
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Honors Theses Honors College

Summer 8-2014

Multisensory Emotion Recognition With Speech and Facial Multisensory Emotion Recognition With Speech and Facial

Expression Expression

Jacob P. Roeland
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/honors_theses

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Roeland, Jacob P., "Multisensory Emotion Recognition With Speech and Facial Expression" (2014). Honors
Theses. 259.
https://aquila.usm.edu/honors_theses/259

This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital
Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila
Digital Community. For more information, please contact Joshua.Cromwell@usm.edu, Jennie.Vance@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/honors_theses
https://aquila.usm.edu/honors_college
https://aquila.usm.edu/honors_theses?utm_source=aquila.usm.edu%2Fhonors_theses%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=aquila.usm.edu%2Fhonors_theses%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/honors_theses/259?utm_source=aquila.usm.edu%2Fhonors_theses%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu,%20Jennie.Vance@usm.edu

The University of Southern Mississippi

MULTISENSORY EMOTION RECOGNITION WITH SPEECH AND FACIAL

EXPRESSION

by

Jacob Roeland

A Thesis

Submitted to the Honors College of

The University of Southern Mississippi

in Partial Fulfillment

of the Requirements for the Degree of

Bachelor of Science

in the School of Computing

August 2014

ii

iii

Approved by

Scott Neal, M.S., Thesis Adviser

Instructor of Information Technology

Andrew Sung, Ph.D., Director

School of Computing

Ellen Weinauer, Ph.D., Dean

Honors College

iv

Abstract

 Computers through both desktop and mobile devices are only becoming more

important in our lives leading us to have more involved and longer interactions with

them. Because of this our brains actually classify our involvement with them in a manner

similar to our interactions with our fellow humans. This can lead to frustration and

anxiety when our computers interrupt our work or pleasure with contextually

inappropriate messages, much the same way it would if a friend or co-worker was pushy

or rude.

 A way to solve this issue is to give our machines emotional intelligence, or the

ability to recognize and be aware of our emotions. While monitoring physiological

symptoms such as skin conductivity and muscle tension is one of the most accurate ways

of detecting emotions, it can also be done in a more physically and socially comfortable

manner by way of visual and auditory clues.

 This thesis will create a bimodal system where input is visual information via a

still image and auditory information via a clip of human speech. The system will use two

existing programs to identify the emotion found in each and, by using a weighted system,

return the singular emotion felt.

Key Words: emotion recognition, affective computing, openSMILE, openEAR, Weka,

Human Emotion Detection from Image

v

Table of Contents

List of Figures vi

List of Tables vii

Chapter 1 – Introduction 1

Chapter 2 - Literature Review 4

 Section 2.1: Affective Computing 4

 Section 2.2: Detecting Emotion Using Physiological Symptoms 5

 Section 2.3: Detecting Emotion Using Facial Expressions 8

 Section 2.4: Detecting Emotion Using Facial Expressions 10

Chapter 3 – Methodology 12

 Section 3.1: Introduction of Components Used 12

 Section 3.2: Human Emotion Detection from Image 13

 Subsection 3.2.1: Porting to Linux 13

 Subsection 3.2.2: Removing GUI Elements 15

 Subsection 3.2.3: Command-line 17

 Subsection 3.2.4: Ramifications of Porting 17

 Section 3.3: openSMILE/openEAR and Weka 19

 Subsection 3.3.1: Setting up the Corpus 19

 Subsection 3.3.2: Building the Model 20

 Subsection 3.3.3: Classifying with Weka 22

 Section 3.4: Merging the Databases 24

Chapter 4 - Conclusion 29

References 30

vi

List of Figures

Figure 3.2.1.1: Start screen of Human Emotion Detection. 13

Figure 3.2.1.2: How the database was queried using Access. 14

Figure 3.2.1.3: How the database was queried after switching to MySQL. 14

Figure 3.2.1.4: Successfully detecting an emotion (or rather a lack of one). 15

Figure 3.2.3.1: Detecting an emotion using only the command-line. 17

Figure 3.3.1.1: Number of audio files for each emotion in the corpus. 20

Figure 3.3.2.1: Building the openSMILE model using the Berlin Database of

Emotional Speech. 21

Figure 3.3.2.2.: Build complete and copying appropriate files to work directory. 21

