
Abstract: Interest plays a vital role in students’ learning performance. Accurately measuring 
situational interest in the classroom environment is important for understanding the 
learning mechanism and improving teaching. However, self-report measurements frequently 
encounter issues of subjectivity and ambiguity, and it is hard to collect dynamic self-report 
scales without disturbance in the naturalistic environment. Thanks to the development of 
neuroscience and portable biosensors, it has become possible to represent psychological states 
with neurophysiological features in the classroom environment. In this study, multimodal 
neurophysiological signals, including electroencephalograph (EEG), electrodermal activity 
(EDA), and photoplethysmography (PPG), were applied to represent situational interest under 
both laboratory (Study 1) and naturalistic (Study 2) paradigms. A total of 33 features were 
extracted, and 7 different statistical indicators were calculated for each of them across all 
the epochs. Among these features, 47 in Study 1 and 49 in Study 2 demonstrated significant 
correlation with self-report situational interest. Employing a machine learning model, the 
analysis yielded a mean absolute error (MAE) of 0.772 and mean squared error (MSE) of 0.883 
for the dataset in Study 1. However, the model was not robust on data from Study 2. These 
findings offer empirical support for the conceptual framework of situational interest, demonstrate 
the potential of neurophysiological data in educational assessments, and also highlight the 
challenges in naturalistic paradigm.
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1.Introduction

Interest is a critical factor in student 
learning (Harp & Mayer, 1997; Renninger, 
1992). It not only enhances performance 
by directly fostering higher engagement, 
but influences the development of intrinsic 
motivation as well, thereby facilitating 
the long-term learning (Renninger, 2000; 
Renninger & Hidi, 2015). The concept of 
interest is broadly categorized into two types: 
situational interest and individual interest, 
representing state and trait components, 
respectively (Hidi, 2000; Schraw et al., 
2001).  Interest  develops and becomes 
internalized through a four-stage model (Hidi 
& Renninger, 2006). It begins with triggered 
situational interest, progresses to maintained 
s i tuat ional  in teres t ,  then to  emerging 
individual interest, and finally, to well-
developed individual interest. The classroom 
serves as a primary setting for both learning 
and developing students’ academic interest. 
With insights into students’ situational interest, 
teachers can better design their lessons to 
improve the learning experience (Rotgans & 
Schmidt, 2011; Tsai et al., 2008). Similarly, if 
students have a more accurate and objective 
understanding of their academic interest, they 
can plan their career with less confusion. 

The effectiveness of these applications 
hinges on the accurate measurement of 
interest. Similar to many psychological 
concepts, situational interest is usually 
measured through self-report scales. For 

instance, Wang and Adesope (2016) developed 
a scale to measure the four stages of interest as 
outlined in Hidi’s model. However, Azevedo 
(2018) characterized interest as a short-term 
spike, which may not align with the longer 
duration of typical lessons. Therefore, post-
stimuli scales are challenged to capture 
dynamic changes without interrupting the 
learning process. To effectively measure 
situational interest, a real-time, minimally 
invasive tool is needed. 

T h a n k s  t o  t h e  d e v e l o p m e n t  o f 
portable biosensors, neurophysiological 
data have demonstrated its potential in 
assessing students’ situational interest. 
Laboratory experiments have shown that 
neurophysiological features can effectively 
represent basic affective and cognitive states 
(Ayres et al., 2021; Wang et al., 2022). In real-
world scenarios, these associations have also 
been validated (Shui et al., 2021), particularly 
in the real-classroom learning (Chen et al., 
2023; Dikker et al., 2017; Zhang et al., 2018). 
In relevant theories, situational interest is 
seen as inducing and accompanied by a 
range of fundamental affective and cognitive 
aspects, such as attention, positive affect, 
and cognitive processes (Ainley & Hidi, 
2014; Chen et al., 2001; Hidi, 2006; Hidi & 
Renninger, 2019). Consequently, situational 
interest could be linked with features that are 
related to these basic concepts. For instance, 
electroencephalograph (EEG) band power, 
known as indicators of attention (Liu et al., 
2013); electrodermal activity (EDA) features, 
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often used to predict emotions (Picard et al., 
2001); and photoplethysmography (PPG) 
features, indexing cognitive load (Lyu et al., 
2015), are likely associated with situational 
interest. Building on this, recent studies 
(Babiker et al., 2019; Tan et al., 2021) have 
explored neurophysiological features that may 
directly indicate situational interest.

