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ABSTRACT

A COMPARISON OF TWO DIFFERENT METHODS

FOR SOLVING BIHARMONIC BOUNDARY VALUE PROBLEMS

by Megan LaShea Richardson

August 2011

We use the methods of compactly supported radial basis functions (CS-RBFs) and

Delta-shaped basis functions (DBFs) to obtain the numerical solution of a two-dimensional

biharmonic boundary value problem. The biharmonic equation is difficult to solve due to

its existing fourth order derivatives, besides it requires more than one boundary conditions

on the same part of the boundary. In this thesis, we use either a one-level or a two-level

technique for constructing the approximate solution in the context of Kansa’s collocation

method. This thesis will compare the accuracy of the methods of CS-RBFs and DBFs

when applied to the biharmonic boundary value problem. Both methods can be used on an

irregular shaped domain. Numerical results show that the DBF approach is superior than

that of the CS-RBF.
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NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this text represents fairly standard mathematical and computational
usage. In many cases these fields tend to use different preferred notation to indicate the same
concept, and these have been reconciled to the extent possible, given the interdisciplinary
nature of the material. In particular, the notation for partial derivatives varies extensively,
and the notation used is chosen for stylistic convenience based on the application. While it
would be convenient to utilize a standard nomenclature for this important symbol, the many
alternatives currently in the published literature will continue to be utilized.

The blackboard fonts are used to denote standard sets of numbers: R for the field of real
numbers. The capital letters, A,B, · · · are used to denote matrices, including capital greek
letters, e.g., Φ for a positive definite matrix. Functions which are denoted in boldface type
typically represent vector valued functions, and real valued functions usually are set in lower
case roman or greek letters. Lower case letters such as i, j,k, l,m,n and sometimes p and d

are used to denote indices.
Vectors are typeset in square brackets, e.g., [·], and matrices are typeset in parentheses,

e.g., (·). In general the norms are typeset using double pairs of lines, e.g., || · ||, and the
absolute value of numbers is denoted using a single pairs of lines, e.g., | · |.

vii
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Chapter 1

INTRODUCTION

The biharmonic equation is a fourth-order, linear partial differential equation that occurs
naturally in a number of science and engineering fields [8, 22]. It is used in numerous real
applications such as flexure of elastic plates, flow of particulate suspensions, flow of molten
metals,and in the modeling of bio-fluid dynamics [4]. The biharmonic equation is difficult to
solve due to the existing fourth order derivatives. Besides it is different from a second-order
PDE in that more than one boundary conditions must be required on the same part of the
boundary.

The term biharmonic is significant due to the fact that the function that it is describing
satisfies the Laplace equation, or harmonic equation, twice explicitly [13]. Although the
exact date that the biharmonic problem was introduced to mathematics is unknown, it is
evident that it was introduced after the harmonic function since every harmonic function
satisfies Laplace’s equation is also biharmonic; the converse is not necessarily true [4, 13].

As an example of the biharmonic equation occurring in structural and continuum me-
chanics with applications to thin plates and beams [7], the equation

∇
4u =

K
D

,

models the transverse deflection of a thin plate with K being the uniform load per unit area
and D being the bending rigidity. The biharmonic equation applied to thin plates and beams
can have clamped or simply supported boundary conditions [7]. The boundary conditions of
a clamped plate can be expressed as

u = 0,

∂u
∂n

= 0,

whereas a plate with simply supported boundary conditions can be expressed as

u = 0,

∇
2u = 0.

Let

L[u] = ∇
4u(x,y) =

∂ 4u
∂x4 +

∂ 4u
∂y4 +2

∂ 4u
∂x2y2 , (1.1)
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then we study the inhomogeneous biharmonic equation

L[u] = h(x,y), (x,y) ∈Ω, (1.2)

with the boundary conditions

u = f (x,y) (x,y) ∈ ∂Ω, (1.3)
∂u
∂n

= g(x,y) (x,y) ∈ ∂Ω, (1.4)

where Ω is a simply connected domain in R2 with a piecewise smooth boundary ∂Ω, ∂u
∂n

denotes the outward normal derivative of u on ∂Ω, and f and g are the Dirichlet and
Neumann data on ∂Ω respectively.

