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ABSTRACT 
 

IN SITU QUENCHING AND POST-POLYMERIZATION MODIFICATION OF  
 

TELECHELIC POLYISOBUTYLENE 
 

by Todd Raymond Hartlage 
 

August 2013 
 

 Polyisobutylene (PIB) is a saturated hydrocarbon elastomer that can only be 

produced by cationic polymerization.  The water-initiated, chain transfer controlled 

synthesis conducted on an industrial scale produces monofunctional PIB with mixed 

olefin end groups.  Living cationic techniques produce mono- and di-functional telechelic 

PIB.  In situ quenching is the process of adding functional molecules to the 

polymerization reactor after all monomer is consumed.  These quencher species bond to 

the chain ends, installing their latent functionality onto the polymer chain.  To date, all 

quenchers utilized have been soft π-nucleophiles.   

In the first project, free thiols, both aromatic and aliphatic, are shown to be 

effective quenchers of living PIB.  These soft nucleophiles lack π electrons, but are 

sufficiently nucleophilic to directly attack a carbocation in an SN1 reaction and form 

sulfide bonds with the polymer chain.  By utilizing functional thiols, functional PIBs can 

be produced directly from the polymerization reactor, with no post-polymerization 

modification. 

 The second project utilized an established alkoxybenzene quencher, 

3-bromopropoxy benzene, to produce bromine-terminated PIB.  This material was then 

reacted with several functionalized carboxylates to displace the terminal bromine unit and 

produce PIBs with acrylate, methacrylate, and hydroxyl end groups.   

ii 



 
 

 The fourth chapter used two approaches to generate hydroxyl-terminated PIB.  

The first used an in situ quenching/deblocking sequence with living PIB to produce 

phenol-terminated PIB.  The second used exo-olefin PIB in a radical thiol-ene reaction 

with 2-mercaptoethanol to produce aliphatic hydroxyl-terminated PIB.  These functional 

PIBs are reacted with acid halides to produce telechelic PIB-based macromers and 

macroinitiators for radical copolymerizations.  
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CHAPTER I 

INTRODUCTION 

Historical Development 

 Polyisobutylene (PIB) is the product of chain polymerization of isobutylene (IB), 

an olefinic hydrocarbon.  PIB can only be produced by cationic polymerization.  Pure 

PIB, when below a molecular weight of approximately 100,000 g mol-1, is a perpetually 

tacky, clear and colorless viscous liquid or semi-solid; above that value, PIB forms a 

solid elastomeric species.1  In industrial literature, the term polybutenes generally refers 

to polymers of less than 10,000 g mol-1 produced from raw C4 streams which contain 

~15-30% isobutylene, with the balance being other olefins and alkanes such as butane 

and n-butene.  Such materials are used as adhesives, caulking, or vibration dampeners.1,2  

Polymers produced by the cationic polymerization of pure isobutylene are rightly termed 

polyisobutylenes, regardless of molecular weight;1 although polybutenes is often used in 

place of polyisobutylenes in the older literature.  Synthesis and chemical modification of 

polyisobutylene is the focus of this dissertation.  

Isobutylene was first acquired via distillation from animal fat by Michael Faraday 

in 1825.1  The first isobutylene oligomers, produced at room temperature and catalyzed 

by BF3, were reported by Butlerov and Gorianov in 1873.3  However, true PIB polymers 

were unknown until German scientists Otto and Müller-Cunradi, working at IG 

Farbenindustrie AG (dissolved by the Allies in 1951, now BASF), were issued a patent 

for producing high molecular weight PIB at temperatures below -10 ºC with boron 

trifluoride (BF3).4 The highest molecular weights were achieved at -100 ºC using BF3 

dissolved in liquid ethylene.5  Otto was brought to the Standard Oil Development 

Company (now Exxon) facility in Lindon, New Jersey in 1933 as a result of an agreement 



2 
 

between IG Farben and Standard Oil.  There, Otto worked with R.M. Thomas and W.J. 

Sparks to synthesize PIBs with MWs of nearly 3 x 106 g mol-1 using the 

isobutylene/ethylene/BF3 system.1,6  These saturated hydrocarbon polymers lacked the 

olefinic groups necessary for vulcanization, but were nonetheless commercialized under 

the names Oppanol® (IG Farben/BASF) and Vistanex® (Standard Oil/Exxon) to 

improve oxidation resistance in blends with natural rubber.7,8 

Being incapable of vulcanization severely hindered the utility of those first 

commercial PIBs.  However, in 1937, Thomas and Sparks copolymerized IB with 

butadiene using aluminum chloride (AlCl3) in methyl chloride (MeCl) to create an 

elastomeric rubber.1  They later substituted butadiene for isoprene to produce the first 

butyl rubber,9 a vulcanizable material highly resistant to oxidation and ideally suited for 

making the inner tubes of tires.1,7  While their butyl rubber patent was not granted until 

1944, larger events caused butyl rubber to be rapidly commercialized, namely the 

conquest of the natural rubber plantations in British Malaya and the Dutch East Indies 

(now Malaysia and Indonesia, respectively) by Imperial Japan in the early phases of the 

Pacific War (December 1941-May 1942).10  Under the direction of the Rubber Reserve 

Company, a consortium of rubber companies established by President Franklin D. 

Roosevelt for the purpose of finding synthetic alternatives to natural rubber supplies, 

butyl rubber plants were built in Baton Rouge, Louisiana and Baytown, Texas, with the 

Baton Rouge facility coming online in 1943.1,11  Butyl rubber, designated GR-I 

(Government Rubber – Isobutylene, now abbreviated internationally as IIR) joined GR-5, 

a styrene-butadiene rubber also introduced to combat the rubber shortage, and proved 

instrumental in producing the materiel necessary to win the conflict.8,12   
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Modern polyisobutylenes, including butyl rubber copolymers, are produced from 

isobutylene purified from mixed C4 streams by absorption into sulfuric acid.13,14  

Industrially, BF3 (with water as a cocatalyst) and AlCl3 are the primary Lewis acids used 

to produce polyisobutylenes.  Processes using AlCl3 are run using methyl chloride as a 

diluent at temperatures as low as -100 ºC.1,8,15  In butyl rubber synthesis, 1.5-4.5 vol. % 

isoprene is utilized in the reaction.15  At these temperatures, polymerization occurs in less 

than a second.  BF3 processes utilize isobutane solvent at -10 ºC.11 

As mentioned earlier, PIB can only be produced via cationic polymerization.  This 

class of reactions has a long developmental lineage, beginning with Bishop R. Watson’s 

treatment of turpentine with sulfuric acid in 178916 and Deville’s polymerization of 

styrene with tin tetrachloride (SnCl4) in 1839.17  Whitmore first put forth the idea that the 

reaction of an olefin and a strong acid involved an electron deficient, sp2-hybridized 

carbon atom then called a carbonium ion, later revised to carbenium ion based on work 

by Olah,18 and now more commonly called a carbocation (C+).19  Such a reaction with 

isobutylene is shown in Figure 1.  

 

Figure 1.  Addition of a proton to isobutylene.  

 However, this general scheme using a simple strong acid such as HCl does not 

produce high molecular weight polymers.  The chloride anion is too nucleophilic toward 

a carbocation and rapidly bonds (collapses) to form the alkyl halide. The Lewis acids 

mentioned previously, when reacted with a proton donor such as water or a hydrogen 

halide, produce sufficiently non-nucleophilic conjugate bases to allow for carbocation 

H +
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propagation.  The combination of a proton (or carbenium ion) donor and a Lewis acid is 

termed an initiator-coinitiator complex.  Industrial systems generally utilize adventitious 

water as the proton donor, rather than a deliberately added initiator species, since the low 

concentration of water necessary for this purpose is readily attained using common 

drying techniques.  However, if more rigorous purification is undertaken, some Lewis 

acids (AlCl3, AlBr3, and BCl3) are known to self-ionize and generate initiating acid 

species.11,20  Thus, unless deliberately sought, initiation is not explicitly controlled with 

these systems.  An example of the water-initiated process, used with BF3 catalyzed 

systems is shown in Figure 2.  

 

Figure 2.  Initiation by an H2O-BF3 initiator-coinitiator complex.  

Industrial methods, though highly cost effective, are chain-transfer dominated 

processes that do not produce polymers with either well-controlled polydispersities or 

quantitative end-group control.  Figure 3 illustrates the bimolecular chain transfer to 

monomer common in AlCl3 catalyzed systems.   

 

 

BF3 + H2O O

H

H

BF3δ
δ

O

H

H

BF3δ
δ

+ BF3OH
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Figure 3.  Bimolecular chain transfer in AlCl3-catalyzed isobutylene polymerizations.  
 

As shown in the figure, chain-transfer produces polymer molecules initiated by a proton, 

and thus, when transfer is the dominant chain forming reaction, the resulting polymer 

molecules are inherently monofunctional.  To enable expansion of polyisobutylene-based 

polymers into other markets, for example thermoplastic elastomers, and to provide more 

precise control over molecular weight and polydispersity, it was necessary to gain control 

over the initiation process and to find conditions under which transfer reactions could be 

controlled or avoided.  Synthetic developments over the last 40 years have largely 

accomplished these goals, allowing polyisobutylene to expand beyond commodity 

polymer applications into specialty applications such as block copolymers and end-

functional (telechelic) polymers.  This revolution was enabled through understanding and 

control of the polymerization mechanism.  

Living Polymerizations 

 Living polymerizations are defined as chain polymerizations that proceed in the 

absence of chain transfer and chain termination reactions.  Since their discovery, living 

polymerizations have led to an explosion of research and development in polymer 

chemistry.  In an ideal living system, there would be no instance of either termination or 

chain transfer during propagation; the propagating centers would remain active 

indefinitely, and as long as monomer was provided, the chains would grow 

proportionally.  However, this ideal condition is generally thought to be theoretical only, 

+AlCl4 AlCl4 +

or
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since even in the most rigorous systems, side reactions occur at some very low (but still 

nonzero) rate, that prevent chains from retaining their capacity for growth indefinitely. 

 Despite the lack of a truly ideal system, practical living polymerizations have 

been realized in the laboratory for many systems, including anionic, cationic, and radical.  

These systems lack detectable chain transfer or termination processes, even though one or 

both may be occurring on a negligible level.  With these previously uncontrolled chain-

breaking processes under control, high levels of control over the molecular weight (MW) 

and polydispersity indices (PDI) can now be achieved, producing well defined, replicable 

synthetic polymer products that approach the uniformity of biologically-produced natural 

polymers (DNA, RNA, proteins, etc.).  

 Living systems without chain transfer processes also require a suitably fast 

initiation process to insure that every initiating species “sees” an equivalent molar 

concentration of monomer and thus has equal opportunity for propagation.  Thus, the 

number of propagating chains is equal to the amount of initiator added and degree of 

polymerization rises in direct proportion to monomer conversion.   

 Anionic polymerizations were the first realm of polymer study to encounter living 

or nearly living systems.  Ziegler first identified a system in 1928 while studying 

polybutadiene synthesis with metallic sodium initiator.  Introduction of additional 

monomeric butadiene to a reactor containing polybutadienylsodium resulted in an 

increase in molecular weight.21   

 The widespread recognition of living polymerizations came about in 1956, due to 

the work of Szwarc and coworkers.22  Their system consisted of styrene polymerization 

in tetrahydrofuran (THF), using a sodium-naphthalene initiating system.  Qualitatively, 

they observed that the bright green catalyst system became red immediately upon 
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addition of styrene, which correlates to the color of styryl anions.  This red color 

remained for days, unless air or moisture was permitted into the system, signifying the 

persistence of the active chain propagating species, even in the absence of monomer.  

When additional styrene and THF in the same ratio as the initial reaction formulation was 

introduced to the active polymer solution, an increase in solution viscosity was observed, 

at the same polymer concentration, indicating an increase in molecular weight; 

specifically, the living polymer ends readily added monomer to increase the molecular 

weight of the existing chains without generating any new chains via chain transfer to 

monomer.  Szwarc’s group then extended this system by adding isoprene to the living 

polystyrene chains, producing well defined block copolymers.22,23  Others have expanded 

and extended this work, producing narrow distribution (PDI <1.1), high MW 

polystyrenes (Mn > 100,000 g mol-1).24,25 Sequential monomer addition, as pioneered by 

Szwarc, continues to be the method of choice for well-defined block copolymers via 

anionic polymerization, but monomer selection is largely limited to styrene and dienes 

such as butadiene and isoprene.  

 Prior to the work of Szwarc et al., in 1950, the three mechanisms for chain 

polymerization had been elucidated by Walling, Briggs, Cummings, and Mayo, when 

they analyzed copolymerizations of methyl methacrylate using three types of initiators: 

radical (benzoyl peroxide), cationic (tin tetrachloride, SnCl4), and anionic (metallic 

sodium and potassium, Na and K, respectively).26  Thus, while the primary mechanisms 

of action for all three chain polymerizations were known, and despite progress in living 

anionic polymerization, living cationic polymerization trailed behind.  This was due not 

to lack of effort, but to the structural differences between carbocations and carbanions.  

Carbanions possess a full valence shell of eight electrons; whereas carbocations only 
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possess six.  This imparts greater stability to carbanions relative to carbocations, and 

since stability has an inverse relationship to reactivity, carbocations are more prone to 

chain-breaking side reactions.  Suppressing these side reactions would be necessary 

before carbocationic polymerization could join the ranks of living polymerizations. 

Living Cationic Polymerization 

 To achieve living carbocationic polymerization (note: older literature will often 

refer to this process as quasiliving carbocationic polymerization; however the prefix 

“quasi” was recently dropped by the carbocationic research community), three main 

issues had to be addressed.  These were: (1) controlled initiation, (2) suppressed chain 

transfer, and (3) reversible termination.27  

Controlled initiation utilizes a deliberately added species capable of initiating 

polymerization.  This species, either a small molecule or a polymer, satisfies the valence 

at the head of the growing polymer chain and determines the number of polymer chains 

produced.  If the initiating species possesses two initiating sites, it can be used to produce 

bidirectional growth, leading to difunctional (telechelic) polymers.27  Kennedy first 

explored this by adding tBuCl to isobutylene polymerizations catalyzed by EtAlCl2; he 

observed extremely rapid reactions that replaced the original initiation by protogens like 

adventitious water.28  This technique was refined to produce the first telechelic 

polyisobutylenes through the development of “inifers” (shorthand for initiator-transfer 

agents) like dicumyl chloride, which possessed two ionizeable halogens, allowing for 

chain growth from both sides of the molecule.  When used with BCl3 in MeCl at low 

temperatures (-80 to -50°C) and relatively high inifer concentrations, the resulting 

systems were characterized by negligible chain transfer to monomer.29,30  These early 

systems suffered from drawbacks, such as polymer precipitation above MWs of about 
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4000 g mol-1 (the solubility limit of PIB in MeCl), and relatively broad MW distributions 

as a result of chain transfer to the inifer.  However, this research resulted in the 

development of numerous initiating species using different ionizing groups, such as 

halogen,31 acetate,32,33 ethers,34 and esters.35  Additionally, substantial work has been 

done to developed dual-functional initiators that contain a cationic polymerization moiety 

and another functional group inert towards cationic polymerization but allowing for later 

chemistry.  These initiators include groups like acetate,36 POSS,37 and ATRP 

initiators.38,39  Lactone-40 and epoxide-41,42 containing initiators ring-open upon initiation 

to produce ester and hydroxyl moieties.  

To address the second obstacle of living cationic polymerization, chain transfer 

mechanisms that the highly reactive carbocation can undergo must be repressed.  

Bimolecular chain transfer to monomer was shown in Figure 3 for an isobutylene system 

catalyzed by AlCl3.  Unimolecular chain transfer usually occurs in the form of β-proton 

elimination, shown in Figure 4 for the same system. 

 

Figure 4.  Unimolecular chain transfer in AlCl3-catalyzed isobutylene polymerizations. 
 
In cationic polymerization, the carbocation is usually paired with the counterion, 

so unimolecular chain transfer simply transfers a proton to the counterion, producing the 

original initiator-coinitiator complex, which rapidly reacts with monomer to begin a new 

chain.  Since this process is zero-order in monomer, it is kinetically distinct from 

bimolecular chain transfer, even though the net result of the two processes is the same.  

+ HCl + AlCl3AlCl4
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 Given the high reactivity of the carbocation species, it consequently has a very 

short lifespan within a conventional reaction medium.  Mentioned earlier, in industrial 

polymerizations, the propagating species exists for a second or less, before chain 

transfer/termination occurs.  In contrast, active carbanions can last for days, years, or 

even decades (about 80 years for polystyrenyl anions dissolved in hydrocarbons) in the 

absence of oxygen and water.  As a result, declarations regarding the unattainability of 

living carbocationic polymerizations were made as recently as 1975.43  

 However, cationic polymerization need not only progress through carbocations; 

oxonium ions are also capable of polymerization (e.g. cationic ring opening 

polymerizations of cyclic ethers and acetals).  The first living cationic polymerization 

was performed in 1965, using THF monomer and Ph3C+SbCl6
- as initiator.44  In 1974, 

Higashimura and Kishiro discovered a bimodal distribution in the molecular weights of 

polystyrene initiated by acetyl perchlorate in methylene chloride at 0 ºC.45,46  They found 

that the weight fraction of the higher MW peak was increased by increasing the solvent 

polarity but decreased when either additional catalyst or a common salt was added.  