Figure 3.3.3.1: Diff of changes made to config file. 22

Figure 3.3.3.2: Generating the output.arff file to be used by Weka. 23

Figure 3.3.3.3: Classifying the emotion using Weka. 23

Figure 3.3.3.4: Generating another output.arff and classifying. 24

Figure 3.4.1: Python script that runs both the Human Emotion Detection and

openSMILE programs at once and outputs the results. 25

Figure 3.4.2: Output of Python script. 26

Figure 3.4.3: Final draft of Python script. 27

Figure 3.4.4: Output of Python script with debugging on. 28

Figure 3.4.5: Output of Python script when training with debugging on. 28

vii

List of Tables

Table 2.2.1: How the subject in Picard et al’s experiment described each emotion. 6

Table 2.2.2: How each emotion was classified by the system. 8

Table 3.2.4.1: Accuracy dropped after porting Human Emotion Detection to Linux. 18

1

Chapter 1 - Introduction

 When we think of computers, we usually think of them as cold, calculating

machines. We use them for tasks ranging from banking to sharing pictures of our meals

with friends to landing a rover on Mars with a parachute 220 million miles away. Each

day brings more and more opportunities for computers and artificial intelligence engines

to better our lives. Yet for all the benefits computers bring us, they are dumb machines.

They can only do what they have been told to do, no matter the circumstances. They ask

to be restarted when the user is typing an important paper. They fail to complete a task

done a thousand times before and give the user no understandable reason for the failure.

They bombard us with software updates for applications that we have never used. All of

these examples (and many, many more) obviously annoy us. They frustrate us with the

seemingly sheer stupidity of their requests.

 One way to make computers seem smarter is by giving them the ability to

recognize emotions, or emotional intelligence. One may believe that emotions are strictly

a human quality, an aspect of our humanity that really has no need to be programmed into

our machines. And this would be true if we did not also interact with our machines as we

do with humans. A theory from Stanford suggests that when interacting with something,

be it man or machine, humans tend to still expect a human-to-human experience. If

another human talks to you but never listens to you, that human is found to be annoying;

it is similar with a computer (Reeves & Nass, 1996). Thus, it is desired for our machines

to understand what we are feeling as they become more embedded in our lives.

2

 Emotional intelligence can be defined as “the ability to recognize, express, and

have emotions, coupled with the ability to regulate these emotions, harness them for

constructive purposes, and skillfully handle the emotions of others ” (Picard, Vyzas, &

Healey, 2001). It can be easily argued that machines may never require the ability to

actually “have” or “regulate” emotions. Recognizing them, however, can be particularly

useful. A computer could learn, for example, if Microsoft Word is open and the user is

seen to be concentrating, then that user should not be interrupted for non-important

reasons. How then could a computer learn when to interrupt and when not to? A human

would learn over the course of their entire interactions with another person when to

interrupt them and when not to. Someone failing to do this would be considered rude or

arrogant. Similarly, a computer would learn this by watching the reaction from the user

after the computer issues the interruption. If it is a negative response, the computer will

note that that was a bad time. So a system must be created where a computer can monitor

the signs of an emotion and then detect which emotion it is.

 Emotion plays a role in nearly all human communication. According to Picard, et

al., it affects “word choice, tone of voice, facial expression, gestural behaviors, posture,

skin temperature and clamminess, respiration, muscle tension, and more.” (2001) We

tend to think that studying faces is the best method of determining emotion as it is usually

the most pronounced. However, these are also the easiest to fake. The most accurate

detection would combine multiple sensors monitoring facial muscle tension, respiration

rate, skin conductivity, etc. with computational reasoning and natural language

processing. But using a computer with several electrodes gelled to one's face and a Hall

effect respiration sensor strapped around one's diaphragm is not physically nor socially

3

comfortable. However, as technology improves with Moore's law, these sensors should

become smaller and smaller, and affective computing will be much more convenient.

One may wonder why would it not be easier to simply use a camera to monitor

facial features and a microphone to monitor speech and tone of voice as isn't that how

humans do it? It's naïve to believe that humans do not also recognize other physiological

emotional signs.

