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ABSTRACT 

 The short-term goal of this research project is to employ small molecules as a 

means to stabilize four-way DNA junctions (4WJs) composed of natural DNA and 

chimeric nucleic acids. The long-term goal of the project is utilizing the 4WJs as 

extracellular therapeutic inhibitors of DNA binding proteins [i.e. Histones and High 

Mobility Group Protein B (HMGB1b)]. A number of studies have shown that classical 

intracellular DNA-binding proteins have a variety of deleterious side-effects when 

present in the extracellular milieu. In order to develop a successful 4WJ therapeutic, we 

are focused on using modified nucleic acids to enhance the stability of the resulting 

4WJ. The nucleic acid of interest is PNA (peptide nucleic acid). PNA was selected 

because it is known to form DNA-PNA duplex/triplex structures with elevated thermo- 

and nuclease stability. 4WJs are prepared using fluorescently labeled DNA strands and a 

single PNA strand. Small molecules are currently being investigated as tools to 

potentially link the PNA-DNA strands to form 4WJs composed of multiple PNA strands. 

One molecule of interest is [Ru(bpy)2(dpp)PtCl2]Cl2. Electrophoretic mobility shift assays 

(EMSAs) have shown that stable 4WJs form in the presence of this molecule. The 

junctions were visualized using polyacrylamide gels. Circular dichroism studies will be 

employed to characterize the structural properties of hybrid of interest. Once a stable 

4WJ structure is identified, the hybrid was used to study binding and inhibition of 

HMGB1 in cell-based assays. 

Keywords: DNA junctions, Holliday junctions, high mobility group proteins, HMGB1, peptide 

nucleic acids, PNA, moonlighting proteins  
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CHAPTER I – INTRODUCTION 

 

The purpose of my project is to use small molecules (with a molecular weight of 

300-600) to stabilize the formation of four-way DNA junctions, and subsequently use 

those junctions as an extracellular ligand against the proinflammatory cytokine HMGB1 

(High Mobility Group B1). DNA four-way junctions (4WJs) are also referred to as Holliday 

junctions. 4WJs are named after Robin Holliday who proposed that genetic 

recombination and repair events were mediated by four stands of DNA converging to 

form a junction1. Figure 1 displays a schematic of the role of 4WJs in recombination. 

Genetic recombination, the primary mechanism of genetic diversity in organisms, takes 

place when strands of DNA break and rejoin with other strands to produce new DNA 

strands consisting of new sequences of base pairs2. As illustrated in Figure 1, two 

double-stranded DNA duplexes are recombined to form two new duplexes of the DNA, 

composed of sections of both the original strands. The crossover region is called the 

DNA junction. The 4WJ is an intermediate structure, and is naturally unstable during 

genetic recombination3. At the end of recombination, each DNA junction is resolved by 

the action of enzymes and proteins. The resulting DNA strands are composed of 

portions of their original sequence and portions of the strand of DNA that it overlapped 

or combined with1,3. The short-term goal of my research project is to utilize small 

molecules as a means to stabilize immobilized 4WJs composed of natural (DNA) and 

synthetic nucleic acids such as peptide nucleic acids (PNAs). The long-term goal of the  
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project is to utilize the resulting 4WJs as 

therapeutic inhibitors against the 

proinflammatory cytokine HMGB1.  HMGB1 

was originally discovered in the early 70’s.   

HMGB1 is a highly abundant (106 

copies per cell) protein found in almost all 

cells.  HMGB1 is composed of 215 amino 

acids4,5.  The protein possesses two DNA binding domains (the a-box and b-box) 

followed by stretch of aspartic acid and glutamic acid residues.  A schematic for HMGB1 

is displayed in Figure 3. HMGB1 is very unique in that it is classified as a “Moonlighting 

Protein”.  As the name suggests, the protein has two different functions.  HMGB1 can 

function inside of the cell, where it binds/bends DNA to promote transcription. HMGB1 

Figure 2: Open-x form of immobilized 4WJ J1, 
with the four component strands labeled 101, 
102, 103, and 104. The 101 strand is labeled 
with a fluorophore on the 3' end. 

Figure 1: Genetic Recombination with 4WJs 
[http://www.nature.com/cr/journal/v20/n6/images/cr201073f1.jpg] 
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can also function outside of the cell, where it binds to immune receptors, such as 

Receptors for Advanced Glycation Endproducts (RAGE) to mediate the production of 

leukocytes (i.e. amplify the proinflammatory immune response).   