Differing propagating species within the reaction were thought to be responsible for the 

two peaks: a free ion or “loose” ion pair produced the higher MW peak and a contact ion 

pair producing the lower MW peak.  These findings meshed well with the speculated 

structures of ions in solution proposed by Winstein and shown in Figure 5 for cationic 

polymerization.47 

 

 

Figure 5.  Winstein spectrum of ionicities for propagating cations.  

C X CC C
δ δ . X +X X
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By 1975, Higashimura had successfully produced a living cationic polymerization 

of p-methoxystyrene in CCl4 using molecular iodine as the initiator.  This system 

exhibited a linear increase of MW with conversion and would continue to increase in 

MW if fresh monomer was added to a previously exhausted reactor.  Repeating the 

experiment in the more polar methylene chloride produced a nonliving system with broad 

PDIs.  By adding a common ion salt, polymerizations in CH2Cl2 resembled those 

performed in CCl4, with PDI = 1.3.48-50  Using these systems, block copolymers with 

IBVE were successfully created using sequential monomer addition.  This particular 

example was similar to Szwarc’s early anionic work in that the red poly(p-

methoxystyrene) cation solution became colorless upon addition of IBVE, wherein the 

propagating cation was no longer a chromophore.50 

 These early researchers had found that the key to a living carbocationic 

polymerization was establishment of the dormant/active equilibrium. This process was 

originally developed under the umbrella term “quasiliving,” as the strict definition of a 

living polymerization is one in which all of the chains are capable of propagating at all 

times and only practically applicable in certain anionic systems.  In quasiliving systems, 

reversible chain transfer and/or termination may occur.  In a dormant/active equilibrium, 

most polymer chains are nonpropagating (dormant), while propagation is carried out by a 

much smaller fraction of active chains.  The average number of monomer units added 

during a typical active period is known as the run number (RN).51  The key for low PDI 

and controlled MW is a reversible equilibrium that turns active chains dormant and 

dormant chains active.  Thus, most chains will experience short periods of propagation 

(low RN) followed by long inactive periods.  This can be accomplished by withholding 

monomer (“monomer starvation”), such that the monomer concentration is kept low, but 
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constantly replenished.  By utilizing readily reionizing systems of a Lewis acid (BCl3, 

AlCl3, or TiCl4) initiated by cumyl chloride or adventitious H2O, Kennedy and coworkers 

produced polymers of α-methylstyrene52 and isobutylene.53  Highly reactive IBVE was 

also polymerized by monomer starvation, using p-dicumyl chloride/AgSbF6.54  Monomer 

starvation methods effectively made unimolecular chain transfer reversible, although did 

not eliminate it entirely.   

 The second method for establishing quasiliving conditions was by tailoring the 

nucleophilicity of the counterion.  This was discovered by Higashimura when refining the 

I2/p-methoxystyrene system discussed previously.  To correct for slow initiation, HI was 

added to the system, with I2 as a coinitiator.55 This, combined with work on the highly 

reactive N-vinylcarbazole,56 produced the idea that a well-chosen 

nucleophile/carbocation pair could suppress termination and chain transfer.  The more 

stable the carbocation, the more nucleophilic the counterion had to be, in order to make 

for an effective deactivation of the chains and produce an excess of dormant species.  

However, if the counterion were too nucleophilic, then a situation akin to Figure 1 could 

occur, wherein reionization is too slow and propagation is unevenly distributed amongst 

all the initiated chains.   

 The third approach to achieving quasiliving cationic polymerization is to add an 

external molecule that effects some change in the dormant/active equilibrium, 

particularly for less reactive monomers like isobutylene.  Common ion salt precursors, 

based on ammonium (nBu4N+Y-) or phosphonium (nBu4P+Y-) cations, contain a 

nucleophilic anion (Y- = Br-, Cl-, I-, CH3CO2
-) that combines with the Lewis acid catalyst 

to produce complex anions that are identical to those associated with the growing 

carbocations.  The introduction of such salts converted normally uncontrolled 
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polymerizations of IBVE/HCl with a strong Lewis acid cocatalyst, SnCl4, into well 

controlled polymers with Mw/Mn ~ 1.1.57  Through simple mass action, the salt 

suppressed the generation of free ions (Figure 6), which shifted the propagating species to 

the left side of the Winstein spectrum (Figure 5), resulting in more uniform propagation 

across all initiated chains.  

 

Figure 6.  Generation of common ions using tertbutylammonium bromide.  

 It should be noted that the suppression of free ions has much less effect on 

cationic polymerizations than anionic.  In anionic polymerization, free ions are 103 or 104 

times more reactive than ion pairs, but only 5-50 times as reactive in cationic 

polymerizations.  This is purely due to counterion size.  Anionic counterions are typically 

small alkali metal atoms (Li+, Na+), while cationic counterions are much larger (ex. 

Ti2Cl9
-, AlCl4

-, AgSbF6
-) and cannot closely approach the cation due to large ionic radii.  

As the Coulomb force between charges is proportional to 1/r2, the force difference 

between ion pairs and free ions falls off rapidly.  While solvent separated pairs are 

considered in the Winstein spectrum, their existence has not been demonstrated.   

 Electron-donating (ED) Lewis bases are a second class of external additive that 

suppress free ions by forming a common ion.  The initial discovery was made for 

otherwise uncontrolled IBVE polymerizations with EtAlCl2, which were rendered living 

by the addition of EtOAc, with the resulting polymers having Mw/Mn < 1.2.58  Further 

work identified other chemical classes as suitable EDs, namely cyclic ethers (e.g. THF, 

oxepane, 1,4-dioxane),59,60 cyclic formals (e.g. 1,3-dioxane, 1,3-dioxolane),60  pyridine,61 

DMF,61 and pyridine derivatives like 2,6-dimethylpyridine (2,6-lutidine).62  However, the 

(Bu)4N Cl + AlCl3 AlCl4(Bu)4N
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effect was not universal, as species like propylene oxide produced no polymer, while 

1,3,5-trioxane produced uncontrolled, free-ion dominated, polymerizations.60 

 It was initially thought that EDs coordinated with and stabilized the cation; 

however Faust observed that 2,6-di-tert-butylpyridine produced well controlled 

polymerizations with low PDIs63,64 despite being too sterically bulky to interact with 

propagating cations.65,66  Indeed, at loading levels only slightly above that of the protic 

impurities (HA) in the system, primarily water, the desired control was achieved.64  This 

suggested that the role of EDs was to trap undesirable protogens that could initiate 

polymerizations in the manner of Figure 2.  Support for this was provide by Storey, who 

utilized EDs that formed colored complexes with TiCl4, but only when added in excess to 

the protic impurity concentration.67  Only those reactions in which [ED] > [HA] produced 

living polymers, while the colorless, [ED] < [HA] reactions were nonliving.  The colored 

1:1 complex formed by 2-ethylhexyl p-(dimethylamino)benzoate and TiCl4 was also used 

to determine that the typical [HA] within a normal glovebox system used for cationic 

polymerization was 1.0-2.0 x 10-3 M.68   

 While EDs were found to remove protic impurities from the system, their primary 

importance was common ion generation, which filled the same mechanistic role as the 

added common ion salts.69  Without added 2,4-dimethylpyridine, TiCl4-catalyzed IB 

polymerizations produced bimodal GPC traces reminiscent of those seen by Higashimura 

in the 1970s, and attributed to the same source: polymer chains initiated by ion pairs and 

free ions.  Reaction with water, seen in Figure 7, produced the common counterion, 

Ti2Cl9
-, which suppressed ion pair dissociation and produced a polymer with monomodal 

GPC traces.   
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Figure 7.  Mechanism of proton scavenging and common ion formation by Lewis base.  
 

 The three methods of creating a living cationic polymerization all rely on 

controlling the dormant/active equilibrium.  Maintaining a large dormant:active chain 

ratio (typically 1 x 109:1, for TiCl4-catalyzed IB polymerizations) requires not only the 

suppression of uncontrolled ionization, but the rapid return of an active chain towards 

dormancy, thus resulting in short cation lifetimes and low RN.  The equilibrium must be 

highly dynamic, with rapid exchange between dormant and active states, such that each 

chain experiences an ionization and collapse before any other chain undergoes two such 

cycles.  The appearance of longer lived cations results in higher PDIs.  For some living 

TiCl4/2,6-dimethylpyridine systems the calculated k-i was 7.5 x 107 s-1 for isobutylene 

and 1.9 x 107 s-1 for styrene. 70  Under similar conditions, kps of 7 x 108 s-1 and 1.5 x 109 

s-1 have been measured for isobutylene and styrene, respectively.71  In contrast, apparent 

rate constants for ionization of 15 M-2 s-1 for isobutylene and 1.3 M-2 s-1 for styrene have 

been observed.   
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Clearly, deionization must be the favored process for living cationic systems, and 

in addition to the presence of EDs, other polymerization conditions, namely temperature 

and solvent polarity may be manipulated in order to shorten the active period and 

decrease the RN.  Lower temperatures and more polar solvent systems encourage 

ionization and longer cation lifetimes.  For example, styrene’s RN in 60:40 (v:v) 

MCHex:Hex varies from 31 to 100 as the temperature is lowered from -59 ºC to  

-100 ºC.70   

Polyisobutylene Functionalization 

 Most polyisobutylenes require post-polymerization modification in order to be a 

viable commercial product.  Recall that the original PIB product, Oppanol®, was 

hampered at the time by its lack of backbone olefins for vulcanization.  While PIB utility 

has greatly expanded beyond the rubber industry, without deliberate intervention, the 

number of functional groups available to bulk-production PIB is somewhat limited.  

Conventional industrial polymerizations using BF3 catalysis produce two types of 

monofunctional olefin-terminated PIB, shown in Figure 8.  AlCl3-catalyzed species are 

more complex, and contain a sizeable amount of tri-substituted olefin and aliphatic end 

groups.72   

 

 

Figure 8.  Exo-olefin (A) and endo-olefin (B) end groups of PIB.  

Exo-olefin PIB is more useful synthetically than endo-olefin, due to higher 

reactivity, and PIB products with 70-90% exo-olefin end groups are typically marketed as 

PIB PIB
A B
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“highly reactive polyisobutylene.”73,74  Glissopal®, a low MW PIB made by BASF is 

used as the base material for fuel and lube additives, and has ~82% exo-olefin end 

groups.  Glissopal® can be reacted with succinic anhydride to produce PIBSA (Figure 9), 

which is made into motor oil dispersants through further reactions of the anhydride.75,76  

Quantitative exo-olefin formation via the addition of external additives to the living 

polymerization has been achieved by the use of hindered bases (ex. 2,5-

dimethylpyrrole),77-80 (di)sulfides,81,82 and alkoxysilanes/ethers.83-85 

 

Figure 9.  Synthesis of PIBSA from exo-olefin PIB and maleic anhydride. 

The functional initiators discussed previously are one approach to functionalized 

PIB and some, such as silyl, have been patented.86  Whether or not the initiator has 

additional functionality, PIBs produced by living processes possess tert-chloride chain 

ends, even upon addition of MeOH,87 which is a standard method of terminating living 

PIB reactions on a laboratory scale.72  Tert-chloride PIB can be converted into exo-olefin 

by dehydrochlorination, but reaction times are long (20 h).88  Exo-olefin PIB has been the 

target of hydroboration-oxidation,89 epoxidation,90 sulfonation,91 hydrobromination,92 

ozonolysis,93,94 and other reactions.   

End-capping a PIB chain during or immediately after polymerization is a second 

approach to installing alternate functionalities, provided that the nucleophile selected 

does not permanently complex with the Lewis acid, resulting in deactivation of one or 

both species.  Generally, soft π-nucleophiles are effective with TiCl4-catalyzed IB 

polymerizations.  The use of non-polymerizing monomers, such as 1,1-diphenylethylene 
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and 1,1-ditolyletheylene, by Faust, resulted in single additions to PIB chains that 

remained in the active cationic state due to delocalization.95,96  These long-lived cationic 

species were used as high-blocking-efficiency initiators of α-methylstyrene 

polymerizations.97  Allyltrimethylsilane was found to add to a PIB chain end and then 

rearrange to produce an allyl end group, a useful synthetic handle for further 

transformations.34,98  Other capping species include 1-butene, cis-2-butene and 

1,3-butadiene.99  Capping by 1,3-butadiene occurs via 1,4-addition followed by 

immediate ion-pair collapse, producing chloroallyl chain ends suitable for post-

polymerization modification by nucleophilic substitution.100,101 

Aromatic heterocycles are a second class of molecules capable of adding to living 

PIB chains.  Furans, namely 2-methylfuran and 2-tert-butylfuran react with PIB 

carbocations to form stable allylic cations that can be used to initiate IBVE 

polymerization or couple two PIB chains.102  N-methylpyrrole will quantitatively endcap 

IB chains in an isomeric mixture of 46% 2-PIB-N-methylpyrrole and 54% 3-PIB-N-

methylpyrrole.103  Thiophene-capped PIB has been converted into an anionic initiator 

using n-butyllithium and used to initiate tert-butyl methacrylate to form block 

copolymers.104  

 Effective alkylation of arenes has long been a goal of cationic polymerizations, 

with early examples of anisole-terminated105 and phenol-terminated106 chain ends.  Use of 

triphenylaluminum as a co-catalyst and chain-terminating agent with 2,6-dichloro-2,6-

dimethylheptane-initiated IB polymerizations produced increasing conversions of 

phenylation as the temperature decreased from -20 to -70 ºC;107 although quantitative 

functionalization was not achieved (f ~1.5).108  With a water-initiated/TiCl4/IB system, 

70-81% phenylation by triphenylamine was achieved using both post-polymerization 
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modification of tert-Cl/exo-olefin PIB and in situ addition to active polymerization 

reactions, though long reaction times were required (43 h) for the in situ approach.109 

 While in situ alkylation of arenes proved elusive, post-polymerization alkylation 

via Friedel-Crafts reaction with Lewis acids, Amberlyst 36, or trifluoromethanesulfonic 

acid was employed with exo-olefin PIB.  Use of room temperature sulfuric acid catalysis 

in CH2Cl2 with anisole and phenol was successful in 60 h, but less activated benzenes 

were not.110  Alkylation of o-alkyl anilines by Glissopal® with AlCl3-catalysis occurred 

at 210 °C, but required 3 days for completion.111 

Living cationic polymerizations have been used to produce suitable telechelic 

exo-olefin and tert-Cl PIB substrates for alkylation, with aromatic hydrocarbons 

(benzene, toluene, xylenes), phenol, and anisole successfully added with BF3-etherate at 

20-55 °C in CH2Cl2/toluene or hexane solutions.  Higher temperatures however, favor 

depolymerization or degradation.  This is also seen in SnCl4-catalyzed phenol alkylations 

at -50-0 °C; although reaction times are more rapid, from 1-3 h.112,113   

Storey et al. developed two classes of compounds capable of quantitative in situ 

end-functionalization of PIB under cationic polymerization conditions, rendering post-

polymerizaton Friedel-Crafts alkylation unnecessary.114,115  Furthermore, functionality 

can be preinstalled in these “quencher” molecules (i.e. those alkylated by PIB chains), 

facilitating the direct addition of moieties capable of further chemistries; however these 

groups must be compatible with polymerization conditions so as to not interfere with 

alkylation.  Unprotected hydroxyls, for example, rapidly react with Lewis acid 

cocatalysts like TiCl4, deactivating either the cocatalyst or the quencher.34  Acyl groups 

form carbonyl-TiCl4 complexes that reduce free TiCl4 availability.116  



20 
 

Heterocyclic aromatics such as N-(2-tert-butoxyethyl)pyrrole produced 95% 

alkylation in 60/40 (v/v) hexane/MeCl at in -60 °C in 25-30 minutes.117  Addition of 5 

equivalents EtAlCl2 and 2 equivalents H2SO4, and warming to room temperature, 

quantitatively removed the tert-butyl protecting groups to produce hydroxyl-terminated 

PIB.  Refluxing this mixed-acid solution for 3 h at 69 °C resulted in alkylation of the 

remaining exo-olefin PIB as well as rearrangement of the mixed C2 and C3 isomers to 

produce 98% C3 alkylated isomers.  The resulting quantitative hydroxyl-terminated PIB 

showed unimpeded reactivity with carboxylic acids and isocyanates.  Another functional 

pyrrole, 1-(3-bromopropyl)pyrrole was used as a quencher molecule to produce primary-

bromide terminated PIB.  Bromide displacement with azide, followed by copper-

catalyzed click chemistry with propargyl 2-(1-dodecylsulfanylthiocarbonylsulfanyl)-2-

methylpropionate produced a PIB-based RAFT macroinitiator, which effectively 

produced narrow distribution PIB-b-PNIPAM copolymers (PDI = 1.02-1.08) with self-

assembling and temperature-responsive properties.118 

Morgan and Storey introduced alkoxybenzenes as effective in situ 

quenchers.115,119,120  The quenching species and subsequent modifications are summarized 

in Figure 10.  Several functionalities were installed directly onto the PIB chains, 

including primary halogen (Cl and Br), hydroxyl, and amine.  By increasing the spacing 

between the reactive hydroxyl and amine moieties and the phenyl ring to four or more 

methylene units, direct functionalization was achieved.  However, the hydroxyl and 

amine species required large excesses of TiCl4 relative to chain ends (10.29x and 3.8x, 

respectively) and long reaction times (7-9 h) to compensate for complexation between the 

quencher and TiCl4.  In all cases, alkylation occurred exclusively at the para position and 

no instances of multiple alkylations were observed.   
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Figure 10.  Alkoxybenzene terminated PIBs via in situ quenching and subsequent 
modification.  

