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ABSTRACT 

EVIDENCE OF MULTIDECADAL RECRUITMENT IN THE OCEAN QUAHOG, 

ARCTICA ISLANDICA IN THE WESTERN ATLANTIC OCEAN 

by Sara Margaret Pace 

August 2017 

Ocean quahogs (Arctica islandica) are the longest-lived, non-colonial animals 

known today, with a maximum life span exceeding 500 years. Limited information is 

available regarding recruitment, making the sustainable management of this valuable 

fishery a challenge. The objective of this research was to describe the age structure and 

growth rates for four populations of ocean quahogs from the mid-Atlantic stock to 

evaluate long-term recruitment trends. Clams were sectioned for age estimation to 

develop population age frequencies. Initial colonization began approximately 175-250 

years ago depending upon site. All sites experienced an increase in recruitment beginning 

in the late 1800’s to early 1900’s, after which the populations reached and remained at 

carrying capacity, characterized by more or less continuous low-level recruitment. 

Growth rates for select individuals from the Georges Bank site were evaluated using 

three growth models. The ALOG model was more suitable because it allows for early, 

rapid growth and for persistent indeterminate growth into old age. Growth rates for clams 

from all sites were analyzed to investigate both geographical and temporal differences. A 

substantive increase in the age at which animals reach 60, 80, and 90 mm has occurred, 

as well as an increase in average growth rates to 60, 80, 90, and post-90 mm, at the two 

sites in the southern portion of the stock since initial colonization, likely in response to 

increasing bottom water temperatures since the end of the Little Ice Age. These results 
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have important implications for fishery management and will be used to inform 

management decisions. 
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CHAPTER I – BACKGROUND 

Parts of the information from this chapter have been published in the Journal of Shellfish 

Research or have been submitted for publication to the Marine Ecology Progress Series 

or the Journal of Experimental Marine Biology and Ecology. 

Pace, S. M., E. N. Powell, R. Mann, C. M. Long, & J. M. Klinck. 2017. Development of 

an age-frequency distribution for ocean quahogs (Arctica islandica) on Georges 

Bank. J Shellfish Res 36:41-53 

Pace, S. M., E. N. Powell, R. Mann & C. M. Long. Submitted. Comparison of Age-

Frequency Distributions for Ocean Quahogs (Arctica islandica) on the Western 

Atlantic US Continental Shelf. Mar. Eco. Prog. Ser. 

Pace, S. M., E. N. Powell & R. Mann. Submitted. Two-hundred year record of increasing 

growth rates in the ocean quahog (Arctica islandica) in the western Atlantic 

Ocean. J. Exp. Mar. Biol. Ecol. 

The ocean quahog, Arctica islandica (Linnaeus, 1769), is a long-lived bivalve 

mollusc, with a life span exceeding 500 years (Schöne et al. 2005a, Ridgeway & 

Richardson 2011). A pan-boreal species, the ocean quahog is distributed along both 

coasts of the North Atlantic basin (Merrill & Ropes 1969, Dahlgren et al. 2000, Begum et 

al. 2010). In the northwest Atlantic, ocean quahogs range from Cape Hatteras, NC to St. 

George’s Bay, Newfoundland. On the northeastern side of the basin, they are found along 

the European coast from the Bay of Cadiz in Spain to Norway, including Iceland, the 

British Isles, the Faroe and Shetland Islands, and the Baltic, White, and Barents Seas 

(Merrill & Ropes 1969, for additional documentation of the North Atlantic range; see 

Brey et al. 1990, Rowell et al. 1990, Ragnarsson & Thórarinsdóttir 2002, Butler et al. 
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2009). Ocean quahogs grow to a maximum shell length of about 130 mm and attain a life 

span commonly exceeding 200 years. Current estimates have aged the oldest specimen at 

507 years (Butler et al. 2013), possibly making it the longest-lived, non-colonial animal 

known to science (Wanamaker et al. 2008, see Wisshak et al. 2009, Titschock et al. 2010 

for other long-lived examples) and certainly making it the longest-lived non-colonial 

biomass dominant in the marine world.  

Ocean quahogs inhabit sandy, muddy, and gravelly sediments on the continental 

shelf, and are commonly found at depths of 25-80 m (Morton 2011), tolerating bottom 

temperatures up to 16° C and a salinity range between 22-35 (Schöne 2013). These 

sediment burrowing suspension feeders feed on phytoplankton and algae at the sediment-

water interface via short, inhalant siphons (Cargnelli et al. 1999a, Winter 1978); however, 

at self-induced, irregular intervals, and during unfavorable environmental conditions such 

as periods of low oxygen, ocean quahogs burrow even deeper into the sediment typically 

for 1-7 days, or longer, at which point they close their shells and switch to an anaerobic 

metabolism (Taylor & Brand 1975a, Taylor 1976). The species is notable for its ability to 

tolerate long periods without oxygen (Oeschger 1990, Philipp and Abele 2010).  

The ocean quahog has been a commercially important species in U.S. waters since 

the fishery began in 1967 (NEFSC 2009). The species supports commercial fisheries 

throughout much of its range (Gilkinson et al. 2005, Thórarinsdóttir & Jacobson 2005). 

At the historic start of the ocean quahog fishery in the U.S., most fishing effort was off 

Delmarva and southern New Jersey. By the early 1990’s, 40% of the fishing effort shifted 

north of Delmarva to the south of Long Island. Landings peaked at 22,000 mt in 1992 

(NEFSC 2009). In the late 1990’s, fishing effort shifted to the Southern New England 
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region. Early in the 2000’s, the Long Island region became a focus area (NEFSC 2009). 

Annual ocean quahog landings in recent years, from 2010-2014, have ranged from about 

14,000-16,000 mt. The northern shift of the ocean quahog fishery over the past few 

decades is in part a response to declining catch rates in the Delmarva and New Jersey 

fishing grounds (NEFSC 2009); however, an additional important driver is the fact that 

the more valuable surfclam fishery has shifted north in response to increasing bottom 

water temperatures (Cargnelli et al. 1999b, Weinberg 2005), and many commercial boats 

fish in both the surfclam and ocean quahog fishery. A small commercial fishery for ocean 

quahogs began in Iceland in 1995 but is limited to one fishing vessel (Thórarinsdóttir & 

Jacobson 2005, Thórarinsdóttir et al. 2010); the Icelandic fishery is currently artisanal 

and catches have been negligible since 2005. 

The growth rates of ocean quahogs vary both spatially throughout the range of the 

stock and temporally through the lifetime of an individual. Juveniles grow rapidly 

typically until the onset of maturity with about 50% of these animals reaching maturity at 

a length of approximately 60 mm (NEFSC 2017a, Thórarinsdóttir & Jacobson 2005). 

Following maturity, growth is slow and indeterminate, with animals continuing to grow 

for as long as they live. Limited information is available about the long-term recruitment 

patterns of ocean quahogs throughout the range of the U.S. stock. Recruitment events are 

thought to be sporadic and regional, occurring one or two times every two to four decades 

(Powell & Mann 2005). The infrequency of recruitment and characteristically slow 

growth of ocean quahogs have led to concerns that these animals are susceptible to 

overexploitation (Thórarinsdóttir & Jacobson 2005) and that, if overfishing did occur, the 

recovery of the stock may be delayed considering that these animals do not reach a size 
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that is available to the commercial fishery for several decades after settlement (Ropes et 

al. 1984, Rowell et al. 1990, Thórarinsdóttir & Steingrímsson 2000). Thus, it is 

imperative to understand population dynamics by investigating the variable growth rate 

and long-term recruitment trends throughout the range of the stock to alleviate 

management concerns of potential overexploitation. 

The objective of this research was to develop age-frequency distributions for 

ocean quahog populations throughout the range of the U.S. stock in order to evaluate 

population dynamics such as growth rates and long-term recruitment trends, information 

that is essential to the sustainable management of this commercially valuable species. To 

do this, a single population from the Georges Bank region was first investigated (Chapter 

II) through the development of an age-length key for the population in order to generate a 

population age-frequency distribution to examine historic recruitment patterns. The 

growth rates of the five oldest individuals were also examined using three growth models. 

Chapter III introduces the three other populations that were studied. Population age 

frequencies were developed for these sites and the results synthesized with that of the 

Georges Bank population. Finally, Chapter IV investigates the growth of animals from all 

four sites, as the growth rates of these populations vary both spatially and temporally 

throughout the range of the stock. The knowledge gained from this research will help 

further understanding the life history of ocean quahogs, and will contribute to the 

improved management of the commercial U.S. stock. 
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CHAPTER II – DEVELOPMENT OF A POPULATION AGE FREQUENCY 

This chapter has been published in the Journal of Shellfish Research. 

Pace, S. M., E. N Powell, R. Mann, C. M. Long & J. M. Klinck. 2017. Development of 

an age-frequency distribution for ocean quahogs (Arctica islandica) on Georges 

Bank. J. Shellfish Res. 36:41-53. 

Introduction 

Although considerable information exists on the growth and physiology of A. 

islandica, limited information is available regarding recruitment; accordingly, the 

sustainable management of the fishery is a challenge. The ocean quahog stock is 

considered to be relatively unproductive. Recruitment events in ocean quahogs appear to 

be regional and are thought to be infrequent, with recent larger events occurring once or 

twice every 20-40 years (Lewis et al. 2001, Powell & Mann 2005, Harding et al. 2008, 

see also Witbaard & Bergman 2003, Thórarinsdóttir & Jacobson 2005). While 

recruitment appears to be rare in the context of the fishery, as these animals commonly 

exceed 200 years in age, recruitment appears to be frequent considering their longevity. 

Yet as a result of their slow growth, ocean quahogs do not recruit to the fishery for 

several decades after settlement (NEFSC 2009). Thus, any increase in stock productivity 

anticipated from fishing down the stock, judged to have been at carrying capacity in 1980 

(NEFSC 2009), would likely be delayed due to the time lag between settlement and 

recruitment to the fishery (Powell & Mann 2005).  

Consideration has been given to the challenge of sustainably managing such a 

long-lived species (Hennen 2015). The possible infrequency of recruitment suggests that 

ocean quahogs are vulnerable to overexploitation (Thórarinsdóttir & Jacobson 2005). The 
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limited information available on ocean quahog recruitment, even if providing sufficient 

information on recent recruitment, does not lend any insight on past recruitment events 

and the potentially daunting time span for rebuilding, should the stock collapse, and the 

uncertainty of response as the species is fished down from carrying capacity urge 

precaution if recruitment capacity is truly limited. Improved management of the ocean 

quahog fishery and increased confidence in the potential of achieving sustainability is 

dependent upon the development of a long-term recruitment index that will provide 

guidance as to the frequency and significance of recruitment in ocean quahogs over the 

extended life span of the species. 

The objective of this study was to develop information regarding long-term 

recruitment patterns of ocean quahogs in the Georges Bank region from the age 

frequency of the living population. To do so, ocean quahogs were collected from Georges 

Bank and aged by counting annual growth lines using photographs of a cross-section of 

the hinge plate of each shell. Analysis of the annual growth increments of selected 

individuals allowed for the assessment of growth rates using three different growth 

models. Information on age at length enabled the development of an age-length key, 

permitting reconstruction of the population age frequency, which could then be used to 

evaluate long-term recruitment trends.  

Methods 

Sample Collection 

Samples of ocean quahogs were collected from Georges Bank (40° 43.66’N, 67° 

48.32’W) in May 2015 using a hydraulic dredge deployed from the F/V Pursuit and 

towed for five minutes. The F/V Pursuit dredge is nearly 100% selective for clams 80 



 

7 

mm and larger, which is the size range upon which this project is focused. Two dredge 

tows were required to obtain a sufficient sample size; however, the second tow was taken 

as close as possible to the location of the first so that the same local population was 

assessed. The two tows were treated as one sample of the local population.  

The shell length (anterior-posterior dimension) of each clam was measured (mm). 

The first 400 clams measured were retained for analysis. An additional 400 clams were 

retained that exceeded the upper 20th percentile of the size-frequency distribution 

established by the initial 400 so that samples for ageing contained sufficient numbers of 

the rarer largest individuals.  

Sample preparation 

Clams were shucked and the paired valves dipped in diluted bleach, rinsed in 

water, and air-dried overnight. Both valves (if intact) of each individual were measured 

(mm), labeled, and archived. A subset of about 20 clams to be aged was haphazardly 

selected from each 5-mm size interval present in the collection, beginning with the 80-

<85-mm size class. Hereafter, the size classes will be referred to using the lower size 

class boundary, e.g., 80-mm for animals 80 to <85 mm. Clams were sectioned along the 

shell height axis as close to the origin of the umbo as possible using a modified 

commercial tile saw to expose the hinge region. The sectioned edge was ground and 

polished using a wet polishing wheel on 400-μm and 600-μm sandpaper grit, and then 

polished with 6-μm and 1-μm diamond suspensions on polishing pads.  

The hinge region of each clam was photographed using a high definition Olympus 

DP73 digital microscope camera using the Olympus cellSens microscope imaging 

software. This software permits photographs of the hinge region to be captured at a 
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resolution high enough to distinguish annual growth lines without the use of a stain or 

acetate peel; however, many photographs were needed to produce a single continuous 

image of the hinge at high magnification. The individual images were stitched together 

automatically by the imaging software. To estimate the age for each clam, its hinge image 

was analyzed by annotating each annual growth line using the Object J plugin in the 

software ImageJ. This plugin also measures the growth increments, the distance between 

consecutive growth lines, which allowed for the examination of growth rates of selected 

individuals.  

