrylate) structure, which is further supported by TGA analysis (Figure 39), 
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described in the following discussion. The analysis of total heat of reaction for the 

benzoxazine polymerization was complicated by the peak overlap with the onset of 

degradation at 256 °C. 

 

Figure 36. DSC thermogram of pristine Bz-Meth resin.    

 

Figure 37. DSC thermal step-cure of Bz-Meth50:BA50 after each curing stage. 
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DSC thermal step-cure studies of Bz-Meth:BA (50:50) are shown in Figure 37. 

With the increase in the cure temperature, the exotherm corresponding to ring-addition 

polymerization of benzoxazines gradually decreased, followed by a significant decrease 

at 180 °C, finally disappearing at 220 °C, thus confirming the completion of 

polymerization. 

Figure 38 shows the effect of co-monomer composition on the thermal-cure 

behavior of UV cured compositions of Bz-Meth:BA. The UV-cured composition of Bz-

Meth exhibited a lower onset of exotherm at 168 °C with peak maxima at 233 °C and a 

shoulder at a higher temperature. The lower onset of exotherm can be attributed to the 

thermal self-addition polymerization of residual methacrylate groups from the previous 

UV stage cure. The appearance of a shoulder at a higher temperature arises from the early 

degradation of structures of poly(methacrylate) and polybenzoxazines occurring in the 

range 250-300 °C, wherein the intensity decreases with the inclusion of BA, as evidenced 

from TGA analysis (Figure 39). A systematic increase in both onset and peak of 

exotherm was observed in relative to the BA mole content. One of the reasons for the 

observed shift can be related to the increase in the extent of methacrylate polymerization, 

which is facilitated by the inclusion of low viscous and more mobile BA, as previously 

inferred from RTIR and rheological studies. Expectedly, the resulting rigidity in the 

surrounding environment incurred by the primary poly(methacrylate) cross-links shifts 

the second exotherm to a higher temperature.  
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Figure 38. DSC thermal-cure analysis of UV cured Bz-pMeth:BA compositions. 

TGA Analysis 

 

TGA degradation profile of fully cured compositions of Bz-Meth:BA are shown 

in Figure 39, and the corresponding thermal data are summarized in Table 12. The initial 

degradation temperatures (T5% and T10%) decreased in direct proportion to the butyl 

acrylate mole percentage in the co-monomer network. This trend could be attributed to 

different degradation mechanisms of polymer backbones involving poly(methacrylate), 

poly(butyl acrylate) and polybenzoxazine, which would vary depending upon the 

composition of the copolymer. The degradation mechanisms of poly(methyl 

methacrylate) and poly(butyl acrylate) have been extensively documented in literature, 

where poly( methyl methacrylate) degrades through a two-step mechanism involving 

random chain-scission and main-chain scission,20 and thermal degradation of poly(butyl 

acrylate) occurs predominantly via a one-step mechanism - random-chain scission.21  
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Table 12  

Thermal stability data of dual cured compositions of Bz-Meth:BA and pristine Bz-Meth 

p(Bz-pMeth:BA) T2% (°C)a T5% (°C)b T10% (°C)c Char Yield (800 °C) 

100:0 272 292 318 20.9 

75:25 268 298 317 20.6 

50:50 272 303 328 19.9 

35:65 272 311 336 18.3 

25:75 273 318 353 17.5 

p(Bz-Meth) 269 296 329 20.2 

a Temperature at which 2% weight loss occurs; b Temperature at which 5% 

weight loss occurs; c Temperature at which 10% weight loss occurs. 

 

In case of bisphenol-A based polybenzoxazines derived from aliphatic amines, the 

early degradation is known to occur by Mannich base cleavage in the range of 260-300 

°C.22 Therefore, the increasing BA amount in the copolymer offsets the occurrence of 

early degradation events of poly(methacrylate) (chain-scission event) and that of 

polybenzoxazines, thereby enhancing thermal stability of the co-polymer network. 