Beyond s ingle-modal i ty  analyses , 
multimodal fusion has demonstrated better 
predictive performance (Poria et al., 2017). 
Given the composite nature of situational 
interest, effectively combining various types of 
neurophysiological features in the prediction 
model is suitable. Employing machine learning 
techniques, researchers like Gao et al. (2020) 
have successfully used multimodal fusion to 
predict student engagement in classrooms. 
Thus, employing a machine learning model for 
representing situational interest has emerged 
as a promising method.

The research questions of this study are as 
follows: Can situational interest be represented 
with multimodal neurophysiological data in 
the classroom setting? Can machine learning 
approaches effectively enhance multimodal 
fusion for this task? To answer the above 
questions, portable devices including head 
belts and wristwatches were employed to 
collect students’ EEG, EDA, and PPG signals 
throughout their learning sessions. Both 
video stimuli and real-world lessons were 

incorporated to trigger students’ situational 
interest. To the best of our knowledge, 
this study is among the first to explore 
the neurophysiological representation of 
situational interest in real-world scenarios. 
Furthermore, this study demonstrates the 
potential of portable biosensors in assessing 
the dynamics of interest and its development, 
highlighting their utility in educational 
research.

2. Methods

2.1 Data collection

This study employed a dataset collected 
from Grade 10 students in a typical high 
school in Beijing. To represent situational 
interest, multimodal neurophysiological 
d a t a  w e r e  c o l l e c t e d  i n  b o t h  a  s e m i -
controlled experiment and a naturalistic 
inves t iga t ion ,  a s  shown in  F igure  1 . 
Randomized controlled experiments are 
widely accepted in neurophysiological studies 
for their effectiveness in inducing various 
psychological states (Dzedzickis et al., 2020; 
Zhou et al., 2021). However, in recent years, 
there has been a growing focus on naturalistic 
paradigms to improve the ecological validity 
of such research (Immordino-Yang & Gotlieb, 
2017). Therefore, to improve the validity 
of the representation model, data were also 
collected during the real-world learning.



111Volume 16, Issue 2, 2023

Multimodal neurophysiological representations of high school students’ situational 
interest: A machine learning approach

Participants. This study recruited 224 
senior high school students, aged between 14 
to 17 years. Eleven students withdrew from the 
experiment. Of the remaining 213 participants, 
there were 96 males, 107 females, and 10 
participants who did not report their gender. 
All of these students participated in both 

Study 1 and Study 2. This study complied with 
Chinese laws and the Declaration of Helsinki 
and was approved by the Institutional Review 
Board (IRB) of Department of Psychology, 
Tsinghua University. All participants and 
their legal guardians read and signed an 
informed consent form. The experiments were 

Figure 1 

Research design 
a b Timelines of Studies 1 and 2, which trigger students’ situational interest with video 
stimuli and naturalistic lessons, respectively. c Neurophysiological data collection in the 
classroom setting. d Photos of portable devices, including a head belt and a wristwatch.
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conducted in November and December, 2020.

A p p a r a t u s  a n d  s e t t i n g s . 
Neurophysiological data were collected using 
head belts and wristwatches. The head belt, 
equipped with dry electrodes at Fp1 and 
Fp2 channels on the forehead, records EEG 
signals at a sampling rate of 250 Hz (Brainno, 
SOSO H&C, South Korea). This device has 
been previously employed in educational 
research to investigate disciplinary differences 
(Chen et al., 2023). The wristwatch gathers 
EDA signals at a sampling rate of 40 Hz and 
PPG signals at 20 Hz (Psychorus, China). Its 
efficacy and reliability have been validated in 
previous studies focusing on real-classroom 
environments (Liu et al., 2021; Zhang et al., 
2021; Zhang et al., 2018).