Identification of annual growth lines  

The age of 156 ocean quahogs with known shell lengths was estimated from the 

Georges Bank region. Ocean quahogs deposit distinct annual growth lines along the 

hinge and along the ventral margin of the shell. The deposition of annual growth lines has 

been validated through mark-recapture (Murawski et al. 1982) and continuous sampling 

experiments (Jones 1980), as well as through stable carbon and oxygen isotope analysis 

(Schöne 2005a, 2005b).  

Either of the growth records from the hinge plate or along the ventral margin can 

be used to determine the age of an individual. A disadvantage in counting growth lines 

along the entire valve is that many shells are damaged during the collection process and 

thus do not have fully intact records, and many animals with fully intact shells often 

exhibit growth anomalies and disturbances which inhibit accurate identification of annual 

growth lines. In addition, records in the hinge region can be incomplete, especially in old 

specimens and those that lived in a harsh environment because years of abrasion can 

result in erosion of the oldest growth lines near the umbo. Furthermore, during periods of 



 

9 

extended shell closure, anaerobic glycolysis results in the production of acidic 

metabolites, which can result in partial dissolution of the hinge plate region (Schöne 

2013). These processes can eliminate growth lines, resulting in an underestimate of an 

individual’s age. Thus, the hinge was used for the determination of age and growth 

increment. 

One challenge that arises when aging ocean quahogs is that sub-annual growth 

lines are visible in addition to annual growth lines, especially in the early years of life. 

These sub-annual growth lines are typically less distinct than annual growth lines, but are 

still clearly visible without the use of a stain or acetate peel. Harding et al. (2008) used a 

combination of grayscale imaging of the hinge and scanning densitometry of the image to 

distinguish sub-annual growth lines of lower intensity from the higher intensity annual 

growth lines. Based on Harding et al. (2008), sub-annual growth lines were omitted from 

the age count. To confirm that the sub-annual growth lines were consistently excluded, 

age counts performed by multiple individuals were compared, as were age estimates 

using the hinge plate and the entire ventral margin of the valve. Growth rates estimated 

for the first few decades of life, when sub-annual growth lines commonly occur, agreed 

with previous analyses by Jones (1980), Harding et al. (2008), and Murawski et al. 

(1982). 

Another challenge encountered when aging ocean quahogs is the presence of 

closely spaced consecutive growth bands, often referred to as doublets (Butler et al. 

2009). Little information is available in the literature regarding the explanation of 

doublets. Foster et al. (2009) claim that the doublet is generated by a growth check 

preceding an annual growth band and thus should only be considered a single year. In 
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contrast, Butler et al. (2009) suggest that the doublet is generated by a year of unusually 

slow growth; thus, each line in a doublet should be counted as a distinct annual growth 

band. While ontogenetic growth rates of ocean quahogs vary from one individual to 

another, overall, a population of ocean quahogs inhabiting the same area should all 

experience the same general increases and decreases in growth rates due to environmental 

factors, or variations in food supply. To investigate further whether doublets should be 

counted as a single growth increment or two discrete annual growth increments, the 

annual growth lines of three randomly selected clams were counted in two different 

ways: with all doublets treated as a single year and counting each doublet as two years. 

The distance between each annual growth line in each of the aforementioned scenarios 

was measured and the time series of yearly changes in growth increment compared 

among the three individuals.  

In the test scenario where all doublets were counted as a single annual growth 

increment, the resulting ages were underestimated considering the sizes of ocean quahogs 

that were collected. The latter age estimation method also produced a better fit to a 

general trend of increases and decreases in population growth that is expected throughout 

the lifetime of the three individual clams, taking into account the uncertainty that exists 

when identifying annual growth bands in an ocean quahog, which is likely not greater 

than ±5 years (Butler et al. 2013). When doublets were treated as two years, the age 

estimation along the hinge and the entire ventral margin did not differ by more than ±3 

years, nor did it differ by more than ±3 years when age counts from the hinge region from 

multiple readers were compared for the same clam.  For these reasons, and in 
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consideration of the recommendation by Butler et al. (2009) that doublets should be 

treated as discrete annual growth bands, doublets were counted as two discrete years. 

Creating the age-length key 

The data for Georges Bank are composed of the shell length and age of all aged 

individuals. An observed population age frequency was generated by applying the 

probability of finding the observed ages within each 5-mm size class to the complete size 

frequency of shell lengths measured. To create an age-length key from the sampled 

individual ages-at-length, the probability of encountering every age within the size range 

at each site must first be established; however, this is a challenge because the range of 

ages within any 5-mm size class will be vastly larger than the number of individuals aged 

unless scores of individuals are aged in each size class. Though technically feasible, the 

number of aged animals required to meet standard age-length key requirements is 

prohibitive in practice. Even in relatively data-rich cases, the problem of missing or 

inadequately sampled lengths or ages within age or length classes can require estimation 

(e.g., Kimura & Chikani 1987, Harding et al. 2008, Stari et al. 2010).  

In the sampled Georges Bank population, as an example, which is composed of 

animals of 80-115 mm in shell length, ages range from 54 to 198 years. Thus, a sample 

size of about 150 individual clams would only assign an average of approximately one 

individual per year assuming no duplicates in age. As shown later, the range of ages 

within a 5-mm size class is a substantive fraction of this entire age range; thus, any 

probability function established only on the basis of observed ages will likely 

considerably bias the probability of occurrence of any specific age because it is highly 
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likely that animals are present in the population with ages not found among the subset of 

animals aged.  

As shown later, the distribution of ages within a length class was typically highly 

skewed and relatively unpredictable from one age class to another. Thus, the problem of 

missing ages was attacked using an approach that did not require knowledge of the 

underlying distribution function. Rather, four metrics were defined for each of the sets of 

measured ages from the 5-mm size classes; namely, the mean age, the variance in age, the 

mean differential in years between consecutive ages ordered from youngest to oldest, and 

the variance in the mean differential between consecutive ages. For each 5-mm size class, 

1,000 sets of ages were first drawn of the same number as the number of animals aged. 

These were drawn randomly with replacement from a range of ages established by the 

youngest and oldest ages in the size class expanded by the average distance between 

consecutive ordered ages. The observed value of each of the four considered metrics was 

compared to the distribution of metric values from the 1,000 drawn sets. The probability 

of the observed value occurring by chance could thereby be established. The 1,000 

simulated age groups were then searched to identify individual sets that fell within a 10th 

percentile of the position of the observed age group for all four metrics. These select age 

groups were taken as equally valid estimates of the probability of age within the 5-mm 

size class. Minimally, 10 such age groups were retrieved and these plus the observed age 

group were used to construct the probability of age at length for each 5-mm size class. 

Considering the small sample size in comparison to the age range, a reasonable 

concern is whether an increased sample size would change the population age-frequency 

distribution significantly and, as well, whether the simulated expansion of age-at-length 
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data as previously described provided a realistic probability distribution. To address this 

matter, 20 additional animals were aged in the 100-mm size class. This size class was 

chosen because it had the age distribution least expected to occur by chance based on the 

four considered metrics. The original set of individuals had ages from 73 to 198 years 

old. Two questions were posed. First, how many of the ages in the new set were not 

represented in the old set? The expectation is that this number would be large, indicating 

that the probability of missing ages in the set of animals aged in any 5-mm length class 

was high, thus requiring application of a method to fill in missing ages. Second, did the 

second set of ages differ significantly in distribution as measured by the four afore-

defined metrics from the first set? The expectation is that the first set was adequate to 

establish the age distribution function within a 5-mm size class with sufficient accuracy 

to be used to estimate the age distribution for the age-length key as previously described. 

A permutation test was used in which 1,000 sets of ages were drawn with replacement 

from the original set and the second set compared to the distribution obtained thereby 

(Noreen 1989) to evaluate the probability that the observed mean and variance of ages of 

the second set could have been obtained from the first. Note that the other two metrics, 

which depend on the difference between adjacent ages, cannot be tested using a random 

draw with replacement because replacement increases the number of zero differences 

between adjacent ages and thus biases the test. As a consequence, a variant of the afore-

described test was run in which 1,000 sets of ages of a number equivalent to the original 

set of ages were drawn without replacement from the combined dataset and the second 

set of ages compared to the distribution obtained to determine if the new set represented a 

random draw from the total. All four metrics were evaluated using this test. In addition, a 
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population age frequency was also established by generating the estimated ages from all 

measured shell lengths using the ALOG growth curve (see subsequent section) for 

comparison to the one generated from the age-length key. 

Growth 

The measurements of growth increment width, the distance between two 

consecutive annual growth lines, were recorded for the five oldest clams. Growth 

increment widths were determined through the annotation of each annual growth line 

using the Object J plugin, which provides measurements in units of pixels. The total shell 

length of an individual divided by the cumulative sum of all growth increment widths 

allowed a conversion of pixels into mm. Three growth models (von Bertalanffy, 

Gompertz, and ALOG) were used to analyze the data. The first two, both frequently 

evaluated as growth models for shellfish (e.g., McCuaig & Green 1983, Solidoro et al. 

2000, Appleyard & DeAlteris 2001, Chintala & Grassle 2001, Urban 2002), were 

calculated as: 

von Bertalanffy: Lt = L∞ (1 – exp(-K(t – t0))),  (1) 

and  

Gompertz: Lt = L∞ exp(-exp(-K(t – t0))),  (2) 

where Lt (mm) is the shell length at age t (years), L∞ is the asymptotic shell length, K is 

the growth coefficient, and t0 is the hypothetical age when shell length would be zero. 

The third growth model,  

ALOG: 𝑑𝐿𝑡 =  
1

√f(t−c)2+a
,    (3) 



 

15 

was developed for species with continuous indeterminate growth (Tanaka 1982, Tanaka 

1988). By integrating equation (3) over age, the relationship between age and shell length 

for ocean quahogs was described using the 4-parameter ALOG growth model (Eq. 4):  

𝐿𝑡 = d +
1

√f
 log (2f(t − c) + 2√𝑓2(t − c)2 + fa )     (4) 

where a is a measure of the maximum growth rate, c is the age at which the growth rate 

reaches a maximum, d is a parameter that shifts the body size at which growth is 

maximum, and f is a measure of the rate of change in growth rate (Tanaka 1988).  The 

ALOG curve was fit using a two-stage fitting process, first by fitting the length data to 

the ALOG length equation (4), and then by fitting both the change in length (Eq. 3) and 

length (Eq. 4) relationships simultaneously starting from the solution of the length fit. 

Results 

Growth 

Length-at-age was fit with three models; the von Bertalanffy and Gompertz curve 

fits are shown in Figure 1. Parameter estimates and associated standard errors are shown 

in Table 1. The observations of growth increment width-at-age and length-at-age also 

were fit to the ALOG growth curve equation (Figure 2). Note in Figure 2 that the curve 

fits both the growth increment relationship and the relationship of length at age. Note also 

that the latter fit includes both the rapidly ascending early portion of the animal’s life and 

also the extended period at older age of slow but continuous growth. Importantly, the 

ALOG curve retains a rational ascending limb at old age that cannot be accomplished by 

the asymptotic von Bertalanffy and Gompertz curves. In addition, the ALOG curve 

provides rational ages early in life that likewise fail to be accurately fit by the other two 

growth models. The parameter estimates for the 4-parameter ALOG equation are: a = 
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0.044932; c = 2.007; d = 92.7737; f = 0.0023936. The mean and standard deviation of the 

residuals to the growth increment curve (Figure 2, left) are -0.0516 ± 0.4172. The same 

analysis for the integrated 4-parameter expression for age versus length  (Figure 2, right) 

yields 1.34x10-6 ±3.731. Perusal of Figure 2 (right) shows that the individual growth 

curves are bimodally distributed about the fitted line at old age. Thus the mean of the 

residuals tends to be small while the standard deviation tends to be large. The origin of 

this bimodality remains uncertain, although the possibility that male and female ocean 

quahogs grow at different rates cannot be discounted (Ropes et al. 1984, Steingrímsson & 

Thórarinsdóttir 1995). 

Age dynamics within size class 

The size-frequency distribution from all individuals collected in the two dredge 

hauls is shown in Figure 3. The shell lengths for 2,780 individuals were recorded. Of 

these measured clams, 156 individuals ≥80 mm in length were aged. Ocean quahogs from 

this area ranged in age from 54 to 198 years old, with animals growing to a maximum 

length of 116 mm.  The observed ages of the sampled animals are shown in Figure 4. 

These clams have a large age range within each size class (Figure 5), with the smallest 

age range of 59 years and the largest age range of 125 years within a 5-mm size class. 

Similarly, a large variation in size exists at age throughout much of the observed age 

range (Figure 4).  Thus, the relationship between age and size is highly variable even 

within narrow age and size categories.  

Table 2 shows the statistics for each of the four metrics used to determine if the 

originally sampled ages were randomly distributed within each size class. Non-random 

test statistics are shaded. The 100-mm size class is the most non-random with three out of 
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four test metrics diverging significantly from random; this is also the size class which had 

an age range spanning 125 years. The 80-mm size class was the best behaved, not 

surprisingly as differential growth rates at age should accrue over time and, thus, should 

introduce increasingly non-random distributions into the larger size classes. Interestingly, 

it is an intermediate size class that shows the largest deviance from randomness, despite 

the expectation for the largest size class to be the most non-random.  

A second group of animals in the 100-mm size class was aged. Table 3 shows the 

estimated ages of the original 20 clams and the resampled age estimates for the second 

set of 20 clams. Eighteen clams in the second set had ages that were not present in the 

original set of 20 ages. This confirms the expectation that many animals would need to be 

aged in order to define the age-length relationship solely from a set of observed lengths 

and ages. 

The statistics listed in Table 2 accordingly were used in the simulation of 10 

additional age groups for each size class to identify groups that fell within the shown 

percentile of the position of the observed age group for all four metrics. The 10 selected 

simulation groups were used in addition to the observed age group to construct the 

probability of age at length for each 5-mm size class. 