Another possible reason is that the increasing BA content in the blends permits higher 

conversion during UV curing of Bz-Meth (Figure 32), thereby reducing the amount of 

unreacted monomer and loose dangling chain-ends that are often responsible for early 

degradation. The char yield of the thermosets showed a relative decrease with the rise in 

BA mole content, and can be attributed to the incorporation of relatively less stable 

aliphatic crosslinks and reduction in rigidity. 

Degradation profile of the fully cured compositions of Bz-Meth:BA in Figure 

39b, showed a two-step degradation event. The first-stage degradation event around 250-

350 °C corresponds to volatile loss of amine arising from Mannich base cleavage, which 

is known to be the initial degradation step during polybenzoxazine degradation. 
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Additionally, this temperature range has also been previously assigned to the degradation 

of poly(methyl methacrylate) in literature.20 The intensity of first stage degradation 

declined with the incorporation of p(BA) backbone for the reasons previously been 

discussed. The second stage corresponds to the main-stage degradation occurring around 

400-600 °C, which can be attributed to the degradation of main-chain polymer chains and 

different substituted phenolic units.  

 
 

Figure 39. TGA degradation profiles and b) derivatives of all compositions of dual cured 

hybrid network p(Bz-pMeth:BA) and pristine p(Bz-Meth). 
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DMA Analysis 

Thermo-mechanical properties of both UV cured and fully cured compositions of 

Bz-Meth:BA were evaluated as shown in Figure 40, and the corresponding thermo-

mechanical data are tabulated in Table 13. The storage modulus measures the ability of 

material to store energy, and relates to the stiffness of the material. The storage modulus 

for all the compositions showed a gradual decrease over a wide range of temperature in 

correspondence with their glass transition temperatures. The effect of co-monomer 

composition on glassy storage modulus demonstrated an initial increase until Bz-

Meth50:BA50 (2.8 GPa), which then reduced with further rise in BA mole content. The 

observed trend can be very well correlated with the rheological measurements, wherein 

the highest limiting shear modulus value was obtained for Bz-Meth50:BA50, attributed to 

the balanced effect of higher functionality of Bz-Meth and greater mobility of BA co-

monomer leading to an increase in the overall conversion and degree of network 

formation. 

The glass transition temperature, measured as the peak of tan δ peak and 

heterogeneity, taken as the breadth of the tan δ were studied. For all compositions, a 

single Tg was observed, indicating the presence of a homogenous amorphous phase, 

which is typical for random co-polymers. The dependence of glass transition temperature 

on the co-monomer composition was observed as the glass transition temperature 

exhibited a systematic decrease in direct proportion to the BA mole content. The Fox 

equation is a simplistic empirical model used to predict the glass transition temperatures 

in random or statistical co-polymer mixtures, involving little or no specific interactions.23 
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The Tg of a pure p(Bz-Meth) was measured as 104.7 °C and the Tg for p(BA) was taken 

as -55.0 °C, previously reported in literature.24 

The Tg’s of the co-monomer mixtures were calculated based on the following Fox 

equation23 and compared with the experimental values, tabulated in Table 13. 

1/Tg = w1/Tg1 + w2/Tg2 

where Tg1 and Tg2 are the glass transition temperatures of p(Bz-Meth) and p(BA), 

respectively (both in Kelvin), and w1 and w2 are the corresponding weight fractions. All 

co-monomers presented lower theoretical values compared to experimental Tg’s, except 

for Bz-Meth75:BA25 system, which showed a higher glass transition temperature. 