The Green’s function K(x,y;ξ ,η) [10, 21] for the biharmonic equation with clamped
plate boundary conditions is a solution of

∇
4K(x,y;ξ ,η) =−δ (x−ξ )δ (y−η),

that satisfies the boundary conditions K(x,y;ξ ,η) |∂Ω= 0 and ∂K(x,y;ξ ,η)/∂n |∂Ω= 0
where δ is the Dirac delta function and (ξ ,η) is the source point where a unit load is
applied. On the basis of the identity u∇2∇2v− v∇2∇2u = ∇ · p, where p = u∇∇2v−
v∇∇2u+(∇2u)∇v−

(
∇2v
)

∇u, and the divergence theorem, we obtain Green’s theorem for
an arbitrary region Ω [21],

∫∫
Ω

[
u∇∇

2v− v∇∇
2u
]

dxdy =
∫

∂Ω

[
u

∂
(
∇2v
)

∂n
−
(
∇

2v
) ∂u

∂n
+
(
∇

2u
) ∂v

∂n
− v

∂
(
∇2u

)
∂n

]
ds.

If u(x,y) satisfies the inhomogeneous biharmonic equation (1.2) in Ω and boundary
conditions (1.3)–(1.4) on ∂Ω, then the Green’s theorem for an arbitrary region Ω with
v = K(x,y;ξ ,η) yields

u(ξ ,η) = −
∫∫

Ω

K(x,y;ξ ,η)h(x,y)dxdy

+
∫

∂Ω

[(
∇

2K(x,y;ξ ,η)
)

g(x,y)− f (x,y)
∂
(
∇2K(x,y;ξ ,η)

)
∂n

]
ds.

As a result of Green’s theorem, we have a fairly complicated domain integral that can
be extremely difficult to solve, especially for an irregular shaped domain Ω. Although it
is possible to construct the Green’s function for the case of a circular clamped plate using
special techniques, in general, it is impossible to construct the Green’s function for a domain
of irregular shape.
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To avoid using Green’s function and calculating complicated domain integrals, we will
use multi-level compactly supported radial basis function (CS-RBF) and multi-level Delta-
shaped basis function (DBF) methods to obtain the numerical solution of the biharmonic
boundary value problem (1.2)–(1.4). Both methods can avoid domain discretization using a
mesh which can be very time consuming. I chose to compare CS-RBFs and DBFs because
they share similar features in that DBFs are approximately compactly supported.

Chen et al. [2] used a multi-level approach of CS-RBFs for solving PDEs. Their
approach is to use a larger support basis with a small number of interpolation points in the
initial level, then apply the smaller support basis with a larger number of interpolation points
on the approximation of the residue of the previous level. In our two-level technique, we
use more basis functions of smaller support, which leads to a similar effect in solving PDEs.

We use these CS-RBFs and DBFs in the context of Kansa’s collocation method to find an
approximate solution of the two dimensional biharmonic boundary value problem. Instead
of approximating the source term h, we approximate the solution of u of (1.2)–(1.4) directly;
therefore, the intermediate step of finding a particular solution is not needed [14].

In Chapter 2, we give introduction to the CS-RBFs and DBFs. In Chapter 3, we compare
the solution by these two basis functions when applied to a second order PDE. We also apply
the two methods to the biharmonic boundary value problem (1.2)–(1.4). The numerical
results show that the DBF approach is superior than that of the CS-RBF approach.
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Chapter 2

TWO DIFFERENT BASIS FUNCTIONS

2.1 Compactly Supported Radial Basis Function

In this section, we give introduction to the compactly supported radial basis functions. The
first CS-RBFs were constructed by Wu [19], and shortly thereafter by Wendland [16]. In
recent years, they have become very popular in practical use due to their computational
appeal [3, 9, 14, 20]. This paper focuses on the CS-RBFs constructed by Wendland.