The protein was originally classified as an architectural DNA-binding protein whose sole 

function was to bind and bend DNA4,6.  Later it was shown that the protein can be either 

actively or passively released from cells into the extracellular matrix where it may bind 

to immune receptors.  In its alternative capacity, HMGB1 binding offers homeostatic 

benefits such as wound healing, dendrite maturation and neurite outgrowth.  However, 

the abundance of the protein often presents a problem because large amounts of the 

protein is often present in the extracellular region where it then binds to trigger 

superfluous leukocyte production.  As a result, there is often a great deal of collateral 

damage to healthy cells and tissues.  Hence it is not surprising that HMGB1 has been 

linked to a myriad of disease states that include cancer, arthritis, atherosclerosis, lupus, 

and sepsis4. 

Figure 3: HMGB1. The domain structure is shown in (a), and a 3D schematic of the compact form is shown 

in equilibrium with the more open form in (b).
5 
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Our strategy to mediate the deleterious behavior of HMGB1 is centered on 

combining or reassigning the original function of the molecule.  The hypothesis is to 

reassign hybrid 4WJs to the extracellular matrix where they can act as competitive 

inhibitors that bind HMGB1.  The 4WJs will effectively sequester HMGB1 and prevent its 

interaction with immune receptors, an outcome that would eventually stop the 

production of leukocytes.  The premise for the strategy is based on the fact there is 

experimental data that clearly show that HMGB1 binds 4WJ and bent DNA with very 

high affinity7,8. This suggests that these nucleic acid ligands would effectively target 

HMGB1 extracellularly. One area of concern is the high likelihood that DNA junctions 

would be rapidly degraded in vivo.  To offset this, researchers at the University of 

Southern Mississippi have developed novel hybrid 4WJs composed of DNA and PNA 

(peptide nucleic acids).  PNAs are synthetic hybrids of nucleic acids (DNA and RNA) and 

peptides that have been shown to possess enhanced stability (both in vitro and in vivo) 

compared to conventional nucleic acids9,10. 

 Research10 has shown that 4WJs composed of single PNA strands can be 

synthesized, and that they form stable structures that are bound by HMGB1b and the 

DNA-binding protein, Histone H1 with high affinity. However, 4WJs composed of two 

PNA strands are less stable. In order to increase the stability of these chimeric 4WJs, a 

series of small molecules are currently being investigated. The structure of a fully-

formed compound/4WJ combination in vitro will be elucidated, and the resulting 

junction will be further tested for nuclease and thermal stability. 
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CHAPTER II – LITERATURE REVIEW 

 

High mobility group B1 protein (HMGB1) 

The target protein in this study is high mobility group box 1, or HMGB1. HMGB1 

is a small protein comprised of 215 amino acid residues. It is composed of two domains, 

the A box and the B box, with a short linker between the two, and a long (30 amino acid) 

acidic C-terminal tail5 (Figure 3). HMGB1 binds to the minor groove of DNA, and 

therefore the minor groove of Holliday junctions as well. As HMGB1 is bound tightly to 

chromatin within the cell, its release into the extracellular matrix is usually a result of 

necrosis (cell collapse and death due to damage or disease), although active release by 

apoptotic cells (cells programmed to die at the end of their life cycle) can also occur11,12. 

The cytokine activity of HMGB1 is mostly due to its binding with RAGE, or Receptor for 

Advanced Glycation End-products. RAGE is a receptor that activates the immune system 

when it interacts with cytokines such as HMGB14,12,13 (Figure 6).  

Intracellularly, HMGB1 is a DNA binding protein that favors bent DNA structures. 

On the extracellular level HMGB1 acts as a pro-inflammatory cytokine. The sequence 

specificity of HMGB1 to DNA junctions is relatively low, which is due to the fact that 

HMG1 proteins bind to DNA via contact with the minor groove of the junction rather 

than the major groove where most transcription factors usually tend to bind5,7. 
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Figure 4: The nature of cell death determines the type of immune response. A) Necrosis is when the 
cell collapses due to damage or disease and all the cell’s internal components are released into the 
extracellular matrix. In (B), apoptosis is the programmed cell death that results from homeostasis, and 
is the destruction of the cell at the end of its life cycle. C) Secondary necrosis occurs when there is an 
error in recognizing apoptotic cell death and the result is pro-inflammatory, like that of (A).