Moreover, there were inconsistent differences in the glass transition temperatures across 

the compositions. Glass transition temperature of a cross-linked polymer is affected by 

numerous parameters including the extent of crosslinking and conversion, chemical 

structure of cross-links, presence of inter- and intra- molecular interactions, amount of 

dangling-chain ends, and co-monomer sequence distribution. The discrepancy in the Tg 

values can be attributed to the different chemical structures of the co-monomers and the 

sequence distribution of the monomer units, and their effect on the mobility of the 

polymer chain, which was not accounted by Fox equation.25 The peak and width of tan 

delta denotes the sound and vibration damping characteristics of the material. In terms of 

peak height, the highest tan δ peak value was obtained for the pure Bz-Meth system, 

which after a first initial decrease for 25 mol% BA remained constant for all other 

compositions. This suggests that the degree of crosslinking of Bz-Meth system is 

elevated with the inclusion of a more mobile BA component, which aids in overcoming 

the diffusional limitations of Bz-Meth and achieving higher final extent of conversion.  
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Figure 40. DMA plots of time dependence of a) storage modulus b) tan delta of UV-

cured compositions of Bz-Meth:BA. 

The full width at half height (FWHH) of the tan delta peak broadened until Bz-

Meth50:BA50 composition and decreased thereafter with the addition of BA. The observed 

glass transition broadening can be related to the structural heterogeneity of the network.26 

The glass transition temperature of a pure p(Bz-Meth) and p(BA) are 104.7 °C and -54 

°C respectively. The composition dependence of the tan δ peak is perceived as a common 

indicator to establish miscibility in the co-monomers.27 The glass transition temperatures 

of the Bz-Meth:BA compositions showed single main-chain relaxation processes 

spanning between the effective Tg’s of the pure components, indicating miscibility in the 

co-monomers. The transition peak broadening can be related to the existence of a broad 

spectrum of glass transition temperatures in the material.  
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Table 13  

Thermo-mechanical data of UV cured and dually cured compositions of Bz-Meth:BA 

 

The high level of heterogeneity in dimethacrylate network stems from the complex nature 

of radical-mediated chain-growth crosslinking polymerization, which has been studied to 

occur by the formation of high Tg micro-gel clusters during the initial stages of 

polymerization, co-existing with micro-gels of a lower Tg.
29-31 The presence of a small 

low-temperature shoulder of the loss tangent maximum could be a result of juxtaposition 

of the relaxation processes corresponding to the components with high and low 

crosslinking density that are responsible for the high and low temperature transitions, 

respectively.32 Additionally, the low-temperature transitions (-50-40 °C) could be related 

to the β-relaxation processes of poly(methacrylate) structure due to the hindered side-

chain motion of carboxyl side groups around the C-C bond connecting the side groups to 

Only UV 

Bz-pMeth:BA 

1Tgexp 

(oC) 

2Tgtheo 

(oC) 

 

  E’ at 25 oC   

[MPa] 

  FWHH 

  (oC) 

E’ at  

Tg+40 oC 

[MPa] 

3ve  

  (mol/cm3) 

100:0 104.7 104.7 2653 41.5 55 5.90×10-3 

75:25 77.5 86.7 2706 48.1 50 5.80×10-3 

50:50 70.6 63.5 2802 51.2 49 5.77×10-3 

35:65 60.6 41.2 1995 47.2 36 5.31×10-3 

25:75 39.5 23.3 924 41.9 29 4.99×10-3 

UV+Thermal 

p(Bz-pMeth:BA) 

Tg 

(oC) 

 E’ at 25 oC 

[MPa] 

   FWHH 

(oC) 

E’ at 175 oC 

[MPa] 

 

p(Bz-Meth) 177.0 2470 64.5 303 - 

100:0 183.8 4618 100.4 368 - 

75:25 172.1 5789 129.2 252 - 

50:50 163.0 4000 133.4 199 - 

35:65 152.3 2000 144.3 146 7.10×10-3 

25:75 120.0 1833 119.4 93 6.84×10-3 
1 Experimental Tg value; 2 Theoretical Tg by Fox equation; The Tg of poly(butyl 

acrylate) homopolymer was taken as -54 oC.3 Values calculated using Nielson 

equation.28 
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the main-chain backbone, and which is comparable to that of pure PMMA backbone of 

similar nature.33 

All compositions exhibited a stable rubbery plateau regime, suggesting the fact 

that the maximum cure conversion is attained, despite the presence of residual amount of 

unreacted monomers. The cross-link density of Bz-pMeth:BA materials were estimated 

using the following Nielson equation26, 34, designed for highly cross-linked materials. 