The Wendland CS-RBFs are constructed using the operator I and the univariate function
φl

I( f )(r) =
∫

∞

r
t f (t)dt,

and

φl(r) = (1− r)l
+ =

{
(1− r)l, i f 0≤ r ≤ 1,

0, i f r > 1.

Let Φ : Rd→ R be a radial function Φ(x) = φ(‖x‖) with a univariate function φ : R≥0→R
and the Euclidean norm ‖·‖. Φ is positive definite if for all data sets {x1, . . . ,xN} ⊆ Rd of
pairwise distinct points the interpolation matrix

A =
(
Φ
(
x j− xk

))
1≤ j,k≤N

is positive definite.

Definition 2.1.1. A continuous function φ : R≥0→ R is said to be positive definite on Rd,

φ ∈ PDd , if the induced function Φ(x) := φ(‖x‖), x ∈ Rd, is positive definite [16, 17].

The Wendland CS-RBFs ϕl,k = Ikφl, with l > 0 has support in [0,1]. For every dimension
d and every k, l can be chosen as l =

⌊d
2

⌋
+ k + 1 to have a ϕl,k that is not only positive

definite in space dimension d but also possesses 2k continuous derivatives around zero and
2k +

⌊d
2

⌋
continuous derivatives around 1. Additionally, ϕl,k(r) is of minimal polynomial

degree among all positive definite radial basis functions satisfying the previously stated
properties.

The above definition guarantees that an interpolation problem will have a unique solution
for all sets of pairwise distinct centers

{
x j, f (x j)

}N
j=1. The function ϕl,k(r) is a Wendland
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CS-RBF with differentiability 2k for some l ∈ N. Table 2.1 contains Wendland’s CS-RBFs
when d = 1,3, and 5 [16]. Since the optimal function for d = 2n and d = 2n + 1 are
equivalent, the same functions can be used for d = 2 and d = 3.

Table 2.1: A List of Wendland’s CS-RBFs

d = 1 ϕ1,0(r) = (1− r)+ C0

ϕ2,1(r)
.= (1− r)3

+ (3r +1) C2

ϕ3,2(r)
.= (1− r)5

+
(
8r2 +5r +1

)
C4

d = 3 ϕ2,0(r) = (1− r)2
+ C0

ϕ3,1(r)
.= (1− r)4

+ (4r +1) C2

ϕ4,2(r)
.= (1− r)6

+
(
35r2 +18r +3

)
C4

ϕ5,3(r)
.= (1− r)8

+
(
32r3 +25r2 +8r +1

)
C6

d = 5 ϕ3,0(r) = (1− r)3
+ C0

ϕ4,1(r)
.= (1− r)5

+ (5r +1) C2

ϕ5,2(r)
.= (1− r)7

+
(
16r2 +7r +1

)
C4

The CS-RBFs can be scaled with a shape parameter α. In order to improve the per-
formance of the interpolation by CS-RBFs, different shape parameters may be employed
[14, 18]. The CS-RBF ϕl,k(r) has support of radius 1; therefore, the basis function

ϕl,k

( r
α

)
,

has a support of radius α > 0.

2.2 Delta-Shaped Basis Functions

In this section, we give an introduction to the Delta-shaped basis functions (DBFs). These
basis functions are approximately compactly supported, and they have shown excellent
performances when used to reconstruct surfaces with scattered data in regular or irregular
domains and to approximate solutions of PDEs [11, 12, 14, 15]. DBFs have the form of a
truncated series IM,χ (x,ξ ) = ∑

M
n=1 cn(ξ )ψn (x) over an orthogonal system ψn.

For the sake of simplicity, we first construct the one dimensional Delta-shaped basis
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defined in the interval [−1,1]:

IM,χ (x,ξ ) =
M

∑
n=1

rn(M,χ)ψn (ξ )ψn (x) ,

where (ψn (x) ,µn) is a solution of the following Sturm-Liouville problem on the interval
[−1,1],

ψ
′′ =−µψ, ψ (−1) = ψ (1) = 0.