4
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DNA junctions 

Four-way DNA junctions (4WJ) are three-dimensional higher-order DNA 

structures that are intermediates for DNA recombination in the cell. They also act as 

substrates for protein binding14. Proteins that recognize and bind to 4WJ do so at the 

level of their tertiary structure. During recombination, two DNA oligonucleotides join 

together at a specific point, where one strand from each strand remains continuous in 

one axis, while the complementary strands of each DNA molecule fold at the point of 

joining of the two molecules1–3 (Figure 1). The basic structure of a 4WJ is outlined in 

Figure 5. In cells, the 4WJ undergoes branch migration via the activity of the RuvA 

protein complex3. The junction is eventually resolved by the action of exonucleases. 

 

  

Figure 5: The stacked X-structure of 
4WJ. The ribbon indicates the path of 
the backbones in the right-handed, 
antiparallel stacked X-structure. The 
two sides of the structure are not 
equivalent. One side (m) presents 
minor groove edges of the base-pairs 
at the point of strand exchange, while 
at the other (M) the major groove 
edges are presented.

14
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4WJ has two major conformations, dependent on cation activity. In the absence 

of metal cations, 4WJ adopts an open, unfolded structure. Upon the addition of metal 

cations (most prominently magnesium ions), the double-stranded or duplex arms of the 

4WJ stack coaxially15,16.  This conformational isomer is referred to as the stacked-x 

structure (Figure 4). The reason for this is that DNA is a charged polyelectrolyte 

(polymers composed of repeating electrolytic units) that can induce repulsive 

interactions with metal cations1,2. Multiple studies have provided evidence for this 

observation. As displayed in Figure 5, the structure of stacked-x and open-x 4WJs are 

very dynamic.  At cation concentrations  0.1 mM the conformation of 4WJs can readily 

interchange between open-x and stacked-x.  The open-x isomer is denoted below in 

Figure 6 (open-x = b and stacked-x = c)17. Figure 7 shows another diagram for the two 

conformations of 4WJ. 

Figure 6: Structural forms of DNA Holliday junctions. a. The parallel stacked-X 
junction initially proposed by Holliday as the recombination intermediate 
(Holliday, 1964). b. The extended open- X form of a DNA junction. c. The 
antiparallel stacked-X junction does not allow for migration of the junction 
along the DNA strands. d. Model of the antiparallel stacked-X junction 
proposed from solution studies.

15
 

Duckett et al., 1988, copied from Khuu, et. al. J. Mol. Recognit. (2006) 
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Immobilized 4WJs (Figure 2) were first synthesized by Seeman et. al. in 1983 

using an algorithm to generate nucleic acid sequences that form junctions with high 

fidelity and stability.18 The smallest reported 4WJ, which we label J1, has optimally high 

fidelity and thermal stability. With respect to stabilizing or “locking” 4WJ structures, 

Brogden et. al reported the formation of stabilized junction upon addition of a small 

molecule synthesized in vivo19. The prototypical compound was derived from a class of 

compounds called acridines. The molecule was designed to crossover the junction 

region and “bridge” the two DNA strands together. Electrophoretic studies showed that 

the DNA junction was greatly stabilized when bound to this molecule. Electron density 

maps of the resulting junction showed a marked increase in the crossover site of the 

Figure 7: Ribbon model of the right-handed, antiparallel stacked X-structure of the four-way DNA 

junction, observed from three points of view. Note the juxtaposition of the continuous strands in the 

major grooves of the opposing helices, which is optimal for a small angle of 600 for the helix crossing. 

Centre: face view, showing the X-shape of the folded junction: the two sides of the structure are not 

equivalent. On one side (left) the four basepairs at the point of strand exchange all present major 

groove edges, while on the other side (right) the minor groove edges are presented.
2 



The use of a small molecule to improve the thermostability of DNA junctions 10 

10 
 

junction, which implies a stronger binding between the molecules present at that 

region. Another study by Howell and colleagues reported a similar experiment with 

another acridine derivative that behaved analogously to divalent cations such as 

magnesium and calcium to bind DNA junction and stabilizing it20. The acridine binds in 

an intercalative fashion to the DNA junction. They also found that a high temperature 

annealing step is still necessary even in the presence of high concentrations of cations to 

form the junction in vitro. 