Evaluation of sample size 

A series of permutation tests were run to determine whether the second set of 20 

clams aged from the 100-mm size class were significantly different from the first set. In 

the first case, the two datasets were directly compared using the observed mean and 

variance of ages. The two data sets were not significantly different by either metric. In 

the second group of tests, the likelihood that the second group of ages was a random draw 
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from the combined group was considered. Results indicate that none of the four metrics 

were significantly different; that is, the second group of ages was a random draw from the 

combined dataset (Table 4). The lack of statistically significant differences indicates that 

the age distribution of the first 20 clams sampled does not differ from the second set of 

20 clams and suggests that the number of animals aged is sufficient to determine the 

distribution function for ages within a length class. Additionally, the simulated age 

groups can be expected to also be representative of that distribution function.  

Age-length key 

The age-length key (Table 5) was generated by establishing the age probability 

for each known size class, based on the observed age group plus the 10 simulated groups 

that were taken as valid estimates of the probability of age within the 5-mm size class. 

For ease of presentation, the key is shown using 5-mm length classes and decadal age 

classes. Calculated age frequencies shown subsequently, however, used individual ages 

rather than a decadal age class. Table 6 shows the estimated number of individuals at age 

obtained from the two 5-minute dredge tows, and was generated by applying the total 

number of individuals measured (Figure 3) to the probabilities from the age-length key. 

Shaded boxes indicate ages with the highest probability of occurring. Table 7 shows the 

observed age frequency, based only upon the 156 sampled ages, which results in many 

ages being apparently absent from the population.  Earlier analysis of the second set of 

animals in the 100-mm size class demonstrates the invalidity of the expectation that this 

many ages are truly absent. Although the observed and generated age frequencies differ, 

both show some of the largest numbers of individuals with ages in the late 60’s and 

between 86-96 years old. The simulated dataset suggests that the peaks of animals at 
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older ages in Table 7 are unlikely, in that many more potential ages exist than could be 

filled even by one animal given the sample size. Table 6 suggests that the numbers at 

older ages are more evenly distributed and this expectation is reinforced by Table 3. 

Population age frequency 

The population age-frequency distribution for Georges Bank is shown in Figure 6. 

This figure was generated from the data in Table 6. The age structure consists of a 

smattering of animals older than 125 years of age, a much larger number of animals in 

the 100-125-yr age range, and an even larger number of animals in the 65-100-yr age 

range (Figure 6). The population age frequency indicates that ocean quahogs have been 

present in this region of Georges Bank for about 200 years, since the early 1800’s. Given 

that the oldest animal is substantively younger than the oldest known age for this species 

and given that the subsampling of the catch included a focus on ageing a subset of the 

largest animals which averaged modestly older than the smaller individuals (Figure 5), it 

is likely that had many animals exceeding 200 years of age been present, at least a few 

would have been aged. Thus, occupation of this site, while possibly earlier than the 

birthdate of the oldest animal, was at least very limited in comparison to the age potential 

of this species.  

Assuming that the mortality rate did not vary substantively over the time span 

represented by the aged animals, the population size remained low for an extended period 

of time after initial colonization, approximately 70 years, after which the population 

began to increase in size. This increase began approximately 125 years ago, around the 

1890’s. Proliferation of the population occurred rapidly over a 5-10 year period reaching 

a stability point around 1900, a relatively short period of time considering the longevity 
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of these animals. The population expansion occurred in two phases with the second phase 

beginning circa 1915 and approaching a second and higher asymptote circa 1920; thus 

over an approximately 30-year period, the population expanded dramatically from a 

minimal level to its present-day robust population density. After 1920, the population 

apparently stabilized, with recruitment approximately balancing mortality through the 

mid-1950s, whereupon the record of measured ages ceases to effectively describe the 

population age distribution. That is, the decrease in the number of individuals younger 

than about 65 years is due to the artificial truncation of the data set at shell length ≥80 

mm, not to a reduction in recruitment or an increase in mortality. Aging smaller animals 

would fill out the younger ages, but the problem of age truncation would persist unless 

animals of all sizes, including young of the year, were aged. 

Comparison to ALOG 

The population age frequency was also generated using the age estimated from 

the ALOG curve for each measured length (equation 4) (Figure 7). For lengths where the 

ALOG curve predicted multiple ages, that is, for cases where a 1-mm increase in length 

covered more than a single year increment in age, the total number of individuals was 

apportioned evenly over the predicted ages for each length. The age-frequency 

distribution generated from the ALOG curve can be compared to the previously 

generated distribution (Figure 6). Both age-frequency distributions have a similar general 

shape but differ in substantive ways. In particular, the ALOG approach over-predicts the 

abundance of old animals and expands the age range well beyond the oldest observed 

animal. The two distributions differ significantly (Kolmogorov-Smirnov two sample test, 

P < 0.05). Thus, the ALOG curve cannot be used to predict the age structure of the 
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Georges Bank population. Perusal of the age-length key (Table 5) in comparison to 

Figure 2 showing the ALOG growth model shows that the variability inherent in the 

population in the age at length at large lengths and old ages is primarily responsible for 

the failure of the growth model to provide sufficient information to generate a population 

age frequency.  

Discussion 

Growth 

Historically, ocean quahog growth has been modeled using the von Bertalanffy 

growth curve (e.g., Sager & Sammler 1983, Brey et al. 1990, Steingrímsson & 

Thórarinsdóttir 1995, Thórarinsdóttir & Jacobson 2005). The von Bertalanffy growth 

curve, as well as other growth curves such as the Gompertz curve, lack an inflection point 

and approach an asymptote (Karkach 2006). The ALOG growth curve (Tanaka 1982, 

Tanaka 1988) was designed to model an early lag and initial period of exponential growth 

followed by an indefinite period of continuing albeit perhaps declining indeterminate 

growth; this type of growth is characteristic of ocean quahogs. The relationship was 

originally developed for application to the lantern clam Laternula anatina, but it has been 

more widely applied to model the growth of sea urchins (Ebert et al. 1999, Ebert & 

Southon, Flores et al. 2010). Note that the relationship proves unrealistic for animals 

where growth asymptotes as it cannot be used to estimate infinite size (Rogers-Bennett et 

al. 2007)  

The ALOG growth curve is the best descriptor of growth in ocean quahogs. This 

is not surprising considering that the growth of ocean quahogs matches the characteristics 

of the ALOG growth curve. Growth in ocean quahogs is not asymptotic and, thus, 
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asymptotic growth models often fail to fit growth at old age. While the von Bertalanffy 

curve has frequently been used to describe ocean quahog growth in the past, both this 

curve and the Gompertz curve describe an animal that grows to a maximum size, hence 

the asymptote that both of these curves approach. Unlike most animals, ocean quahogs 

have the capacity to live for centuries and continue to grow indefinitely, albeit at a very 

slow rate.  

Moreover, the ALOG growth curve is characterized by a relatively strong change 

in slope that occurs at an age of approximately 20 years and a size of about 60 mm on 

Georges Bank. Whether this change in growth rate marks sexual maturity is unknown, 

but the size demarcation is consistent with the maturity curve presented by 

Thórarinsdóttir and Jacobson (2005) and Thórarinsdóttir and Steingrímsson (2000), 

relatively consistent with Ropes et al. (1984), and somewhat larger than inferred from 

Rowell et al. (1990). Boukal et al. (2014) describe an analogous growth model with 

similar characteristics dependent upon a change in energy allocation at maturity. The 

metabolic energetics of ocean quahogs beyond the interestingly lower metabolic rate 

(Begum et al. 2009, Ungvari et al. 2013), the extended capacity for anaerobiosis 

(Oeschger 1990, Philipp & Abele 2009), and the tolerance to sulfide exposure 

(Butterworth et al. 2004) are too poorly known to permit a complete metabolic 

explanation for the growth curve. 

The tendency to model the growth of the ocean quahog using asymptotic growth 

stems from the general agreement of these models with the central more or less two-

thirds of the growth trajectory; however, neither the von Bertalanffy nor Gompertz curve 

can capture the exponential growth exhibited by juvenile ocean quahogs unlike the 
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ALOG curve nor can they capture the continual growth at old age (e.g., Steingrímsson & 

Thórarinsdóttir 1995, Ridgway et al. 2012). 

The age-length key and generation of a population age frequency  

The 100-mm size class had the most unusual age distribution, spanning an age 

range of 125 years. This size class also had the most non-random distribution with three 

out of four statistically significant test metrics. Based on these considerations, the 100-

mm size class was chosen to sample an additional 20 clams to determine if the age 

distribution of the 20 resampled clams significantly differed from that of the 20 original 

ages. A series of permutation tests revealed no significant differences between the two 

groups of aged animals in the four metrics chosen to evaluate the age distribution within 

a 5-mm size class. This suggests that a sample size of 20 individuals per 5-mm class is 

sufficient to represent the dispersion of ages present in that size class, although not 

sufficient to represent all ages likely to be present. Given this result for the size class with 

the most irregular age distribution, encompassing a range of 125 years within a single 5-

mm class, a reasonable assumption follows that the other size classes with a sample size 

of 20 individuals comprising smaller age ranges with less extreme age distributions are 

also representative of their respective age distributions.  

The number of new ages in a second set of 20, however, confirms the expectation 

that a large number of aged animals per size class would be required to directly assess the 

probability of age at size within a size class. Many ages present in the 5-mm size class are 

not identified in a single sample of 20 individuals. Thus, obtaining a representative age-

length key requires assumptions of the underlying age distribution function within a size 

class, unless one is prepared to age many hundreds of clams. Two options were 
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compared. In one case, ages were estimated from the ALOG growth curve of Tanaka 

(1982). In a second case, a simulation approach was used that required that a set of 20 

individuals meet four criteria in comparison to the observed set, a mean age close to that 

observed, a variance in age close to that observed, a mean age differential between pairs 

of individuals ordered by age close to that observed, and a mean variance in the age 

differential close to that observed. 

In the case of estimating ages from the ALOG growth curve, the ages predicted 

do not align with those produced by the observed age frequency. This is due to the high 

variability in size at age (Figure 2), especially for the older animals, so this method 

cannot be used to predict the population age frequency of ocean quahogs. The simulation 

approach produced a distribution similar to the age frequency that is produced from only 

the observed ages. The simulation approach distributes individuals in the observed age 

frequency to ages that were absent due to the low sample size. A direct test of the 

assumption that many ages likely to be present were not observed demonstrated the verity 

of this expectation, as shown in Table 3 where only two ages in the second dataset were 

present in the first. Thus, the simulation approach likely provides a more realistic age 

distribution among all ages within the observed age range. 

The age frequency of a Georges Bank population – implications 

As the last surviving member of the family Arcticidae, ocean quahogs have 

inhabited areas along the continental shelf of the North Atlantic basin and adjacent 

European seas since the Late Mesozoic (Morton 2011). Considering that these animals 

have been present along the boreal North Atlantic shelf for such an extended period of 

time, it is perhaps surprising to find animals no older than about 200 years on Georges 
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Bank, suggesting colonization sometime very early in the 1800’s. One possible 

hypothesis is that the establishment of the ocean quahog population on this portion of 

Georges Bank co-occurred with the ending of the Little Ice Age, which is thought to have 

ended sometime in the early to mid-19th century (for more on the Little Ice Age, see 

Schöne et al. 2005b, Mann et al. 2009, Cronin et al. 2010). During the Little Ice Age, 

bottom water temperatures would have been much colder on Georges Bank than observed 

today. As the end of the Little Ice Age approached, warming waters would have 

permitted movement of the ocean quahog population into the region of Georges Bank 

sampled for this study. Recent examination of the distribution of ocean quahog shells on 

Georges Bank lends credence to this scenario as shells, but no live animals, are found at 

shallower depths on the bank today (Powell et al. submitted), in a region that arguably 

would have had more appropriate bottom water temperatures for ocean quahogs in earlier 

times. 

Regardless, once the initial recruits were established where ocean quahogs now 

live on Georges Bank, the population remained at low levels for about 70 years, evident 

from the long tail in the population age frequency (Figure 6). Taking the analogy of a 

species invasion for this colonization event, time lags after initial colonization are not 

uncommon (Diederich et al. 2005, Facon & David 2006, Karatayev et al. 2011). The time 

lag from a small population size until the propagation of the population is likely a result 

of delayed maturity in ocean quahogs. As ocean quahogs do not reach maturity for 

several decades following settlement, the population perforce would have to remain small 

in size for many years, unless recruitment from outside the region increased. Evidence 
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suggests that it did not. Of course, one cannot discount the possibility that the occupation 

remained limited because the environment remained suboptimal until the late 1800s.  

The rapid expansion of the population late in the 1800s suggests that one of 

several events occurred. Once enough animals reached maturity, a local Allee effect 

might have been overcome, permitting much enhanced recruitment. Fertilization 

efficiency can be expected to be poor in sparse populations of relatively immobile 

molluscs (Shepherd et al. 1998, Hodgson et al. 2007, Luttikhuizen et al. 2011). 

Alternatively, increased water temperatures or a change in food supply might have 

permitted increased spawning and enhanced survivorship to maturity (Hofmann et al. 

1992, Munroe et al. 2013, Svensson & Marshall 2015). Less likely, perhaps, but still 

possible given the extended larval life span (Lutz et al. 1982), increased recruitment from 

outside the region may have occurred. The latter is not consistent with the limited larval 

connectivity of Georges Bank with external regions observed today (Zhang et al. 2015), 

but such connectivity may not have been required if ocean quahogs occupied a shallower 

portion of the bank in the 1800s. 