A stranger shaking your hand can feel its clamminess (related to skin

conductivity); a friend leaning next to you may sense your heart pounding;

students can hear changes in a professor's respiration that give clues to

stress; ultimately, it is muscle tension in the face that gives rise to facial

expressions. (Picard et al., 2001)

 A system is therefore proposed that can use still images of a person’s face and

captured audio to detect what the user is currently feeling with a certain degree of

accuracy. Both the openSMILE and “Human Emotion Detection from Image [sic]”

databases will be set-up on a Linux machine with a Python script and MySQL database

bridging the gap. The script will be given the file locations of an image and audio clip as

arguments and give as output the detected emotion.

4

Chapter 2 - Literature Review

Section 2.1: Affective Computing

Affect recognition is a hard problem to solve. Even humans can at times

misunderstand the emotion coming from another human, so it would be a mistake to

assume that there is a perfect way (especially with arguments still being made about what

emotions are exactly). To be effective, the algorithm only has to match a human's ability

to recognize emotions. In non-emotive speech, humans are about 60% accurate at

identifying an emotion, with computers matching or slightly beating that. This is

dependent of course on the accuracy of the speech recognition itself; computers are now

around 90% accurate on neutral speech and only 50-60% accurate on emotional speech.

And in understanding what emotion is being expressed in speech, it is imperative that we

“[recognize] what is said as well as how it was said.” (Picard et al., 2001)

 In processing speech, sound files are fed into a “feature extraction script” which

“extracts the features that represent global statistics.” It is then normalized to filter out the

sensor noise and outliers. After that, the data is compared against mixture models to

determine the emotion being expressed. The data and results are then used to train the

model to become more accurate over time (Ramakrishnan, 2012).

 Recognizing emotions via the face is easier for humans with 70-98% accuracy

when choosing from six emotions. Computers detect expressions with an 80-98 degree

accuracy when selecting from five to seven emotions. Some research has focused more

on detecting so called “facial phenoms” or these minute facial movements that when

combined form all human expression (Picard et al., 2001). A person's image is captured

5

using a video device and passed into a facial tracking system. This system looks for

prominent facial features such as the eyebrows, eyes, lips, etc. Based on the locations of

these organs, an emotion is determined using a model (Ramakrishnan, 2012).

 The high percentages of detection can be deceiving. These machines are

recognizing elements from exaggerated actions. The latest technology in these fields is

comparable to where speech recognition was decades ago where a computer could detect

the carefully articulated digits zero through nine with pauses separating each but could

not detect them in natural speech. Emotional research is particularly difficult because

defining emotion is hard. “[A]fter over a century of research, emotion theorists still do

not agree upon what emotions are or how they are communicated.”(Picard et al., 2001)

 There have been numerous studies and much research that attempted to do

emotion processing using general affect data, that is features that occur in a large

percentage of the population. Even then, actually defining a particular facial expression

as a singular emotion is difficult. One person's set of phenoms that determine her

“Romantic love” expression may be “Platonic love” in another. Or someone's “Hate”

may share many qualities with another's “Anger”.

Section 2.2: Detecting Emotion Using Physiological Symptoms

 Picard instead designed an experiment with only one person and that one person's

data based on the definition problem. She also excluded any data collection from visual

or auditory sources, instead opting for physiological symptoms. Each morning the

subject, a graduate student, would arrive at her office and be outfitted with several

sensors. These included an electromyogram that recorded facial tension, a blood pressure

6

monitor, a skin conductance sensor, and a respiration sensor. She also had a small

pressure sensor to help with sustaining the emotion.

 The researchers collected data for eight emotions: No emotion, Anger, Hate,

Grief, Platonic love, Romantic love, Joy, and Reference. Before the experiment began,

the subject recorded specific imagery, definitions, arousal levels, and valence level or

how positive or negative the emotion is. The subject's table is shown below.

Emotion Imagery Description Arousal Valence

(N)o Emotion blank paper, typewriter boredom, vacancy low neutral

(A)nger people who arouse rage desire to fight very high very

negative

(H)ate injustice, cruelty passive anger low negative

(G)rief deformed child, loss of

mother

loss, sadness high negative

(P)latonic love Family, summer happiness, peace low positive

Romantic (L)ove Romantic encounters excitement, lust very high positive

(J)oy The music “Ode to Joy” uplifting happiness medium

high

positive

(R)everence church, prayer calm, peace very low neutral

Table 2.2.1: How the subject in Picard et al's experiment described each emotion.