Peptide nucleic acids (PNA) and DNA/PNA hybrids 

Peptide nucleic acid, or PNA, has a structure very similar to that of DNA, and in 

fact was designed as a DNA mimic that could recognize and bind to DNA21,22. The major 

difference is in the backbone of the two structures. DNA contains a phosphodiester 

backbone, PNA contains a pseudo-peptide backbone that also has the practical 

advantage of being neutral (Figure 8). 

One interesting and useful characteristic of PNA-DNA interactions is that the 

binding between PNA/DNA complexes is much stronger than that of typical DNA/DNA 

structures. Since the PNA molecule is uncharged, there is no charge repulsion between 

charged DNA and neutral PNA22 (Figure 6). Because of this feature, PNA/DNA complexes 

are more thermally stable, and more resistant to nucleases that (enzymes that cleave 

nucleic acids). One disadvantage to PNA, however, is its relatively lower solubility in 

water due to the neutral nature of of its peptide backbone. 
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A report by Musumeci and colleagues8 describes the use of a PNA/DNA complex 

to bind HMGB1, with the aim of inhibiting cytokine activity. In the experiment, a double-

stranded PNA/DNA chimera was used to bind HMGB1 in vitro, with positive results. The 

concentration of HMGB1 in chemotaxis assays decreased with application of the 

PNA/DNA chimera. However, the double-stranded complex used in the experiment has 

only one binding site for HMGB1, compared to four in a DNA junction. In addition, the 

binding site for the protein consisted of solely DNA, whereas in a PNA/DNA 4WJ the 

binding sites include PNA as well. 

Figure 8: Comparison of DNA and PNA chemical structures. Shown here is a N-(2-amino-
ethyl)-glycine backbone for PNA.

24
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CHAPTER III – EXPERIMENTAL SECTION 

Four-way DNA junction assay 

The four oligonucleotides for J1 were purchased from Integrated DNA Technologies 

(IDT). The sequences for the strands are shown below: 

101: 5’-CGCAATCCTGAGCACG-3’ 

102: 5’-CGTGCTCACCGAATCGC-3’ 

103: 5’-GCATTCGGACTATGGC-3’ 

104: 5’-GCCATAGTGGATTGCG-3’ 

Oligonucleotide 101 was labeled with fluorescein. Fluorescein labeled strands (101 or 

103) were purified via HPLC (IDT).  Non-labeled strands were purified via denaturing 

polyacrylamide gels (IDT). The four-way DNA junction was prepared by mixing the 101 

labeled strand at 25 µM with the other three non-labeled strands at 5:1 excess (125 µM) 

molar ratio. By making the 101 labeled strand the limiting factor we can therefore 

assume that 100% of the detectable junction is formed at 25 µM.  

Figure 9: Schematic of the four-way DNA junction with 
the 101 strand labeled with fluorescein at the 5’ end. 
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The strands are then annealed at room temperature in 50 mM Tris-HCl (pH 7.5) and 10 

mM MgCl2, in the absence of light at variable times, to allow the single strands to base-

pair with the complementary adjacent strands to form the junction. 

 

 

Figure 10: Steps for preparing 4WJ. 

 

After the annealing step, 2 μL of each junction sample with compound are mixed with 6 

μL nuclease free water, and incubated with 2 μL reaction buffer (125 mM Tris-HCl, 500 

mM Nacl, 5 μM MgCl2, 20% glycerol, pH 8.0) on ice for 30 minutes, before loading onto 

polyacrylamide gel electrophoresis (PAGE) gels. Electrophoretic mobility shift assays 

(EMSAs) are carried out with the resulting junctions using a Bio-Rad Mini-PROTEAN® 

Tetra Cell system with 15% polyacrylamide gel for 1 – 5 hours at 50 V in 4° C. The 

running buffer was 0.5 x TBE (45 mM Trisma, 45 mM boric acid, and 1.0 M EDTA), pH 

8.0, with 1 μM MgCl2 present in solution. After the gels are run, they are dried on 

Whatman 3MM paper and visualized using a Typhoon 9400 Phosphorimager. Labeled 

single strand is included in the assays as control. 

101 5’-FL1 
(labeled) 

104 103 102 DNA strands: 

4WJ 

Annealing Annealing step: 

DNA Junction: 
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DNA-PNA hybrid junctions:  

PNA strands were incorporated into the junction by replacing the DNA strand at the 

desired position with the complementary PNA strand. Different combinations of DNA-PNA 

hybrids can be achieved by modifying which PNA strand is incorporated into the mixture. 