Once the population expansion occurred in the late 1800s, the population rapidly 

approached an asymptote and stabilized, suggesting that the population probably reached 

carrying capacity. This is supported in the literature, as ocean quahog populations in the 

Mid-Atlantic were considered to be at carrying capacity prior to the beginning of the 

fishery in the late 1960’s (NESFC 2009) and the stock on Georges Bank effectively has 

never been fished. The rapid population expansion, then, encompassing about 30 years, is 

not inconsistent with molluscan population dynamics (Carlton et al. 1990, Zolotarev 

1996, Brandt et al. 2008), but is surprising given the population dynamics of many long-
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lived species, and perhaps counterintuitive with the lower metabolic rate of this species in 

comparison to other bivalves (Begum et al. 2009, Ungvari et al. 2013). As the population 

stabilized early in the 1900s, recruitment was essentially continuous, though low enough 

to balance mortality. Currently the ocean quahog stock is considered to be relatively 

unproductive, with literature suggesting that the recruitment rate is low and infrequent 

(Powell & Mann 2005). This type of recruitment is characteristic of a stock that is 

expected to be near carrying capacity, wherein recruitment is in balance with the low 

mortality rate characteristic of a long-lived species. Nonetheless, the record of 

colonization on Georges Bank suggests that the species is a capable and rapid invader 

once environmental conditions are met and once the initial restriction on spawning 

success produced by low population density and slow growth to maturity is overcome. 

The age-frequency distribution bears many similarities to the one presented by 

Ridgway et al. (2012) for the Belfast Lough, Northern Ireland and by Steingrímsson and 

Thórarinsdóttir (1995) for Iceland. Both Ridgway et al. (2012) and Steingrímsson and 

Thórarinsdóttir (1995) observe an approximately 100-yr period of low abundance 

beginning about 200-220 years BP, followed by a rapid rise in numbers at age over an 

approximately 20-year period. The subsequent record also asymptotes at what might be 

interpreted as carrying capacity. Ridgway et al. (2012) record only minor breaks in what 

is a generally consistent recruitment record over the time span represented by the age 

frequency, also similar to our results. Steingrímsson and Thórarinsdóttir (1995) document 

less consistent recruitment with what might be considered broad age classes, although the 

overall pattern of recruitment as determined from abundance at age remains similar. 
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Whether this type of colonization record is typical of ocean quahogs is unclear, but the 

similarity between the three sites, well separated in space, poses an interesting possibility. 
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CHAPTER III  - COMPARISON OF AGE FREQUENCY DISTRIBUTIONS 

This chapter has been submitted for publication to Marine Ecology Progress Series. 

Pace, S. M., E. N. Powell, R. Mann & C. M. Long. Submitted. Comparison of Age-

Frequency Distributions for Ocean Quahogs (Arctica islandica) on the Western 

Atlantic US Continental Shelf. Mar. Eco. Prog. Ser. 

Introduction 

Results of Chapter II suggest that recruitment on Georges Bank has been nearly 

continuous since the late 1800’s, though at low levels to balance the low mortality 

characteristic of long-lived species, as the stock is considered to have been at carrying 

capacity since 1980 (NEFSC 2009, NEFSC 2017b). Yet, the size at which ocean quahogs 

fully recruit to the fishery is not reached until several decades following settlement 

(Ropes et al. 1984, Rowell et al. 1990, Thórarinsdóttir & Steingrímsson 2000); 

accordingly, an increase in stock productivity, the expected result of fishing down a stock 

from carrying capacity, would not be evident to the survey gear for many years (Powell 

& Mann 2005). This poses a problem for fishery management because long-term 

recruitment potential cannot be gleaned from the recruitment index obtained over the 

history of the survey time series which extends back a mere 35 years. To better define the 

characteristics of a sustainable ocean quahog fishery, which includes understanding the 

time line for rebuilding should overfishing occur and the sensitivity of the stock to 

potentially decadal or longer periods of low recruitment, development of a long-term 

recruitment index is necessary. As described in Chapter II, such data are needed to inform 

fishery managers of the frequency and significance of recruitment events in ocean quahog 

populations throughout the range of the stock. 
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In addition, recruitment rates for long-lived species are generally thought to be 

inherently low. Broodstock-recruitment relationships for long-lived finfish often show 

low steepness, a characteristic of a species with limited recruitment capacity and an 

extended time frame for population recovery following a decline in biomass (Goodwin et 

al. 2006, Mangel et al. 2010). The same may be true for many long-lived invertebrates, 

although documentation is more limited (e.g., Peterson & Summerson 1992, Peterson 

2002). Indeed, broodstock-recruitment relationships are rarely reported (e.g., Hancock 

1973, Honkoop et al. 1998, Kraeuter et al. 2005, Powell et al. 2009). Often, recruitment 

rates are low despite high fecundity due to larval and post-settlement mortality (e.g., 

Thorson 1950, Ólafsson et al. 1994, van der Meer 2003), but Allee effects can also be 

present (Kraeuter et al. 2005). For ocean quahogs, the time necessary to build a 

population to carrying capacity after initial colonization or to rebuild a population after 

overfishing and the ability of the population to remain at carrying capacity through years 

of variable recruitment and mortality is extremely poorly known. Ocean quahogs, being 

extremely long-lived and certainly the most successful of the extremely long-lived non-

colonial marine invertebrates, offer a particularly interesting opportunity to study the 

population dynamics of recruitment during population expansion and when at carrying 

capacity. Indeed, results from the Georges Bank population suggest that recruitment 

capacity is high, but scarcely evident at carrying capacity where only limited recruitment 

is necessary to balance the low natural mortality rate characteristic of the species. 

The objective of this study was to evaluate long-term recruitment patterns of 

ocean quahogs from three sites throughout the Mid-Atlantic, and to compare these 

patterns to that of the Georges Bank population previously described (Chapter II) using 
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the age frequencies of the existing populations. The approach used includes estimation of 

the age of individuals by counting annual growth lines using photographs of a cross-

section of the hinge plate, followed by development of age-length keys for each site from 

the observed ages at length. These then were used to reconstruct the population age 

frequency from which an evaluation of long-term recruitment patterns could be deduced.  

Methods 

Sample collection 

Ocean quahog samples were collected from New Jersey and Long Island from the 

F/V Christy in March 2015; samples from Southern New England and Georges Bank 

were collected in May 2015 from the F/V Pursuit (Figure 8). All samples were collected 

using hydraulic dredges towed for five minutes. Ocean quahogs with shell lengths 

(anterior-posterior dimension) ≥80 mm were targeted by this project, as the sampling 

gear is nearly 100% selective for this size range (NEFSC 2017). All sites except the 

Southern New England site required multiple tows in order to obtain sufficient sample 

sizes; however, all additional tows were taken from as close to the same location as 

possible so that each sample comprised animals from the same local population. 

To ensure that each sample contained an adequate number of the largest animals 

present in the populations, two collections of about 400 clams each were made at each 

site. In the first collection, the shell length of all 400 clams was measured and all clams 

were retained. For the second collection, all shell lengths were measured but only clams 

in the largest 20th percentile of the size-frequency distribution as determined by the first 

collection were retained.
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Sample preparation 

Shucked clams were dipped in diluted bleach, rinsed in water, and air-dried. Intact 

valves were measured again, labeled, and archived. At each site, a selection of 

approximately 20 clams from each 5-mm size class was haphazardly chosen from the 

collection, starting with the 80-mm size class through the maximum available size for 

each site. 

Each clam chosen to be aged was sectioned, ground, and polished (see details in 

Chapter II). The hinge plate of each clam was photographed using either a high definition 

Olympus DP73 digital microscope camera using the Olympus cellSens microscope 

imaging software or a high definition Olympus America microscope camera using 

Olympus MicroSuite software. Neither camera could capture a single image of the hinge 

plate at a magnification high enough to discriminate annual growth lines; multiple images 

of the hinge were required to produce a complete hinge image. The Olympus cellSens 

microscope imaging software automatically stitched images of the hinge together; the 

hinge photographs taken using the alternative software were stitched together using the 

open source software ImageJ (FIJI) to create a complete image of the hinge section. Both 

cameras provided images at a resolution sufficient to distinguish annual growth lines 

without the use of acetate peels or staining methods. To estimate the age for each clam, 

its hinge image was examined and each annual growth line annotated using the Object J 

plugin in the software ImageJ (Figure 9). 

Creating age-length keys 

As shown in Chapter II, the range of observed ages for a sample size of less than 

200 individuals at a sample site greatly underrepresents the entire age range present in a 
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population. Consequently, estimating the probability of age at length based only on 

observed ages likely biases the probability of any age occurring at a given length; in 

particular, some ages present in the population are not observed. At each site, the age 

distributions were typically right-skewed within each 5-mm size class. That is, animals of 

younger age had a higher probability of occurrence than animals of older age, and a long 

tail comprising the rarer and much older animals was present. To address the problem 

posed by unobserved ages within the observed age range without having knowledge of 

the underlying age distribution within each size class, four metrics were defined for each 

set of ages within each 5-mm size class; namely, the mean age, the variance in age, the 

mean differential in years between consecutive ages ordered from youngest to oldest, and 

the variance in the mean differential between consecutive ages. Sets of ages were 

simulated within each 5-mm size class using a Monte Carlo routine, and at least 10 

individual sets that fell within a 10th percentile of the position of the observed age group 

for all four metrics were selected and considered valid estimates of the age probability in 

addition to the observed group. These age groups were used to construct the probability 

of age at length within each size class (for further details on the methodology used, see 

Chapter II). 

To investigate the representativeness of the set of 20 animals aged per 5-mm size 

class, a size class with a particularly skewed distribution was chosen from each site. This 

was a size class that was significantly different from a random draw of ages within the 

observed age range; that is, a size class with the age distribution least likely to occur by 

chance based on the four defined metrics previously described. An additional 20 animals 

were haphazardly chosen from the original set of animals obtained that fell within that 
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size class. These animals were aged. This second set of ages was compared to the first set 

using a permutation test in which 1,000 sets of ages were drawn without replacement 

from the combined dataset and the second set of ages was then compared to the 

distribution obtained from the probabilities of the four metrics to determine the 

representativeness of the second set of ages and, by inference, the additional 10 sets of 

simulated ages (Noreen 1989).  

Cases in which the second age distribution represented a random draw from the 

combined dataset supported the assumption that a sample size of 20 individuals within 

each size class was sufficient to represent the age distribution. For cases where the 

second set did not represent a random draw from the combined dataset, the combined 

dataset was resampled again 1,000 times, each selection of 20 individuals again evaluated 

using the permutation test, and the probability of each metric recorded. In this way, the 

likelihood of the original second set being fairly drawn from the combined dataset could 

be evaluated. For example, if the original second set of 20 was significantly different 

from the first for a given metric and that outcome occurred only a few times out of the 

1,000 independently drawn sets of 20, this analysis would suggest that the age 

distribution of the second set drawn was highly unlikely to occur again by chance if 40 

different clams had been aged. To further investigate the effect of significant differences 

in age distribution between two sets of 20 individuals from the same size class, two 

population age frequencies were generated, the first using the age estimates from the 

original sample only; the second using the ages from the resample. A Kolmogorov-

Smirnov two-sample test (Daniel 1978) was run to determine if the two population age-

frequency distributions differed significantly. 
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Results 

Age and length dynamics 

The size-frequency distributions obtained from the measurement of all individuals 

retained by the dredge at each site are shown in Figure 10. The total number of clams 

measured was 2,448 (New Jersey), 2,443 (Long Island), and 2,453 (Southern New 

England). Of these measured clams, 189 individuals ≥80-mm were aged from New 

Jersey, 154 from Long Island, and 118 from Southern New England.  

The distribution of observed ages at length for ocean quahogs from each site is 

shown in Figure 11. Within each 5-mm size class, ocean quahog populations exhibited a 

large age range (Figure 12). The youngest clam sampled from New Jersey was 24 years 

old; the oldest 220 years, covering an age range of nearly 200 years. The largest animal 

aged was 125-mm. Clams from Long Island ranged in age from 44 to 248 years. The 

largest animal aged was 115-mm. Clams from Southern New England covered a 

narrower age range from 73 to 172 years old. The largest animal aged was distinctly 

smaller than at other sites at 105-mm. As reported in Chapter II, clams from a Georges 

Bank site ranged from 54 to 198 years, with the largest animal 116-mm in length.  

A large size range at age also exists throughout most of the observed age range at 

all sites (Figure 11). That is, the age and length relationship for market-size ocean 

quahogs at each of these sites is highly variable whether described in terms of age at 

length or length at age. Moreover, at all sites, the intermediate size classes displayed the 

largest age ranges. Ages in the 95-mm size class from New Jersey spanned 108 years. 

Long Island had the largest age range of 188 years in the 95-mm size class. In the 

Southern New England population, ages spanned 93 years in the 90-mm group.  
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The test statistics for each metric used to identify whether the sampled ages 

within each size class were randomly distributed are shown for each site in Table 8. 

Shaded boxes indicate cases where the distribution of observed ages was unlikely to be 

obtained from a random draw of ages within the observed age range. As evident in Table 

8, size classes with the most non-random distributions varied throughout the size-class 

range. In New Jersey, the 90-mm and the 115-mm size classes had the most non-random 

age distributions, which might have been anticipated considering the old-age outliers 

present in both groups (Figure 12). The Long Island population provided the most non-

random distributions, with three of four metrics significantly non-random in the three 

smallest size classes, whereas the two largest size classes did not diverge from a random 

distribution in any metric. The Southern New England population had one size class (90-

mm) with three of four metrics significantly diverging from random, with the most non-

random distribution coinciding with the 5-mm size class with the largest age range. 