7

Each session lasted roughly half-an-hour giving the researchers 28-33 thousand samples

per sensor. Of the 30 days they collected data, one or more of the sensors failed on about

every third day. They formed two data sets. Data Set I, assembled before the 30 day

experiment was completed, was formed as follows:

Data segments of 2,000 samples (100 seconds) in length were taken from

each of the signals … for each of the eight emotions, on each of the 19

days where there were no failures in these segments of data collection.

The 2,000 samples were taken from the end of each emotion segment to

avoid the transitional onset where the subject was prompted to move to the

next emotion. A 20
th

 day's data set was created out of a combination of

partial records in which some of the sensors had failed (Picard et al.,

2001).

 Data Set II also contained data from 20 days that none of the sensors failed,

including data of 16 days from Data Set I. From each day, they used all the samples

available for each emotion, including those from the transitional period. Data Set II

resulted in a 10% gain in performance. Using Sequential Floating Forward Search and

Fisher Projections, they developed algorithms for processing the data. Accuracy then

increased by at least 33% over random guessing for all eight emotions. For a subset of

three (anger, joy, and reverence), accuracy increased 50% (with a confidence level of >

99.99 percent). A copy of their final classification results data is shown below. The row

headers show the emotion felt by the subject while the column headers display what it

was classified as (Picard et al., 2001).

8

 N A H G P L J R Total

(N)eutral 17 0 0 0 3 0 0 0 20

(A)nger 0 17 0 0 2 1 0 0 20

(H)atred 0 0 14 1 0 0 3 2 20

(G)rief 0 0 1 15 0 0 4 0 20

(P)latonic Love 0 0 0 0 17 2 1 0 20

Romantic (L)ove 1 1 0 0 3 14 1 0 20

(J)oy 0 0 1 2 0 0 17 0 20

(R)everence 0 0 0 1 0 0 0 19 20

Total 18 18 16 19 25 17 26 21 160

Table 2.2.2: How each emotion was classified by the system.

Section 2.3: Detecting Emotion Using Facial Expressions

 Matthew S. Ratliff and Eric Patterson (2008) worked on creating a method

of recognizing emotion from facial expressions using active appearance models

(AAM) and still images. An AAM is a method of matching images to a model

using landmarks that appear in each image. For their testing data, they used the

9

publicly available facial expression database “FEEDTUM”. “This database

contains still images and video sequences of eighteen test subjects, both male and

female, of varying age.” Instead of using actors to act out the emotions, the

database curators tried to generate the emotions from subjects organically be

showing a series of videos designed to elicit a particular emotion.

 To begin, Ratliff and Patterson assigned a score to each of the 500+

images in the database based on clarity (“the clarity of the emotional content”),

sincerity (“how well the subject conveys the intended emotion”), and how much

the subject’s head moved. For example, Subject 2 had a sincerity score of 4/10

and a clarity score of 7/10 with no movement leading to an overall score of 7.5.

Low-scoring images were not used to train the model; additionally, images from

three subjects were rejected altogether due to facial obstructions such as hair or

eyewear (2008).

 Based on the images, 113 landmarks were chosen for the model. These

included the “brow, eyes, mouth, and nasio-labial [sic] region as formed by the

underlying muscles” as well as the general outline of the face. To determine an

emotion, distances between landmarks were compared to mean distances found in

the model, classifying it as one of six emotions based on these distances. The

system correctly classified each subject between 60% and 100% of the time, with

most being in the 80-90% range (Ratliff & Patterson, 2008).

10

Section 2.4: Detecting Emotion Using Facial Expressions

 Björn Schuller, Gerhard Rigoll, and Manfred Lang (2004) worked on

creating a hybrid system using both acoustic and linguistic features to recognize a

specific emotion. For their speech corpus, “German and English sentences of 13

speakers, one female, were assembled”; this corpus was used for both training and

evaluating both halves of the system. The team focused on recognizing anger,

disgust, fear, joy, sadness, surprise, and neutral speech. In classifying the speech

acoustically, they relied on 33 features, such as the standard deviation of pitch and

the rate of voiced sounds. After testing various classifiers, they decided to use

Support Vector Machines (SVM). An SVM is a method of classifying in which

data is grouped into one of two categories. Schuller, et al. used three passes to

classify a speech utterance as an emotion. For example, a speech utterance that

was fearful would be classified as “anger, neutral, fear, joy” then as “fear, joy”,

then finally as “fear”. Using this classifier saw error rates as high as 7% when

using a corpus of a single speaker and as high as 24% when using multiple

speakers.