4WJ-PNA1 was composed of PNA1: H-CAATCCTGAGCA-K-NH2 and oligonucleotides 102, 

103 and 104.   In this case, the labeled strand 103 was mixed with 5-fold excess of 

unlabelled PNA1, 102 and 104. 4WJ-PNA3 was composed of PNA3: H-ATTCGGACTATG-K-

NH2, 101, 102 and 104.  In this case, the labeled strand 101 was mixed with 5-fold excess 

of unlabelled 102, PNA3 and 104. The mobility of the hybrid 4WJ in the EMSAs was 

compared to that of the all-DNA 4WJ, as well as a labeled 101 single strand. 

To perform EMSAs with 4WJ in the presence of small molecules, the small 

molecules are prepared by dissolving the crystals in water at various concentrations. 

Dilutions are prepared in nuclease-free water or annealing buffer containing MgCl2. The 

small molecules are then added to the 4WJ mixture before the annealing step. The 

resulting mixture is run on PAGE gels under the same conditions as before. 

Figure 11: General schematic for 
polyacrylamide gel electrophoresis. 
©Bio-Rad 
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Junction assays in the presence of small molecules: 

A series of compounds available for purchase from Sigma-Aldrich™ were tested 

for their binding capacity with 4WJ. The compounds were chosen for their commercial 

availability, known DNA binding motifs (polycyclic, aromatic, and planar), and the 

reported solubilities in water (based on Ksp values).  

  

101 102 103 104 

10 µL 

25 µM   
10 µL 

125 
µM

10 µL 

125 
µM

10 µL 

125 
µM 

4WJ-PNA3 4WJ-PNA1,3 4WJ-PNA1 

Figure 12: Preparation of DNA-PNA hybrids. The red strands are PNA strands, and the black is 
labeled DNA, and the blue is unlabeled DNA. Shown here is the stacked-x form of the 4WJ. 
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Table 1: Initial set of compounds obtained from Sigma-Aldrich™:  

 Compound Name Molecular Structure 

Compound A 

3-[[(9H-Fluoren-9-
ylmethoxy)carbonyl]amino]-2,3,4,5-
tetrahydro-2-oxo-1H-1-benzazepine-1-
acetic acid 

 

Compound B 

3-([(9H-fluoren-9-
ylmethoxy)carbonyl]amino)-5-
hydroxybenzoic acid 
 
 
 

 

Compound C 
4-Carbamoyl-2-([(9H-fluoren-9-
ylmethoxy)carbonyl]amino)butanoic acid 

 

Compound D N,N'-Bis-trityl-hexane-1,6-diamine 

 
 

In spite of the reported Ksp values, the compounds were very difficult to dissolve in Tris 

buffer or water at room temperature, so the above set of compounds were not used for 

further experiments. 

Another molecule was obtained from Dr. Alvin Holder at The University of 

Southern Mississippi. The molecule, [Ru(bpy)2(dpp)PtCl2]Cl2, or Ru(bpy)2 (Figure 6) is 
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The Beer-Lambert Law: 

A = ε × l × c 

Where A is absorbance, 

 ε is molar absorptivity in L mol-1 cm-1 

 l is the path length, in cm, of the cuvette 

  containing the sample 

 c is the concentration of the compound 

 in solution, in mol L-1 

used because of its structural similarities with other known DNA binding substrates, and 

its high solubility in water. 

 

Figure 13: Structure of the Ru(byp)2 molecule. 

 

UV-Vis analysis of [Ru(bpy)2(dpp)PtCl2]Cl2: 

The Ru(bpy)2 compound is characterized via 

ultraviolet and visible wavelength emission 

spectroscopy (UV-Vis) to find absorption 

peaks. For UV-Vis, the Ru(bpy)2 samples are 

prepared in annealing buffer and/or water, at varying concentrations in the nanomolar 

range. The samples are then placed in a cuvette with a path length of 1 cm. Scans were 

run for a wavelength range of 200 nm to 600 nm on a GE Ultrospec 8000. Using the 

Beer-Lambert Law the maximum absorbance peaks of Ru(byp)2 can be determined. 