 
Derivitization of these alkoxybenzene quenchers, whether in the polymerization 

medium or post-polymerization offers huge opportunities for the exploration of 

PIB-based chemistries not readily accessed through other methodologies.  The goal of 

this dissertation is to explore both these quenchers themselves as well as those 

post-polymerization modifications to expand the library of polyisobutylene-based 

materials. 
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CHAPTER II 

IN SITU QUENCHING OF LIVING POLYISOBUTYLENE WITH THIOLS 

Introduction 

Polyisobutylene is an important industrial polymer only producible by cationic 

polymerization.  The most commonly available form of PIB contains a single olefin 

terminus in high yield, between 70 and 90%, utilizing protic initiation and BF3 

catalysis.73,74  Modifying the olefin end group is necessary to utilize PIB in chemistries 

that are not compatible with cationic polymerization conditions.  Numerous post-

polymerization modifications have been developed using exo-olefin PIB, including anti-

Markovnikov hydrobromination,92 hydroboration-oxidation,89 and epoxidation.90  

Friedel-Crafts alkylations of arenes,121 phenol,122 anisole,123 and aniline111 have been 

performed using typical Lewis acid catalysis (e.g. AlCl3, BF3, BF3-etherate) on both 

commercial samples and PIB produced using controlled living polymerizations, which 

can produce quantitative tert-Cl or exo-olefin termini.81,84  Exo-olefin PIB has also been 

used as a substrate for the radical thiol-ene reaction.  This technique offers the advantages 

of “click” chemistry, producing high yields with a high tolerance for other functional 

groups capable of numerous subsequent chemistries.124  While high yields (>90%) have 

been achieved using commercial feedstocks, approximately 20% of the polymer chains 

are left unreacted in even the best (90% exo-olefin) PIBs,125 necessitating 

chromatographic techniques such as liquid chromatography126,127 or Soxhlet extraction125 

to remove the unreacted polymers.  Using telechelic mono- and difunctional exo-olefin 

PIBs, Magenau et al. quantitatively produced primary chloride, carboxylic acid, 

hydroxyl, and amine-terminated PIBs using the corresponding functional thiols.128 
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The previous discussion has focused on post-polymerization modifications.  

Controlled living techniques allow for in situ functionalization of PIB chains, and these 

methods typically involve the use of functional initiators and/or reaction of the polymer 

chain end with a suitable nucleophile.  Cationic initiators containing cyclic lactone30 or 

epoxide129 groups produce ester and hydroxyl groups, respectively, when ring-opened by 

TiCl4.  These species produce only a single functionality, with the chain terminus being 

tert-Cl in the absence of further modification.  

Successful addition of a nucleophile to the polymerization medium requires 

careful selection to avoid interaction with the Lewis acid catalyst, which can eliminate 

the reactivity of one or both species. Most species studied have been soft π-nucleophiles, 

such as aromatic heterocycles (furans,102 thiophene104) and non-homopolymerizeable 

monomers such as 1,1-diphenylethylene,95,96 1,3-butadiene, which produces chloroallyl 

chain ends via 1,4-addition, and allyltrimethylsilane, which rearranges upon addition to 

form allyl-terminated PIB.  Telechelic mono- and di-functional exo-olefin PIB has been 

produced by in situ addition of (di)sulfides,82,130 alkoxysilanes,83 ethers,84 and hindered 

nitrogen bases such as 2,5-dimethylpyrrole.77,78,80  In the case of (di)sulfide and ether 

quenchers, the quencher first caps the chain end with a (di)sulfonium or oxonium cation 

that is stable under cationic polymerization conditions until an added base (such as 

methanol or triethylamine) causes β-hydride elimination to form the exo-olefin.  For 

some disulfide species, treatment with base cleaves the disulfide bond instead, producing 

a thioether terminus.  For example, PIB chain ends capped with di-p-tolyl disulfide form 

85% thioether and 15% exo-olefin when treated with triethylamine at -60 °C in 60/40 

(v/v) hexane/methyl chloride.  
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Alkoxybenzenes have emerged as a remarkably useful and effective quencher of 

TiCl4-catalyzed living polyisobutylene.  Morgan and Storey utilized alkoxybenzenes to 

install numerous functionalities, such a primary halide, alkyne, phenol, alcohol, and 

amine.115  Direct alkylation of phenol is not possible due to strong interaction of the 

phenol hydroxyl moiety with TiCl4; however protection with a methyl or isopropyl group 

followed by in situ deprotection using BBr3/TiCl4 or H2SO4/TiCl4, respectively, produced 

quantitative phenol functionality.  Direct alkylation by phenoxyalkanols was only 

possible if the free hydroxyl group was separated from the phenoxy group by four 

methylene units, and even then required substantial amounts of TiCl4 (>10x relative to 

chain end concentration and long reaction times relative to other alkoxybenzene 

quenchers.115 

Thiols exhibit a number of interesting properties, as they are extremely 

nucleophilic and considerably more acidic than their alcohol counterparts; the pKa of 

thiophenol is 6 while phenol is 10, for example.  Both the radical and nucleophilic 

(Michael addition) thiol-ene reactions produce the anti-Markovnikov addition product.  

The electrophilic pathway, producing Markovnikov addition, is also possible in some 

cases.  Bezumnova and Rozhkova alkylated a series of olefins with 

2-mercaptobenzothiazole using BF3-OEt2 catalysis;131 while Cottman produced a number 

of antioxidant species by traditional Friedel-Crafts alkylations of 4-mercaptophenols 

using 2-20 carbon alkylating species at or above room temperature (typically 40-100 ºC).  

It was noted that the sulfide-forming alkylation of the thiol group occurred preferentially 

relative to aromatic ring alkylation, but the latter reaction was also observed, particularly 

with secondary or tertiary alkylating groups.132 BF3-OEt2 catalysis has also been used to 

catalyze the addition of 2-mercaptoethanol and 4-mercaptophenol to both 2,4,4-trimethyl-
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2-pentene (TMP) and monofunctional commercial exo-olefin PIB samples at room 

temperature in methylene chloride.126  However, this chemistry has, to our knowledge, 

not yet been applied to living polyisobutylene systems.  In this work, we explore the 

direct quenching of living PIB with thiols.   

Experimental 

Materials 

 Thiophenol (97%), 4-methylbenzenethiol (98%), 4-methoxybenzenethiol (98%), 

2-phenoxyethanethiol, 1-butanethiol (99+%), 2-propanethiol (≥97%), 

2-methyl-2-propanethiol (99%), benzyl mercaptan (99%), 3-chloro-1-propanethiol 

(98%), titanium tetrachloride (TiCl4) (99.9%), hexane (anhydrous, 95%), methanol 

(anhydrous, 99.8%), chloroform-d (CDCl3) (99.8% atom D), and dichloromethane-d2 

(CD2Cl2) (99.96% atom D) were purchased from Sigma-Aldrich and used as received.  

Anhydrous magnesium sulfate (MgSO4) was purchased from Fisher Scientific and used 

as received.  2-Mercaptoethanol (≥99%) was purchased from Sigma-Aldrich and dried 

over MgSO4, then filtered before use.  Methyl chloride (Alexander Chemical Corp.) 

(99.9+%) and isobutylene (BOC gases) (99%) were dried by flowing the gases through 

CaSO4/molecular sieves/CaCl2 packed columns and condensing within a N2-atmosphere 

glovebox right before use.  Cationic initiators 2-chloro-2,4,4-trimethylpentane (TMPCl) 

and1,3-bis-(1-chloro-1-methylethyl)-5-tert-butylbenzene (bDCC) were synthesized as 

previously described.115   

Instrumentation 

 1H and 13C NMR spectra were collected using a 300 MHz Varian Mercuryplus 

NMR (VNMR 6.1C) spectrometer.  Chemical shifts for both 1H and 13C were referenced 

to the CDCl3 solvent reference (7.26 and 77.0 ppm, respectively). 
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Gel permeation chromatography (GPC) was used to measure all number average 

molecular weights (Mn) and polydispersities (PDI = Mw/Mn).  The GPC system and 

analysis methods have been previously described.115  

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS) was performed using a Bruker Microflex LRF MALDI-TOF mass 

spectrometer equipped with a nitrogen laser (337 nm) possessing a 60 Hz repetition rate 

and a 50 µJ energy output.  PIB samples were prepared using the dried-droplet method.  

A 20 mg/mL matrix (dithranol) solution, a 10 mg/mL cationizing agent (silver 

trifluoroacetate, AgTFA) solution, and a 10 mg/mL polymer solution, all in THF, were 

mixed in a volumetric ratio of matrix:sample:cationizing agent = 10:10:1, and then a 0.5 

µL aliquot was applied to a MALDI sample target for analysis.  All spectra were obtained 

in the positive ion mode utilizing the reflector mode micro-channel plate detector and are 

the sum of 900-1000 shots.  Molecular weights of the polymer end groups were 

determined by linear regression using the known molecular weight of the initiator residue 

(bDCC) and cationizing agent cation (Ag+). 

Determination of End-group Composition 

 End-group compositions for small molecule species were determined by 1H NMR 

under the assumption that five end group species constitute 100% of the chain ends: thiol 

quenched (sulfide formation), tert-chloride, exo-olefin, endo-olefin, and coupled.  The 

fractional molar amount of each end group species was found using equations akin to 

Equation 1, derived from the work of Ummadisetty et al., for determining the fraction of 

thiol-quenched end groups (Fquenched),130 

Fquenched = (Asulfide / 2) / (Asulfide / 2 + Aexo + Aendo + Acoupled + Atert-Cl / 2) 

Equation 1.  Chain end functionality of sulfide-quenched species. 
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where Asulfide is the area of the terminal methylene protons of the chain end, the location 

of which varies slightly depending on the thiol used.  For thiophenol, the terminal 

methylene appears at 1.70 ppm.  Aexo is the area of the upfield exo-olefin peak at 4.64 

ppm, Aendo is the area of the olefin resonance at 5.15 ppm, and Acoupled is calculated by:  

Acoupled = (A5.0-4.75 – Aexo) 

Equation 2.  Area of integration for the 1H NMR resonance of coupled species. 

where A5.0-4.75 refers to the integrated area of the convoluted peaks from 4.75 to 5.0 ppm 

attributed to the two equivalent protons of the coupled species and the downfield exo-

olefin proton.  Although two protons are represented by the coupled peak, two molecules 

combine to produce the peak, so the Acoupled term has a net coefficient of one.  For 

TMPCl, Atert-Cl  is the area of the peak at 1.88 ppm, while for PIB Atert-Cl was determined 

by Equation 3: 

Atert-Cl = (A1.95-2.05) – 2Aexo – 2Acoupled 

Equation 3.  Area of integration for the 1H NMR resonance of tert-chloride terminated 
species. 

 
in which A1.95-2.05 is the integrated area of the convoluted peaks associated with the 

terminal methylene protons from 1.95-2.05 ppm of tert-chloride, exo-olefin, and coupled 

end groups. 

Model Reactions with TMPCl 

  A representative reaction between TMPCl and a thiol was as follows (Table 1, 

Entry 5).  All reactions were prepared and performed within a N2-atmosphere glovebox.  

To a scintillation vial were added 10 mL CH2Cl2, 0.20 mL TMPCl ([CE] = 0.10 M), and 

0.15 mL thiophenol ([SH]/[CE] = 1.25).  The vial was capped and placed in a -70°C 

heptane bath.  The bath level was maintained such that the reaction solution was fully 
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submerged but the vial’s cap was above the liquid level to prevent contamination by 

heptane.  The vial was chilled in the bath for 30 min, then 0.65 mL TiCl4 ([TiCl4]/[CE] = 

5), neat and at room temperature, was added to the vial.  After 2 h, 2 mL MeOH was 

added to deactivate the catalyst.  The reaction contents were transferred to a separatory 

funnel and extracted 3x with 3 mL increments of 1 M aqueous NaOH, followed by 1x 

extraction with 3 mL deionized H2O.  The organic layer was separated, dried with 

MgSO4, and filtered through a cotton plug, and the methylene chloride was evaporated 

with a stream of N2.   

Synthesis of Masterbatch Polyisobutylene 

 An unquenched difunctional masterbatch PIB was produced using the following 

procedure within a N2-atmosphere glovebox.  A 250 mL, 4-neck round bottom flask, 

equipped with an overhead stirrer, ReactIR probe, and RTD, was cooled to -70 ºC in a 

cryostated heptane bath.  To the flask were added 1.72 g bDCC, 97 mL hexane, 65 mL 

MeCl, 0.12 mL 2,6-lutidine, and 41 mL IB.  Polymerization was initiated by the addition 

of 0.47 mL TiCl4, neat and at room temperature.  Upon full monomer conversion (>98%, 

as determined by ReactIR), the reaction was terminated by the addition of neat methanol.  

The reactor was removed from the glovebox and allowed to warm to room temperature.  

Hexane was added, and the polymer solution was extracted with, and then precipitated 

into, methanol.  The methanol was decanted, and the polymer was redissolved in hexane.  

The resulting solution was extracted with deionized water, dried over MgSO4, and 

filtered, and finally the hexane was stripped to isolate the PIB product.  

Quenching of Masterbatch Polyisobutylene with Thiols 

 The general sequence for the in situ quenching of masterbatch PIB by thiols was 

as follows.  All reactions were performed within a N2-atmosphere glovebox using a 
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cryostated heptane bath cooled to -70 ºC.  To a 100 mL, 3-neck round bottom flask 

equipped with an overhead stirrer and RTD were added 5 g masterbatch PIB (0.044 meq, 

Mn = 4000, PDI = 1.33), 20 mL hexane, 30 mL MeCl, thiol (1.73-1.93x [CE]), and TiCl4 

(5.95x [CE]).  Reaction progress was monitored by 1H NMR analysis of aliquots taken 

from the reactor and precipitated in MeOH.  After completion of the reaction, MeOH was 

added to the reactor, and the reactor was allowed to warm to room temperature overnight.  

Polymer purification was carried out using the same procedure that was used for the 

masterbatch PIB.  

Results and Discussion 

Model Reactions with TMPCl 

 The impetus for this research came from an attempt to produce 

thiophenol-terminated PIB directly from in situ quenching of living PIB with thiophenol, 

using procedures analogous to alkoxybenzene-type quenching.  However, the expected 

Friedel-Crafts alkylation product was not observed; nor were exo-olefin or tert-chloride 

end groups observed, which would indicate elimination, as in sulfide quenching, or 

preferential reaction of thiophenol with the TiCl4 catalyst, respectively.  Instead, two sets 

of aromatic resonances were observed in the 1H NMR spectrum, with an integration ratio 

of 2:3, suggesting no reaction at the aromatic ring.  Furthermore, under thiol Michael 

addition conditions, the polymer product was completely unreactive with propargyl 

acrylate, which has been previously demonstrated to react readily with thiol-terminated 

PIB produced by the reaction of thiourea and 3-bromopropoxybenzene-terminated PIB.133  

It was then hypothesized that the quenching reaction was proceeding via a SN1 

substitution reaction, involving nucleophilic attack of the thiol moiety at the PIB tertiary 

carbocation.  To simplify the system and determine if this was indeed the dominant 
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reaction, a series of model studies was undertaken using the monofunctional cationic 

initiator 2-chloro-2,4,4-trimethylpentane (TMPCl), with the general reaction scheme 

shown in Scheme 1.  The reference 1H and 13C NMR spectra for TMPCl are shown in 

Figure 11. 

 

Scheme 1.  Reaction of TMPCl and a thiol with TiCl4 catalysis.  

 

Figure 11.  1H NMR (lower, A) and 13C NMR (upper, B) spectra of 2-chloro-2,4,4-
trimethylpentane 

 
The initial studies with TMPCl were performed in pure methylene chloride at -70 °C 
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catalyzed by TiCl4.  Both [Thiol]:[TMPCl] and [TiCl4]:[TMPCl] were varied, using a 

fixed 2 h reaction time.  The results are summarized in Table 1 and the 1H and 13C NMR 

of the product sulfides appear in Figures 12 and 13, respectively.   