 To classify the speech linguistically, a standard speech recognition

algorithm was used followed by each word being categorized in a Belief Network.

For example, in the sentence “I do not feel too good at all”, the word “good”

would be classified as positive until the word “not” negates it. And the “too”

would classify how badly the speaker felt. Finally, the two classifications are fed

into a neural network that takes into account 14 dimensions consisting of “7

11

confidences of each the acoustic, and linguistic analysis.” The overall system has

an error rate of up to 8%.

12

Chapter 3 – Methodology

Section 3.1 Introduction of Components Used

 Instead of creating another system for detecting emotion, two existing programs

were instead combined to create a single new system. openSMILE ("SMILE is an

acronym for Speech and Multimedia Interpretation by Large-space Extraction") is an

open-source audio feature-extraction program (Eyben, F., Weninger, F., Gross, F., &

Schuller, B., 2013). openEAR is a toolkit that combines openSMILE with some related

tools and sample scripts (Eyben, F., Wollmer, M., & Schuller, B., 2009). Both were

developed at the Technische Universität München. Weka is an open-source Java program

containing a set of "machine learning algorithms for data mining tasks." (Hall, M., Frank,

E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H., 2009) It is used for the

processing and analyzing of any-size data sets. "Human Emotion Detection from Image

[sic]" is a C# program that uses the shape and distance of the eyes and mouth to predict

the emotion displayed (shakil0304003, 2010).

Early on the decision was made to develop this system in a Linux environment

since we have a more detailed knowledge of the Linux command-line than Windows, a

necessity since openSMILE and openEAR do not have a graphical interface. That

coupled with the fact that the Mono project allows .NET frameworks to be built and ran

in a Linux environment, allowed us to run all necessary components in the same

environment without resorting to work-arounds like Wine (a software application that lets

Windows applications run in Unix-like environments).

13

Section 3.2: Human Emotion Detection from Image

Subsection 3.2.1: Porting to Linux

We began by loading the solution into MonoDevelop, an open-source integrated

development environment (IDE) designed to help build C# and .NET projects in Mono.

When we first compiled with it as is, the project built with no errors (Figure 3.2.1.1).

Figure 3.2.1.1: Start screen of Human Emotion Detection.

Without code modification, it worked until we attempted to access the Access

database where it died due to missing libraries, specifically libGDA. After installing the

libraries, the package died again trying to accomplish the same task but gave a different

error message. We then discovered that Mono has stopped supporting the

14

System.Data.OleDb provider and instead suggests System.Data.Odbc (OLE

DB). We edited the code to use the new provider resulting in minimal work.

After failing to access the database a third time, we decided to change our

database provider to use MySQL since it is more supported in Linux than Access is. On a

Windows install, we exported the Access database to MySQL SQL using a third-party

tool and imported it to our MySQL server (BullZip, 2013). We edited the connection

strings and query commands to reflect this change. Figures 3.2.1.2 and 3.2.1.3 show the

before and after of such code changes.

Figure 3.2.1.2: How the database was queried using Access.

Figure 3.2.1.3: How the database was queried after switching to MySQL.

When built this time, the code ran as expected and emotion was detected (Figure

3.2.1.4).

15

Figure 3.2.1.4: Successfully detecting an emotion (or rather a lack of one).

Subsection 3.2.2: Removing GUI Elements

Because we’ll be accessing this tool from another program, this must be able to be

used solely from the command-line. As it currently stands, the tool requires significant

user interaction; two windows and at least 21 clicks are required to get from selecting an

image to receiving the result. We began stripping out GUI elements and making the tool

more automated.

We started by focusing on Form 1, the first window that appears when running

the program. First, we changed the “Browse…” button functionality by hard-coding an

image location; later this will be replaced to use a path specified by a command-line

argument. The code from the other buttons (“Skin color”, “Connected”, and “Next”) were

appended to the “Browse…” button. Now when the button is pressed, the image is loaded

to the picturebox, the image is contrasted, the largest connected region is selected, and

16

the next form (Form 2) is loaded with the selected image. Once it was shown that these

changes do not affect the program negatively, we began removing the code included with

the vestigial buttons, taking care to test the code regularly. When finished, an empty

Form 1 appears followed immediately by Form 2 loaded with the processed image.