Hence, the eigenfunctions and eigenvalues are respectively

ψn(x) = sin
(

nπ(x+1)
2

)
,

and
µn =

nπ

2
,n = 1,2, . . . .

The solutions {ψn(x),µn} satisfy the following conditions:

• 0 < µ1 < µ2 < .. . < µn→ ∞, and

• the eigenfunctions ψn(x) form an orthogonal system on [−1,1] with a scalar product,

∫ 1

−1
ψn(x)ψm(x)dx =

{
1, i f n = m,

0, i f n 6= m.

The rn (M,χ) are known as regularizing coefficients where M and χ are the scaling and
regularizing parameters respectively. Here we use Riesz regularization technique,

rn(M,χ) =

[
1−
(

µn

µM+1

)2
]χ

,

=

[
1−
(

n
M +1

)2
]χ

.

Thus, the Delta-shaped basis can be written in the form,

IM,χ(x,ξ ) =
M

∑
n=1

[
1−
(

n
M +1

)2
]χ

ψn(ξ )ψn(x),

=
M

∑
n=1

cn (ξ )ψn (x) ,

where cn (ξ ) = rn(M,χ)ψn(ξ ).
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A 2-D DBF can be obtained by multiplying two of 1-D basis functions,

IM,χ(x,ξξξ ) = IM,χ(x,ξ )IM,χ(y,η),

where x = (x,y) and ξξξ = (ξ ,η). Hence,

IM,χ (x,y;ξ ,η) =

(
M

∑
n=1

cn (ξ )ψn (x)

)(
M

∑
m=1

cm (η)ψm (y)

)
,

=
M

∑
n=1

M

∑
m=1

cn (ξ )cm (η)ψn (x)ψm (y) .

Similarly, a multi-dimensional Delta-shaped basis function can be obtained as a product
of one dimensional basis functions; therefore, an N-dimensional Delta-shaped basis function
can be written in the form

IM,χ (x,ξξξ ) =
N

∏
i=1

IM,χ (xi,ξi) .

In our calculations of the solutions of PDEs, we use the DBFs I10,4, and I20,6. The
approximate radii of support for these DBFs are respectively 0.473 and 0.319 [14]. A larger
M results in a smaller radius of support. For the purpose of comparing the CS-RBFs and the
DBFs, we use CS-RBFs with shape parameter values α = 0.473 and α = 0.319.
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Chapter 3

COMPARISON OF BASIS FUNCTIONS

3.1 Approximation of Solutions of PDEs

In this section, we use both CS-RBFs and DBFs in Kansa’s collocation [5, 6, 8, 14, 15]
method to solve the biharmonic problem (1.2)–(1.4). We let Φα (ξ ;x) denote either a
CS-RBF or a DBF with its center being ξ and its scaling factors resulting in a support of

radius of α . Let
{

ξ ( j)
}K

j=1
be a set of center points of a chosen basis functions. In a one

level approach, we express the solution of the PDE as a linear combination of a chosen basis
function

ũ(x) =
K

∑
j=1

p jΦα

(
ξ

( j);x
)

, (3.1)

where p j are unknown coefficients to be determined.
We choose Ni collocation points {(xi,yi)}Ni

i=1 in Ω, Nd collocation points {(xi,yi)}Ni+Nd
i=Ni+1

on ∂Ω, and Nn collocation points {(xi,yi)}Ni+Nd+Nn
i=Ni+Nd+1 on ∂Ω. By substituting (3.1) into

(1.2)–(1.4) and making the equations hold true at the corresponding collocation points, we
have the following linear system

K

∑
j=1

p jL
[
Φα

(
ξ

( j);xi

)]
= h(xi), for i = 1,2, . . . ,Ni,

K

∑
j=1

p j

[
Φα

(
ξ

( j);xi

)]
= f (xi), for i = Ni +1, . . . ,Ni +Nd,

N

∑
j=1

p j
∂u
∂n

[
Φα

(
ξ

( j);xi

)]
= g(xi), for i = Ni +Nd +1, . . . ,Ni +Nd +Nn.