Once the absorbance peaks of Ru(byp)2 are known, they can be compared against 

substrates of the molecule – in this case DNA junction – to observe binding between the 
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4WJ and Ru(byp)2. To incorporate the Ru(byp)2 molecule into the 4WJ mixture, the 

molecule is dissolved in nuclease-free water and/or annealing buffer, and added before 

the annealing step. 

HMGB1 expression and purification: 

HMGB1b and HMGB1b/R26A from rat were expressed from pHB1-Escherichia 

coli Bl21(DE3)pLysS. Each protein was purified via FPLC using an Econo-Pac CM cartridge 

(Bio-Rad). Crude proteins were loaded onto the CM cartridge in the presence of low salt 

buffer: 50 mM Tris-HCl (pH 7.0), 50 mM NaCl and eluted with high salt buffer 50 mM 

Tris-HCl (pH 7.0), 500 mM NaCl using a linear gradient. Human histone H1 was 

purchased from New England Biolabs. The purity of each protein was monitored by 

resolution of each sample on 12% SDS-polyacrylamide (29:1 acrylamide:bisacrylamide) 

gels in Tris-Tricine buffer (150 V for 45 minutes) followed by staining for 12 hours with 

Coomassie Brilliant Blue G-250. 
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CHAPTER IV – RESULTS AND DISCUSSION 

 

Electrophoretic mobility shift assays (EMSA) of J1 and PNA-DNA hybrid junctions: 

All gels were scanned using a Typhoon 9400 Phosphorimager. 

 

Figure 14 shows an EMSA of the all-DNA junction J1 loaded next to two PNA-DNA 

hybrids: 4WJ-PNA1, and 4WJ-PNA3. The dark bands show the mobility of the junctions 

down the gel. Lane 1 contains a labeled 101 single-strand control that has a high 

mobility compared to the junctions due to its relatively smaller size. It is important to 

note that the all-DNA J1 and the two PNA-DNA hybrids have the same mobility through 

the native gel. This gel data allows us to presume that DNA 4WJ and hybrid 4WJ can 

thus be examined using EMSAs and their binding properties can be compared with one 

another. 

Figure 14: 15% Native gel of 50 nM DNA and hybrid PNA-DNA 4WJs. Lane 1: 
101 single-strand control, lane 2 and 5: J1, lane 3: 4WJ-PNA1, lane 4: 4WJ-PNA3. 

1       2       3       4        5 

J1 J1 
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Figure 15 shows EMSAs of J1 and two PNA-DNA hybrids binding with increasing 

concentrations of HMGB1 b-box. Figure 15A shows J1 in the presence of HMGB1b, 15B 

shows the 4WJ-PNA1 hybrid with HMGB1b, and 15C shows 4WJ-PNA3 and HMGB1b. At 

A) 

B) 

C) 

Figure 15: Native EMSAs of 4WJs and HMGB1b. Lane 1: 50 nM 4WJ, lanes 2 – 11; J1 + HMGB1b at 
protein : junction molar ratios of:  1:1, 2:1, 4:1, 8:1, 16:1, 32:1, 64:1, 128:1, 256:1, and 478:1. 
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protein : junction molar ratios of 128:1, 256:1, and 478:1, the hybrid junctions show 

high binding affinities to HMGB1b that are comparable to the all DNA J1. For 4WJ-PNA3, 

the bands at 32:1 and 64:1 molar ratios appear to be stronger than that of J1, suggesting 

a slightly better binding to the protein. 

Once the stability of the PNA-DNA hybrid junctions was established, the 

junctions were tested for thermostability. EMSAs were performed by annealing the 

junctions at elevated temperatures (37°C and 57°C).  

 

Figure 16 shows an assay with 4WJ-PNA1,3 after annealing at 37°C and 57°C. The 

junctions do not maintain their integrity at elevated temperatures. Further studies are 

required with other combinations of PNA-DNA hybrids, as well as three-way DNA 

junctions. 