Ground truth labels for situational 
interest. In Study 1, situational interest was 
measured by the scale developed by Wang 
and Adesope (2016), which measures the 
four-stage of interest according to the model 
proposed by Hidi and Renninger (2006). 
In this study, the items of triggered and 
maintained situational interest were added up 
as the overall situational interest. The scale’s 
Cronbach’s alpha was 0.960 and KMO was 
0.938, implying high reliability and validity.

Given the tight schedule in the daily 
school time, the self-report measure of 
situational interest was simplified to a single 
question in Study 2:

Q. How did you feel about this lesson?

A. This class did not interest me at all. 
B. It caught my interest once in a while, 

but it soon dissipated.

C. Sometimes, it interested me and 
lasted for a while. 

D. It made me feel so interested that I 
wanted to continue listening.

To check the consistency of the Wang 
and Adesope (2016) scale and this single-
item scale, a supplementary experiment using 
the same video stimuli from Study 1 were 
conducted on a different group of high school 
students. The result showed a high correlation 
between the long scale and this question 
(Pearson’s correlation r = 0.882, p < 0.001, 
n = 134), indicating the validity of using 
the single-item scale to measure situational 
interest.

Procedure of Study 1: A semi-controlled 
experiment. As shown in Figure 1a, before 
the experiment, participants were guided to 
wear head belts and wristwatches, and the 
experimental procedure was briefly explained 
to them. The experimental process included 
watching two teaching videos: an interesting 
video and a boring one, which were evaluated 
by ten educational researchers regarding the 
level of interestingness before the experiment. 
The watching sequence of the two videos was 
randomized. Before each video was played, 
data of the resting state were collected (90 
seconds of open-eye and 90 seconds of closed-
eye resting, respectively). After the video 
session, situational interest was measured 
using the Wang and Adesope (2016) scale. 

The interesting video used in the study 
was an 11-minute excerpt from a popular 
physics course, selected from a video website 
with extensive online learning resources. 
The boring video was an 8-minute segment 
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focusing on physical education teaching 
theory, which was selected from an online 
learning platform. The two videos did trigger 
different levels of situational interest, as 
evidenced by the T-test results (t = 23.9, p < 
0.001) of the scale.

Procedure of Study 2: A naturalistic 
investigation. As shown in Figure 1b, 
during the naturalistic investigation, data 
were collected during two school days, and 
recordings from about 10-14 class lessons 
were collected for each participant. Before the 
school day started every morning, participants 
wore the portable devices. At the end of 
each session, the researchers distributed the 
simplified scale to all participants, measuring 
self-report situational interest of the session.

2.2 Data Preprocessing

The EEG processing protocol referred to 
the work of Chen et al. (2023), which utilized 
the same portable device in similar classroom 
settings. The main challenges in EEG signal 
processing include addressing artifacts such 
as missing data, transient signals from lost 
contact, slow drifts, and ocular artifacts. 
Therefore, the preprocessing protocol was as 
follows. After identifying missing data, robust 
detrending (de Cheveigné & Arzounian, 2018) 
was applied, followed by bandpass filtering 
at 1 and 40 Hz, and ocular artifacts removal 
(Kanoga et al., 2019). Then the signal was 
divided into 30-second-long epochs, and those 
with value exceeding ± 150 μV were excluded. 

For EDA data preprocessing, missing 
epochs were firstly determined and deleted. 
Then the data were downsampled to 10 
Hz, and smoothed with filtering methods to 

remove noises (Zhang et al., 2021). Then 
the EDA data were decomposed into two 
components: the tonic component, known as 
skin conductance level (SCL); and the phasic 
component, known as skin conductance 
response (SCR), using the cvxEDA python 
toolbox (Greco et al., 2016).

The preprocessing of the PPG signal was 
conducted using the software developed by 
Psychorus, through which the heart rate was 
estimated. To ensure data quality, epochs 
exceeded the typical range (50 bpm – 100 
bpm) were excluded.