Chapter II describes a similar pattern in a Georges Bank population in the 100-mm size 

class, which exhibited the largest age range of 125 years, with three of four significantly 

non-random metrics. 

Based on the statistics shown in Table 8, 10 age groups having a similar age 

distribution pattern were obtained as simulated datasets. These distributions retained the 

statistical characteristics for the four metrics in that they fell within the shown percentiles 

and were used in addition to the observed age dataset to establish the probabilities for age 

at length within each 5-mm size class. 
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Representativeness of aged subsets 

Based on the statistics shown in Table 8 and Figure 12, a 5-mm size class with a 

highly skewed age range was chosen from each site and an additional 20 ocean quahogs 

were aged to evaluate the representativeness of the original 20 aged animals. Size classes 

with additional animals sampled were as follows: 95-mm (New Jersey), 90-mm (Long 

Island), and 90-mm (Southern New England). Table 9 shows the ages for the original and 

resampled set of animals from each site. Analyses from the Georges Bank population 

reported in Chapter II are also included. Shaded boxes indicate cases where an age 

present among the resampled 20 individuals was also present in the original set of ages. 

At all sites, the second set of individuals contributed only a few duplicate ages found also 

in the first set. Southern New England had 14 individuals in the second set of animals 

with ages that were not found in the original set. In New Jersey, 15 of 20 ages were 

present in the second set but not in the first set. The second set of 20 individuals aged 

from Long Island had only a single animal with an age also present in the first set; 19 of 

the 20 resampled ages were not found in the first set of animals. As reported in Chapter 

II, only two ages were found in both datasets for a Georges Bank site. Thus, at all sites, 

the addition of a second set of 20 animals added a large number of ages that were not 

represented in the first set of ages, confirming that many more animals would need to be 

aged in order to establish an age-length relationship based solely upon observed ages and 

lengths.  

For each site, a permutation test was run to determine whether the distribution of 

age estimates from the resampled set deviated significantly from that of the combined set 

of ages. At two of the three sites, none of the four metrics were significantly different; 
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that is, the resample dataset could be obtained as a random draw from the combined set 

of ages (Table 10). This was also true for the Georges Bank site. The absence of test 

metrics diverging from random at the Long Island and Southern New England sites 

suggests that the age distribution derived from the first 20 animals aged adequately 

represented the distribution function for the age range within that 5-mm length class. As 

the analyzed size classes were chosen because the age distributions were ones showing 

significant deviations from a random distribution of ages, by inference, the age 

distributions for the remaining size classes are likely also to be representative.  

In contrast to the other three sites, three of four test metrics for the resample 

differed significantly from the combined dataset for the New Jersey population (Table 

10). This suggests that the first sample of 20 did not sufficiently describe the age 

distribution within this size class. Perusal of Table 9 shows that the primary difference 

between the two datasets is that the resample contains many ages falling within a large 

age gap (116 to 153 y) in the first set. These two datasets came from the same group of 

clams, each chosen haphazardly from the group. To further examine this issue, the 

combined set of 40 was randomly split in half 1,000 times and the permutation test run 

each time to evaluate the probability of obtaining a split providing two datasets as deviant 

as were the observed two. The set of statistical comparisons for the 1,000 divisions was 

examined to evaluate the likelihood of the outcome initially observed. For the 

comparison of the observed mean, the probability of an outcome as unlikely as observed 

occurred in only two out of 1,000 cases. For the observed variance, an outcome as 

unlikely as observed occurred in only three cases in 1,000. For the observed variance in 

the differences obtained from the set of ordered ages, an outcome as unlikely as observed 
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occurred seven times out of 1,000. These results suggest that obtaining the observed split 

from the set of 40 aged animals is statistically highly improbable. By inference, one 

would assume that a second set of 20 drawn from any of the remaining 5-mm size classes 

would demonstrate a selection of ages diverging in detail from the original set as shown 

in Table 9, but not diverging in the distribution function for that size class. Inasmuch as it 

was infeasible to age several scores of animals within each size class from each 

population due to the time required, even using the advanced camera technology 

employed in this project, and because at the other three sites, 20 animals sufficiently 

described the age distribution of the most extreme 5-mm size class, for the purposes of 

this study, 20 animals within each 5-mm size class was taken as an acceptable sample 

size to describe the dispersion of ages within a 5-mm size class.  

Age-length keys 

Age-length keys for New Jersey (Table 11), Long Island (Table 12), and Southern 

New England (Table 13) were generated by establishing the probability for each age 

within each size class, based on the observed age group plus the 10 simulated age groups 

for each 5-mm size class. For simplicity of presentation, each key displays decadal age 

groups and 5-mm size classes; zero probabilities in the tables indicate the absence of 

animals at that size and age given the sampling constraints. Population age frequencies 

shown subsequently, however, were obtained using the probabilities of each observed age 

in each 5-mm size class rather than the decadal age groups shown in Tables 11-13.  

The population age frequencies are shown for New Jersey (Table 14), Long Island 

(Table 15) and Southern New England (Table 16). The age frequencies display the 

estimated number of individuals at age in the population sample obtained at each site. 
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The population age frequencies were generated from age-length keys that included 

observed ages and the 10 simulation groups. Tables 17-19 show the population age 

frequencies had the 10 simulated groups not been included, for comparison. The observed 

age frequencies clearly miss many ages that one may expect are present in the population 

(see Table 9) given the results of the resampled age classes (Table 9), but are absent from 

the observed dataset due to the small sample size.  

Two additional age frequencies were generated for the New Jersey site to address 

the issue of significantly different results obtained from the permutation test when the 

resample was included, the first using only the original set of ages to represent the 95-mm 

size class, and the second using only the resampled ages. Significant differences between 

the population age-frequency distributions were not detected (Kolmogorov-Smirnov two-

sample test, D = 0.107898, P > 0.05), despite the significant difference between the age 

distributions of the two sets of 20 age estimates for this size class. Thus, the differences 

in the age distributions of the two samples in the 95-mm size class did not significantly 

affect the population age-frequency distribution derived for this population. 

Population age frequency 

The population age-frequencies for all four sites, including the Georges Bank 

population reported in Chapter II, are shown in Figure 13. The age structure differs 

substantially throughout the New Jersey to Georges Bank region, which encompasses the 

majority of the U.S. ocean quahog stock. The ocean quahog populations at the New 

Jersey and Long Island sites have age ranges spanning at least 200 years. New Jersey had 

the youngest animals that were fully recruited to the fishery, with animals ≥80 mm as 

young as the low 20s, indicating that ocean quahog populations in New Jersey have the 
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most rapid growth rate of the four sites. Compare this to the Southern New England site, 

where the youngest animals ≥80 mm were in the low 70s.  

Table 20 displays a summary of the age structures, as well as the beginning and 

ending of the period over which the populations expanded in size, including data from 

Chapter II. Unlike the three other sample sites, the New Jersey population does not 

display a particularly long tail of low numbers of older animals on the right side of the 

distribution. A few animals over 200 years old were present, but the oldest relatively 

common animals recruited circa 1835, with the population expanding in size relatively 

continuously from 1855 until approaching an asymptote around 1900 when the 

population apparently stabilized. The population consists of a small number of animals 

over 140 years, a larger number of animals between 100-140 years, and the largest 

number of animals less than 100 years. An extended period of relatively low recruitment 

occurred from 1950-1965. The decrease in number of ocean quahogs <25 years is due to 

the artificial truncation of the dataset at shell length 80 mm, not to a reduction in 

recruitment or an increase in mortality. All sizes including young of the year would have 

to be aged in order to completely fill out the population age-frequency distribution. This 

same truncation and ineluctable misleading decrease in numbers at young age occurs for 

all sites. 

The Long Island population has the longest tail, suggesting that with the 

exception of a particularly large year class around 1880, the population remained small in 

size following establishment circa 1765 until approximately 1895. After 1895, the 

population expanded rapidly over about 40 years and stabilized circa 1935. The 

population age structure in Long Island consists of a small number of animals between 
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120-255 years, with the majority of the population between the ages of 40-120 years; no 

obvious hiatuses in recruitment exist, however.  

The Southern New England site has been occupied by ocean quahogs since the 

1840’s, the most recently settled of the four sites. The population apparently remained 

small in size until approximately 1900; fifteen years later, by 1915, the population had 

apparently approached carrying capacity. The population consists of a large number of 

animals between about 70-100 years old, fewer animals between 100-115 years old, and a 

consistently low number of animals 115-175 years old. Recruitment hiatuses are not 

apparent. 

As a comparison, the Georges Bank population (Chapter II) was initially 

colonized about 200 years ago, circa 1815, after which the population remained small in 

size for about 70 years, as indicated by the small number of animals older than 125 years. 

Around 1890, the population began to increase in size very rapidly, reaching about half of 

its final asymptotic state in only 5-10 years; a second population expansion occurred 

around 1915 and approached a higher asymptote within approximately five years. The 

population consists of a large number of individuals between the ages of 65-100 years, 

with a smaller number of animals in the 100-125 year range. Following population 

expansion, recruitment hiatuses are not apparent. 

Discussion 

Age-length keys 

The population dynamics of ocean quahogs are highly variable over the species’ 

range. For the populations on the U.S. East coast, regional variation is substantial, as is 

apparent from the age-length keys presented in Tables 11-13. A single age-length key 
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cannot be used to estimate the age structure of populations from these different regions, 

considering the large variation in age at length and the size range of animals present. 

Perusal of Figure 11 demonstrates this large variability in both age at length and length at 

age, and the differences in these distributions at each of the three sites illustrates why a 

single age-length key would not result in accurate age estimates throughout the Mid-

Atlantic. Consider that the youngest animal aged in New Jersey was as young as 24 years 

old at 80-mm, whereas the youngest animal of comparable size from Southern New 

England was 73 years old. Additionally, the variability in maximum shell length at each 

site would prohibit accurate age estimates throughout the species range; recall for 

example that the maximum shell length of animals aged at Southern New England was 

105-mm, whereas the largest animal aged from New Jersey was 125-mm. 

The development of an age-length key for ocean quahogs is challenged by the 

time required to age individual animals, the age range present in most populations, and 

the presence of individuals of many ages within a narrow size range. Moreover, the 

population is not composed of a few dominant year classes; indeed, dominant year 

classes appear to be remarkably rare; even dominant decadal recruitment events appear to 

be rare. This is true for the four populations reviewed here, and would appear to be true 

for other North Atlantic populations reported in the literature (Steingrímsson & 

Thórarinsdóttir 1995, Ridgeway et al. 2012). Moreover and more unfortunately, the range 

of ages in a narrow size class (e.g., 5-mm) is large and the dispersion of ages within a 

narrow size class is rarely random, often being highly right-skewed, and typically 

differing substantively from even the abutting lower and higher size group. As a 

consequence, a large number of animals must be aged from each size group to support a 
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standard age-length key for a specific population and a large number of populations must 

be aged to characterize the regional metapopulation. These types of challenges are well 

known (e.g., MacDonald & Pitcher 1979, Mohn 2001, Stari et al. 2010), but ocean 

quahogs represent an extreme example of the common challenge of ageing sufficient 

numbers of animals to characterize the population demographic.  

Consequently, any age-dependent analysis of population dynamics requires a way 

to estimate age at length from a sparse dataset. In this study, we utilized an approach that 

assumed that the age distribution function as observed in a length class from a restricted 

set of aged animals, 20 in this case, was sufficient to define the age distribution function 

for the length class. We also assumed that the set of ages observed was a small subset of 

the sets of ages that might be obtained that remained true to that age distribution function. 

We tested this in several ways by focusing on a few length classes that contained the 

most non-random distribution of ages across the observed age range. 

For the Long Island and Southern New England populations, a comparison of the 

ages of the original 20 animals in the size class with the most unusual age distributions to 

that from a second set of 20 animals showed no significant differences in the metrics used 

to evaluate the age distribution. This lends credence to the argument that 20 animals 

sufficiently represent the age distribution within a 5-mm size class, although it does not 

adequately characterize all ages present within that size class within the population. The 

assumption follows that 20 animals also likely describes the age distribution sufficiently 

in age classes with smaller age ranges and more random age distributions. The same is 

true for the Georges Bank population (Chapter II). Whereas the significant difference 

between the age distributions of the original and resampled animals from the 5-mm size 
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class chosen for the New Jersey population was concerning, the two were sufficiently 

divergent as to show that such a difference was a highly unlikely outcome and the results 

of the Kolmogorov-Smirnov test revealed that the two sets of data from the 5-mm size 

class did not materially affect the final population age-frequency distribution. That is, the 

population age frequency using the original ages did not differ significantly from the one 

using the resampled ages. In summary, these analyses suggest that a sample size of 20 

animals sufficiently represents the age distribution within each 5-mm size class for the 

evaluation of general aspects of the age-frequency distribution, such as periods of 

curtailed recruitment, the presence of strong year classes, periods of population 

expansion, and the timing of initial colonization. Each of these can be estimated from this 

dataset at all four sites.  

Details, however, are likely not clearly revealed. Whereas 20 ocean quahogs per 

5-mm size class may accurately describe the age distribution, the number of new ages 

present in the second sample of 20 individuals (Table 9) affirms the postulate that many 

ages are present in any one 5-mm size class and that a large number of individuals would 

need to be aged to accurately identify the full number of ages present and to permit small-

scale differences in the degree to which certain ages are better represented than others to 

be distinguished. At all of these sites, not more than 25% of a second set of 20 animals 

were of an age identified in the earlier set of 20. Taking the 40 animals as a whole, 

duplicate ages occurred in no more than five cases in any of the four 5-mm size classes 

sampled twice and as few as one in the Long Island and two in the Georges Bank cases. 