Log Ge = 7 + 293 (/Mc) 

where, Ge (dyne/cm2) - storage modulus in the rubbery plateau regime at Tg+40 °C,  -

density of the material at room temperature (g/cm3), Mc- molecular weight between the 

crosslinks (g/mole) and ve = /Mc - crosslinking density (mol/cm3). The cross-linking 

density for all the compositions presented a systematic reduction with the increase of BA 

mole content, which was in direct coherence with the trend observed for glass transition 

temperatures. Glass transition temperature of a polymeric material can be related to its 

crosslinking density, where an increase in the crosslinking density results in tighter 

packing and restricts the segmental motion of the polymer chains, thereby increasing the 

glass transition temperature. 

Figure 41 shows the temperature dependence plots of storage modulus and tan 

delta of fully cured compositions of Bz-Meth:BA. A storage modulus of around 2.47 GPa 

was observed for the thermally cured pristine p(Bz-Meth), this value was close to that 

observed for most of the commonly studied polybenzoxazines, B-a (2.2 GPa).35 The 

storage modulus values for all the dual-cured compositions (1.84.6 GPa) were relatively 

higher than their corresponding UV cured network, which is expected as a result of 

combined rigidity imposed by the polymethacrylate and polybenzoxazines crosslinks. 
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The glass transition temperatures of the fully cured specimens presented similar 

trend as that of primary UV cured network, and decreased linearly upon addition of BA. 

Additionally, for all the compositions including the pristine p(Bz-Meth) network, a broad 

transition (4090 °C) centered at ca. 70 °C presenting a partial overlap with the main-

chain α-relaxation peak appeared. This range appears to be very close to the β-transition 

zone observed for a wide variety of bisphenol and diamine-based polybenzoxazines,36 

and is associated with the movement within Mannich bridge. Furthermore, the position of 

β-relaxation peak relatively shifted to a lower temperature with the incorporation of 

p(BA) segments. It can be postulated that the relative increase in chain flexibility with the 

addition of BA enhances the short-chain motion of the atoms associated with the 

Mannich bridge, and shifts the secondary tan delta peak to a lower temperature. 

Low temperature shift of the β-relaxation peak was a result of higher degree of flexibility 

with the inclusion of flexible p(BA) segments.  

The height and area of tan δ peak is associated with the degree of crosslinking.37 

A depression in the damping peak with the incorporation of BA, suggested a relative 

increase in the degree of crosslinking, which can be ascribed to increased mobility and 

the offset of degradation process affecting the extent of benzoxazine polymerization, as 

previously suggested by DSC and TGA analysis. The magnitude of the tan δ peak for the 

fully cured specimens were lower than that of UV cured network, suggesting higher 

crosslink density. Similar to UV cured network, the peak width at half height at the α-

transition broadened with the incorporation of BA, which is a result of increased network 

heterogeneity in the co-monomer mixture. In comparison to the blends, the pristine Bz-

Meth showed relatively a sharper damping behavior. Polybenzoxazines are known to 
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exhibit low crosslinking density, yet possess a high glass transition temperature resulting 

in a sharper damping peak.35 

                                         
 

Figure 41. DMA plots of time dependence of a) storage modulus b) Tan delta of dually 

cured (UV + thermal) compositions of Bz-Meth:BA. 

 

The crosslinking densities were calculated from the storage modulus in the 

rubbery plateau regime using the Nielson equation, as described above. Analysis of 

crosslink densities for the dual-cured compositions of Bz-Meth:BA were complicated by 

thermal degradation immediately following the glass transition temperature. These results 

can be correlated with the DSC and TGA studies, which showed that the extent of 

benzoxazine polymerization was interrupted due to the immediate overlap of the early 

degradation process. On the basis of lower glass transition temperature and higher onset 

of degradation temperatures, the Bz-Meth35-BA65 and Bz-Meth25-BA75 systems showed 
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relatively stable rubbery plateau regime. The calculated crosslinking densities of Bz-

Meth35:BA65 (7.10 × 10-3 mol/cm3) and Bz-Meth25:BA75 (6.84 × 10-3 mol/cm3) were 

relatively higher compared to their corresponding UV cured network (Table 13). 