Regarding missing data, for each sample, 
it was excluded from the analysis if there 
was either missing self-report situational 
interest data, or if all EEG and EDA epochs 
were excluded. The final dataset comprised 
367 samples in Study 1 and 1849 samples in 
Study 2. Before the analysis, all the data was 
standardized, and the missing values were 
filled using mean imputation (Waljee et al., 
2013).

2.3 Feature Extraction

To rep resen t  s i t ua t iona l  i n t e re s t , 
features were extracted from various data 
modalities. These features, which are detailed 
in Table 1, are thought to be indirectly 
related to situational interest. As previously 
discussed, situational interest is associated 
with emotional and cognitive states, such 
as enjoyment, engagement, attention, and 
mental effort (Ainley & Hidi, 2014; Chen 
et al., 2001). Therefore, drawing upon these 
foundational states, a range of relative features 
were identified and extracted for analysis, as 
detailed below.
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EEG features. EEG is a widely-applied 
technique in cognitive neuroscience for 
detecting brain activity. In this study, EEG 
signals were measured in the prefrontal 
area, corresponding to the prefrontal cortex, 
a crucial region for learning and cognitive 
processes. Band power in this area has been 
used in previous studies to represent attention 
(Liu et al., 2013), and cognitive control 
(Cavanagh & Frank, 2014). Therefore, this 
study involved calculating both absolute and 
relative powers for various EEG frequency 
bands: delta (1 – 4 Hz), theta (4 – 8 Hz), alpha 
(8 – 13 Hz), beta (13 – 30 Hz), and gamma 
(30 – 40 Hz). Additionally, the ratios of EEG 
alpha to beta and theta to beta were extracted, 
based on the their relation to attention (Putman 
et al., 2014).

EDA and PPG features.  EDA is a 
commonly-used physiological measure in 
affective computing (Greco et al., 2017), 
which has been employed to predict arousal 
(Ahuja et al., 2003), academic performance 
(Zhang et al., 2018), and engagement (Zhang 
et al., 2021) in daily scenarios. EDA signals 
were first decomposed into SCL (tonic 
component) and SCR (phasic component). 
SCL reflects the continuous, slow-changing 
aspect, while SCR indicates the fast-changing 
responses to stimuli (Roy et al., 2012). Then 
average values, standard deviation, first and 
second differences were calculated for both 
SCL and SCR components. For PPG data, 
heart rate was calculated, which is a metric 
commonly employed in educational research 
(AL-Ayash et al., 2016).

Synchrony features.  In addition to 
calculating features at the individual level, 
there is an increasing focus on analyzing 

synchrony at the group level. When the 
students’ physiological signals exhibit high 
inter-subject correlation with other students, 
their learning activities are assumed to be more 
aligned with others, and it is often described 
as “shared attention” at the group level 
(Dikker et al., 2017). High situational interest 
typically leads to increased engagement in 
class activities (Ainley, 2012), which may 
in turn influence group-level synchrony. For 
EEG signals, Total Independence (TI) was 
utilized to compute the synchrony feature 
(Dikker et al., 2017). Additionally, synchrony 
was assessed in specific power bands, namely 
delta, theta, alpha, low beta (13 – 18 Hz), high 
beta (18 – 30 Hz), and gamma bands (Chen et 
al., 2023). In addition to coherence measures, 
the Pearson’s correlation of the signals with 
those of other students was also calculated. 
For EDA signals, synchrony was calculated 
using two methods: Pearson’s correlation 
and dynamic time warping (DTW) distance, 
which were applied to both the SCL and SCR 
components. These features have been utilized 
in predicting student engagement in classroom 
settings (Gao et al., 2020).