Table 1   

Effect of [Thiol] and [TiCl4] on the Reaction Between TMPCl and Thiophenols 

Product Distribution by 1H NMR (mol %)  

Entry R [SH]/ 
[CE] 

[TiCl4] / 
[CE] Sulfide tert-

Cl 
exo-

olefin 
endo-
olefin coupled

1 H 2.00 0.25 62.1 37.6 0.4 0.0 0.0 
2 H 4.00 0.25 61.4 38.2 0.0 0.0 0.0 
3 H 6.00 0.25 48.1 52.0 0.0 0.0 0.0 
5 H 1.25 5.00 99.0 1.0 0.0 0.0 0.0 
6 H 2.00 5.00 98.5 1.5 0.0 0.0 0.0 
7 H 2.00 10.00 99.0 1.0 0.0 0.0 0.0 
8 Ha 4.00 10.00 99.0 1.0 0.0 0.0 0.0 
9 CH3 2.00 0.25 36.7 63.3 0.0 0.0 0.0 
10 CH3 4.00 0.25 44.0 56.0 0.0 0.0 0.0 
11 CH3 6.00 0.25 41.5 58.5 0.0 0.0 0.0 
13 CH3 1.25 5.00 98.5 1.5 0.0 0.0 0.0 
14 CH3 2.00 5.00 99.0 1.0 0.0 0.0 0.0 
15 CH3 2.00 10.00 99.0 1.0 0.0 0.0 0.0 
16 CH3

a 4.00 10.00 99.0 1.0 0.0 0.0 0.0 
18 OCH3 1.25 5.00 100.0 0.0 0.0 0.0 0.0 
19 OCH3 2.00 5.00 99.0 1.0 0.0 0.0 0.0 

 
Note.  Reaction conditions: methylene chloride = 10 mL; TMPCl = 0.20 mL ([TMPCl] = 0.11 M); Temperature = -70°C, reaction time 

= 2 h.  Reactions terminated by addition of 2 mL methanol.  aReactions terminated by addition of 4 mL methanol.   
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Figure 12.  1H NMR spectra of A) (1,1,3,3-tetramethylbutylsulfanyl)benzene, B) 1-
methyl-4-(1,1,3,3-tetramethylbutylsulfanyl)benzene, and C) 1-methyl-4-(1,1,3,3-
tetramethylbutylsulfanyl)benzene, produced from TiCl4-catalyzed reaction of TMPCl and 
thiophenol, 4-methylbenzenethiol, and 4-methoxybenzenethiol, respectively.   
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Figure 13.  13C NMR spectra of A) (1,1,3,3-tetramethylbutylsulfanyl)benzene, B) 1-
methyl-4-(1,1,3,3-tetramethylbutylsulfanyl)benzene, and C) 1-methoxy-4-(1,1,3,3-
tetramethylbutylsulfanyl)benzene, produced from TiCl4-catalyzed reaction of TMPCl and 
thiophenol, 4-methylbenzenethiol, and 4-methoxybenzenethiol, respectively.  
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1.35 ppm.  Furthermore, the single aromatic region of thiophenol becomes two distinct 

multiplets at 7.53 and 7.35 ppm, with an integration ratio of 2:3, indicating reaction 

through the thiol moiety and not alkylation, which would result in the loss of a proton and 

appearance of a pair of doublets of equal intensity, characteristic of para-substituted 

benzene.  Additionally, no free thiol peak is present, which would be expected at 3.40 

ppm.  For 4-methylbenzenethiol, the sulfide methylene (1.68 ppm), sulfide methyls (1.33 

ppm), and aromatic methyl (2.36 ppm) all appear, while the aromatic region is a pair of 

doublets at 7.40 and 7.14 ppm.  With 4-methoxybenzenethiol, the sulfide methylene 

(1.67), sulfide methyls (1.32 ppm), and methoxy methyl (3.82 ppm) appear, along with 

the aromatic doublets at 7.43 and 6.86 ppm.  In all cases, the tert-butyl protons show 

minimal movement, shifting from 1.05 ppm for TMPCl to 1.03-1.04 for the sulfides.  The 

most notable shifts in the 13C NMR spectra are the tert-Cl quaternary carbon (71.8 ppm) 

and methyl carbons (34.7 ppm) of TMPCl, which move to 50 and 30 ppm in the sulfide 

products.  

When the concentration of TiCl4 was low relative to both TMPCl and thiol (Table 

1, Entries 1-3 and 9-11), the reactions were not completed in 2 h, but essentially only 

starting material and product were present at any time.  Presumably, these reactions 

would go to completion if left for longer periods.  Furthermore, while the extent of 

complexation between the thiol group and TiCl4 has not yet been investigated, these same 

entries (where [TiCl4] < [SH]) suggest that if complexation does occur to a significant 

extent, it does not prevent ionization.  Conversely, when TiCl4 is in excess to thiol 

([TiCl4] > [SH]), the thiol retains the ability to attack the carbocation and form a sulfide 

bond.  No alkylation of the aromatic ring was observed in any instance.   
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Emboldened by these results, a battery of other thiols was reacted with TMPCl 

under conditions of excess TiCl4 ([TiCl4]:[TMPCl] = 5:1), with a low thiol excess 

([Thiol]:[CE] = 1.25:1).  The results are summarized in Table 2.   

Table 2  
 
Model Reactions of TMPCl with Various Thiols 
 

Product Distribution by 1H NMR (mol %)  

Entry Thiol Sulfide tert-Cl exo-
olefin 

endo-
olefin coupled 

1 thiophenol 99.0 1.0 0.0 0.0 0.0 
2 4-methylbenzenethiol 98.5 1.5 0.0 0.0 0.0 
3 4-methoxybenzenethiol 100.0 0.0 0.0 0.0 0.0 
4 benzyl mercaptan 97.1 2.9 0.0 0.0 0.0 
5 2-phenoxyethanethiol 99.5 0.5 0.0 0.0 0.0 
6 3-chloro-1-propanethiol 100.0 0.0 0.0 0.0 0.0 
7 2-mercaptoethanol 100.0 0.0 0.0 0.0 0.0 
8 1-butanethiol 99.0 1.0 0.0 0.0 0.0 
9 2-propanethiol 90.3 9.7 0.0 0.0 0.0 
10 2-methyl-2-propanethiol 0.0 100.0 0.0 0.0 0.0 

11 3-mercaptopropionic acid 99.5 0.5 0.0 0.0 0.0 

 
Note.  Reaction conditions: methylene chloride = 10 mL; TMPCl = 0.20 mL ([TMPCl] = 0.11 M); TiCl4 = 0.65 mL ([TiCl4]/[CE] = 

5); [Thiol]/[CE] = 1.25.  Temperature = -70°C, reaction time = 2 h.  Reactions terminated by addition of 2 mL methanol.   

  
In no case was any olefin or coupled species observed.  Upon addition of TiCl4, 

the clear and colorless solutions became a clear yellow color for all aliphatic thiols and 

dark red/black for the aromatic thiols.  The reaction with benzyl mercaptan produced a 

substantial amount of white/yellow precipitate, which persisted throughout the reaction 

and was dissolved upon MeOH addition.  If this was a thiol-TiCl4 complex, it did not 

inhibit sulfide formation, as 97.1% sulfide formation was achieved in the 2 h reaction 

window.  For most other reactions, the color either completely or largely disappeared 

upon MeOH addition.   
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The use of 2-phenoxyethanol provided a unique opportunity to compare the 

reactivity of the Friedel-Craft alkylation of an alkoxybenzene to the nucleophilic attack 

by a thiol on the tertiary carbocation (Table 2, Entry 5).  The result was exclusively 

sulfide formation.  The 1H NMR spectrum of the reaction product is shown in Figure 3.4.   

 

  

Figure 14.  1H NMR spectra of A) 2-phenoxyethanethiol and B) [2-(1,1,3,3-
tetramethylbutylsulfanyl)ethoxy]benzene produced by the TiCl4-catalyzed reaction of 
TMPCl and 2-phenoxyethanethiol.  Elevated integration values are due to residual 
2-phenoxyethanethiol.  

 
While some residual 2-phenoxyethanethiol is present, the ratio of meta/para to ortho 

phenyl group protons is 1.44, close to the ideal value of 1.5, indicating that the 

para-position has not been alkylated.  Furthermore, no thiol protons are evident, and the 

methylene unit adjacent to the thiol group at 2.84 ppm is a quartet (overlapping doublet 
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of triplets) in 2-phenoxyethane thiol, but becomes a triplet at 2.90 ppm after reaction with 

TMPCl, indicating sulfide formation.  The 13C NMR spectra of 2-phenoxyethanethiol and 

[2-(1,1,3,3-tetramethylbutylsulfanyl)ethoxy]benzene are shown in Figure 3.5. 

 

Figure 15.  13C NMR spectra of A) 2-phenoxyethanethiol and B) [2-(1,1,3,3-
tetramethylbutylsulfanyl)ethoxy]benzene produced by the TiCl4-catalyzed reaction of 
TMPCl and 2-phenoxyethanethiol.  Minor peaks due to residual 2-phenoxyethanethiol 
are present in spectrum B.   

 
The tether protons of the thiol have shifted from 69.3 and 23.8 ppm to 67.5 ppm and 27.4 

ppm, respectively, in the resulting sulfide.  Additionally, the overall structure of the 

sulfide aromatic region is unchanged from that of the thiol.  If alkylation of the phenyl 

ring had occurred, the alkylated phenyl carbon would be expected to shift to 

approximately 145 ppm, but clearly it does not move from its original location of 

approximately 121 ppm.115   
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 A series of reactions between TMPCl and several increasingly bulky thiols 

provided insight into steric limitations.  The methyl groups of TMPCl provide necessary 

carbocation stability but are nonetheless bulky units that impede the approach of large 

substituents.  2-Methyl-2-propanethiol is an equally bulky tertiary thiol that cannot easily 

approach the carbocation, and no reaction was observed within the 2 h time window.  

Interestingly, no elimination was observed in the isolated reaction product.  In contrast, 

the primary thiol 1-propanethiol encountered no steric resistance, readily reaching near 

quantitative conversion under the same conditions (Figure 3.6).  The secondary thiol, 

2-propanethiol, was somewhat hindered sterically, reaching about 90% conversion; 

although the full effect of steric bulk between 1° and 2° thiols was moderated by the 

reaction conditions, which were highly favorable towards the rate limiting carbocation 

formation step.  
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Figure 16.  A) 1H NMR, and B) 13C NMR spectra of 2-butylsulfanyl-2,4,4-
trimethylpentane produced from TiCl4-catalyzed reaction of TMPCl and 1-butanethiol  

 
 The use of functional thiols to make functionalized PIBs would greatly expand the 

utility of the thiol substitution mechanism.  To this end, several species were successfully 

reacted with TMPCl.  Alkyl chloride was added through the use of 3-chloro-1-

propanethiol, shown in Figure 17.  The methylene tethers of the alkyl chloride unit appear 

at 3.64 ppm (triplet), 2.65 ppm (triplet), and 2.01 ppm (multiplet).  The methyl groups 

adjacent to the sulfide linkage appear as a singlet at 1.40 ppm, and the methylene and 

tert-butyl units of the TMP residue are observed at 1.63 and 1.03 ppm, respectively. 
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Figure 17.  A) 1H NMR, and B) 13C NMR spectra of 2-(3-chloropropylsulfanyl)-2,4,4-
trimethylpentane produced from TiCl4-catalyzed reaction of TMPCl and 3-chloro-1-
propanethiol.  

 
In the 13C spectrum, the alkyl chloride methylene units appear at 43.9 ppm, 32.4 ppm, 

and 25.1 ppm.  While highly effective in the reaction with TMPCl, 3-chloro-1-

propanethiol may not be the most economical method for introduction of primary 

chloride, due to the high cost of the molecule. 

 Direct in situ synthesis of hydroxyl-terminated polyisobutylene has long been an 

important synthetic goal.  Unfortunately, hydroxyl moieties rapidly form strong 
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achieve quantitative conversion.115  2-Mercaptoethanol is a hydroxyl-functional thiol 

commonly used in biochemistry to cleave disulfide bonds and is an inexpensive 

multifunctional species that is less malodorous than many other thiols.  The reaction with 

TMPCl under the conditions described in Table 2 (Entry 7) achieved full conversion to 

the Markovnikov sulfide product, shown in Figure 18.  In the 1H spectrum, two sets of 

peaks corresponding to the methylene units of the 2-mercaptoethanol residue appear as 

triplets at 3.59 ppm and 2.85 ppm, with the hydroxyl proton appearing at 2.73 ppm.  In 

the 13C spectrum, the 2-mercaptoethanol-originating methylene units appear at 43.4 and 

30.5 ppm.  In contrast, the anti-Markovnikov product would contain a chiral tertiary 

carbon, which would render the adjacent methylene protons diastereomeric, resulting in 8 

sets of peaks in the 1H NMR spectrum compared to 6 for the Markovnikov product. 
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Figure 18.  A) 1H NMR, and B) 13C NMR spectra of 2-(1,1,3,3-tetramethyl-
butylsulfanyl)ethanol produced from TiCl4-catalyzed reaction of TMPCl and 
2-mercaptoethanol.  

 
Gorski et al. described two complications of the SN1 reaction between TMP and 

2-mercaptoethanol.126  First, the formation of side products as a result of sulfur oxidation 

limited the product yield to 10-15%.  Second, a greater than stoichiometric equivalent of 

BF3-OEt2 was required for the reaction to proceed; whereas a non-hydroxyl-containing 

thiol, i.e. 1-ocytlthiol, proceeded with only 5 mol% catalyst.  In this work, no sulfur 

oxidation was observed in any TiCl4-catalyzed reactions between TMPCl and 
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2-mercaptoethanol, with isolated product yields as high as 95% being achieved.  The 

aforementioned requirement of a stoichiometric excess of catalyst was expected, given 

the known tendency of hydroxyls to complex with Lewis acids.  To examine the extent of 

catalyst consumption by the hydroxyl group of 2-mercaptoethanol, a series of reactions 

was run in which the [TiCl4]:[2-mercaptoethanol] ratio was varied while maintaining a 

fixed [2-mercaptoethanol]:[TMPCl] ratio of 1.25 in pure methylene chloride at -70 °C.  

Reactions were allowed to proceed for 2 h, and then the TiCl4 was deactivated by the 

addition of 2 mL neat MeOH.  The results are shown in Table 3. 

Table 3   

Reaction of TMPCl and 2-Mercaptoethanol with Varying [TiCl4]  

              
Product Distribution by 1H NMR (mol %) 

Entry [TiCl4]/[Thiol] Sulfide tert-Cl exo-
olefin 

endo-
olefin coupled 

1 4.0 100.0 0.0 0.0 0.0 0.0 
2 1.6 93.9 6.1 0.0 0.0 0.0 
3 1.2 87.7 12.3 0.0 0.0 0.0 
4 1.0 82.6 17.4 0.0 0.0 0.0 
5 0.8 78.7 21.3 0.0 0.0 0.0 
6 0.5 11.4 82.5 5.3 0.9 0.0 

 
Note.  Reaction conditions: methylene chloride = 10 mL; TMPCl = 0.20 mL ([TMPCl] = 0.11 M); 2-mercaptoethanol = 0.10 mL 

([Thiol]/[CE] = 1.25).  Temperature = -70°C, reaction time = 2 h.  Reactions terminated by addition of 2 mL methanol.    

 Interestingly, under these conditions, addition proceeds even when the 

stoichiometric amount of TiCl4 is less than or equal to the amount of 2-mercaptoethanol, 

conditions in which the reaction would not be expected to proceed at all.  Catalyst 

complexation with the hydroxyl moiety is occurring, as evidenced by the decreasing 

conversions in the fixed reaction time as [TiCl4] decreases, but complexation is not 
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enough to fully inhibit the reaction.  Only at the lowest level, 0.5:1 [TiCl4]:[Thiol] is the 

addition reaction sufficiently slowed to permit competitive elimination reactions.   

 The final functionality tested with TMPCl was carboxylic acid, in the form of 

3-mercaptopropionic acid, under the conditions stated in Table 2.  The reaction proceeded 

via addition as expected, but upon terminating the reaction with MeOH, it was found that 

the carboxylic acid moiety had reacted with methanol to form the methyl ester.  The 1H 

and 13C NMR spectra of the methyl ester product are shown in Figure 19.  In the 1H 

NMR spectrum, the methylene units of the 3-mercaptopropionate unit appear as triplets at 

2.75 and 2.54 ppm, with the methyl unit of the ester appearing as a singlet at 3.67 ppm.  

In the 13C spectrum, the methylene carbons resonate at 34.4 and 23.1 ppm, the carbonyl 

carbon at 172.5 ppm, and the methyl carbon at 51.7 ppm.  A second attempt at this 

reaction utilizing 1 M aqueous NaOH deactivated the TiCl4 without esterifying the 

carboxylic acid terminus.  
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Figure 19.  A) 1H NMR, and B) 13C NMR spectra of 3-(1,1,3,3-tetramethyl-
butylsulfanyl)propionic acid methyl ester produced from TiCl4-catalyzed reaction of 
TMPCl and 3-mercaptopropionic acid.  

 
In situ Quenching of Masterbatch PIB with Thiols 

 The previously synthesized difunctional masterbatch PIB was returned to living 

cationic polymerization conditions to examine the quenching ability of free thiols onto 

PIB chain ends.  Under polymerization conditions, the solvent medium is substantially 

less polar than for the small molecule TMPCl reactions in order to sufficiently dissolve 

the PIB and depress the ionization rate, as too much chain end ionization can result in 

chain end rearrangements or coupling.  Indeed, the masterbatch PIB was itself not ideal, 
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containing 73% tert-Cl termini, 17% exo-olefin termini, and 10% endo-olefin termini.  

However, this proved beneficial as it allowed for the simultaneous observation of thiol 

quenching behavior in the presence of all commonly observed termini in living PIB 

synthesis.  Morgan et al. observed that alkoxybenzene quenchers are alkylated by 

Glissopal® and in living polymerizations that are less than ideal, olefin termini are 

ultimately alkylated as well.  The generation of HCl by the alkoxybenzene alkylation 

readily hydrochlorinates both exo- and endo-olefin chain ends, converting them into tert-

Cl chain ends, which then reenter the sequence of ionization and alkylation.115  With thiol 

quenching, that mechanism was again shown, wherein the large fractions of olefin 

termini were essentially eliminated by the end of the reaction.  Figure 20 shows the 

reaction product after 5 h quenching with thiophenol.  Olefin and tert-Cl peaks are 

absent, and peaks due to the aromatic thiophenol now appear, split into 2 multiplets with 

an integration ratio of 2:3, indicating no alkylation of the phenyl ring.  Thus reaction 

proceeded via the thiol unit only, to form a sulfide linkage.  Other reactions using 4-

methoxybenzenethiol and 3-chloro-1-propanethiol likewise demonstrated the near total 

conversion of the chain ends to sulfide linkages (Figure 21).  In the 1H NMR spectrum of 

4-methoxybenzenethiol-quenched PIB, the aromatic region consists of two sets of 

doublets of equal integration value at 7.44 and 6.85 ppm and a large singlet at 3.81 ppm 

corresponding the methoxy methyl group.  For 3-chloro-1-propanethiol-quenched PIB, 

the methylene tether protons appear at 3.65 ppm, 2.66 ppm, and 2.02 ppm. 
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Figure 20.  1H NMR spectra of A) masterbatch difunctional PIB containing a mixture of 
tert-Cl, exo-, and endo-olefin termini, and B) α,ω-PIB-benzenesulfide produced by TiCl4-
catalyzed quenching of masterbatch difunctional-PIB.  