Conclusions 

Sequentially addressable hybrid polybenzoxazine networks were developed 

involving UV photopolymerization of meth(acrylates), followed by thermally activated 

polymerization of benzoxazines. Butyl acrylate (BA) was used as a reactive diluent in 

UV polymerization of methacrylate functional benzoxazine (Bz-Meth). Structure-

property relationships of the formation of hybrid networks were established by relating 

the effect of co-monomer composition with the time evolution of visco-elastic properties, 

nature of cure exotherm and thermo-mechanical properties. 

UV cure kinetics of Bz-Meth:BA blends showed faster and superior development 

of visco-elastic properties with the inclusion of BA diluent. The lower viscosity and 

higher mobility of the propagating radicals prior to the vitrification stage with the 

subsequent delayed vitrification led to the attainment of higher final extent of conversion. 

The highest limiting shear storage modulus value was obtained for equal weight mixtures 

of Bz-Meth and BA, which was a result of the superior network formation with faster 

diffusion-controlled termination kinetics in Bz-Meth in combination with higher extent of 

polymerization due to the presence of a more mobile BA. The progressive addition of BA 

diluent reduced the viscosity of the Bz-Meth monomer, rendering them highly 

processable. The initial degradation stability of the fully cured networks was improved 

with the addition of BA because of the absence of early degradation processes in p(BA) 

as compared to poly(methylacrylate) and polybenzoxazine structures. On the other hand, 
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the char yield of the hybrid networks systematically reduced with the BA mole content 

because of the reduction in aromatic content and degree of rigidity with the inclusion of 

relatively less stable aliphatic crosslinks. The glass transition temperatures and 

crosslinking densities of UV cured compositions of Bz-Meth:BA showed a systematic 

reduction in relative to the BA content, indicating enhanced flexibility. Likewise, the 

glass transition temperatures of the dually cured networks reduced with the incorporation 

of BA content. 

The dual-cure methodology offers an ease of handling of the otherwise brittle 

polybenzoxazine films via the formation of stable, moldable intermediate networks prior 

to the full final cure. Moreover, the sequential of network synthesis allowed systematic 

study of network formation and properties of the individual polymer networks. Future 

studies will be directed towards utilizing a library of structurally distinct 

acrylate/methacrylate monomers to target a broad range of tailorable material properties, 

and establish a strong fundamental understanding of structure-processing-property 

relationships. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

In this dissertation, dual-cure hybrid polybenzoxazine thermosets have been 

developed with an aim to improve the processability and showcase a broad range of 

tailorable material properties attainable within the same system. The versatility of the 

work has been demonstrated with the study of different orthogonal cure chemistries in 

combination with thermally activated polymerization of benzoxazines, These cure 

chemistries included - rapid UV curable thiol-ene click chemistry, thermally curable ring-

opening metathesis polymerization of norbornene, and free radical photo-polymerization 

of meth(acrylate) functionalities. A strong fundamental understanding of structure-

property relationships with respect to network structure, kinetics, processing control and 

material properties of the hybrid networks was evaluated.  

In the first study, orthogonal UV mediated thiol-click and thermally activated 

benzoxazine chemistries were combined to develop sequentially processable network. 

Less than quantitative conversion of thiol and allyl functional groups was achieved 

during the radical-mediated thiol-ene photopolymerization as a result of competing 

nucleophilic ring-opening thiol-benzoxazine reaction with the radical-mediated thiol-ene 

reaction. These competing reactions ultimately yield a heterogeneous polymer network 

following the sequential thermal ring-opening polymerization the benzoxazines.  