Extracting time dynamics. Learning 
act iv i t ies  are  dynamic and subject  to 
fluctuations over time, as discussed by 
theoretical models and neurophysiological 
evidence (D’Mello & Graesser, 2012; Qu 
et al., 2020; Sung et al., 2023). To capture 
this variability, the study not only computed 
average and median values across epochs, but 
also included standard deviation (std), quartiles 
(Q1 and Q3), minimum, and maximum values, 
as depicted in Figure 2. Consequently, a total 
of 33 features, each analyzed with 7 different 
statistical measures on epochs, were extracted.
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Table 1
Neurophysiological features representing situational interest

Feature 
type

Feature name Description

EEG 
frequency 
domain 
features

delta EEG absolute delta (1 – 4 Hz) spectral power
delta_rel EEG relative delta spectral power
theta EEG absolute theta (4 – 8 Hz) spectral power
theta_rel EEG relative theta spectral power
alpha EEG absolute alpha (8 – 13 Hz) spectral power
alpha_rel EEG relative alpha spectral power
beta EEG absolute beta (13 – 30 Hz) spectral power
beta_rel EEG relative beta spectral power
gamma EEG absolute gamma (30 – 40 Hz) spectral power
gamma_rel EEG relative gamma spectral power
alpha_beta_ratio Power ratio of alpha to beta
theta_beta_ratio Power ratio of theta to beta

EEG 
synchrony

TI Total Independence (TI) of the EEG data with other students
delta_TI TI of the EEG data with other students at delta power band
theta_TI TI of the EEG data with other students at theta power band
alpha_TI TI of the EEG data with other students at alpha power band
lowbeta_TI TI of the EEG data with other students at low beta power band
highbeta_TI TI of the EEG data with other students at high beta power band
gamma_TI TI of the EEG data with other students at gamma power band
correlation Pearson’s correlation coefficient of the EEG data with other 

students

EDA 
features

SCL_mean Mean value of the SCL data
SCL_std Standard deviation of the SCL data
SCL_delta Mean of the first difference of the SCL data
SCL_delta2 Mean of the second difference of the SCL data
SCR_mean Mean value of the SCR data
SCR_std Standard deviation of the SCR data
SCR_delta Mean of the first difference of the SCR data
SCR_delta2 Mean of the second difference of the SCR data

EDA 
synchrony

SCL_correlation Pearson’s correlation of the SCL data with other students
SCL_dtw Dynamic time warping (DTW) distance of the SCL data with 

other students
SCR_correlation Pearson’s correlation of the SCR data with other students
SCR_dtw DTW distance of the SCR data with other students

PPG feature hr Heart rate (beat per minute)
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Figure 2

Schematic illustration of feature extraction 
This figure illustrates a sample of the EDA signal from one participant during a lesson. The 
signal was first segmented into 30-second-long epochs. Then features were extracted from 
these epochs, and finally analyzed using various statistical measures.

2.4 Machine learning approach

This study adopted a regression model 
as the dependent variable is a continuous 
variable, which is a commonly-used approach 
in the prediction of psychological states (Gao 
et al., 2020; Lan et al., 2016; Sabbagh et al., 
2020). The prediction pipeline is described 

below.

Predict ion pipel ine.  In  addressing 
irrelevant and redundant features within the 
machine learning pipeline, the following 
approach was adopted: i). Feature Selection: 
The k best features were selected based on 
their correlation with self-report situational 
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interest. ii). Dimensionality Reduction: Given 
the presence of high collinearity among 
features (e.g., a strong correlation between 
feature_x_mean and feature_x_median), 
Principal Component Analysis (PCA) was 
applied. iii). Model Training: Subsequently, 
various regression models, including linear 
regression, ridge regression, support vector 
regression (Awad et al., 2015), and LightGBM 
regression (Ke et al., 2017), were employed to 
train the model. Following this pipeline, the 
study aimed to create a model that effectively 
captures the important patterns of situational 
interest while minimizing the influence of less 
relevant or redundant information.

Model evaluation. These models were 
compared with two baselines: Random: This 
baseline generates predictions based on a 
normal distribution estimated from the training 
set labels; Average: This baseline approach 
produces predictions using the average value 
derived from the training set. To compare the 
performance of the models, cross-validation, 
a widely used technique (Browne, 2000), was 
employed. Following 10-fold cross-validation, 
metrics such as mean absolute error (MAE), 
and mean squared error (MSE) were calculated 

to assess the models’ effectiveness. 