 
In the 13C spectrum (Figure 22, B), the methylene tether carbons appear at 47.2 

ppm, 43.9 ppm, and 25.2 ppm.  In the 13C spectrum of thiophenol-quenched PIB (Figure 

22, A), the aromatic carbons are readily visible at 137.8 ppm, 132.7 ppm, 128.6 ppm, and 

128.3 ppm.   
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Figure 21.  1H NMR spectra of A) α,ω-PIB-4-methoxybenzenesulfide and  B) α,ω-PIB-
3-chloropropylsulfide, produced from TiCl4-catalyzed in situ quenching of masterbatch 
difunctional-PIB with 4-methoxybenzenethiol and 3-chloro-1-propanethiol, respectively. 
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Figure 22.  13C NMR spectra of A) α,ω-PIB-benzenesulfide and  B) 
α,ω-PIB-3-chloropropylsulfide, produced from TiCl4-catalyzed in situ quenching of 
masterbatch difunctional-PIB with thiophenol and 3-chloro-1-propanethiol, respectively. 

 
 GPC analysis of the masterbatch PIB showed no coupling or polymer degradation 

due to thiol addition.  The RI GPC traces for the starting masterbatch PIB and the three 

thiol quenched samples are shown in Figure 23 and the numerical GPC data in Table 4.   
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Figure 23.  GPC RI traces of α,ω-PIB-tCl (solid), α,ω-PIB-benzenesulfide (dotted), α,ω-
PIB-4-methoxybenzenesulfide (dashed), and α,ω-PIB-3-chloropropylsulfide (dot dash) 

 
Table 4  

GPC Results for Masterbatch and Thiol-Quenched Polyisobutylenes 

 

 MALDI-TOF-MS analysis was performed on the thiol-quenched PIB species to 

confirm the presence of the thiol end-groups.  The individual MALDI-TOF spectra are 

shown in Figures 24-26.  All were produced with AgTFA cationizing agent and show a 

backbone repeat structure with ~56 Da differences between the individual peaks.  Linear 

regression was used to calculate the end group MWs, and the data are shown in Table 5.  

MWTheo was calculated using Equation 4: 

6 8 10 12 14 16 18

Time (min)

Entry Quencher Mn (g/mol) PDI 

1 masterbatch 4000 1.33 
2 thiophenol 4300 1.28 
3 4-methoxybenzenethiol 4100 1.31 
4 3-chloro-1-propanethiol 4200 1.29 
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MWTheo = 2*EG + I + C 

Equation 4.  Calculation of Theoretical Molecular Weights  

where, EG is MW of the thiol quencher minus a single proton lost during quenching, I is 

the MW of the initiator residue, and C is the molecular weight of the cationizing agent 

cation, silver.  

Table 5 

MALDI-TOF-MS Regression Analysis for Thiol-quenched Polyisobutylenes 

End-Group End-Group 
MW (g/mol) 

MWTheo 
(g/mol) 

MWExp 
(g/mol) 

Difference 
(g/mol) 

thiophenol 109.17 434.71 436.64 1.93 
4-methoxybenzenethiol 139.20 494.76 492.82 1.94 
3-chloro-1-propanethiol 103.55 495.89 493.31 2.58 

 

In the case of the 3-chloro-1-propanethiol quencher, a reaction occurred between the 

silver cation and the chlorine atom.  Assuming that a single chlorine atom was 

fragmented from the chain and its mass replaced by a silver atom provides the best 

agreement between MWTheo and MWExp for that sample.  
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Figure 24.  MALDI-TOF-MS spectrum of α,ω-PIB-benzenesulfide. 

 

Figure 25.  MALDI-TOF-MS spectrum of α,ω-PIB-4-methoxybenzenesulfide. 
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Figure 26.  MALDI-TOF-MS spectrum of α,ω-PIB-3-chloropropylsulfide. 

Conclusions 

 The direct addition of a free thiol to a tertiary carbocation has been observed 

using TiCl4 catalysis for both TMPCl and pre-formed masterbatch PIB.  For TMPCl, 

at -70 ºC in pure methylene chloride, thiols with varied structures were observed to form 

sulfide in quantitative or nearly quantitative amounts in 2 h.  Thiol quenching of PIB was 

performed under living polymerization conditions of 40/60 (v/v) hexane/MeCl and near 

quantitative alkylation was observed of both tert-Cl and olefin terminated PIB chains.  

Further study of the in situ synthesis and thiol quenching of the living cationic 

polymerization of polyisobutylene is underway.   
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CHAPTER III 

SYNTHESIS OF TELECHELIC POLYISOBUTYLENE PREPOLYMERS BY 

CARBOXYLATE SUBSTITUTION 

Introduction 

 Polyisobutylene (PIB) is a saturated hydrocarbon elastomer with unique 

properties, including gas impermeability, thermal and oxidative stability, and high 

mechanical damping, which lead to its use in a number of important and diverse 

applications.  Some of these applications, particularly those in the fuel and lubricating oil 

area, require PIB grades with reactive terminal functionality to allow further 

derivatization.  Commercial PIBs produced via BF3-catalysis, such as Glissopal®, 

contain approximately 70-90% exo-olefin termini, but the chain transfer-dominated 

polymerization process inherently produces only monofunctional polymers.73,74  Living 

cationic polymerization techniques produce telechelic mono- and di-functional PIBs with 

excellent molecular weight control and narrow (<1.2) polydispersities.27  Unless an 

external quenching compound is employed, the PIB chain ends in living polymerization 

are exclusively tert-chloride.134   

Addition of a suitable, external quenching compound to living PIB enables the 

facile synthesis of functional PIBs within the polymerization reactor.  Several classes of 

quenchers have been developed to produce various functionalities at the chain ends.  

Hindered bases, such as 2,6-dimethylpyridine and 1,2,2,6,6-pentamethylpiperidine, cause 

elimination at the carbenium ion to form exclusively exo-olefin.77,78  Other classes of 

quenchers operate through addition to the carbenium ion.  Sulfides, such as di-tert-butyl 

sulfide, and ethers, such as diisopropyl ether, add to the carbenium ions as they are 
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formed to generate stable sulfonium81 or oxonium84 cations at 100% of the chain ends 

that, upon decomposition by a base or methanol, produce solely exo-olefin termini.   

To produce functional PIBs other than exo-olefin, a popular method is to use a 

quencher in which the functional group of interest is tethered to another functional group, 

such as an activated aromatic ring, that is capable of addition to the carbenium ion.  

Numerous functionalities have been introduced in this manner, including hydroxyl,117 

amine, and alkyne.115  In terms of synthetic variety, primary halogen termini, particularly 

bromine, represent a very versatile functional group.  Several classes of functional 

quenchers have been developed that lead to primary halogen-terminated PIB, including 

1,3-butadiene99 and alkoxybenzenes, such as 3-bromopropoxybenzene.119,120  PIBs with 

primary bromine-termini have been shown to be highly effective as substrates for SN2 

reactions for installation of numerous functionalities, such as vinyl ether,101 thiol,133 

hydroxyl,115 and amine.135   

Acrylate and methacrylate-terminated PIBs offer the potential for synthesis of PIB 

networks with high hydrolytic and oxidative resistance, as well as excellent mechanical 

damping.  (Meth)acrylate-PIBs have been synthesized via both acid halide reaction with 

hydroxyl-terminated PIB and by substitution of bromoallyl-terminated PIB produced 

using 1,3-butadiene quenching.101  However, 1,3-butadiene produces allyl chloride end 

groups unless an entirely brominated Lewis acid catalyst system is utilized.136  Due to the 

complexity of the latter remedy, and since chloride does not perform nearly as well as 

bromide in typical SN2 reactions, bromide functionalities must be added in a separate 

halogen exchange reaction using LiBr.100  (3-Bromopropoxy)benzene provides primary 

bromine functionality without special catalysts or post-polymerization modification.  In 
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this work, carboxylate-type nucleophiles have been utilized to displace bromine termini 

to produce (meth)acrylate and tetrahydroxy-functional PIBs. 

Experimental 

Materials 

Titanium tetrachloride (TiCl4) (99.9%), hexane (anhydrous, 95%), 

(3-bromopropoxy)benzene (96%), (2-bromoethoxy)benzene (98%), 2,6-lutidine (≥99%), 

N,N-dimethylformamide (DMF) (≥99.9%), methanol (anhydrous, 99.8%), 

tetrabutylammonium bromide (≥99.0%), hydroquinone monomethyl ether (MEHQ, 

≥98.0%), acrylic acid (99%), and 2,2-bis(hydroxymethyl)butyric acid (98%) were 

purchased and used as received from Sigma-Aldrich.  Methacrylic acid (99.5%) was 

purchased from Acros Organics and used as received.  Heptane (98.3%, HPLC grade) 

and potassium hydroxide (ACS grade) were purchased from Fisher Scientific and used as 

received.  THF (HPLC grade) was purchased from Fisher Scientific and distilled over 

CaH2 prior to use.  Methyl chloride (CH3Cl, Alexander Chemical Corp, 99.95%), and 

isobutylene (BOC Gases, 99.5%) were dried by flowing the gaseous reagents through 

packed columns of CaSO4/4 Å molecular sieves and CaSO4, respectively, and condensed 

in a N2-atmosphere glovebox immediately prior to use.  Cationic initiators 2-chloro-2,4,4-

trimethylpentane (TMPCl) and 1,3-bis-(1-chloro-1-methylethyl)-5-tert-butylbenzene 

(bDCC) and phenoxy bromide terminated polyisobutylenes were synthesized as 

previously described.115   

Instrumentation 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF MS) was performed using a Bruker Microflex LRF MALDI-TOF mass 

spectrometer equipped with a nitrogen laser (337 nm) possessing a 60 Hz repetition rate 
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and a 50 µJ energy output.  PIB homopolymer samples were prepared using the dried-

droplet method.  For PIB homopolymer, a 20 mg/mL matrix (dithranol) solution, a 10 

mg/mL cationizing agent (silver trifluoroacetate or sodium trifluoroacetate) (AgTFA or 

NaTFA) solution, and a 10 mg/mL polymer solution, all in THF, were mixed in a 

volumetric ratio of matrix:sample:cationizing agent = 10:10:1, and then a 0.5 µL aliquot 

was applied to a MALDI sample target for analysis.  All spectra were obtained in the 

positive ion mode utilizing the reflector mode micro-channel plate detector and are the 

sum of 900-1000 shots.  Molecular weights of the polymer end groups were determined 

by linear regression using the known molecular weight of the initiator residue 

(1,3-diisopropyl-5-tertbutylbenzene) and cationizing agent cation (Ag+ or Na+). 

Gel permeation chromatography (GPC) was used to measure all number average 

molecular weights (Mn) and polydispersities (PDI = Mw/Mn) using a system composed of 

a Waters Alliance 2695 separations module, an online laser light scattering (MALLS) 

detector equipped with a 20 mW gallium arsenide laser operating at 658 nm (miniDAWN 

TREOS, Wyatt Technology Corp.) and an interferometric refractometer operating at 658 

nm and 35 °C (Optilab rEX, Wyatt Technology Corp.).  Separation was provided by two 

PLgel mixed-E columns (Polymer Laboratories Inc.) with 3 μm beads, connected in 

series, operating at 35°C, using freshly distilled THF as the mobile phase at a rate of 1.0 

mL/min.  Sample solutions (~5-12 mg of polymer/mL of THF) were filtered through 0.2 

μm PTFE filters prior to analysis, with a 100 μL injection volume.  Data were recorded 

using ASTRA V software (Wyatt Technology Corp.).  Absolute molecular weights were 

calculated from MALLS data using either a known dn/dc value114 or a dn/dc value 

calculated from the refractometer response assuming 100% mass recovery from the 

columns.  
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NMR was performed using a 300 MHz Varian Mercuryplus NMR (VNMR 6.1C) 

spectrometer.  Samples were analyzed in 5 mm o.d. tubes with 1H and 13C chemical shifts 

referenced to the CDCl3 solvent resonance (7.26 ppm and 77.0 ppm, respectively). 

Synthesis of Acrylate-terminated Polyisobutylene 

 In a vial, 1.60 g PIB-(Br)2 (5000 MW, PDI = 1.18) was dissolved in 7.5 mL 

heptane.  Into a 100 mL, 2-neck round-bottom flask, were charged 0.171 g 

monomethylether hydroquinone (MEHQ), 0.089 g KOH, 0.433 g TBAB, 7.5 mL 

heptane, 15 mL DMF, and 0.11 mL acrylic acid.  The reactor was fitted with a condenser 

and N2 purge, and then immersed into a 105 °C oil bath.  After the reactor had 

equilibrated for15 min in the bath, the PIB/heptane solution was rapidly injected into the 

reactor.  After 1.5 h reaction, the reactor was removed from the bath and cooled for 25 

min under N2 purge.  The reactor contents were then transferred to a separatory funnel 

and allowed to cool to rt.  The DMF layer was then drained, and the heptane layer was 

extracted 4x with 5 mL increments of deionized H2O.  The organic layer was then dried 

over MgSO4 and filtered, and the solvent was stripped to yield the final PIB-(acrylate)2. 

Synthesis of Methacrylate-terminated Polyisobutylene 

 In a vial, 1.602 g PIB-(Br)2 (5000 MW, PDI = 1.18) was dissolved in 7.5 mL 

heptane.  Into a 100 mL, 2-neck round-bottom flask were charged 0.158 g MEHQ, 0.094 

g KOH, 0.405 g TBAB, 7.5 mL heptane, and 15 mL DMF.  The reactor was fitted with a 

condenser and Ar purge, and then placed into a 105 ºC oil bath.  After 15 min of 

equilibration in the bath, 0.13 mL methacrylic acid was injected into the reactor, followed 

by the PIB/heptane solution.  After 2.3 h reaction, the reactor was removed from the bath 

and cooled for 15 min under Ar purge.  Reactor contents were transferred to a separatory 

funnel and cooled to room temperature.  The DMF layer was drained, and the heptane 
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layer was extracted 4x with 5 mL increments of deionized H2O.  The organic layer was 

dried over MgSO4 and filtered, and the solvent was stripped to yield the final 

PIB-(methacrylate)2. 

Synthesis of Tetrahydroxy-functional Polyisobutylene 

 In a vial, 1.603 g PIB-(Br)2 (5000 MW, PDI = 1.18) was dissolved in 7.5 mL 

heptane.  Into a 100 mL, 2-neck round-bottom flask, were charged 0.089 g KOH, 0.102 g 

TBAB, 0.232 g 2,2-bis(hydroxymethyl)butyric acid, 7.5 mL heptane, and 15 mL DMF.  

The PIB/heptane solution was added to the reactor, which was fitted with a N2 purge and 

condenser.  The reactor contents were then refluxed at 105 °C for 3 h.  The reactor was 

removed from the bath and cooled for 15 min under N2 purge, and then the contents were 

transferred to a separatory funnel and allowed to cool to room temperature.  The DMF 

layer was drained, and the heptane layer was extracted 4x with 5 mL increments of 

MeOH.  The polymer product was precipitated in MeOH and redissolved in hexane, and 

the hexane was stripped to reveal the final PIB-(OH)4.   

Results and Discussion 

Primary bromide is a sufficiently effective leaving group that it undergoes SN2 

reactions quite readily even with relatively weak nucleophiles such as carboxylate.  The 

general reaction scheme used for PIB-Br displacement reactions is shown in Scheme 2.  

A practical difficulty is that the highly hydrophobic polyisobutylene is most readily 

dissolved in nonpolar (alkanes) or, at best, mildly polar solvents (alkyl halides, THF), 

while carboxylates are highly hydrophilic and require polar solvents.  When synthesizing 

acrylate-PIB from allyl-bromide-terminated PIB, Faust utilized refluxing THF as a 

medium-polarity solvent to bridge the gap between sodium acrylate and PIB.101  

However, this compromise required the use of large excesses (29x and 32x, respectively) 
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of sodium acrylate and the phase transfer catalyst, tetrabutylammonium bromide, relative 

to the chain end concentration ([CE],) to achieve full conversion in 6 h.  Conversely, this 

research utilized a heptane/DMF cosolvent system, usually in a 50/50 (v/v) ratio, which 

has been utilized successfully in the SN2 reactions of α,ω-PIB-Br.115,133  These 

cosolvents, while immiscible at room temperature, become monophasic above ~70 ºC, 

thereby allowing the nonpolar PIB and polar carboxylate to intimately mix during 

reaction, which is conducted at heptane reflux temperatures (98-99 ºC).  These cosolvents 

also offer significant advantages during reaction work-up.  After the reaction is complete, 

cooling the reactor to room temperature causes the solvents to once again separate.  The 

denser DMF layer contains the alkali bromide by-product, excess carboxylate, and 

catalyst, which are thus separated from the PIB product by simply draining away the 

lower layer using a separatory funnel.  The upper PIB/heptane solution is then easily 

extracted with water or MeOH to produce a pure polymer product.  To achieve 

reproducible reaction temperatures, the relationship between internal reactor temperature 

and external oil bath temperature was determined and used to create the calibration curve 

shown in Figure 27.
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Scheme 2.  Synthesis of PIB-(acrylate)2, PIB-(methacrylate)2, and PIB-(OH)4. 