Triplicates occurred only twice, both in the Southern New England dataset. 
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A further note is that the additional ages obtained in the second resampling but 

not observed in the first sampling filled in a gap in the original dataset in almost every 

case, and expanded the age range at the New Jersey site and marginally at the Long 

Island site. Thus, for example, the second resampling from New Jersey added additional 

animals in the younger fraction of the age range, as would be anticipated as the relatively 

younger ages are disproportionately abundant in nearly all 5-mm size classes. However, 

the first 20 animals exhibited a large gap in ages between 116 and 153. Fully nine of the 

20 resampled ages fell into this age gap. Similarly, for Southern New England, the 

second sampling showed a large age gap between 112 and 140. Six of 20 animals in the 

first sampling fell into this age gap. For the Georges Bank dataset (Chapter II), the first 

sample of 20 showed an age gap between 121 and 134. Six of 20 individuals in the 

resampling fell into this gap. By inference, age gaps in the datasets in most cases 

evidence under-sampling rather than recruitment lulls and, in fact, clear intimations of 

decadal or multidecadal hiatuses in recruitment or below average recruitment are rare in 

these datasets.  

Thus, the probability that the dataset presented here represents a complete survey 

of all ages present in the population is extremely low and subtle details showing, for 

example, variations in recruitment that might be anticipated by short-term climate cycles 

such as the North Atlantic Oscillation, are unlikely to be resolved. The primary source of 

error, however, is in the poor resolution of the long tail of old animals present in most 5-

mm size classes; these animals are relatively rare in the population and their presence 

very likely underestimates the full range of older ages in the population age frequencies.
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Age frequencies and population dynamics 

The rarity of old animals in the population suggests that animals older than the 

oldest animal aged may have been missed. However, the known long life span of ocean 

quahogs, our oldest animal being less than half the oldest age known (Schöne et al. 

2005c, Ridgway & Richardson 2011), and the low mortality rate suggest that older 

animals than the ones observed are indeed rare. By inference, the record of ages suggests 

that the ocean quahog populations of the U.S. continental shelf initially colonized the 

presently inhabited area 200-250 years BP.  

The two southern sites displayed the earliest inhabitation by ocean quahogs, 

beginning approximately 250 years ago in Long Island with evidence of colonization 220 

years ago in New Jersey.  Colonization of Southern New England seems to have begun 

approximately 170 years ago, and the earliest inhabitants of the Georges Bank population 

apparently became established about 200 years ago. Interestingly though, the populations 

at the northern sites began to expand fairly rapidly beginning in the late 1800s, and 

approached an asymptote presumed to be at carrying capacity within about 15 years in 

Southern New England and approximately 30 years on Georges Bank. At the southern 

sites, whereas ocean quahogs had been present longer than in the northeastern areas, the 

New Jersey population took nearly 80 years to approach carrying capacity although 

population expansion began much earlier, around 1835 and the Long Island population 

took about 40 years although initiation of the expansion began approximately 

contemporaneously with the Southern New England and Georges Bank populations.  

The extended population expansion recorded by the New Jersey population would 

be consistent with a population at the southern end of the range. For a species with a 
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circumboreal distribution, New Jersey, being situated dramatically farther south than is 

typical of the species’ range, is in an area presumably nudging the maximum high 

temperature tolerance of the species, which could have an effect on the filtration and 

ingestion rate of these animals (e.g., Hofmann et al. 2006, Flye-Sainte-Marie et al. 2007, 

Munroe et al. 2013). Increased periods of high bottom water temperatures might inhibit 

survival of newly settled individuals when compared to areas with a more consistently 

suitable temperature range. Additionally, the larval supply and subsequent recruitment 

may have been more limited if this population was farther from a source population. 

Furthermore, although consistently small numbers of older individuals were present in 

the Long Island population for about 130 years, that population did not exhibit rapid 

growth until the early 1900’s, a distinctly longer period at low abundance than observed 

for the two populations to the northeast, after which the population approached carrying 

capacity within about 25 years. 

As suggested in Chapter II, initial colonization by ocean quahogs co-occurred 

with the ending of the Little Ice Age, an epoch that concluded in the first half of the 19th 

century (Schöne et al. 2005b, Mann et al. 2009, Cronin et al. 2010). Moore et al. (2017) 

recorded significant warming trends in the northwest Atlantic Ocean beginning in the 

middle of the 19th century consistent with this climate change. Warming bottom water 

temperatures would have allowed colonization of ocean quahogs in areas that were 

previously too cold to permit survival of the species. This could explain why the oldest 

animals are found at the southern sites, as these regions should have warmed up before 

the more northern sites. Regardless, once the initial recruits began to inhabit the 

northeastern US continental shelf, the populations remained at low levels for an extended 
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period as is evident from the long tail in the population age frequency (Figure 13), a time 

span of nearly 150 years in Long Island, about 70 years on Georges Bank, and about 55 

years in Southern New England, and at very low levels off New Jersey, as indicated by 

the rarity of animals over the first 60 years of colonization.  

Like most bivalves, maturity in ocean quahogs is more clearly dependent upon 

length rather than age (Powell & Stanton 1985, Steingrímsson & Thórarinsdóttir 1995), 

with 50% of ocean quahogs reaching maturity at a shell length of about 60-mm in the 

mid-Atlantic (NEFSC 2017), similar to a report by Thórarinsdóttir and Jacobson (2005) 

of Icelandic populations reaching 50% maturity at 64-mm shell length. Ocean quahogs 

that recruited when these populations were initially established likely did not reach 

maturity for several decades following settlement due to slower growth expected in 

colder water, which is one possible cause of the time lag between the establishment of the 

populations and the rapid population growth. That is, only after many years would the 

newly established population be able to contribute to its own recruitment. From this 

perspective, the multidecadal gap in ages between about 180 and 215 years for the New 

Jersey dataset might suggest that a long tail is actually present in this population, but at 

an abundance not well recorded by this study’s sampling intensity. 

Oddly enough, the Long Island site apparently experienced colonization prior to 

the northern sites, yet the rapid population expansion occurred at the Georges Bank and 

Southern New England sites, prior to the expansion in Long Island. Considering the 

extended period of time (one to three months) that ocean quahog larvae can remain in the 

water column (Lutz et al. 1982, Mann 1985), the long-distance transport of larvae would 

be possible. Larval connectivity at mid-shelf where ocean quahogs are found is not well 
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documented. At shallower depths, net transport is west and south alongshore from New 

England to New Jersey with a larval retention gyre operating on Georges Bank (Zhang et 

al. 2015, Zhang et al. 2016) and with offshore transport occurring on the continental shelf 

south of Hudson Canyon, particularly in the fall.  Although larvae spawned in the south 

possibly could reach the Southern New England and Georges Bank sites, a more likely 

original larval source for colonization is from the northeast where populations have 

existed for extended periods of time (Dahlgren et al. 2000, Wanamaker et al. 2009). In 

fact, the fossil record for ocean quahogs dates at least back to 5000-8000 BP off the 

western coast of Greenland (Funder & Weidick 1991). Wanamaker et al. (2008) reported 

that ocean quahogs have been present in the Gulf of Maine since 1030 ± 78 AD.  

While speculative, one possible source population for the Mid-Atlantic 

colonization is documented by the presence of ocean quahogs in the northwest Atlantic 

Ocean for several hundred years prior to the establishment of the New Jersey and Long 

Island populations. The incongruity in this ready alternative is that the oldest animals in 

the present dataset came from the two southern sites. The fossil record of ocean quahogs 

in the Gulf of Maine suggests that the initial populations in the western Atlantic Ocean 

may have inhabited warmer, shallower waters, as the fossils were collected at a water 

depth of 38 m (Wanamaker et al. 2009) and Powell et al. (in press) recently have reported 

ocean quahog shells at shallower depths on Georges Bank than presently occupied by the 

living population. Thus, an alternative source population for the southwestern sites might 

be animals living further inshore than they do today. Regardless, explanation for the 

delayed response at the Long Island site between initial colonization and subsequent 

population expansion remains uncertain; nevertheless, the possibility that net larval 
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transport south out of the Long Island region may have restricted population expansion 

off Long Island cannot be discounted and would be consistent with a recent evaluation of 

surfclam connectivity in the Mid-Atlantic Bight (Zhang et al. 2016). 

Unexpectedly little evidence exists of strong year classes in this dataset. Two 

potential year classes are visible at the Long Island site both early in the population 

record, the first smaller year class occurring circa 1820, and the second larger year class 

occurring in approximately 1880. A vague indication exists of a possible year class in 

New Jersey that probably occurred circa 1845. In both cases, evidence for strong year 

classes if any only exists early on, prior to the population expansion, arguably during a 

time when the local population was not self-recruiting. As New Jersey and Long Island 

are the two most southern sites, it is conceivable that these populations were farther from 

the recruitment source of the early populations, which could explain the less consistent 

recruitment into these populations early in their history as compared to the two northern 

sites. Once population expansion occurred, substantial periods of low recruitment are 

almost nonexistent, with the only obvious case being the decadal trough in recruitment, 

perhaps not surprisingly, at the most southern site, New Jersey, from 1950-1965. 

Fishery implications 

Ocean quahogs support an East-coast commercial fishery that began circa 1967 

and expanded in the early 1980s. The majority of fishing effort from the start of the 

fishery in 1967 was off of Delmarva and southern New Jersey until the early 1990’s 

when ocean quahog landings peaked, after which the fishery began to shift northwards to 

the south of Long Island and Southern New England (NEFSC 2009). As commercial 

dredges are selective for animals approximately >80 mm, the fishery removes the larger, 
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older clams. Clams that were fully recruited to the fishery when it began have been fished 

for a long time, unlike the small clams that were unavailable to the dredge for some 

period of the last ~35 years. Thus, smaller clams may be overrepresented in the sampled 

populations compared to the larger clams that were available to the fishery for a longer 

period of time. Of the populations sampled, the New Jersey population would likely be 

the one most influenced by the fishery, as this region was a major focus area for the 

fishery for much of the last ~35 years, including the time period when commercial ocean 

quahog landings were highest (NEFSC 2009). Influence by the fishery on the population 

age structure may also be present in Long Island and to a much lesser extent in Southern 

New England.  

Several lines of evidence suggest that the fishery has not materially influenced the 

age frequencies reported herein. (1) The fishing mortality rate over the history of the 

fishery has never exceeded the natural mortality rate and, for most of the time, has been 

well below it (NEFSC 2009, NEFSC 2017a). That is, the fishery has had little impact on 

the stock. (2) The selfsame trends in the age frequencies observed at the three fished sites 

are also present in the Georges Bank populations, although this population has rarely 

been fished and, in fact, was closed to fishing over much of the historical fishery (NEFSC 

2009). Indeed, the US ocean quahog stock was considered to be at carrying capacity in 

the late 1960’s at the historic start of the ocean quahog fishery (NESFC 2009) and 

remains near that today (NEFSC 2017a). An asymptote in the age frequency after 

population expansion at each of the four sites is consistent with this interpretation. (3) 

The vast majority of animals of age 80 or higher were fully recruited to the fishery prior 

to its inception; thus, any fishing would have decremented this group of animals 
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equivalently. These animals are the primary contributors to the age frequencies reported 

herein, as ageing was restricted to animals ≥80 mm. Thus, we have not attempted to 

correct the age frequencies for bias in a possible over-representation of the youngest 

clams that grew into market size since the fishery became operational. It is unlikely that 

the fishery has substantively impacted the age frequencies, nor is it likely that the length 

frequencies have been truncated.  

Conclusions 

As described in Chapter II, the Georges Bank age-frequency distribution shares 

many similarities with the published age-frequency distributions for Iceland 

(Steingrímsson & Thórarinsdóttir 1995) and the Belfast Lough in Northern Ireland 

(Ridgeway et al. 2012). The age-frequency distributions for New Jersey, Long Island, and 

Southern New England also bear many similarities to that of Georges Bank, in that 

population levels remained low for a period of about 100 years beginning about 200-250 

years ago after which the population size grew rapidly over a few decades at all sites 

except New Jersey, whereafter the population increased in size more slowly 

(Steingrímsson & Thórarinsdóttir 1995, Ridgeway et al. 2012). Similarities between 

locations as distant as the New Jersey continental shelf and Ireland suggest that this mode 

of colonization and population expansion may be characteristic of ocean quahogs 

throughout the North Atlantic basin.  

The age-frequency distributions suggest that the living population of ocean 

quahogs record the entire history of colonization over a substantial portion of their 

present North Atlantic range. Setting aside recent non-native invasions (e.g., Crassostrea 

gigas – Troost 2010, Potamocorbula amurensis – Carlton et al. 1990), this species may 
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be the only marine species for which such a record exists and very likely the only native 

species. The characteristics of this colonization and possible biological explanations are 

as follows. (1) Initial colonization began towards the end or shortly after the end of the 

Little Ice Age. Abundances were low as might be anticipated by dependency on an 

external source for recruitment. Low mortality rates and a long life span permits 

representatives of these initial colonizers to remain present in the living population. Year 

classes, albeit small, were possibly more common than later, suggesting more sporadic 

recruitment events from an external source. Small sample sizes, however, limit 

confidence in this inference. (2) At some point, local reproduction began to contribute to 

the larval pool; likely this occurred many years following initial colonization due to the 

extended time to maturity. (3) Due to local reproduction or to environmental change, the 

population entered into a rapid expansion that, over a relatively brief period given the life 

history of the species, raised abundance to near carrying capacity. The population 

expansion is remarkably rapid given the extended life span of the species; however, the 

rapid expansion is consistent with the high recruitment potential of most bivalves due to 

their high annual fecundity. (4) Population expansion ceased when the population 

reached carrying capacity. Afterwards, recruitment remained sufficient to balance natural 

mortality and the population remained at carrying capacity for an extended period of 

time, rarely interrupted by extended periods of low recruitment. This suggests that ocean 

quahogs have recruited regularly, certainly more frequently than decadal, to these 

populations.  