In a multi-level approach, we express the solution of the PDE as a linear combination of
basis functions of various scaling factors αs, s = 1,2, . . . ,S. Corresponding to each αs, Ks

center points ξ (s, j) ∈Ω, j = 1,2, . . . ,Ks are chosen [14]. We let

ũ(x) =
S

∑
s=1

Ks

∑
j=1

p jΦαs

(
ξ

(s, j);x
)

, (3.2)
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where p j are unknown coefficients to be determined. By satisfying (1.2)–(1.4) at the
corresponding collocation points, we have

S

∑
s=1

Ks

∑
j=1

ps, jL
[
Φαs

(
ξ

(s, j);xi

)]
= h(xi), for i = 1,2,3, . . . ,Ni, (3.3)

S

∑
s=1

Ks

∑
j=1

ps, j

[
Φαs

(
ξ

(s, j);xi

)]
= f (xi), for i = Ni +1, . . . ,Ni +Nd, (3.4)

S

∑
s=1

N

∑
j=1

ps, j
∂u
∂n

[
Φαs

(
ξ

(s, j);xi

)]
= g(xi), for i = Ni +Nd +1, . . . ,Ni +Nd +Nn, (3.5)

where L is the biharmonic operator defined in (1.1). When S = 1 in (3.3)–(3.5), it is a
one-level approach.

Let N = Ni +Nd +Nn denote the total number of collocation points and K = K1 + . . .+KS

denote the total number of center points.

• When N = K, we have a square matrix.

• When N > K, we have an overdetermined system of equations, which can be solved
by using the least squares method.

Tian, et al., [15] suggest that the number of collocation points N be approximately twice as
many as the number of centers K for the DBF approach.

3.2 Numerical Results for a Second-Order PDE

We will calculate the mean squared error for the approximate solution using the following
formula:

Esq=

√√√√ 1
Nt

Nt

∑
t=1

[u(xt ,yt)− ũ(xt ,yt)]
2,

where u is the exact solution, ũ is the approximate solution, and Nt is the total number of
randomly distributed test points. We let Nt = 200.

Example 1. We consider the modified Helmoltz equation defined on the square domain
Ω = [−0.5,0.5]2 with Dirichlet boundary condition,

4u(x,y)−10u(x,y) = f (x,y), (x,y) ∈Ω,

u(x,y) = g(x,y), (x,y) ∈ ∂Ω.
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By letting L = ∆−10 in (3.3), we get a collocation system (3.3)–(3.4). When S = 1, it
is a one-level method. When S = 2, it is a two-level method. Let f (x,y) and g(x,y) be given
such that the exact solution is

u(x,y) = sin
(

π

6
(x+0.5)

)
sin
(

7π

4
(x+0.5)

)
sin
(

3π

4
(y+0.5)

)
sin
(

5π

4
(y+0.5)

)
,

which is an oscillative, smooth surface shown in Figure 3.1. Randomly distributed points
are used as the centers of the basis functions and collocation points inside Ω. The total
number of collocation points on the boundary is 100. The numerical results by CS-RBFs
and DBFs in one-level and two-level approaches are provided in Tables 3.1–3.4. Comparing
the results in Tables 3.1 and 3.4, we notice that the DBF method has much better accuracy
than CS-RBF. Also comparing Tables 3.1 and 3.2, we notice the accuracy of ϕ4,2 CS-RBFs
is improved when the scaling factors are larger. Now, comparing the results of CS-RBFs
ϕ4,2 in Table 3.2 with ϕ5,3 in Table 3.3, we notice slight improvements in the accuracy due
to the increased order of smoothness in the basis functions. Both the DBFs and CS-RBFs
attain better accuracy when using a two-level approach.

Table 3.1: Example 1 is solved by one-level and two-level CS-RBFs ϕ4,2 with α1 = 0.473,
α2 = 0.319.