Following a similar process, we begin by making “Left_Eye_Next”,

“Right_Eye_Next”, and “Lip_Next” work by only clicking once, instead of the three to

four clicks they currently require. Next, we placed the code required in those three

buttons inside the “eye_lip” button, continuing backward until all image processing is

done when “Binary Image” is pressed. At this point, we leave the code that selects the

emotion (located inside “Emotion”) alone.

It was then decided that instead of trying to edit the forms and hoping that each

instance of each reference to the GUI elements is changed accordingly, we slowly built a

new class that recycles the code from the forms but with no reference to the elements

declared. This allowed the code to break fast so it can be fixed quickly and allowed us to

keep a working copy of the original. We began copying only the code from our

“Browse…” in Form 1 to a new class called “primary”. When built, it obviously failed

due to missing functions and references to GUI elements that do not exist, but we quickly

added these functions from Form 1 and edited those references to point to image classes

instead of pictureboxes.

Soon we have one class that does everything from initially loading the image to

outputting the emotion. Immediately we discover that accuracy has dropped severely.

When we examined the code, it was discovered that code from Form 1 uses class

variables that have the same name as variables from Form 2. We decided to save time

17

and simply build two classes separated as it was in the original codebase. After doing so,

accuracy returned.

Subsection 3.2.3 - Command-line

 At this point, we had a program that reads in a hard-coded image path and outputs

an emotion or an error message via a messagebox. We changed this to read in a file from

a command-line argument and output it on the command-line (see Figure 3.2.3.1). With

that done, this portion of the project is complete.

Figure 3.2.3.1: Detecting an emotion using only the command-line.

Subsection 3.2.4 - Ramifications of Porting

 It should be noted that after porting this project to Linux and MySQL, the

accuracy of the project as a whole dropped ~25%. It is unclear whether this is from the

way Mono builds the solution, the way it uses MySQL, or some other mitigating factor.

Uncovering why this issue occurs is beyond the scope of this project but future research

should be done.

Table 3.2.4.1 shows some of the results from running the program on Windows 7

and using an Access database and on Ubuntu 12.04 using MySQL. These images can be

found in the Pic/babu/ directory included with the package.

18

 Actual emotion Windows 7 Ubuntu 12.04

Image used

1.JPG Surprise Surprise Normal

2.JPG Smile Smile Normal

11.JPG Normal Normal Normal

dg 21774 (6).JPG Sad Sad Sad

dg 21774 (7).JPG Normal Normal Normal

dg 21774 (8).JPG Smile Normal Smile

DSC_0361.JPG Smile Smile Smile

Sample accuracy 85.71% 71.43%

Total accuracy 93.55% 67.74%

Table 3.2.4.1: Accuracy dropped after porting Human Emotion Detection to Linux.

19

Section 3.3: openSMILE/openEAR and Weka

Subsection 3.3.1: Setting up the Corpus

 Before using the openSMILE library, a corpus of audio files must be set up. These

audio files will be used by openSMILE and a script from openEAR to generate a model

that Weka can then use to classify the emotion. We used the Berlin Database of

Emotional Speech (Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W. F., & Weiss,

B., 2005). It features “[t]en actors (5 female and 5 male) simulated the emotions,

producing 10 German utterances (5 short and 5 longer sentences) which could be used in

everyday communication and are interpretable in all applied emotions.” It consists of 535

WAV audio files in one folder with the following naming scheme: [speaker][spoken

text][emotion][version]. For example, the file named “08b10Fd” specifies speaker 08 (a

34-year-old female), text b10 (“Die wird auf dem Platz sein, wo wir sie immer hinlegen.”

Translated: “It will be in the place where we always store it.”), happiness (“F” stands for

“Freude”, German for “happiness”), and version D (Burkhardt, F., Paeschke, A., Rolfes,

M., Sendlmeier, W. F. & Weiss, B., 2013).

 For openEAR to build the model, we must separate each of the files into folders

that specify the expressed emotion; all files for “anger” must go in an “anger” directory,

all files for “boredom” go in a “boredom” directory, etc. Figure 3.3.1.1 shows the

directory structure and the number of files in each.

20

Figure 3.3.1.1: Number of audio files for each emotion in the corpus.