 

Figure 27.  Internal reactor temperature as a function of the oil bath set point.  
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After having thus established the benefit of using a phase transfer catalyst, the conversion 

of PIB-Br to PIB-acrylate was examined used a fixed ratio of 0.5/1 TBAB/CE and 

varying the potassium acrylate (KA)/CE ratio from 1.5-2.5/1.  As seen in Figure 28, the 

conversion vs. time plots for different [KA] were essentially the same, indicating that the 

reaction was insensitive to [KA] and suggesting that a phase boundary, not visible to the 

naked eye, remained between the supposedly miscible solvents.  Thus, in the presence of 

a less than stoichiometric amount of TBAB, the majority of the reaction was being 

caused by acrylate species that were being shuttled into the hydrophobic PIB/heptane by 

TBAB cations. 

A kinetic study of the effect of [TBAB] on rate of PIB-acrylate production was 

then undertaken using 3000 MW monofunctional PIB.  Additionally, the heptane content 

of the solvent mixture was varied from 40-70% by volume, to examine the effect of 

solvent polarity on reaction rate.  The initial reaction rates are summarized in Table 6. 

Table 6   

Initial reaction rates of the PIB-Br/potassium acrylate reaction as a function of 

heptane:DMF ratio and [TBAB]/[CE] ratio 

Initial Reaction Rate (mol L-1 s-1, x105) 
[TBAB]/[CE] 

Heptane/DMF 0 0.5 1 2 3 
40/60 0.79 1.81 2.76 3.41 3.99 
50/50 1.13 3.04 3.76 4.75 5.38 
60/40 0.69 2.80 7.19 8.46 6.18 
70/30 0.31 2.51 3.15 6.27 6.38 

 
Note.  [KA] = 0.05 M; [CE] = 0.02 M; [MEHQ] = 0.04 M  

Some general observations can be made from the data in Table 7.  In most cases, 

increasing [TBAB] increased the reaction rate in every solvent mixture, as expected if it 
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is transporting the bulk of the acrylate anion across the solvent phase boundary.  

However, when [TBAB] exceeded the potassium acrylate concentration ([KA]), i.e., 

when [TBAB]/[CE] > 2.5, further increases in [TBAB] did not cause a further increase in 

rate, which is expected, since the acrylate anions become saturated with TBAB cations.  

In the case of the 60/40 (v/v) heptane/DMF mixture, the rate actually decreased.  Figure 

29 shows conversion versus time plots for various [TBAB]/[CE] ratios in 50/50 

heptane/DMF, at a fixed ratio of [KA]/[CE] = 2.5.  The greatest increase in reaction rate 

occurred between the control reaction containing no TBAB and the one in which 0.5/1 

[TBAB]/[CE] was used.  Thus, from a material cost and efficiency standpoint, a small 

amount of TBAB is better than a larger amount, as larger amounts yield diminishing 

returns in the corresponding reaction yield, particularly as [TBAB]/[KA] approaches 

unity or greater.  

 
Figure 28.  Conversion vs. time plots of PIB-Br/potassium acrylate reaction in 50:50 
(v:v) heptane:DMF with [CE] = 0.02 M, [MEHQ] = 0.04 M, [TBAB]:[CE] = 0.5:1, and 
[KA]:[CE] of 1.5:1 (○), 2:1 (□), and 2.5:1 (x).   
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Figure 29.  Conversion vs. time plots of PIB-Br/potassium acrylate reaction in 50:50 
(v:v) heptane:DMF with [CE] = 0.02 M, [MEHQ] = 0.04 M, [KA]:[CE] = 2.5:1, and 
[TBAB]:[CE] of 0:1 (□, control), 0.5:1 (■), 1.5:1 (∆), 2:1 (x), and 3:1 (○).   

 
Potassium hydroxide was used exclusively as the base to generate carboxylate 

anions from the parent carboxylic acid.  This selection was made largely as a result of an 

early kinetic experiment that was conducted in which sodium and potassium were 

compared in the absence of TBAB.  The resulting second-order kinetic plot of acrylate 

termini formation versus time is shown in Figure 30.  The potassium counterion yielded a 

significantly higher reaction rate than sodium, producing complete reaction in 

approximately 1 h, while the sodium reaction was incomplete after 8 h.  This was 

attributed to greater solubility of KOH in DMF relative to NaOH, although KOH did not 

fully dissolve in DMF until the reaction was heated.  Furthermore, the polar aprotic 

nature of DMF makes it an excellent solvent for cations, separating ion pairs, and 

resulting in acrylate anions with greater charge density and thus greater nucleophilicity 

for the substitution reaction.  As a larger atom, potassium is more readily solubilized by 

DMF than sodium.  It is possible that the differential advantage of potassium over sodium 

may be diminished in the presence of TBAB. 
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Figure 30.  Second order kinetic plot of the reaction of PIB-(Br)2 with KOH (●) and 
NaOH (■) with [CE] = 0.02 M, [KA] = 0.05 M, [MOH] = 0.05 M, [HQ] = 2.06 mM, 
[TBAB] = 0.02 M in 50:50 (v:v) heptane:DMF at 105 °C. 

 

Faust et al. utilized pre-made sodium (meth)acrylates,101 which has the potential 

advantage of generating no water, which could possibly interfere in the reaction as a 

competitive nucleophile.  In the present research, the generation of potassium carboxylate 

in situ was found to be facile, and the water thus generated did not adversely affect the 

bromide substitution reaction (i.e. no hydroxyl termini were observed on the product 

PIBs).  This was attributed in part to the biphasic nature of the reaction.  The generated 

water molecules were expected to remain in the DMF phase, and therefore undergo 

negligible interaction with the PIB chain ends in the heptane phase.     

 The final factor in successful installation of (meth)acrylate termini was 

suppression of radical side reactions involving the (meth)acrylate groups, causing loss of 

acrylate functionality.  Without any added radical inhibitor, full conversion of the 
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hydroquinone suppressed this side reaction, allowing for quantitative integration values 

of the acrylate protons.  However the polymer product resulting from hydroquinone-

inhibited reactions was a cloudy, light brown material.  Replacing hydroquinone with 

hydroquinone monomethyl ether produced a clear, colorless polymer product.  

Representative 1H and 13C NMR spectra of α,ω-PIB-acrylate are shown in Figure 31 and 

32, respectively.  The acrylate protons appear as three sets of peaks at 6.43 ppm, 6.14 

ppm, and 5.83 ppm.  The terminal methylene unit shifts from 3.61 ppm in PIB-(Br)2 to 

4.38 ppm in PIB-(acrylate)2.  The other tether protons shift from 4.09 and 2.32 ppm to 

4.06 and 2.17 ppm, respectively.  The 13C NMR spectrum shows the acrylate carbons at 

130.7 ppm and 128.5 ppm and the carbonyl carbon at 166.1 ppm.   

 
Figure 31.  1H NMR spectrum of PIB-(acrylate)2.  
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Figure 32.  13C NMR spectrum of PIB-(acrylate)2.  

α,ω-PIB-methacrylate was synthesized via the same procedure as α,ω-PIB-

acrylate.  A kinetic comparison of methacrylate versus acrylate is shown in Figure 33.  

The slightly higher reaction rate for potassium methacrylate can be attributed to the 

additional methyl group, which contributes additional electron density to the carboxylate 

group and makes the molecule more nonpolar, increasing its solubility in the heptane/PIB 

phase relative to acrylate.  
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Figure 33.  Second-order kinetic plot of PIB-(methacrylate)2 (▲) and PIB-(acrylate)2 (♦) 
synthesis from α,ω-PIB-Br.  Conditions used: α,ω-PIB-Br (0.01 M, [CE] = 0.02 M), 
K(M)A/CE = 2.5/1, [hydroquinone] = 2.06 mM, [TBAB] = 0.02 M, 1/1 (v/v) 
heptane/DMF.  

 
The 1H and 13C NMR spectra of α,ω-PIB-methacrylate are shown in Figures 34 and 35, 

respectively.  The methacrylate olefinic protons appear at 6.12 ppm and 5.57 ppm.  The 

methylene tether protons resonate at 4.35 ppm, 4.06 ppm, and 2.16 ppm.  The 

methacrylate olefinic carbon peaks appear at 136.3 ppm and 125.4 ppm.  The carbonyl 

carbon and methacrylate methyl carbon resonate at 167.3 and 18.4 ppm, respectively.

0

1

2

3

4

0 5 10 15 20 25 30

ln
((

M
-p

)/M
(1

-p
))

Time (min)



69 
 

 

Figure 34.  1H NMR spectrum of PIB-(methacrylate)2. 

 

Figure 35.  13C NMR spectrum of PIB-(methacrylate)2. 
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  α,ω-PIB-Br has been converted to α,ω-PIB-OH via a two-step sequence utilizing 

sodium benzoate to displace the bromine, followed by ester hydrolysis. Conversion to a 

tetra-hydroxy functional PIB would allow for dendritic structures or crosslinked 

networks.  Tetra-hydroxy functional PIBs have been produced using thiol-terminated PIB 

and sequential thiol-ene/thiol-yne reactions,133 but simple bromine displacement by 

2,2-bis(hydroxymethyl)butyric acid offers similar functionality in a single synthetic step.  

The reaction utilized similar conditions to the (meth)acrylate reactions, but did not 

require any radical inhibitor.  The 1H NMR spectrum of α,ω-PIB-(OH)2 is shown in 

Figure 36.  In CDCl3, the methylene protons of the hydroxymethyl moieties are split into 

two sets of doublets at 4.02 ppm and 3.73 ppm, one set of which overlaps the methylene 

protons of the propoxy tether unit at 4.06 ppm.  The other propoxy methylene units 

appear at 4.40 ppm and 2.15 ppm.  The methylene unit of the ethyl moiety appears at 

1.61 ppm, while its adjacent methyl protons are buried beneath the PIB backbone proton 

resonances.  The terminal hydroxyl protons appear at 2.85 ppm.   



71 
 

 
Figure 36.  1H NMR of PIB-(OH)4. 

In the 13C spectrum, shown in Figure 37, the carbonyl carbon resonates at 175.2 

ppm, the hydroxymethyl carbons appear at 62.2 ppm, and the central quaternary carbon is 

observed at 53.0 ppm.  The ethyl moiety carbons appear at 24.7 ppm and 8.7 ppm.  End 

group peak assignments for both the 1H and 13C NMR of α,ω-PIB-(OH)2 were aided by 

2-D HSQC NMR shown in Figure 39. 
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Figure 37.  13C NMR spectrum of PIB-(OH)4. 
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Figure 40.  RI GPC traces of PIB-(Br)2 (solid), PIB-(methacrylate)2 (dashed), and PIB-
(OH)4 (dotted). 

 
 MALDI-TOF analysis was performed on each functional PIB sample.  The results 

are summarized in Table 7.  A sample MALDI-TOF mass spectrum of PIB-(acrylate)2 is 

shown in Figure 42, with the inset clearly showing the spacing between the individual 

peaks very close to that of the IB repeat unit at 56 Da.  

Table 7   

MALDI-TOF-MS End-group Analysis for Functional PIBs 

End-Group 

End-
Group 
MW 

(g/mol) 

Cation MWTheo 
(g/mol) 

MWExp 
(g/mol) 

Difference 
(g/mol) 

acrylate 205.23 Na 626.83 623.68 3.15 
methacrylate 219.26 Ag 654.89 654.75 0.14 

2,2-bis(hydroxymethyl)butyrate 281.33 Ag 779.02 782.98 3.96 
 
A plot of M/z vs. degree of polymerization is shown in Figure 41 for PIB-(acrylate)2, 

which is representative.  The slope obtained by linear regression represents the MW of 

the polymer repeat units, and the intercept is the MW of the residue species, defined as 

MWresidue = 2*MWEndgroup + MWInitiator and is equivalent to MWExp shown in Table 7. 
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displaced approximately 35% of the bromine termini, producing a highly coupled 

polymer product, the RI trace of which is shown in Figure 44. 

  

Figure 43.  Refractive index GPC trace of PIB-(Br)2 before (solid) and after (dashed) 
reaction with 3-mercaptopropionic acid.  Coupling through the thiol group to form sulfide 
linked PIB is evident.  

 
Conclusions 

 PIB-(acrylate)2, PIB-(methacrylate)2, and PIB-(OH)4 were synthesized by the 

carboxylate SN2 displacement of primary bromide termini from PIB-(Br)2.  The solvent 

system of 50/50 (v/v) heptane/DMF allowed for facile reactions as the two dissimilar 

solvents become relatively miscible at the reaction temperature, then phase separate at 

room temperature, simplifying polymer clean-up and isolation.  Potassium hydroxide was 

used to generate the carboxylates from the parent carboxylic acid.  The phase transfer 

catalyst, tetrabutylammonium bromide, greatly increased reaction rate when used at less 

than stoichiometric amounts relative to carboxylate, but produced progressively 

diminishing rate increases as its concentration approached that of carboxylate.  During 

substitution reactions involved acrylate or methacrylate anions, the radical inhibitor 
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monomethylether hydroquinone suppressed radical side reactions while producing a 

clear, colorless polymer product. 
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CHAPTER IV 

DERIVATIZATION OF PHENOL- AND HYDROXYL-TERMINATED 

POLYISOBUTYLENES  

Introduction 

 Polyisobutylene is a saturated hydrocarbon elastomer with growing commercial 

utility, 137  which is obtainable only through the cationic polymerization of isobutylene.  

Commercial processes for cationic polymerization of isobutylene typically produce a 

mixture of several characteristic end-terminal functionalities, the most desirable being 

exo-olefin.  However, substantial work has been done on both in situ and post-

polymerization modification of PIB chain ends, both those produced by traditional 

commercial processes, which are inherently monofunctional, and those based on living 

PIB polymerizations, which can produce mono-, di-, or tri-functional PIB depending on 

the initiator structure.  Numerous functional groups have since been installed on PIB, 

including primary halogen,115 acrylate,101,138 thiol,133 amine,92,111,139 and hydroxyl.92,117,140  

Particular emphasis on the synthesis of hydroxyl-terminated polyisobutylene, both 

aromatic (PIB-phenol) and aliphatic, has been undertaken due to the high synthetic 

versatility of this functional group.  Kennedy first produced difunctional 

hydroxyl-terminated PIB from telechelic tert-Cl PIB produced by the inifer process via a 

two-step post-polymerization sequence: dehydrochlorination to exo-olefin PIB, following 

by hydroboration-oxidation.88  Other post-polymerization approaches utilized 

displacement of a primary halogen92 and a thiol-ene reaction between exo-olefin PIB and 

a hydroxyl-functional thiol.128  Phenol-terminated PIB has been synthesized directly via 

Friedel-Crafts alkylation of phenol by either exo-olefin or tert-chloride PIB.122,127,141 
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In situ approaches to hydroxyl-functional PIB follow two routes: functional 

initiators and nucleophilic quenchers.  With regard to the former, Puskas and coworkers 

utilized α-methylstyrene epoxide and 1,2-epoxy-2,4,4-trimethylpentane, an epoxy 

derivative of 2,4,4-trimethyl-1-pentene (precursor to the common PIB initiator, TMPCl), 

which would epoxy-ring open with TiCl4 or BCl3 catalysis and initiate polymerization, 

producing PIB with one hydroxyl-terminus and one tert-chloride terminus.42,129,142  

Nucleophilic quenchers can be added to the polymerization reactor once all monomer is 

consumed, provided that the interaction between the quencher and the Lewis acid is not 

sufficient to deactivate one or the other.  Unprotected hydroxyl groups and phenol will 

rapidly interact with typical polymerization catalysts, such as TiCl4, and are generally not 

suited for direct addition.  Protected heterocyclic aromatics, such as N-(ω-tert-

butoxyalkyl)pyrrole,117 and alkoxybenzenes,115 such as isopropoxybenzene and anisole, 

are readily alkylated by PIB chains, and the protecting groups may be removed in situ by 

charging additional Lewis acid (TiCl4, EtAlCl2, BBr3) and H2SO4, and warming the 

reaction.  Storey et al. have recently shown that unprotected phenoxyalkanols with tether 

lengths of four or more could be quantitatively alkylated by PIB chains, but required long 

reaction times and large (10x) excesses of TiCl4.115 

In situ methods producing quantitative telechelic exo-olefin PIB, such as hindered 

bases,77-80 (di)sulfides,82,130 and ethers,84 allow for facile direct synthesis of prepolymers 

for modification by thiol-ene reaction.  Radical thiol-ene click reactions are extremely 

tolerant of functional groups such as hydroxyl, and make for an interesting alternate 

pathway to functional PIBs.128   

Once produced, hydroxyl- and phenol-terminated PIBs have been further 

modified with additional chemistries.  Kennedy reacted phenol-terminated PIB with 
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epichlorohydrin to produce telechelic glycidyl ether-terminated PIBs that were then 

reacted with a tetrafunctional amine to form flexible films.122  Telechelic hydroxyl-

terminated PIB has been further derivatized to produce (meth)acrylate,138,143,144 and 

isocyanate-terminated PIB,145,146 and has been used to initiate ring opening 

polymerization of ε-caprolactone147 and L-lactide.148,149   

In this work, we expand on the library of functional telechelic PIBs suitable as 

platforms for block copolymer or network synthesis, particular those utilizing radical 

polymerizations.   