K 200 300 400 500

E by ϕ4,2, α = 0.473 1.5E-01 1.1E-01 1.3E-01 1.2E-01

E by ϕ4,2, α = 0.319 2.3E-01 2.4E-01 1.5E-01 1.4E-01

(K1,K2) (50,150) (100,200) (100,300) (100,400)

E by ϕ4,2, α1 = 0.473, α2 = 0.319 1.6E-01 1.7E-01 1.3E-01 1.3E-01

Table 3.2: Example 1 is solved by one-level and two-level CS-RBFs ϕ4,2 with α1 = 1.0,
α2 = 0.8.

K 200 300 400 500

E by ϕ4,2, α = 1.0 9.46E-02 8.38E-02 9.23E-02 9.00E-02

E by ϕ4,2, α = 0.8 1.0E-01 8.85E-02 1.0E-01 9.65E-02

(K1,K2) (50,150) (100,200) (100,300) (100,400)

E by ϕ4,2, α1 = 1.0, α2 = 0.8 8.95E-02 8.76E-02 9.01E-02 9.09E-02
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Figure 3.1: The graph of the exact solution to the problem in Example 1.

Table 3.3: Example 1 is solved by one-level and two-level CS-RBFs ϕ5,3 with α1 = 1.0,
α2 = 0.8.

K 200 300 400 500

E by ϕ5,3, α = 1.0 1.0E-01 3.14E-02 4.57E-02 4.51E-02

E by ϕ5,3, α = 0.8 8.67E-02 4.86E-02 5.38E-02 6.49E-02

(K1,K2) (50,150) (100,200) (100,300) (100,400)

E by ϕ5,3, α1 = 1.0, α2 = 0.8 3.07E-02 1.10E-02 2.75E-03 2.40E-03

Table 3.4: Example 1 is solved by one-level and two-level DBFs I10,4 and I20,6.

K 200 300 400 500

E by I10,4 1.3E-02 2.8E-02 4.2E-02 5.8E-02

E by I20,6 5.1E-03 4.4E-05 5.5E-06 4.7E-06

(K1,K2) (50,150) (100,200) (100,300) (100,400)

E by I10,4 & I20,6 1.2E-03 2.9E-06 6.4E-06 5.2E-06
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3.3 Solving Biharmonic Boundary Value Problems

In this section, we compare the error estimate of the Delta-shaped basis functions with the
compactly supported radial basis functions applied to the biharmonic collocation system
(3.3)–(3.5). Randomly distributed points are used as centers of the basis functions and the
number of collocation points is twice the center points and the total number of boundary
points is 100.

Example 2. We consider the biharmonic equation defined on the circular domain x2 +
y2 < 1

4 with the source function h, and the Dirichlet and Neumann data being respectively,

h(x,y) = 0,

f (x,y) =
−
(
x2 + y2)

4

2

,

g(x,y) =−
b
( x

a

)
(x3 + xy2)√

a2
( y

b

)2 +b2
( x

a

)2
−

a
( y

b

)
(y3 + x2y)√

a2
( y

b

)2 +b2
( x

a

)2
,

where a = 0.5 and b = 0.41665. The exact solution is

u(x,y) =
−
(
x2 + y2)

4

2

,

which is an oscillative, smooth surface shown in Figure 3.2. This example is a homogeneous
biharmonic boundary value problem. The numerical results by CS-RBFs and DBFs are
provided in Tables 3.5 and 3.6. Comparing the results in Tables 3.5 and 3.6, we notice that
the DBFs have slightly better accuracy than CS-RBFs.

Table 3.5: Example 2 is solved by one-level and two-level CS-RBFs ϕ4,2 with α1 = 0.473,
α2 = 0.319.

K 200 400

E by ϕ4,2, α = 0.473 9.7E-04 9.76E-04

E by ϕ4,2, α = 0.319 9.7E-04 9.76E-04

(K1,K2) (50,150) (100,300)

E by ϕ4,2, α1 = 0.473, α2 = 0.319 9.7E-04 9.76E-04
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Figure 3.2: The graph of the exact solution to the problem in Example 2.