Resiliency of the ocean quahog population of the U.S. East coast to fishing has 

been questioned due to the limited evidence for large recent recruitment events. The 
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population dynamics inferred from the age frequencies described here suggest that low 

recruitment is the anticipated result for a population near carrying capacity, whereas a 

much higher recruitment capacity typical of most bivalve species is well demonstrated by 

the rapid population expansion that occurred during earlier times as the population 

abundances rose to that level. Expansion of the range northward, however, which might 

be anticipated with continued warming of the North Atlantic, may require an extended 

period of time as time-to-maturity will likely limit the response time of a newly 

established population in developing local recruitment potential 
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CHAPTER IV – TWO-HUNDRED YEAR RECORD OF INCREASING GROWTH 

RATES 

Information from this chapter has been submitted for publication in the Journal of 

Experimental Marine Biology and Ecology. 

Pace, S. M., E. N. Powell & R. Mann. Submitted. Two-hundred year record of increasing 

growth rates for ocean quahogs (Arctica islandica) from the northwestern Atlantic 

Ocean. J. Exp. Mar. Biol. Ecol. 

Introduction 

With life spans capable of exceeding 500 years (Butler et al. 2013), the long life 

span and the sensitivity of ocean quahogs to interannual variations in the environment, 

particularly temperature, have supported the use of time series of growth as a temperature 

proxy to track long-term trends in climate (Schöne et al. 2003, Butler et al. 2010, Butler 

et al. 2013) and shorter term climate cycles (Schöne et al. 2005c, Butler et al. 2013, 

Lofmann & Schöne 2013, Beierlein et al. 2015). In addition to the importance of this 

clam as a benthic biomass dominant and its value in elucidating long-term trends in 

climate, the clam also supports a commercial fishery that provides clam meat for most 

commercial chowders. Indeed, a commercially valuable fishery for this species has 

existed in the U.S. since the late 1960’s (NEFSC 2009, 2017a). An essential element in 

the sustainable management of this fishery is information on growth rate, which controls 

the age at which animals reach a size that can be selected by the commercial dredge.  

The growth of ocean quahogs varies substantially throughout the lifetime of an 

individual, and proceeds through ontogeny and into old age in a manner that is unlike the 

growth process of most other bivalves. Juvenile ocean quahogs grow rapidly, displaying 
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near exponential growth until the onset of maturity, whereupon growth rate slows, yet 

growth continues throughout the lifetime of the individual. Although numerous authors 

have applied a von-Bertalanffy growth model to this species (e.g., Brey et al. 1990, Lewis 

et al. 2001, Kilada et al. 2007), the continuation of growth into old age contradicts the 

basic assumption of asymptotic growth in this model. Chapter II showed that an 

alternative growth model specified by Tanaka (Tanaka 1982, 1988) fits this growth 

dynamic by combining both the near exponential growth of the juvenile phase with the 

continuous indeterminate growth of the adult into old age.  

Geographical differences in growth rates are also well documented (Murawaski 

1982, Brey et al. 1990, NEFSC 1995, Lewis et al. 2001, Thórarinsdóttir & Jacobson 

2005, Kilada et al. 2007, Ridgeway et al. 2012). Witbaard et al. (1999) suggest that the 

regional differences in growth rates are predominantly due to differences in primary 

production, but it is certain that a combination of several environmental factors contribute 

to the varying growth rates throughout the range of the stock and, indeed, Marali et al. 

(2015), Mette et al. (2016), Reynolds et al. (2017) and others have shown that variations 

in growth of individual animals over their life span can be explained in part by changes in 

sea surface, and by inference, bottom water temperatures. Additionally, sex-related 

differences in growth rate have been described (Ropes et al. 1984, Steingrímsson & 

Thórarinsdóttir 1995). Regardless of the mechanism behind the variable growth rates of 

this species, the result is an inability to create a single age-length key for the species, as 

the high variability in growth rates routinely observed throughout the range of the stock 

produces not only regional differences in growth rate, but also differential growth rates 

within each local populations such that a wide range in age at length is found throughout 
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most of the post-juvenile size range. Thus, as described in Chapters I and II, any age-at-

length key that might be developed from a local population likely would result in 

inaccurate age estimates for more distant populations of ocean quahogs. 

Characteristics of age and growth of various ocean quahog populations from the 

U.S. mid-Atlantic continental shelf have been described (Murawaski 1982, NEFSC 1996, 

Lewis et al. 2001), but the number and geographical scope of these studies is limited. In 

addition, variations in growth as a function of environmental change remain undescribed 

for this species in the northwest Atlantic, though one anticipates that such variations 

should exist, as the species is found at latitudes farther south off the U.S. coastline than 

elsewhere in its boreal circumambience (Merrill & Ropes 1969, Dahlgren et al. 2000, for 

further documentation of the North Atlantic range, see Brey et al. 1990, Rowell et al. 

1990, Witbaard et al. 1999, Ragnarsson & Thórarinsdóttir 2002, Butler et al. 2009). Thus 

a need for understanding the length-at-age relationships throughout the range of the U.S. 

stock exists to inform fishery management, provide a basis for age-structured stock 

assessment models, and also to elucidate regional shifts in ocean climate over the last few 

centuries. The objective of this study was to investigate growth rates of selected 

individuals from four ocean quahog populations covering much of the mid-Atlantic range 

of the stock through the analysis of annual growth increments. To do this, growth 

increment time series for animals covering the age range observed in the four populations 

were used to determine the age at 60, 80, and 90 mm, the average growth rates from birth 

to 60 mm, 60 to 80 mm, 80 to 90 mm, and post-90 mm. These data were evaluated as a 

function of birth year, within and between populations to elucidate regional trends in 

growth and uncover time dependent trends in growth, should they exist. 
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Methods 

Sample collection and preparation 

Ocean quahog samples were collected from New Jersey and Long Island from the 

F/V Christie in March 2015 and from Southern New England and Georges Bank from the 

F/V Pursuit in May 2015 using hydraulic dredges (Figure 8). Clams were arbitrarily 

selected from each 5-mm size bin starting with 80 mm through the maximum shell length 

(anterior-posterior) collected at each site. Clams were sectioned along the height axis 

(dorsal-ventral) using a modified commercial tile saw. Sectioned clams were ground and 

polished on a wet polishing wheel on 400-μm and 600-μm sandpaper grit, followed by 6-

μm and 1-μm diamond suspensions on polishing pads. Additional details are provided in 

Chapter II. 

Images of the hinge region of all sectioned clams were captured using either a 

high definition Olympus DP73 digital microscope camera using the Olympus cellSens 

microscope imaging software or a high definition Olympus America microscope camera 

using Olympus MicroSuite software. Many photographs of the hinge region were 

required to produce a continuous image of the hinge at high magnification. Each 

individual image was automatically stitched together by the cellSens microscope imaging 

software. Hinge photographs taken using the Olympus MicroSuite software were stitched 

together using the open source software ImageJ (FIJI) to create a complete image of the 

hinge section. Through the use of the Object J plugin in ImageJ, annual growth lines in 

the hinge region of each individual were annotated (Figure 9) and the growth increment 

widths (distance between consecutive annual growth lines) measured in units of pixels. 
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The total shell length (mm) of an individual divided by the cumulative sum of all growth 

increment widths (pixels) provided a conversion of pixels into mm.  

Correlation analysis 

Age estimates and measurements of growth increment widths were recorded for 

205 individuals throughout the Mid-Atlantic [New Jersey (80), Long Island (65), Georges 

Bank (35), southern New England (25)]. Using this growth increment information, the 

age at which individuals reached 80 mm was compared to the year each individual was 

born. This shell length was initially selected because 80 mm is the size at which animals 

are nearly fully selected to the commercial dredge (NEFSC 2017a); thus it is a size of 

interest to the fishery and management of the species. To investigate whether any trends 

relating to birth year were specific to 80 mm, or if they held true throughout a larger size 

range, the ages at which animals reached 60- and 90-mm in shell length were also 

compared to the birth year of each individual. The 60-mm size was chosen because in 

approximates size a maturity (Rowell et al. 1990, Thórarinsdóttir and Jacobson 2005, 

NEFSC 2017a). The 90-mm size is a convenient size well within the adult age span, but 

under the maximum size obtained at each of the four sites. A Pearson’s correlation test 

was used to test the strength of correlations between birth year and these variables at each 

site. Additional Pearson’s correlation tests were used to test for correlations between birth 

year and shell length. Specifically, the variables examined were the average growth rate 

from birth to 60 mm, from 60 to 80 mm, from 80 to 90 mm, and the average growth rate 

from 90 mm to size at time of collection (Equations 1-4) at each of the four sites. 

Hereafter, the former three average growth rates will be referenced by the upper size 

boundary, e.g., average growth rate from birth to 60 mm will be referred to as growth rate 
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to 60 mm. The final growth increment from 90 mm to size at time of collection will be 

referred to as post-90 mm.  

average growth rate to 60 mm =  
age at 60 mm 

60 mm
      (5) 

average growth rate to 80 mm =  
age at 80 mm−age at 60 mm 

20 mm
    (6) 

average growth rate to 90 mm =  
age at 90 mm−age at 80 mm 

10 mm
   (7) 

average growth rate post − 90 mm =  
terminal age−age at 90 mm 

total shell length−90 mm
  (8) 

ANCOVA and regression analysis 

Analyses of covariance and post-hoc least squares means tests were used to 

identify the relationship between the age at which animals reached each size (60, 80, 90 

mm) and the intervening growth rates as a function of birth year and location. Each 

ANCOVA retained the interaction term if significant (α ≤ 0.05). We use the term 

ANCOVA because birth year is a discrete variable in this analysis rather than a main 

effect and thus serves as a covariate. 

Multiple linear regression using the maximum R-square improvement method 

(Freund and Littell 2000) was used to examine the ability of growth-dependent variables 

to predict the birth year of an individual at each site. Shell length and average growth rate 

to 60 mm, 80 mm, 90 mm, and post-90 mm were used as independent variables. 

Significant regression models indicate that the growth process has varied over time at a 

site with sufficient directionality that the growth dynamics of an individual are in part 

determined by the year of birth. For a given age, the size at time of collection for an 

ocean quahog will be determined by the time required to reach maturity and the rate of 

growth as an adult. To further assess the importance of birth year, and to evaluate the 
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relative importance of growth rate to maturity relative to adult growth, two additional 

regression models were investigated. The first limited the independent variables to those 

associated only with early growth rates, namely the average growth rate to 60 mm and to 

80 mm. A second employed growth rates to 60 mm, 80 mm, and 90 mm. Animals that 

were less than 90 mm at time of collection perforce were omitted from this model. Many, 

but not all, of these animals were relatively young. Thus, this last regression model was 

biased in favor of animals born earlier in the time history of the population 

Results 

Correlation analysis 

Plots of age at 60, 80, and 90 mm versus birth year are shown in Figures 14-16. A 

significant negative Pearson’s correlation exists between birth year and age at 60 mm (r = 

-0.567, p <0.0001), 80 mm (r = 0.592, p < 0.0001), and 90 mm (r = -0.396, p = 0.0003) at 

the New Jersey site. The same was true at the Long Island site [60 mm (r = -0.745, p 

<0.0001); 80 mm (r = -0.799, p <0.0001); 90 mm (r = -0.634, p <0.0001)]; that is, at the 

two southern sites, as birth year increased, the age at which individuals reached 60, 80, 

and 90 mm decreased. Thus older animals were characterized by slower growth rates to 

an equivalent size, including juvenile and adult growth. In addition, the correlations were 

consistently strongest at the Long Island site. 

In contrast, at the Georges Bank site, the correlation between birth year and age at 

60 mm or 80 mm was not significant, but a significant negative correlation existed 

between birth year and age at 90 mm (r = -0.429, p = 0.0102).  Similarly, at the Southern 

New England site, the correlation between birth year and age at 60 mm or 80 mm was not 

significant, whereas a significant negative correlation was observed at 90 mm (r = -0.496, 
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p = 0.0116). Results of these correlation tests suggest that ocean quahogs born more 

recently grew at a faster rate than older clams at the two southern sites, whereas at the 

two northern sites, the year that individuals were born had little effect on early growth 

rates and thus little effect on the age at which animals reached 60 or 80 mm. Growth rates 

of older adults, however, had a significant correlation with birth year, as shown by the 

growth rate between 80 and 90 mm and the correlation coefficients were stronger for the 

two northeastern sites than for the most southern site off New Jersey, but still lower than 

for the Long Island site.  

At all four sites, a significant correlation existed between birth year and total shell 

length [New Jersey (r = -0.790, p < 0.0001, Long Island (r= -0.789, p < 0.0001), Georges 

Bank (r = -0.789, p = 0.601, p = 0.0001), Southern New England (r = -0.613, p = 0.001)], 

indicating that, in general, larger clams tended to be older. That is, the change in growth 

rates observed with birth year were not sufficiently intense that the younger clams, born 

more recently and growing at higher rates, were not larger at the time of collection than 

the older clams, born earlier and growing at slower rates at the same time in their life 

history. 

 Plots of average growth rate to 60, 80, 90, and post-90 mm versus birth year are 

shown in Figures 17-20. At the New Jersey site, significant positive correlations exist 

between birth year and growth rates to 60 mm (r = 0.539, p < 0.0001), 80 mm (r = 0.602, 

p < 0.0001), and 90 mm (r = 0.401, p = 0.0002), and post-90 mm (r = 0.500, p < 0.0001). 