3. Results

3.1 Correlation analysis

Pearson’s correlation coefficients (PCC) 
were computed between self-report situational 
interest and extracted features. In Study 1, out 
of 33 × 7 = 231 features analyzed, 47 showed 
a level of significance with p < 0.05, while 25 
features demonstrated significance at p < 0.01, 
and 10 features at p < 0.001. In Study 2, out 
of the evaluated features, 49 displayed a level 
of significance at p < 0.05, 31 features showed 
significance at p < 0.01, and 19 features 
reached a level of significance at p < 0.001. 

F i g u r e  3  d e p i c t s  t h e  s i g n i f i c a n t 
correlations between multimodal features 
and situational interest, with the majority of 
significant features identified within the EEG 
frequency domain. In Study 1, significant 
features were identified not only in EEG 
signals, but also in EDA and PPG data. 
However, correlation analysis in Study 2 
revealed only two significant EDA or PPG 
features, which was probably due to the 
complex environment.
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Figure 3
Influential features on situational interest 
Note: PCC: Pearson’s correlation coefficient

3.2 Machine learning results

The correlation analysis determined the 
hyperparameter in feature selection to be 10, 
30, or 50. These values correspond to the 

approximate number of features significant at 
the 0.001, 0.01, and 0.05 levels, respectively.

As shown in Table 2, in Study 1, after 10-
fold cross-validation, all models outperformed 
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the two baseline models. Specifically, the 
model that selected the 30 best features and 
utilized Support Vector Regression (SVR) 
achieved the highest performance, with a 
mean absolute error (MAE) of 0.772 and a 
mean squared error (MSE) of 0.883. This 
represents a 30.3% reduction in MAE and 
a 57.4% reduction in MSE compared to the 
random baseline. 

In  Study 2 ,  a l l  regress ion  models 
surpassed the performance of the random 
baseline model. Notably, the model that 

selected the top 30 features and employed 
the LightGBM regressor (LGBM) achieved 
the most impressive result: 0.798 in MAE 
and 0.993 in MSE. This represents a 31.0% 
reduction in MAE and a 49.7% reduction 
in MSE compared to the random baseline. 
However, it’s important to note that the MAE 
for this model, at 0.798, did not surpass the 
average baseline, which had an MAE of 
0.790. This outcome suggests that while the 
model has strengths, its generalizability and 
predictive accuracy in a naturalistic classroom 
environment may not be as robust as desired.

Table 2 

Prediction performance for situational interest

Metrics Study 1 Study 2
MAE MSE MAE MSE

Random 1.109 2.072 1.157 1.974
Average 0.845 1.007 0.790 1.003
k = 10

Linear 0.817 0.995 0.802 0.996
Ridge 0.817 0.994 0.802 0.996
SVR 0.810 0.971 0.800 1.004
LGBM 0.818 0.961 0.800 0.998

k = 30
Linear 0.814 0.998 0.802 0.997
Ridge 0.814 0.995 0.802 0.997
SVR 0.772 0.883 0.803 1.003
LGBM 0.803 0.934 0.798 0.993

k = 50
Linear 0.808 1.024 0.816 1.018
Ridge 0.807 1.020 0.816 1.018
SVR 0.783 0.913 0.811 1.016
LGBM 0.802 0.933 0.801 0.996

4. Discussion

The current  s tudy’s  f indings offer 
contributions to the understanding and 
measurement of si tuational interest  in 

educational settings. Correlation analysis 
and machine learning results indicate that 
situational interest can be predicted using 
multimodal neurophysiological data in a 
semi-controlled experiment (Study 1). While 
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the data in a naturalistic setting (Study 2) 
identified several features significantly 
correlated with situational interest, the 
machine learning model demonstrated limited 
generalizability in this context. 