Table 3.6: Example 2 is solved by one-level and two-level DBFs I10,4 and I20,6.

K 200 300 400

E by I10,4 9.4E-04 9.2E-04 9.3E-04

E by I20,6 9.4E-04 9.3E-04 9.3E-04

(K1,K2) (50,150) (100,200) (100,300)

E by I10,4 & I20,6 9.4E-04 9.2E-04 9.8E-04

Example 3. Consider the non-homogeneous biharmonic problem defined on the circular
domain x2 + y2 < 1

4 with the source function h, and the Dirichlet and Neumann data being
respectively,

h(x,y) = ex,

f (x,y) = x2 + y2 + ex,

and
g(x,y) = 8x2 +4xex +8y2.

Its exact solution is
u(x,y) = x2 + y2 + ex,

which is plotted in Figure 3.3. The numerical results by CS-RBFs and DBFs are provided in
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Tables 3.7 and 3.8. Comparing the results in Tables 3.7 and 3.8, we notice the DBFs have
better accuracy than CS-RBFs. Also, the accuracy of the DBFs is much better when it is
increased from a one-level approach to a two-level approach.

Table 3.7: Example 3 is solved by one-level and two-level CS-RBFs ϕ4,2 with α1 = 0.473,
α2 = 0.319.

K 200 400

E by ϕ4,2, α = 0.473 1.3 1.3

E by ϕ4,2, α = 0.319 1.3 1.3

(K1,K2) (50,150) (100,300)

E by ϕ4,2, α1 = 0.473, α2 = 0.319 1.3 1.3

Table 3.8: Example 3 is solved by one-level and two-level DBFs I10,4 and I20,6.

K 200 400

E by I10,4 3.1E-03 1.7E-03

E by I20,6 1.4E-02 1.0E-03

(K1,K2) (50,150) (150,250)

E by I10,4 & I20,6 2.3E-05 1.7E-06
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Figure 3.3: The graph of the exact solution to the problem in Example 3.
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Example 4. We consider the non-homogeneous biharmonic problem defined on the
circular domain x2 + y2 < 1

4 with the source function,

h(x,y) = 64π
4 cos(2πx+π)cos(2πy+π)−16π

4 cos(2πx+π)−16π
4 cos(2πy+π) ,

and the Dirichlet and Neumann boundary data being respectively,

f (x,y) = (1− cos(2π (x+0.5)))(1− cos(2π (y+0.5))) ,

g(x,y) = (4x−4xcos(2π (x+0.5)))(4y−4ycos(2π (y+0.5))) .

Its exact solution is

u(x,y) = (1− cos(2π (x+0.5)))(1− cos(2π (y+0.5))) ,

which is plotted in Figure 3.4. The numerical results by CS-RBFs and DBFs are provided
in Tables 3.9 and 3.10. Comparing the results in Tables 3.9 and 3.10, we notice the DBFs
provide much better accuracy than CS-RBFs.

Table 3.9: Example 4 is solved by one-level and two-level CS-RBFs ϕ4,2 with α1 = 0.473,
α2 = 0.319.

K 200 400

E by ϕ4,2, α = 0.473 4.2 3.8

E by ϕ4,2, α = 0.319 4.0 4.0

(K1,K2) (50,150) (100,300)

E by ϕ4,2, α1 = 0.473, α2 = 0.319 4.1 3.8

Table 3.10: Example 4 is solved by one-level and two-level DBFs I10,4 and I20,6.

K 200 400

E by I10,4 3.2E-03 2.3E-03

E by I20,6 3.9E-03 2.0E-03

(K1,K2) (50,150) (50,350)

E by I10,4 & I20,6 5.3E-05 6.3E-06
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Figure 3.4: The graph of the exact solution to the problem in Example 4.