Subsection 3.3.2: Building the Model

 With this done, a model can now be built. We started by navigating to the

openEAR model training directory. We executed the Perl script makemodel.pl,

passing in the root directory of the corpus and one of the configuration files located in

config/; in this case the “emobase” configuration file will be used. Figure 3.3.2.1

demonstrates the executed commands and the beginning output. After completion a few

errors are displayed, but these can be safely ignored.

21

Figure 3.3.2.1: Building the openSMILE model using the Berlin Database of Emotional Speech.

 A new directory work/ was created. Within, a Weka ARFF file was generated:

emobase.arff. We can now use Weka and this file to generate the model proper. We

copied the file to our main work directory. We are finished with openEAR so after

copying the Linux binary SMILExtract and the configuration file emobase.conf to

our work directory, we deleted openEAR (Figure 3.3.2.2).

Figure 3.3.2.2: Build complete and copying appropriate files to work directory.

 We used Weka to build the model with the following command: java -

classpath weka.jar weka.classifiers.trees.J48 -t

emobase.arff -d emobase.model. This generated a new file

22

emobase.model which will be used by Weka later to classify the ARFF files

generated by openSMILE. emobase.arff can be now deleted.

Subsection 3.3.3: Classifying with Weka

 Before we could begin classifying, a few changes needed to be made to our

configuration file. With these changes, the name and timestamps of the audio file are not

included, ensuring our soon-to-be generated ARFF files will be compatible with the

model. We also set the variable we’re looking for, “emotion” to be unknown by changing

the class of that attribute to a “?”. A diff of the changes made can be seen in Figure

3.3.3.1.

Figure 3.3.3.1: Diff of changes made to config file.

23

 We can now begin classifying emotions. First, we used openSMILE to generate a

Weka ARFF file. We set the configuration file to our edited emobase.conf and use a

random audio file from the corpus, in this case disgust/03b10Ec.wav, and set the

possible emotions it could be. This created a new file output.arff. Figure 3.3.3.2

shows the command in full and its output.

Figure 3.3.3.2: Generating the output.arff file to be used by Weka.

 Finally, we used Weka to classify the data and predict which emotion it is (Figure

3.3.3.3). As shown, Weka said that this was “disgust” with 66.7% certainty.

Figure 3.3.3.3: Classifying the emotion using Weka.

After deleting the output file, we can choose another file

(happiness/12b02Fb.wav) and do it again, with it predicting “happiness” at 100%

certainty (Figure 3.3.3.4).

24

Figure 3.3.3.4: Generating another output.arff and classifying.

Section 3.4: Merging the databases

 Because we receive very little data in terms of what each database detected (with

nothing but a single word from the facial detection program), a new table was created in

our MySQL database to store what little information we can acquire: the names of the

emotions from the two databases, their given (or assumed) percentages, and the emotion

it should be via a training run. To this end, a Python script was created that calls each

program, does a comparison to the results stored in our table, and prints out a single

emotion.

 Two new directories were created in our new merge/ directory: ears/ and

eyes/. The facial detection binary was copied to the eyes/ directory and our necessary

files from openSMILE were copied to the ears/ directory. The Python script can now

be built.

25

 We began by getting the output from the facial detection script. Since its output is

a single word written to the console, we just read it in. And because it does not give a

percentage, we hard-coded the percentage as found in Section 3.2.4. Working with

openSMILE was similar except we needed to make two external calls, one to

openSMILE and one to Weka. The output from Weka is more complicated than the first,

but it is structured enough that we can reliably obtain both the emotion predicted and its

given percentage. To help with development, we included a few debug statements. Input

to the script is given by command-line arguments. Figure 3.4.1 shows the script as it is

with Figure 3.4.2 showing the output with the debug statements enabled.

Figure 3.4.1: Python script that runs both the Human Emotion Detection and openSMILE programs at

once and outputs the results.

26

Figure 3.4.2: Output of Python script.

 We then created the training table in a MySQL database to hold the emotions and

percentages generated by these two emotions plus the expected emotion. We have five

columns: “id” (an auto-incremented integer), the emotion from openSMILE/Weka

“eEars” (text), the percentage from openSMILE/Weka “eEarsP” (float 3,2), the emotion

from the facial detection program “eEyes” (text), the percentage from the facial detection

program “eEyesP” (float 3,2), and the expected emotion “emotion” (text). For

simplicity’s sake we added the table to the same database used by the facial detection

program. The table information was then added to the script.