Nonetheless, thermomechanical analysis of the hybrid networks showed the achievement 

of a high glass transition temperature (150 °C); one of the highest glass transitions 

reported to date for a thiol-ene based material.  The hybrid polymer network exhibited 
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good thermal stability and could easily be processed into thin films by spin-coating the 

resin prior to the photopolymerization and thermal cure process. 

Future work in the first study will be based on investigating mechanical properties 

of the hybrid network, and quantitatively evaluate the relative effect of intermediate 

network formation on the cure kinetics of benzoxazine polymerization. Future area of 

interest will focus on establishing optimum conditions for reducing the occurrence of the 

competing thiol reactions, which will lead to more well-defined polymer networks with 

tunable thermal and mechanical properties. In this direction, structure-property 

relationship will be studied by taking into account various parameters, including the 

choice of thiols and enes monomers with different chemical structure, reactivity, acidity 

and functionality, and curing conditions – cure time and temperature, source of trigger, 

light intensity type and concentration of the initiator. 

In the second study, dual cross-linked hybrid networks were synthesized by 

combining two independent curing mechanisms – thermally induced ROMP 

polymerization (25 oC to 180 oC) followed by ring opening addition polymerization of 

benzoxazines. Benzoxazine containing bisfunctional norbornene cross-linker (Nor-BZO) 

was synthesized and blended separately with two different reactive comonomers – 5-

ethylidene-2-norbornene (ENB) and dicyclopentadiene (DCPD) at varying 

concentrations. The addition of DCPD and ENB exhibited an accelerating effect on the 

viscoelastic properties of blends, among which ENB-based systems showed faster 

gelation kinetics due to the low viscosity and high reactivity of ENB co-monomer. The 

onset and peak of exotherm of ROMP curing of Bz-Nor:DCP and Bz-Nor:ENB blends 

were shifted to a lower temperature in relative to the rise in DCPD and ENB content, 
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respectively. Albeit the flammability characteristics (char yield) of the dual cross-linked 

hybrid thermosets were lowered compared to that of the pristine p(Bz-Nor) due to 

reduction in aromatic content, a systematic increment in the initial weight loss 

temperatures was observed with increasing DCPD/ENB content. Dual-cure networks 

based on ENB-based blends showed higher initial degradation temperatures and lower 

char yield than that of DCPD-based blends. The incorporation of lesser rigid 

cycloaliphatic crosslinks of DCPD exhibited a relative decrease in stiffness and glass 

transition temperatures in addition to the enhancement of the thermal stability of rubbery 

plateau modulus. For ENB-based systems, a systematic reduction in stiffness was 

observed in direct proportion to the ENB content, while on the other hand the glass 

transition temperatures increased, and was relatively higher than that of DCPD-based 

networks.  

Future work in the second study will be geared towards quantifying cure kinetics 

using in-situ thermal FT-IR studies to logistically establish relationship between 

conversion based on cure time, cure temperature, catalyst concentration and network 

properties. Studies will be targeted towards optimizing the catalyst concentrations for 

different reactive blends to achieve the desired combination of rapid kinetics/conversion 

and superior thermo-mechanical properties. Future area of interest will be to synthesize a 

series of flexible norbornene functional benzoxazine monomers comprising of different 

core and side-chain length spacers for targeting low-temperature ROMP polymerization 

with enhanced ROMP reactivity, and establish controlled/sequential network synthesis. 

In the third study, sequentially addressable hybrid polybenzoxazine networks 

were developed involving UV photopolymerization of meth(acrylates), followed by 
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thermally activated polymerization of benzoxazines. The progressive addition of BA 

diluent reduced the viscosity of the Bz-Meth monomer, rendering them highly 

processable. The gelation and vitrification kinetics of the co-monomer mixtures were 

enhanced with the inclusion of BA diluent. The highest limiting shear storage modulus 

value was obtained for equal weight mixtures of Bz-Meth and BA, which was a result of 

the superior network formation with faster diffusion-controlled termination kinetics in 

Bz-Meth in combination with higher extent of polymerization due to the presence of a 

more mobile BA. The initial degradation stability of the fully cured networks was 

improved with the addition of BA, while the char yield of the hybrid networks showed a 

systematic decrease with the BA mole content. The glass transition temperatures of UV 

cured and dually cured compositions of Bz-Meth:BA showed a systematic reduction in 

relative to the BA content, indicating enhanced flexibility. 