Experimental 

Materials 

 Titanium tetrachloride (TiCl4) (99.9%), hexane (anhydrous, 95%), 2,6-lutidine 

(≥99%), N,N-dimethylformamide (DMF) (≥99.9%), methanol (anhydrous, 99.8%), 

diisopropyl ether (anhydrous, 99%), 2-mercaptoethanol (≥99.9%), chloroform (99.9+%, 

ACS), acryloyl chloride (≥97%), 2,2-dimethoxy-2-phenylacetophenone (99%), and 

2-bromopropionyl bromide (97%) were purchased from Sigma-Aldrich and used as 

received.  Methacryloyl chloride (95%) and chloroform-d (99.8 atom% D) were 

purchased from Acros Organics and used as received.  2-Bromoisobutyryl bromide 

(>98%) was purchased from TCI America and used as received.  THF was purchased 

from Fisher Scientific and distilled over CaH2 prior to use.  Isopropoxybenzene (97%) 

was purchased from Oakwood Chemical and used as received.  Difunctional cationic 

polymerization initiator 1,3-bis-(1-chloro-1-methylethyl)-5-tert-butylbenzene (bDCC), 119 

α,ω-bis(4-hydroxyphenyl)polyisobutylene (α,ω-PIB-phenol, Mn = 5200 g/mol, PDI = 

1.18),115 and α,ω-(methylvinylidenemethyl)polyisobutylene (α,ω-PIB-exo, Mn = 3600, 

PDI = 1.11)84 were synthesized as previously described.   
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Instrumentation 

 Gel permeation chromatography (GPC) was used to measure all number average 

molecular weights (Mn) and polydispersities (PDI = Mw/Mn) using a system composed of 

a Waters Alliance 2695 separations module, an online laser light scattering (MALLS) 

detector equipped with a 20 mW gallium arsenide laser operating at 658 nm (miniDAWN 

TREOS, Wyatt Technology Corp.) and an interferometric refractometer operating at 658 

nm and 35 °C (Optilab rEX, Wyatt Technology Corp.).  Separation was provided by two 

PLgel mixed-E columns (Polymer Laboratories Inc.) with 3 μm beads, connected in 

series, operating at 35°C, using freshly distilled THF as the mobile phase at a rate of 1.0 

mL/min.  Sample solutions (~5-12 mg of polymer/mL of THF) were filtered through 0.2 

μm PTFE filters prior to analysis, with a 100 μL injection volume.  Data were recorded 

using ASTRA V software (Wyatt Technology Corp.).  Absolute molecular weights were 

calculated from MALLS data using either a known dn/dc value114 or a dn/dc value 

calculated from the refractometer response assuming 100% mass recovery from the 

columns.  

NMR was performed using a 300 MHz Varian Mercuryplus NMR (VNMR 6.1C) 

spectrometer.  Samples were analyzed in 5 mm o.d. tubes with 1H and 13C chemical shifts 

referenced to the CDCl3 solvent resonance (7.26 ppm and 77.0 ppm, respectively). 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS) was performed using a Bruker Microflex LRF MALDI-TOF mass 

spectrometer equipped with a nitrogen laser (337 nm) possessing a 60 Hz repetition rate 

and a 50 µJ energy output.  PIB homopolymer samples were prepared using the dried-

droplet method.  For PIB homopolymer, a 20 mg/mL matrix (dithranol) solution, a 10 

mg/mL cationizing agent (silver trifluoroacetate or sodium trifluoroacetate) (AgTFA or 
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NaTFA) solution, and a 10 mg/mL polymer solution, all in THF, were mixed in a 

volumetric ratio of matrix:sample:cationizing agent = 10:10:1, and then a 0.5 µL aliquot 

was applied to a MALDI sample target for analysis.  All spectra were obtained in the 

positive ion mode utilizing the reflector mode micro-channel plate detector and are the 

sum of 900-1000 shots.  Molecular weights of the polymer end groups were determined 

by linear regression using the known molecular weight of the initiator residue 

(1,3-diisopropyl-5-tert-butylbenzene) and cationizing agent cation (Ag+ or Na+). 

Synthesis of α,ω-(4-acryloylphenyl)polyisobutylene (α,ω-PIB-acrylate) 

 To a scintillation vial were added 1.00 g α,ω-PIB-phenol (Mn = 5200 g/mol, 0.38 

meq) and 10 mL freshly distilled THF.  To the stirring solution were added triethylamine 

(0.080 mL, 0.57 mmol) and acryloyl chloride (0.047 mL, 0.57 mmol).  Upon addition of 

acryloyl chloride, the clear colorless solution immediately became cloudy white.  After 1 

h reaction at rt, the THF was removed, and the polymer was dissolved in hexane, filtered 

through a cotton plug, and precipitated into stirred MeOH.  The MeOH was decanted, 

and residual MeOH was removed with an N2 stream.  The polymer was redissolved in 

hexane, and the hexane was stripped under vacuum to yield the final α,ω-PIB-acrylate. 

Synthesis of α,ω-(4-methacryloylphenyl)polyisobutylene (α,ω-PIB-methacrylate) 

 To a scintillation vial were added 1.00 g α,ω-PIB-phenol (Mn = 5200 g/mol, 0.38 

meq) and 10 mL freshly distilled THF.  To the stirring solution were added triethylamine 

(0.080 mL, 0.57 mmol) and methacryloyl chloride (0.056 mL, 0.57 mmol).  Upon 

addition of methacryloyl chloride, the clear colorless solution slowly became cloudy 

white, becoming more opaque as the reaction progressed.  After 1 h reaction at rt, the 

THF was removed, and the polymer was dissolved in hexane, filtered through a cotton 

plug, and precipitated into stirred MeOH.  The MeOH was decanted, and residual MeOH 
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was removed with an N2 stream.  The polymer was redissolved in hexane, and the hexane 

was stripped under vacuum to yield the final α,ω-PIB-methacrylate. 

Synthesis of α,ω-[4-(2-bromopropionyloxy)phenyl]polyisobutylene 

(α,ω-PIB-bromopropionate) 

To a scintillation vial were added 1.00 g α,ω-PIB-phenol (Mn = 5200 g/mol, 0.38 

meq) and 10 mL freshly distilled THF.  To the stirring solution were added triethylamine 

(0.080 mL, 0.57 mmol) and 2-bromopropionyl bromide (0.08 mL, 0.77 mmol).  Upon 

addition of 2-bromopropionyl bromide, the clear colorless solution immediately became 

cloudy yellow.  After 2 h reaction at rt, the THF was removed, and the polymer was 

dissolved in hexane, filtered through a cotton plug, and precipitated into stirred MeOH.  

The MeOH was decanted, and residual MeOH was removed with an N2 stream.  The 

polymer was redissolved in hexane, and the hexane was stripped under vacuum to yield 

the final α,ω-PIB-bromopropionate. 

Synthesis of α,ω-[4-(2-bromo-2-methylpropionyloxy)phenyl]polyisobutylene 

(α,ω-PIB-bromoisobutyrate) 

 To a scintillation vial were added 1.00 g α,ω-PIB-phenol (Mn = 5200 g/mol, 0.38 

meq) and 10 mL freshly distilled THF.  To the stirring solution were added triethylamine 

(0.080 mL, 0.57 mmol) and 2-bromoisobutyryl bromide (0.10 mL, 0.77 mmol).  Upon 

addition of 2-bromoisobutyryl bromide, the clear colorless solution immediately became 

cloudy white.  After 2 h reaction at rt, the THF was removed, and the polymer was 

dissolved in hexane, filtered through a cotton plug, and precipitated into stirred MeOH.  

The MeOH was decanted, and residual MeOH was removed with an N2 stream.  The 

polymer was dissolved in hexane, and the hexane was stripped under vacuum to yield the 

final α,ω-PIB-bromoisobutyrate. 
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Synthesis of 2-hydroxyethylsulfanyl-terminated polyisobutylene (α,ω-PIB-S-OH) 

 To a dry one-neck 50 mL round-bottom flask equipped with a magnetic stir bar 

were added 0.105 g 2,2-dimethoxy-2-phenylacetophenone (0.41 mmol, 1.5 wt%), 6.00 g 

α,ω-PIB-exo (4000 g/mol, 3.0 meq) dissolved in 25 mL CHCl3, and 0.85 mL 

2-mercaptoethanol (12 mmol).  The reactor was cooled in an ice bath for 20 min, and 

then placed under a UV lamp for 10 min at 0 °C.  The solvent was removed by rotary 

evaporation, the polymer was dissolved in hexane, extracted 3x with MeOH, and then 

precipitated into stirred MeOH.  The MeOH was decanted, and residual MeOH was 

removed with a N2 stream.  The polymer was redissolved in hexane, and the hexane was 

stripped under vacuum to yield the final α,ω-PIB-OH. 

Synthesis of α,ω-(2-acryloyloxyethylsulfanyl-2-methylpropane-1,3-diyl)polyisobutylene 

(α,ω-PIB-S-acrylate) 

 To a scintillation vial were added 1.009 g α,ω-PIB-OH (Mn = 3900, 0.52 meq) 

and 6 mL THF.  After the PIB was fully dissolved, 0.214 mL TEA (1.54 mmol, 3x [CE]), 

and 0.086 mL acryloyl chloride (1.54 mmol, 3x [CE]) were added to the stirred PIB 

solution at rt.  The reaction mixture immediately became cloudy white upon addition of 

acryloyl chloride.  After 1 h reaction, the solvent was stripped, and the polymer was 

redissolved in hexane.  The reactor contents were filtered through a cotton plug, and 

precipitated into stirred MeOH.  The MeOH was decanted, and residual MeOH was 

removed with an N2 stream.  The polymer was redissolved in hexane, and the hexane was 

stripped to provide the final α,ω-PIB-S-acrylate. 

Synthesis of α,ω-(2-methacryloyloxyethylsulfanyl-2-methylpropane-1,3-

diyl)polyisobutylene (α,ω-PIB-S-methacrylate) 
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 To a scintillation vial were added 1.005 g α,ω-PIB-OH (Mn = 3900, 0.52 meq), 

and 6 mL THF.  After the PIB was fully dissolved, 0.21 mL TEA (1.54 mmol, 3x [CE]) 

and 0.15 mL methacryloyl chloride (1.54 mmol, 3x [CE]) were added to the stirred PIB 

solution at rt.  After 1 h reaction, the solvent was stripped, and the polymer was dissolved 

in hexane.  The hexane solution was filtered through a cotton plug, and the polymer was 

precipitated into stirred MeOH.  The MeOH was decanted, and residual MeOH was 

removed with an N2 stream.  The polymer was redissolved in hexane, and the hexane 

was stripped to provide the final α,ω-PIB-S-methacrylate. 

Synthesis of α,ω-(2-bromopropionyloxyethylsulfanyl-2-methylpropane-1,3-

diyl)polyisobutylene (α,ω-PIB-S-bromopropionate) 

To a scintillation vial were added 1.009 g α,ω-PIB-OH (Mn = 3900, 0.52 meq) 

and 6 mL THF.  After the PIB was fully dissolved, 0.107 mL TEA (0.77 mmol, 1.5x 

[CE]), and 0.11 mL 2-bromopropionyl bromide (1.03 mmol, 2x [CE]) were added to the 

stirred PIB solution at rt.  The reaction mixture turned cloudy white immediately upon 

addition of 2-brompropionyl bromide, and then slowly developed a yellow color as the 

reaction progressed.  After 2 h reaction, the solvent was stripped, and the polymer was 

redissolved in hexane.  The reactor contents were filtered through a cotton plug and 

precipitated into stirred MeOH.  The MeOH was decanted, and residual MeOH was 

removed with an N2 stream.  The polymer was redissolved in hexane, and the hexane was 

stripped to provide the final α,ω-PIB-S-bromopropionate. 

Synthesis of α,ω-(2-bromo-2-methylpropionyloxyethylsulfanyl-2-methylpropane-1,3-

diyl)polyisobutylene (α,ω-PIB-S-bromoisobutyrate) 

To a scintillation vial were added 1.015 g α,ω-PIB-OH (Mn = 3900, 0.52 meq) 

and 6 mL THF.  After the PIB was fully dissolved, 0.107 mL TEA (0.77 mmol, 1.5x 
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[CE]), and 0.13 mL 2-bromoisobutyryl bromide (1.03 mmol, 2x [CE]) were added to the 

stirred PIB solution at rt.  Upon addition of 2-bromoisobutyryl bromide, the reaction 

mixture immediately became cloudy white.  After 2 h reaction, the solvent was stripped, 

and the polymer was redissolved in hexane.  The reactor contents were filtered through a 

cotton plug and precipitated into stirred MeOH.  The MeOH was decanted, and residual 

MeOH was removed with an N2 stream.  The polymer was redissolved in hexane, and the 

hexane was stripped to provide the final α,ω-PIB-S-bromoisobutyrate. 

Results and Discussion 

 

Scheme 3.  Synthesis of α,ω-PIB-based macromers and macroinitiators from α,ω-PIB-
phenol 

 
α,ω-PIB-phenol-based Systems 

 Phenol-terminated polyisobutylenes offer an excellent platform for further 

modification or as a macromer for block copolymer synthesis.  Acid halide chemistry is 

an extremely efficient method for rapid installation of desired functionality on a 

laboratory scale; although the cost of acid halides and their acidic reaction byproducts do 

not lend themselves toward large commercial processes.  Several different post-

polymerization reaction schemes have been used in the past to produce phenol-terminated 
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polyisobutylene with isopropoxybenzene to quantitatively install isopropoxybenzene 

functionality.  The isopropoxy group is readily cleaved in situ by the addition of H2SO4 

and additional TiCl4, followed by warming the reaction to room temperature.  The 

general reaction scheme utilizing α,ω-PIB-phenol to synthesize α,ω-PIB-based 

macromers and macroinitiators is shown in Scheme 3.  The 1H NMR spectrum of a 

representative starting α,ω-PIB-phenol is shown in Figure 44.  The phenolic proton is 

readily apparent at 4.5 ppm, and the doublets due to the phenolic ring protons are located 

at 7.22 ppm and 6.74 ppm.  

 
 
Figure 44.  1H NMR spectrum of α,ω-PIB-phenol obtained by quenching of living 
polyisobutylene with isopropoxybenzene, followed by in situ, acid-catalyzed de-blocking 
of the isopropoxy group. 

 
 Reacting α,ω-PIB-phenol with (meth)acryloyl chloride produces a telechelic 

species readily capable of undergoing radical copolymerization.  Maenz and Stadermann 
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by the reaction between phenol-terminated PIB and methacryloyl chloride.    However, 

by utilizing commercial PIBs to produce PIB-phenol, a purification step was required to 

remove unreactive PIB chains from the functionalized species.127  By utilizing telechelic 

PIBs, network formation is possible, with opportunities for use as adhesives or films.   

The reaction with (meth)acryloyl chloride was rapid and efficient in THF at rt, 

with quantitative conversion to the desired (meth)acrylate product.  1H NMR spectra of 

the (meth)acrylate products are shown in Figure 45.  The phenolic proton at 4.5 ppm has 

been eliminated and replaced by the three acrylate peaks in (A) at 6.61 ppm, 6.32 ppm, 

and 6.00 ppm, and the two methacrylate protons in (B) at 6.35 ppm and 5.74 ppm.  The 

methyl group of the methacrylate moiety is also visible in (B) at 2.06 ppm. 



89 
 

 

Figure 45.  1H NMR spectra of A) α,ω-PIB-acrylate from the reaction of acryloyl 
chloride and α,ω-PIB-phenol and B) α,ω-PIB-methacrylate from the reaction of 
methacryloyl chloride and α,ω-PIB-phenol.  

 
  In the 13C NMR spectrum of α,ω-PIB-acrylate, Figure 46, the carbonyl carbon 

appears at 164.6 ppm, along with the acrylate carbons at 132.2 ppm and 128.1 ppm.  

Similarly, in the 13C NMR spectrum of α,ω-PIB-methacrylate, Figure 47, the carbonyl 

carbon is at 165.9 ppm, and the methacrylate olefinic carbons are at 136.0 ppm and 126.9 

ppm, along with the methyl carbon at 18.5 ppm.  
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Figure 46.  13C NMR spectrum of α,ω-PIB-acrylate from the reaction of acryloyl chloride 
and α,ω-PIB-phenol.   
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Figure 47.  13C NMR spectrum of α,ω-PIB-methacrylate from the reaction of 
methacryloyl chloride and α,ω-PIB-phenol.   
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Figure 48.  GPC RI traces of α,ω-PIB-phenol (solid), α,ω-PIB-acrylate (dotted), and α,ω-
PIB-methacrylate (dashed). 
 

MALDI-TOF MS analysis of α,ω-PIB-acrylate and α,ω-PIB-methacrylate is 

summarized in Table 8.  Either cationizing agent, AgTFA or NaTFA, provided sufficient 

ionization of the PIB species; good agreement (<1% deviation) was observed between 

theoretical and experimental values for residual (end group) mass.   