Figure 16: Native gel of 50 nM 4WJ-PNA1,3, 15% PAGE gel run with 0.5X TBE buffer at 4° C for 90 minutes. 
1) 101 ss control 
2) 4WJ-PNA1,3 – 4°C 10 mM MgCl2   
3) 4WJ-PNA1,3 – 4°C 50 mM NaCl  
4) 4WJ-PNA1,3 – RT 10 mM MgCl2 
5) 4WJ-PNA1,3 –  RT 50 mM NaCl  
6) 4WJ-PNA1,3 – 37°C 10 mM MgCl2 
7) 4WJ-PNA1,3 – 37°C 50 mM NaCl  
8) 4WJ-PNA1,3 – 57°C 10 mM MgCl2 
9) 4WJ-PNA1,3 – 57°C 50 mM NaCl 

1       2        3          4        5          6        7         8        9 
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Figure 17: Native gel of J1 samples at 50 nM, run at 4° C (2 hrs) on a 15% native gel. Lanes 1 and 

7 are nucleic acid markers, lanes 2 and 8 are the single strand control. Lanes 3 - 6 and 9 

contained J1 samples annealed via SpeedVac with increasing concentrations of Ru(bpy)2 added, 

and lanes 10 - 13 contain J1 that had been annealed at room temperature in the presence of 

increasing concentrations of Ru(bpy)2: 1.0 nM, 10 nM, and 100 nM. 

Figure 17 shows an EMSA with J1, the all-DNA junction, annealed in the presence of 

Ru(bpy)2. Lanes 3 – 6 contain J1 that has been prepared via SpeedVac and lanes 10 – 13 

contain J1 that was annealed at room temperature, both in the presence of increasing 

concentrations of Ru(bpy)2. The dark bands at the top of the gel are due to junction 

formation. The gel shows that even at nanomolar concentrations of Ru(bpy)2, the 

junction formation is comparable to J1 without any Ru(bpy)2 present. However, J1 

annealed at room temperature was not efficient and could not be elucidated very well, 

although some junction formation is still evident (very light bands at the top). 

 

 

 

1    2      3     4      5     6      7       8     9     10    11   12   13 
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To improve detection of the sample, the assay was repeated for the samples at room 

temperature, but with a higher concentration of J1. Figure 11 shows J1 at 10x higher 

concentration than the one in Figure 10. As a result, the bands can be much better 

elucidated. The dark bands suggest that J1 forms in the presence of Ru(byp)2 at 1.0 nM, 

10 nM, and 100 nM concentrations(lanes 3 – 5 and 8 – 10) , and with relatively better 

efficiency than just the J1 without Ru(byp)2 (lanes 2 and 7).  

  

Figure 18: Native gel of J1 at 500 nM, same conditions as before. Lanes 1, 
6, and 11 are the 101 ss controls; lanes 2 and 7 are J1 without Ru(byp)2; 
and lanes 3 - 5 and 8 - 10 are J1 with 1.0 nM, 10 nM, and 100 nM Ru(byp)2. 

1     2      3     4      5       6       7      8      9     10    11 
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CHAPTER V – CONCLUSION 

Our data shows that a Ru(byp)2 can effectively assist the assembly of native and 

hybrid junctions in the presence of MgCl2.  This is a significant achievement because one 

of the long-term goals of this project is to use DNA junctions to target the 

proinflammatory cytokine HMGB1.  Prior research10 has clearly shown that hybrid 4WJs 

can be constructed and these molecules bind to HMGB1b and the DNA biding protein 

Histone H1 with high affinity.  More recently, research has shown that the hyrbrid 4WJ, 

4WJ-PNA1,3 posseses enhanced resistance to endo- and exonucleases.  Moreover, the 

hybrids 4WJ-PNA1 and 4WJ-PNA3 possess enhanced stability in fetal bovine serum (FBS) 

vs. J1.  The in vitro and serum stablity data are very encouraging but the thermostabilty 

all 4WJs tested do not exceed 42oC (data not shown).  We presume that enhanced 

levels of thermostabilty will required for the use of these molecules as therapeutics.  

Our initial investigations show that Ru(bpy)2 is capable of forming stable 4WJ and three-

way (3WJs) at room temperature.  This data correlate with those from Howell et al.20  

A similar approach was used by Grueso et. al.23, in which they used a phenanthroline-

derived ruthenium complex to bind to DNA via intercalation. Their data showed that 

Ru(byp)2 enhanced the thermostabilty of calf thymus DNA by > 15oC.  Based on this, we 

presume that Ru(byp)2 may enhance the stability of native and hybrid 4WJs.  Preliminary 

EMSA data indicates that Ru(bpy)2 does not significantly enhance the stability of the 

hybrid 4WJ-PNA1,3  (Figure 16).  The EMSA data is very informative but these assays do 

not provide an accurate measurement of the thermostability of nucleic acids.  Hence, 

circular dichroism (CD) and UV spectroscopy will be used for future investigations of 

thermostability. 
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