Future work in the third study will be directed towards investigating the 

mechanical and shrinkage stress properties, and quantitatively examine the cure kinetics 

to determine the relative effect of network formation of the primary UV-cured network 

on the extent of benzoxazine polymerization. Future area of interest will be towards 

exploring a broad range of acrylate/methacrylate monomers with varying chemical 

structure, viscosity and functionality with an aim to achieve a broad array of material 

properties. 

The application of dual-cure hybrid methodology in polybenzoxazines could be 

considered as a promising solution in overcoming the limitations of polybenzoxazines 

with an access to a broad array of improved and tailorable material properties. The 

simplistic synthetic methodologies and rich molecular design flexibility lay a strong 
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foundation for future developments with the creation of improved and novel 

polybenzoxazine materials for a variety of applications. Tremendous opportunities exist 

for long-term exploration of our work. Future area of interest is to develop dual-cure 

hybrid thermosets combining supramolecular reversible crosslinks and covalently 

crosslinked polybenzoxazines. Supramolecular polymers based on hydrogen bonding and 

metal-ligand interactions rely on weak and reversible non-covalent interactions, and thus 

allow a macroscopic response from change in network architecture using a variety of 

stimuli (temperature, light, pH, solvent, concentration etc.). Thus, the incorporation of 

reversible crosslinks within the thermosetting matrix will provide an access to a broad 

range of unique features including recyclability, stimuli responsiveness, self-healing 

ability and improved processing. 

Overall, this approach could yield fundamentally different network structures, 

polymerization kinetics, thermo-mechanical properties, and processing control from 

benzoxazines. From the practical standpoint, this information would provide a platform 

to develop tailor made solutions for specific end-use applications in the areas of coatings, 

adhesives, sealants and high performance composites, 
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APPENDIX A 

 

HYBRID DUAL-CURE POLYMER NETWORKS VIA SEQUENTIAL THIOL-ENE 

PHOTOPOLYMERIZATION AND THERMAL RING-OPENING 

POLYMERIZATION OF BENZOXAZINES 

Synthesis of allyl based bis-benzoxazine (B-allyl) 

In a 100 mL round bottom flask , were added a mixture of bisphenol-A ( 5.0 g, 

0.02 mol ) , allyl amine (2.5 g, 0.04 mol) and paraformaldehyde ( 2.6 g , 0.08 mol ) 

poured into 44 mL of xylene ( 4 mL per gram of reactant). The solution was heated to 

120 o C and maintained for 40 minutes with continuous stirring. The reaction mixture was 

cooled to room temperature and stirred over basic alumina for 15 minutes. The reaction 

mixture was then poured into a 100 ml round bottom flask and heated at 150 o C for 10 

minutes and an excess of 0.4 g of paraformaldehyde was added with stirring and heating 

was continued for another 30 minutes. After cooling to room temperature, xylene was 

removed by distillation under reduced pressure. The crude product was dissolved in 

diethyl ether ( 25 mL ), extracted with 3N NaOH ( 3 × 25 mL ) to remove phenolic 

impurities, followed by washing with distilled water ( 3 × 25 mL ). The solution was 

dried over anhydrous MgSO4, filtered and diethyl ether was distilled out to yield a pale 

yellow viscous liquid. (2.5 g, 30 %).  

1H-NMR (300 MHz, CDCl3, ppm): δ = 1.58 (s , -CH3), 4.83 ( s, -O-CH2-N-), 3.94 

( s, Ar-CH2-N), 3.39 (d, -CH2-), 5.26 ( m, =CH2), 5.96 ( m, -CH=), 6.66 - 6.94 ( m, 

aromatic CH). 