Table 8 
 
MALDI-TOF-MS Analysis of End-groups for Derivatives of α,ω-PIB-phenol 
 

End-Group End-Group 
MW (g/mol) Cation MWTheo 

(g/mol) 
MWExp 
(g/mol) 

Difference 
(g/mol) 

acrylate 147.14 Ag 618.54 614.33 4.21 
Na 533.66 530.20 3.46 

methacrylate 161.18 Ag 646.63 641.89 4.74 
Na 561.72 557.17 4.55 

2-bromopropionate 228.07 Ag 780.40 775.15 5.25 
Na 695.40 690.79 4.61 

2-bromoisobutyrate 242.09 Ag 808.45 809.63 1.18 
 

 

8 10 12 14 16 18

Time (min)
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Experimental values were determined by linear regression of a plot of degree of 

polymerization (DP) versus the mass to charge ratio (m/z, assumed to be 1).  The slope of 

the plot is theoretically equivalent to the MW of the polymer repeat unit, 56.1 Da for PIB.  

The y-intercept of this plot is theoretically represented by Equation 5: 

Yintercept = 2 EG + I + C 

Equation 5.  Value of Yintercept of MALDI-TOF MS regression Plot. 

where EG is the MW of the polymer end group, multiplied by 2 because the PIB is 

difunctional, I is the MW of the initiator residue, and C is the MW of the cation of the 

cationizing agent, either Ag or Na.  A representative example for α,ω-PIB-acrylate is 

shown in Figure 49.   The value of 55.6 Da for the repeat unit is very close to the ideal 

value; the value of 614.33 Da for the end group residual is within 4 Da (0.6%) of the 

theoretical value of 618.54 (C34H38O4Ag).  The MALDI-TOF MS traces of α,ω-PIB-

acrylate and α,ω-PIB-methacrylate with AgTFA are shown in Figures 50 and 51.  The 

insets of these figures highlight several of the peaks with the measured peak molecular 

weights listed, confirming the separation of each peak by a single monomer unit.  
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Figure 49.  Linear regression of MALDI-TOF spectrum of α,ω-PIB-acrylate.   
 

 
Figure 50.  MALDI-TOF MS plot of α,ω-PIB-acrylate with AgTFA cationizing agent. 
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Figure 51.  MALDI-TOF MS plot of α,ω-PIB-methacrylate with AgTFA cationizing 
agent. 
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α,ω-PIB-bromoisobutyrate are shown in Figure 52.  The phenolic proton of 

α,ω-PIB-phenol is absent in both species.  For α,ω-PIB-bromopropionate (A), the 

bromopropyl methine proton appears at 4.58 ppm, and is split into a quartet by the 

adjacent methyl group, which appears as a doublet at 1.95 ppm.  For α,ω-PIB-

bromoisobutyrate (B), the two equivalent methyl groups appear as a large singlet at 2.07 

ppm.  The 13C NMR spectra for both species are shown in Figure 53.  For 

α,ω-PIB-bromopropionate (A), the carbonyl carbon resonates at 169.8 ppm, the 

bromopropyl methine carbon at 58.5 ppm, and the bromopropyl methyl group at 21.5 

ppm.  For α,ω-PIB-bromoisobutyrate (B), the carbonyl carbon appears at 170.3 ppm, the 

bromoisobutyryl quaternary carbon at 55.4 ppm, and the bromoisobutyryl methyl carbons 

at 27.3 ppm.  
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Figure 52.  1H NMR spectra of A) α,ω-PIB-bromopropionate from the reaction of 2-
bromopropionyl bromide and α,ω-PIB-phenol, and B) α,ω-PIB-bromoisobutyrate from 
the reaction of 2-bromoisobutyryl bromide and α,ω-PIB-phenol. 
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Figure 53.  13C NMR spectra of A) α,ω-PIB-bromopropionate from the reaction of 
2-bromopropionyl bromide and α,ω-PIB-phenol, and B) α,ω-PIB-bromoisobutyrate from 
the reaction of 2-bromoisobutyryl bromide and α,ω-PIB-phenol. 

 
GPC RI traces for α,ω-PIB-bromopropionate (Mn = 5400 g/mol, PDI = 1.18) and 

α,ω-PIB-bromoisobutyrate (Mn = 5500 g/mol, PDI = 1.18) relative to the starting α,ω-

PIB-phenol (Mn = 5200 g/mol, PDI = 1.18) are shown in Figure 54.  No coupling or 

chain decomposition is evident, and the shapes of the traces are nearly identical.   
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Figure 54.  GPC RI traces of α,ω-PIB-phenol (solid), α,ω-PIB-bromopropionate 
(dashed), and α,ω-PIB-bromoisobutyrate (dotted). 

 
MALDI-TOF MS data are shown in Table 8, calculated by the same linear 

regression method as the acrylate and methacrylate species already discussed.  The 

MALDI-TOF MS plots are shown in Figure 55 for α,ω-PIB-bromopropionate and Figure 

56 for α,ω-PIB-bromoisobutyrate.  The insets to both plots indicate the difference 

between the individual peaks is very close to the ideal value of 56.1 Da.  
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Figure 55.  MALDI-TOF MS plot of α,ω-PIB-bromopropionate with AgTFA cationizing 
agent. 
 

 
Figure 56.  MALDI-TOF MS plot of α,ω-PIB-bromoisobutyrate with AgTFA cationizing 
agent. 
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α,ω-PIB-OH-based Systems 

 Thiol-ene reactions offer a convenient “click” chemistry approach to introducing 

functionality to PIB.  Early efforts focused on commercially available monofunctional 

PIBs, but even those with the largest fraction of exo-olefin end groups retain a nonzero 

percentage of endo-olefin groups or other more complex structures which are ill-suited to 

radical thiol-ene reactions.  This prevents quantitative functionalization and sometimes 

necessitates purification to remove the non-functional polymer chains.125,126  Even with 

such limitations, 2-mercaptoethanol has been successfully added to commercial 

exo-olefin PIBs, and the products were further derivatized using methacryloyl chloride 

with p-toluenesulfonic acid catalysis.126  With the development of quenchers to produce 

quantitative exo-olefin PIB, it became possible to utilize thiol-ene chemistry to 

quantitatively functionalize PIB without tedious polymer purification.  Magenau et al. 

produced mono- and difunctional exo-olefin PIBs with near-quantitative functionality 

using the hindered base quencher 1,2,2,6,6-pentamethylpiperidine.77  They then utilized 

radical thiol-ene reactions to attach thiols containing a variety of secondary 

functionalities, including hydroxyl (using 5-mercaptopentanol), carboxylic acid, and 

amine.128  In this work, their technique has been adapted to install 2-mercaptoethanol onto 

the end of exo-olefin PIB using the radical initiator 2,2-dimethoxy-2-phenylacetophenone 

and chloroform solvent at 0 ºC (Scheme 4).  The reaction is complete within 10 min with 

no residual exo-olefin peaks (4.62 and 4.84 ppm).  The 1H NMRs of both the starting 

α,ω-PIB-exo (A) and α,ω-PIB-OH (B) are shown in Figure 57.  The exo-olefin peaks are 

eliminated in the product spectrum (B), and the anti-Markovnikov addition inherent to 

the radical thiol-ene mechanism results in a chiral methine carbon appearing at 1.74 ppm, 

splitting the adjacent methylene protons into a pair of diastereomers at 2.53 ppm and 2.35 
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ppm.  The methylene protons from the mercaptoethanol moiety appear as a triplet at 2.72 

ppm adjacent to the sulfide linkage and a doublet of triplets at 3.71 ppm adjacent to the 

hydroxyl moiety.   

 In the 13C NMR spectra, shown in Figure 58, the olefinic carbons in the precursor 

spectrum (A) appear at 143.9 and 114.4 ppm, along with the terminal methyl carbon at 

25.8 ppm.  In the product spectrum (B), these resonances disappear and are replaced by 

the mercaptoethanol signals at 60.0 and 29.5 ppm.  Additionally, the terminal methyl 

group shifts upfield to 22.6 ppm, and the methylene carbon bound to the sulfide linkage 

appears at 41.6 ppm. 

 

Scheme 4.  Synthesis of α,ω-PIB-based macromers and macroinitiators from α,ω-PIB-
exo. 
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Figure 57.  1H NMR spectra of A) α,ω-PIB-exo obtained from in situ quenching of living 
cationic polyisobutylene with diisopropyl ether followed by treatment with excess 
methanol, and B) α,ω-PIB-OH obtained from the radical thiol-ene reaction of 
α,ω-PIB-exo and 2-mercaptoethanol. 
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Figure 58.  13C NMR spectra of A) α,ω-PIB-exo obtained from in situ quenching of 
living cationic polyisobutylene with diisopropyl ether followed by treatment with excess 
methanol, and B) α,ω-PIB-OH obtained from the radical thiol-ene reaction of 
α,ω-PIB-exo and 2-mercaptoethanol. 

 
Refractive index GPC traces of α,ω-PIB-OH and α,ω-PIB-exo are shown in 

Figure 59 and indicate no degradation of the polymer backbone or coupling during the 

radical thiol-ene reaction, as expected.  The MALDI-TOF MS plot of α,ω-PIB-OH, 

shown in Figure 60 indicates a regular repeating structure of 56.4 Da, and the MWTheo 

and MWExp are in agreement, differing by 2.24 Da, as shown in Table 9. 
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Figure 59.  GPC RI traces of α,ω-PIB-OH (solid) produced from the thiol-ene reaction of 
α,ω-PIB-exo (dotted) and 2-mercaptoethanol.  
 

 

Figure 60.  MALDI-TOF-MS spectrum of α,ω-PIB-OH with AgTFA cationizing agent. 
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Table 9   

MALDI-TOF-MS End-group Analysis for α,ω-PIB-OH and Derivatives using AgTFA as 

Cationizing Agent 

End-Group End-Group MW 
(g/mol) 

MWTheo 
(g/mol) 

MWExp 
(g/mol) 

Difference 
(g/mol) 

mercaptoethanol 77.13 478.49 480.73 2.24 
acrylate 147.14 589.44 589.24 0.20 

methacrylate 161.18 614.64 610.73 3.91 
2-bromopropionate 228.07 720.864 729.19 8.33 
2-bromoisobutyrate 242.09 668.36 673.59 5.23 

 

Derivatization of α,ω-PIB-OH into macromers and macroinitiators followed the 

procedure outlined in Scheme 4.  Regardless, high end-group functionalization was 

achieved for all species studied.  Figure 61 shows the 1H NMR spectra of α,ω-PIB-S-

acrylate (A) and α,ω-PIB-S-methacrylate (B).  In both spectra, the hydroxyl proton of the 

starting α,ω-PIB-OH at 2.18 ppm is absent.  The methylene units of the mercaptoethanol 

moiety, which appear at 3.70 ppm and 2.72 ppm in the small-molecule reagent, are 

observed at 4.31 ppm and 2.77 ppm in α,ω-PIB-S-acrylate and 4.29 ppm and 2.77 ppm in 

α,ω-PIB-S-methacrylate.  The acrylate protons of α,ω-PIB-S-acrylate appear at 6.44 ppm, 

6.15 ppm, and 5.85 ppm.  The methacrylate protons resonate at 6.12 ppm and 5.58 ppm 

in α,ω-PIB-S-methacrylate.  In the 13C spectrum of α,ω-PIB-S-acrylate (Figure 62, A), 

the acrylate olefinic carbons appear at 131.0 ppm and 128.3 ppm, and the carbonyl 

carbon appears at 165.9 ppm.  The mercaptoethanol methylene carbons are observed at 

36.0 ppm and 63.7 ppm compared to 29.5 and 60.0 ppm in the small-molecule reagent.  

For α,ω-PIB-S-methacrylate (B), the methacrylate olefinic carbons appear at 136.1 ppm 

and 125.8 ppm, with the carbonyl carbon at 167.1 ppm and the mercaptoethanol 

methylene carbons in nearly identical positions to those of α,ω-PIB-S-acrylate. 
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Figure 61.  1H NMR spectra of A) α,ω-PIB-S-acrylate from the reaction of α,ω-PIB-OH 
and acryloyl chloride, and B) α,ω-PIB-S-methacrylate from the reaction of α,ω-PIB-OH 
and methacryloyl chloride. 
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Figure 62.  13C NMR spectra of A) α,ω-PIB-S-acrylate from the reaction of α,ω-PIB-OH 
and acryloyl chloride, and B) α,ω-PIB-S-methacrylate from the reaction of α,ω-PIB-OH 
and methacryloyl chloride. 

 
 Refractive index GPC traces for the α,ω-PIB-S-acrylate (Mn = 4200 g/mol, PDI = 

1.12) and α,ω-PIB-S-methacrylate (Mn = 4200 g/mol, PDI = 1.13) show no evidence of 

coupling or radical homopolymerization of the (meth)acrylate end groups (Figure 63); 

although upon drying in a vacuum oven for several days at 50 ºC, one 

α,ω-PIB-S-methacrylate sample did undergo reaction, forming a clear, colorless rubbery 
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solid that proved insoluble in THF.  No other sample dried in the same way reacted in 

this manner.   

MALDI-TOF MS data for α,ω-PIB-S-(meth)acrylates are shown in Table 9.  

Good agreement was observed between MWTheo and MWExp of the end-group residues, 

and the individual peaks in the spectra showed a regular spacing of around 56 Da. 

 

Figure 63.  GPC RI traces of α,ω-PIB-OH (solid), α,ω-PIB-S-acrylate (dashed), and α,ω-
PIB-methacrylate (dotted). 
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Figure 64.  MALDI-TOF mass spectrum of α,ω-PIB-S-acrylate with AgTFA cationizing 
agent.  

 
 

 

Figure 65.  MALDI-TOF mass spectrum of α,ω-PIB-S-methacrylate with AgTFA 
cationizing agent.  

 
 α,ω-PIB-based macroinitiators were produced in accordance with Scheme 4 and 
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from residual α,ω-PIB-OH are absent in both spectra, and the mercaptoethanol methylene 

tether protons appear at 2.76 ppm and 4.31 ppm.  In the spectrum of α,ω-PIB-S-

bromopropionate (A) the methine proton (c) appears as a quartet partially overlapping the 

tether protons at 4.37 ppm; while the terminal methyl group (h) appears as a doublet that 

is convoluted with the methylene protons of the first IB repeat unit at 1.84 ppm.  For 

α,ω-PIB-S-bromoisobutyrate, the terminal methyl groups produce a large singlet at 1.95 

ppm.   

 In the 13C NMR spectrum of α,ω-PIB-S-bromopropionate, Figure 67 (A), the 

carbonyl carbon, terminal methine carbon, and terminal methyl carbon are visible at 

170.0, 39.8, and 21.7 ppm, respectively.  For α,ω-PIB-S-bromoisobutyrate (B), the 

carbonyl carbon appears at 171.4 ppm, the terminal quaternary carbon at 55.6 ppm, and 

the terminal methyl carbons at 29.5 ppm.   

 RI GPC traces (Figure 68) reveal no chain coupling or degradation of α,ω-PIB-S-

bromopropionate (Mn = 4300, PDI = 1.14) and α,ω-PIB-S-bromoisobutyrate (Mn = 4533, 

PDI = 1.15).  The MALDI-TOF mass spectrum of α,ω-PIB-S-bromoisobutyrate shows a 

regular spacing of 56.7 Da (Figure 69).  The α,ω-PIB-S-bromopropionate mass spectrum 

contained a sodium ion impurity from the sample plate and is not shown.  Interestingly, 

these bromine containing species do not ionize as well using NaTFA.  With AgTFA, the 

bromine atoms react with the silver ions, forming darkened sample solutions prior to 

spotting onto the sample plate.  Linear regression reveals good agreement between the 

MWTheo and MWExp (Table 9), if the reaction between silver and bromine is accounted 

for (i.e. fragmentation of the bromine atoms from the chains).  For α,ω-PIB-S-

bromopropionate, assuming the loss of a single bromine atom per chain yields the 

regression result, while both bromine atoms are lost for α,ω-PIB-S-bromoisobutyrate. 
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Figure 66.  1H NMR spectra of A) α,ω-PIB-S-bromopropionate from the reaction of α,ω-
PIB-OH and 2-bromopropionyl bromide, and B) α,ω-PIB-S-bromoisobutyrate from the 
reaction of α,ω-PIB-OH and 2-bromoisobutyryl bromide.  
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Figure 67.  13C NMR spectra of A) α,ω-PIB-S-bromopropionate from the reaction of 
α,ω-PIB-OH and 2-bromopropionyl bromide, and B) α,ω-PIB-S-bromoisobutyrate from 
the reaction of α,ω-PIB-OH and 2-bromoisobutyryl bromide.  
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Figure 68.  GPC RI traces of α,ω-PIB-OH (solid), α,ω-PIB-S-bromopropionate (dashed), 
and α,ω-PIB-bromoisobutyrate (dotted). 

 

 

Figure 69.  MALDI-TOF mass spectrum of α,ω-PIB-S-bromoisobutyrate with AgTFA 
cationizing agent. 
  

 

 

8 10 12 14 16 18

Time (min)

-500

500

1500

2500

3500

4500

2000 3000 4000 5000 6000

In
te

ns
ity

M/z

-1000

1000

3000

5000

7000

3700 3800 3900 4000

In
te

ns
ity

M/z

37
28

.5

37
85

.2

38
42

.2

38
97

.6

39
54

.4



115 
 

Conclusions 

 α,ω-PIB-based macromers and macroinitiators capable of participating in or 

initiating radical polymerizations have been produced using telechelic polyisobutylenes 

produced via in situ quenching methods.  Difunctional hydroxyl-PIBs, both aromatic and 

aliphatic, were produced and subsequently modified via facile acid halide reactions under 

mild conditions with TEA catalysis.  Macromer PIBs containing (meth)acrylate termini, 

capable of radical copolymerization have been synthesized and characterized.  PIB-based 

ATRP macroinitiators have been produced with bromopropionate and bromoisobutyrate 

termini.   
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