The correlation analysis in this study 
provides neurophysiological support for 
different conceptualizations of situational 
i n t e r e s t .  H id i  and  Renn inge r  (2019) 
described triggered situational interest as a 
“psychological state resulting from short-term 
changes in cognitive and affective processing 
associated with a particular class of content”, 
and maintained situational interest as a 
“psychological state that involves focused 
attention to a particular class of content that 
reoccurs and/or persists over time”. Chen et al. 
(2001), from a different perspective, identified 
five dimensions of situational interest: novelty, 
challenge, attention demand, exploration 
intention, and instant enjoyment. In the current 
study, an increase in situational interest was 
associated with a decrease in relative alpha 
power (alpha_rel), suggesting an increase 
in attention (Klimesch, 2012). Additionally, 
an increase in situational interest  was 
accompanied by a decrease in the theta to beta 
ratio (theta_beta_ratio). This change could 
result from an increase in beta power or a 
decrease in theta power, pointing to associated 
cognitive processes.

While the correlation analysis successfully 
links features to situational interest as per 
these concepts, it’s important to note the 
inconsistency in significant features observed 
between the two studies. In Study 1, several 
EDA features showed significant correlation 
with situational interest. Contrastingly, in 
Study 2, only one EDA feature was significant. 
This difference in results might be attributed to 
the motion artifacts induced by diverse class 
activities, resulting in noisier electrodermal 
activity signals and consequently affecting the 

analysis results.

In addition to mean and median values, 
notable associations were also observed in 
the quartiles and extremes of the features 
across epochs (see Figure 3). This suggests 
that neurophysiological features at certain 
moments may reflect the overall situational 
interest during the stimuli, which aligns 
with Azevedo’s (2018) conceptualization 
of situational interest as a short-term spike 
in a specific activity. Among the significant 
features, TI presents an interesting pattern: 
while the mean and median of TI (TI_mean 
and TI_median) were negatively correlated 
with situational interest, suggesting that 
students with high situational interest 
generally exhibited lower synchrony with their 
peers, key moments showed a different trend. 
The positive association of TI’s maximum 
value (TI_max) indicates that at these critical 
moments, synchrony among these students 
was higher. These findings highlight the 
potential of leveraging dynamic information 
through various descriptive statistics.

In the machine learning analysis, 30 
features were found to offer the most accurate 
predictions, effectively balancing the risks 
of overfitting and underfitting. Notably, the 
most effective model varied between the 
two datasets. In Study 1, the Support Vector 
Regressor (SVR) had the best prediction 
performance, which is likely attributed to 
the SVR’s pattern extraction capabilities 
facilitated by kernel method. In contrast, Study 
2 found the LightGBM regressor to be the 
most effective. LightGBM utilizes the benefits 
of decision trees for pattern extraction, which 
is likely more fitted to the data of Study 2. 

In Study 1, the prediction outcomes were 
comparable with similar studies that have 
focused on representing diverse psychological 
concepts in educational contexts (Gao et al., 
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2020; Sharma et al., 2020). However, the 
findings of Study 2 revealed that the model’s 
generalizability was less than ideal. This could 
be due to the influence of various factors on 
situational interest, such as the subject matter 
(Kunter et al., 2007), and teaching style (Dever 
& Karabenick, 2011). These factors were less 
controllable in the more naturalistic setting 
of Study 2, potentially impacting the model’s 
effectiveness in this context. The difference 
of two datasets underscores the challenge of 
accurately predicting situational interest in 
real-world educational environments, which 
can be affected by various unknown factors.

In conclusion, the study’s findings 
provide empirical support for the conceptual 
framework of situational interest, demonstrate 
the potential of neurophysiological data in 
educational assessments, and also underscore 
the challenges in naturalistic paradigm. 
Although cumulative experimental evidence 
increasingly supports the feasibility of using 
neurophysiological biomarkers to predict 
psychological states (Goswami, 2009), stable 
biomarkers for situational interest still need 
verification by further experiments. To fully 
exploit the potential of the neuroscientific 
approach in educational settings, a more 
precise conceptualization and additional 
experimental evidence are essential for 
a  comprehens ive  neurophys io log ica l 
interpretation of situational interest.
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