13C-NMR (CDCl3, ppm, δ):  81.87 (-O-CH2-N-), 54.54 (-N-CH2-Ar ), 41.68 (-

CH2-, allyl), 115.74 ( =CH2, allyl), 135.04 (-CH=, allyl). 
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Figure A1. 1H-NMR spectrum of allyl based bis-benzoxazine (B-allyl). 

 

 

Figure A2. 13C-NMR spectra of allyl based bis-benzoxazine (B-allyl). 
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Figure A3. Real-time FTIR conversion plots using aniline based bis-benzoxazine exposed 

to UV radiation (36.0 mW/cm2) at room temperature. Model studies were carried out 

using commercially available aniline based bis benzoxazine (Huntsman Araldite MT-

35600) and glycol di-(3-mercaptopropionate) to understand the nature of benzoxazine 

ring-opening in the presence of thiol. Real-time FTIR kinetic studies were conducted 

under similar conditions to show that even in the absence of an alkene functional group, 

conversion of both thiol and benzoxazine ring (945 cm-1) are still observed during the UV 

exposure. 

 

 

Figure A4.  Photograph illustrating the ability to spin coat the liquid resins into thin films 

prior to sequential UV and thermal cure.  The UV cure was carried out at room 

temperature for 20 min (365 nm, 36 mW/cm2).  The thermal cure was carried out at 180 
oC in an air circulated oven for 3 h.  The resin darkens towards a brownish-red color with 

increasing temperature. 
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APPENDIX B 

 

DEVEOPMENT OF DUAL-CURE HYBRID COVALENTLY CROSSLINKED 

NETWORKS OF POLYNORBORNENE AND POLYBENZOXAZINE 

 
 

Figure B1. 1H-NMR spectra of exo- and endo- mixtures of 5-norbornene-2-carbonitrile. 

 

 
 

Figure B2. 13C-NMR spectra of Bz-Nor monomer. 
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Figure B3. FT-IR spectra of Bz-Nor monomer resin. 

 

 
 

Figure B4. TGA profile of ROMP cured p(ENB) and p(DCPD) using Grubbs 3rd 

generation catalyst. 
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Figure B5. FT-IR spectra of DCPD monomer and p(DCPD) cured at 170 °C for 1h using 

Grubbs 3rd generation catalyst. 

 

FT-IR, DCPD (KBr, cm-1): 677-726 (out-of-plane =CH bending), 3010-3050 (sp2 

=C-H stretching), 2850-2930 (CH2, sp3 C-H stretching), 1340-1440 (=C-H bending) 

FT-IR, pDCPD (KBr, cm-1): 974 (out-of-plane trans C-H bending). 
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APPENDIX C 

TUNABLE NETWORK PROPERTIES BASED ON DUAL-CURE HYBRID 

POLY(METHACRYLATE) AND POLYBENZOXAZINE NETWORKS 

 

Figure C1. 1H-NMR spectra of Bz-OH and Bz-Meth. 
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Figure C2. 13C-NMR spectra of Bz-Meth monomer. 

 

Figure C3. Double-bond (1637 cm-1) conversion plots for Bz-Meth:BA formulations 

containing 2 wt% Irgacure 2020, irradiated with UV light (320-500 nm) for 1800 s using 

a light intensity of 20 mW/cm2 at ambient temperature. 
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Figure C4. Real-time FTIR plots monitoring changes in the 937 cm-1 oxazine peak during 

UV curing of Bz-Meth:BA compositions using 3 wt% Irgacure 2020. 

 

 

Figure C5. FT-IR spectra of thermally activated polymerization of Bz-Meth50:BA50 after 

each stage of thermal step-cure under air atmosphere. 
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Figure C6. FT-IR spectra of thermally activated polymerization of pristine Bz-Meth resin 

after each stage of thermal step-cure under air atmosphere. 
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