Example 5. In this example, we consider the non-homogeneous biharmonic problem
defined on the circular domain x2 + y2 < 1

5 with the source function,

h(x,y) = −256sin(4x)sinh(4y)−512xcos(4x)sinh(4y)+512xsin(4x)cosh(4y)

−256cos(4x)cosh(4y),

and Dirichlet and Neumann boundary data being respectively,

f (x,y) = 2xsin(4x)cosh(4y)−2xcos(4x)sinh(4y),

g(x,y) = 40x2 sin(4x)sinh(4y)−10xcos(4x)sinh(4y)+10xsin(4x)cosh(4y)

+40x2 cos(4x)cosh(4y)+40xysin(4x)sinh(4y)−40xycos(4x)cosh(4y).

Its exact solution is

u(x,y) = 2xsin(4x)cosh(4y)−2xcos(4x)sinh(4y),

which is an oscillative, smooth surface as shown in Figure 3.5. The numerical results by
CS-RBFs and DBFs are provided in Tables 3.11 and 3.12. Comparing the results in Tables
3.11 and 3.12, we notice the DBFs have better accuracy than CS-RBFs. Although the DBFs
have better accuracy than CS-RBFs, neither provide superior accuracy. The poor accuracy
of both basis functions is due to the very limited number of collocation points chosen on the
oscillating boundary Ω.
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Figure 3.5: The graph of the exact solution to the problem in Example 5.

Table 3.11: Example 5 is solved by one-level and two-level CS-RBFs ϕ4,2 with α1 = 0.473,
α2 = 0.319.

K 200 400

E by ϕ4,2, α = 0.473 4.5E-01 5.0E-01

E by ϕ4,2, α = 0.319 4.6E-01 5.0E-01

(K1,K2) (50,150) (150,250)

E by ϕ4,2, α1 = 0.473, α2 = 0.319 4.5E-01 5.0E-01

Table 3.12: Example 5 is solved by one-level and two-level DBFs I10,4 and I20,6.

K 200 400

E by I10,4 7.6E-02 7.7E-02

E by I20,6 7.7E-02 7.6E-02

(K1,K2) (50,150) (150,250)

E by I10,4 & I20,6 7.7E-02 7.6E-02
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3.4 Conclusion of the Comparison

A CS-RBF is strictly zero outside its neighborhood of radius of support. A DBF appears to
be zero outside of a neighborhood of ξ as shown in Figure 3.6 (a), but if we take a closer
look at the same function on a smaller interval shown in Figure 3.6 (b) we can see that
function values are not strictly zero outside of the neighborhood of ξ . Thus, DBFs are
approximately compactly supported.

Despite the fact that the DBFs are approximately compactly supported, the excellent
results obtained by the DBFs are due to the fact that they are globally supported and infinitely
differentiable. The CS-RBF method can produce slightly better results when the scaling
factors are increased and when the CS-RBF with higher smoothness are used. However,
when we increase the scaling factors of the CS-RBF to 1.0 and 0.8 for the second-order PDE
in Example 1, each basis function covers almost the entire domain. The resulting matrix is
quite full, thus defeating the purpose of using the CS-RBFs. In such a case, the CS-RBF
method is computationally inefficient, and it also produces poor results. Our numerical
results show that the DBF method consistently produces better results.

(a) (b)

Figure 3.6: The graph of (a) I20,6 on [-1,1], and (b) I20,6 on [0.25,1].
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Chapter 4

CONCLUSION

We compare the CS-RBFs with DBFs, which are approximately compactly supported, to
obtain solutions of biharmonic boundary value problems. These methods help avoid domain
discretization, thus they can effectively handle irregular shaped domains. In this thesis, both
one-level and two-level techniques are used to solve the biharmonic boundary value problem.
Due to the feature of the basis functions (compactly supported or approximately compactly
supported), a two-level approach is used to improve the performance of the algorithm. From
the numerical experiments we conducted, the method of Delta-shaped basis consistently
produces more accurate solutions than that of the compactly supported basis. Since it is
easy to construct multi-dimensional DBFs, the DBF method can be extended to solving
multi-dimensional problems.
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