 To detect the emotion, we compare the output and percentages from the two

programs to stored rows in the database. If the emotions match and the combined

percentages are within an accepted range, we say that row matches and output the stored

emotion. If we are unable to find any rows that match or match within the accepted range,

we’re forced to output from the program that had the higher percentage of certainty. If

we’re in training, we add the emotions and percentages to the database. Figure 3.4.3

shows this logic in the program with Figure 3.4.4 showing the output both of a row

matching and of one that does not.

27

Figure 3.4.3: Final draft of Python script.

28

Figure 3.4.4: Output of Python script with debugging on.

Finally, to train the program we add another argument with the emotion it should

be (Figure 3.4.5).

Figure 3.4.5: Output of Python script when training with debugging on.

29

Chapter 4 - Conclusion

"Human Emotion Detection from Image" was ported to Linux and MySQL. While

accuracy dropped ~25% after porting, it is still as high as what is acceptable for humans

according to Picard, et al (2001). But further research and evaluation should be done to

determine what caused the drop and what can be done to remedy it.

openSMILE was configured to work with the Berlin Database of Emotional

Speech, and models based on the database were successfully built using openEAR and

Weka. Accuracy varies based on which audio clip is used but is usually quite high.

These two disparate systems were successfully combined into a single system that

uses both the emotions detected but also the percentage of accuracy of each to determine

a single emotion. This can be further enhanced by training the model.

In the end, we have a system in place that can, while using two different emotion

detectors in the form of openSMILE and "Human Emotion Detection from Image",

recognize a person's emotive state with a higher degree of accuracy than if alone.

30

References

BullZip. (2013). Access to MySQL (Version 5.1.0.242) BullZip.

Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W. F. & Weiss, B. (2013). Berlin

database of emotional speech: Additional information. Retrieved, 2014, Retrieved

from http://pascal.kgw.tu-berlin.de/emodb/docu

Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W. F., & Weiss, B. (2005). A

database of German emotional speech. Paper presented at the Interspeech, 1517-

1520.

Eyben, F., Weninger, F., Gross, F., & Schuller, B. (2013). Recent developments in

openSMILE, the Munich open-source multimedia feature extractor. Paper

presented at the Proceedings of the 21st ACM International Conference on

Multimedia, 835-838.

Eyben, F., Wollmer, M., & Schuller, B. (2009). OpenEAR—introducing the Munich

open-source emotion and affect recognition toolkit. Paper presented at the

Affective Computing and Intelligent Interaction and Workshops, 2009. ACII 2009.

3rd International Conference, 1-6.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009).

The WEKA data mining software: An update. ACM SIGKDD Explorations

Newsletter, 11(1), 10-18.

OLE DB. Retrieved, 2013, Retrieved from http://mono-project.com/OLE_DB

31

Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence:

Analysis of affective physiological state. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 23(10), 1175-1191.

Ramakrishnan, S. (2012). Recognition of emotion from speech: A review. Speech

Enhancement, Modeling and recognition–algorithms and Applications, 121.

Ratliff, M., & Patterson, E. (2008). Emotion recognition using facial expressions with

active appearance models. Paper presented at the Proceedings of the 3rd IASTED

International Conference on Human-Computer Interaction, HCI, 138-143.

Reeves, B., & Nass, C. I. (1996). The media equation: How people treat computers,

television, and new media like real people and places. Chicago, IL, US: Center

for the Study of Language and Information; New York, NY, US: Cambridge

University Press.

Schuller, B., Rigoll, G., & Lang, M. (2004, May). Speech emotion recognition combining

acoustic features and linguistic information in a hybrid support vector machine-

belief network architecture. In Acoustics, Speech, and Signal Processing, 2004.

Proceedings.(ICASSP'04). IEEE International Conference on (Vol. 1, pp. I-577).

IEEE.

shakil0304003 (2010). Human Emotion Detection from Image [Computer Software].

Bangladesh: CodeProject. Retrieved October 14, 2013. Available from

http://www.codeproject.com/Articles/110805/Human-Emotion-Detection-from-

Image

	Multisensory Emotion Recognition With Speech and Facial Expression
	Recommended Citation

	tmp.1412967362.pdf.s7Za3