The same was true at the Long Island site [growth rate to 60 mm (r = 0.768, p <0.0001); 

80 mm (r = 0.516, p <0.0001); 90 mm (r = .522, p <0.0001); and post-90 mm (r = 0.516, 

p <0.0001)], thus, at these two sites animals born more recently were growing at faster 
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rates in each of these phases of growth compared to animals born many decades 

previously, explaining the presence of a decreasing age at 60-90 mm as birth year 

increased. The trend is a product of lifetime growth at these two southern sites rather 

than, for example, differential growth rate at one specific life stage. 

 At the Georges Bank site, the only growth phase with a growth rate correlated 

with birth year was growth rate post-90 mm (r = 0.562, p = 0.0004). At the Southern New 

England site, whereas average growth rates to 60 and 80 mm were not significantly 

correlated with birth year, the growth rate to 90 mm (r = 0.490, p = 0.0129) and post-90 

mm (r = 0.561, p = 0.0035) were both significantly correlated with birth year. These 

correlations explain earlier results in the comparison of birth year to age at which animals 

reach 90 mm, in that growth rates only appear to increase with more recent birth years 

after animals reach 90 mm in size at the Georges Bank site, whereas growth rates began 

to increase after animals reached >80 mm in length at the Southern New England site, 

resulting in the significant negative correlation between age at 90 mm and birth year at 

the two northern sites. Of note is the strong tendency for early growth rates to be less 

affected by birth year at higher latitudes, with an increasing restriction of this differential 

to increasingly older animals at progressively more northeastern locations. 

ANCOVA 

For age at 60 mm, the main effect of location (F = 5.87, p = 0.0007), the covariate 

birth year (F = 16.65, p < 0.0001), and the interaction term (F = 5.71, p = 0.0009) were 

all significant. Results of pairwise post-hoc comparisons indicate that clams from New 

Jersey were significantly younger at 60 mm than clams from the other three sites which 

were not significantly different. For age at 80 mm, the main effect of location (F = 5.87, p 
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= 0.0020), covariate birth year (F = 16.65, p < 0.0001), and the interaction term (F = 5.71, 

p = 0.0024) also were all significant. At 80 mm, clams from New Jersey were 

significantly younger than clams from all other sites, and clams from Southern New 

England were significantly older than clams from the three other sites. For age at 90 mm, 

the main effect of location (F = 25.71, p < 0.0001) and the covariate birth year (F = 77.83 

p < 0.0001) remained significant, but the interaction term was no longer so. A posteriori 

comparisons indicate that animals from New Jersey and Georges Bank were significantly 

younger at 90 mm than clams at the Long Island and Southern New England sites, but no 

significant differences in age at 90 mm existed between New Jersey and Georges Bank 

clams, nor did a significant difference exist between Long Island and Southern New 

England clams. Plots of the least squares means values and associated 95% confidence 

intervals for each site are shown in Figure 21. 

ANCOVAs using average growth rate to 60 mm and from 60 to 80 mm as 

dependent variables corroborate the results of the ANCOVAs with dependent variables of 

age at 60 mm and 80 mm. Results of the ANCOVA using growth rate from 80 to 90 mm 

as the dependent variable indicate show a significant main effect of location and a 

significant birth year covariate [location (F= 22.80, p < 0.0001); birth year (F = 39.54, p 

< 0.0001)]. A posteriori comparisons indicate that ocean quahogs from New Jersey grew 

significantly faster from 80 to 90 mm than the other three sites, and clams from Southern 

New England grew significantly slower than at all other sites. The average growth rate 

post-90 mm was also significantly influenced by location and birth year [location (F= 

23.48, p < 0.0001); birth year (F = 39.54, p < 0.0001)]. The interaction term was not 

significant. Results of a posteriori comparisons suggest that clams from New Jersey had 
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the fastest average growth rate at larger sizes than the three other sites, whereas clams 

from Southern New England grew significantly slower than clams from both New Jersey 

and Long Island. Plots of the least squares means values and associated 95% confidence 

intervals for growth rates to each size are shown in Figure 22. 

Regression analysis 

Multiple regression models for the New Jersey and Long Island sites suggest that 

the strongest predictors of birth year were length and average growth rate to 80 and 90 

mm. These variables explained about 91% of the variation in predicting birth year at both 

sites (Table 21). At the Georges Bank and Southern New England sites, length, growth 

rate to 80 mm, and growth rate post-90 mm explained approximately 86% and 91% of the 

variability respectively. These results suggest that the ability to predict birth year at the 

two northern sites depends more on growth rates at larger sizes in addition to the total 

length of an individual, whereas the average growth rates from 60 to 90 mm in addition 

to the length are better predictors of birth year at the New Jersey and Long Island sites. 

These results recapitulate earlier trends exposed by Pearson correlations and ANCOVA. 

Figure 23 shows the observed versus predicted birth year generated by the best three-

variable model at each site. 

Table 22 shows the results of the regressions to predict birth year for each site 

using only average growth rates to 60 and 80 mm (Figure 24), and average growth rates 

to 60, 80, and 90 mm (Figure 25). In the former, using only growth rates to 60 and 80 

mm to predict birth year, significant regressions were produced for the New Jersey and 

Long Island locations only. Although significant, early growth rates only accounted for 

about 39% of the variation at the New Jersey site, but a higher 58.6% of the variation at 



 

67 

the Long Island site. Nevertheless, the regression analysis indicates that a significant 

relationship does exist between birth year and these early growth rates at these two sites. 

In contrast, the two-variable models for Georges Bank and Southern New England not 

only were non-significant, but also lacked any ability to accurately predict birth year, as 

indicated by the very low R-square values.  

The addition of average growth rate from 80 to 90 mm somewhat improves the 

Long Island model, increasing the R-square by 0.13. In the New Jersey model, the 

inclusion of this variable marginally diminishes the total variance explaining birth year, 

though this is likely due to the removal of animals <90 mm in shell length from the 

model. The regressions for both the Long Island and New Jersey models remained 

significant, however. At the Southern New England site, the addition of this third variable 

results in a regression model accounting for about 51% of the variation in predicting birth 

year and a significant correlation, whereas the addition of this variable only modestly 

improves the R-square value for Georges Bank and the correlation remains non-

significant. These analyses suggest that the inclusion of growth rate from 80 to 90 mm 

results in a reasonable ability to predict birth year at three of the four locations, excluding 

only Georges Bank, which is the most northern site.  

Discussion 

The relationship of growth rate and birth year 

The variable growth rates of ocean quahogs to a shell length of 80-mm throughout 

the range of this commercially valuable species has important implications for fishery 

management, as this is the size at which clams are nearly fully selected to the commercial 

dredge. Based on Figure 15, clams in New Jersey and Long Island are reaching a size that 
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is available to the commercial dredge typically between 10 to 20 years earlier than clams 

from the two more northeastern areas. Consider also that growth rates vary on decadal 

and longer time scales at the New Jersey and Long Island sites, with clams born more 

recently (e.g., 1960) reaching lengths of 80 mm at younger ages (e.g., average age of 

about 30 years in New Jersey and about 41 years in Long Island) than clams that 

recruited prior to 1900 (e.g., average age of about 49 years in New Jersey and 75 years in 

Long Island). As concerns exist about the ability of any long-lived species to recover in a 

reasonable amount of time should overfishing occur, this information suggests that the 

southern portion of the stock has higher resilience than the more northern portion and that 

this resiliency has increased substantively over time. Moreover, management based upon 

growth rates for the stock as a whole would gravely underestimate the dynamics of the 

population anticipated for future years at least at these two more southern sites. 

At the two northern sites, the significant correlation between birth year and age at 

90-mm, as well as the average growth rate for animals exceeding 90 mm (dlen in Table 

21, Figure 20), is not entirely surprising, as a strong correlation exists between an 

individual’s total shell length and the year the animal was born. The relationship between 

average growth rate for animals exceeding 90 mm and birth year would be anticipated, as 

ocean quahogs continue to grow as long as they are alive, so older animals should 

generally grow to a larger size than younger animals that have not had as much time to 

grow, and the amount of time that has passed between the time the animal reached 90 

mm and the date of collection, being the denominator, will substantively influence the 

metric. This was supported in the regression analyses, as total shell length was the 

variable most strongly correlated with birth year at all four locations (Table 21). This 
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likely explains why a significant relationship between birth year and average growth rate 

post-90 mm exists at the Southern New England and Georges Bank sites, but no 

relationship exists for the growth rates at 60 and 80 mm, as a multiple regression 

predicting birth year from just these two metrics has no predictive power (Table 22). 

However, one cannot discount that the existence of this relationship with birth year at 

larger sizes may also be due to increasing water temperatures, which may have resulted 

in increased growth rates at older ages for ocean quahogs born long ago that grew slower 

at younger ages while living in a cooler environment. The growth rate from 80 to 90 mm 

may be instructive in this case. The correlation is significant for Southern New England 

(Figure 19), and inclusion of the metric in a regression model provides considerably 

improved explanatory power, though still weak in comparison to that of the two southern 

sites (Table 22, Figure 25).  

Despite relatively small R-square values, examination of the significant regression 

produced using only early growth rates (Figure 24) suggests that the two-parameter 

model provides a reasonably accurate prediction of birth year at the New Jersey and Long 

Island sites. If growth rates early in an individual’s life had not varied over time, 

restriction of regression analysis to the use only of early growth rates should result in an 

inability to predict birth year. The converse being true validates the inference seen in the 

correlation test results that the signal of time-dependent changes in early growth rates at 

the two southern sites was sufficiently strong to provide a reasonable estimate of birth 

year just from these metrics. The lower R-square value at the New Jersey site in 

comparison to the Long Island site could be a consequence of the fact that this population 

is situated closest to the southern end of the species’ range, where higher intra-decadal 
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climate variability can be anticipated. Such variability would insert increased small-

temporal-scale variation in growth rates, which would reduce the strength of the 

correlation while retaining a strong long-term temporal signal. The Long Island site, 

being north of Hudson Canyon, is in a distinctly different oceanographic regime less 

influenced by the vagaries of the Gulf Stream’s influence on the continental shelf and the 

degree of southerly intrusion of the cold pool that permits ocean quahogs to survive at 

latitudes unusually far south for a boreal species (for more on the cold pool, see Bignami 

& Hopkins 2003, Castelao et al. 2010, Lentz 2017; for more on the Hudson Canyon as an 

oceanic barrier, compare NEFSC 2017a, b; see also Lucey & Nye 2010; Zhang et al. 

2015). Lesser intra-decadal climate variability may explain why of the two southern sites, 

the Long Island site had a better model fit than New Jersey, when the population at both 

sites responded relatively similarly to longer-term changes in oceanic climate. 

Conversely, the Georges Bank and Southern New England sites lack a significant 

regression predicting birth year from only early growth rate variables (Table 22); the 

regression fails to provide a discernable correlation between observed and predicted birth 

year (Figure 24). The modest predictive capacity introduced by adding the 90-mm growth 

rate variable to the regression for the Southern New England site emphasizes a strong 

southwest to northeast trend in the long-term influence of climate change on ocean 

quahog populations in this region earlier considered in Chapter III At the southern 

extreme, variation in growth rate over time exists in all phases of ocean quahog life, 

whereas on Georges Bank, little evidence exists for any differential in growth rate over 

the last ~200 years.  
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Results of the ANCOVAs and post-hoc least squares means tests indicate that 

clams from New Jersey were significantly younger than all other sites when they reached 

60 and 80 mm, and significantly younger than clams from Long Island and Southern New 

England when they reached 90 mm. At 90 mm, clams from Georges Bank were also 

significantly younger than clams from Long Island and Southern New England. 

Additionally, ocean quahogs from Southern New England were significantly older than 

those from the other three sites at 80 mm. This is best seen in Figure 15 where clams born 

in New Jersey reached 80 mm at a younger age consistently across all birth years in 

comparison to the other sites.  

Ocean quahogs from New Jersey also had significantly faster average growth 

rates to each size than all other sites. These tests included birth year as a covariate; that is, 

growth rates were inherently faster at the southern sites regardless of the effect of birth 

year on growth rate. This is best seen in Figure 18 where clams born in New Jersey grew 

at higher rates consistently across all birth years in comparison to the other sites. Clams 

from Southern New England grew significantly slower than those from the three other 

sites between 60 and 80 mm and 80 to 90 mm, whereas these animals only grew 

significantly slower than clams from New Jersey and Long Island post-90 mm.  

Interestingly, Long Island and Georges Bank tend to be paired in the results of the 

post-hoc tests (Figures 21-22), as the only variable that clams from these two sites 

significantly differed in was age at 90 mm, yet these two sites displayed little difference 

in growth rate from 80 to 90 mm. Additionally, although ocean quahogs from Georges 

Bank were significantly older in age at 90 mm than those from Southern New England, 

clams post-90 mm exhibited no differences in growth rates at these two sites. Also of 
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note is that no interaction effects between birth year and location were detected at either 

the age of 90 mm, growth rates from 80 to 90 mm or growth rates post-90 mm, 

suggesting that at larger sizes, the effect of birth year was similar across all locations. 

Perhaps the strong correlation between shell length and birth year evident at all sites 

overrode the regional changes in growth rate with birth year noted at earlier life stages; 

alternatively, the inherently more modest growth rates of the adults may have limited the 

influence of changing environmental conditions at the southern sites. 

Origin of growth rate variation 

Growth rates of ocean quahogs are known to be variable throughout the species 

range. Table 23 reports the parameters of the von Bertalanffy growth model for ocean 

quahogs from various studies, including parameters from the five oldest clams from the 

New Jersey, Long Island, and Southern New England sites in this study. Although this 

growth model has important weaknesses for this species as described in Chapter II, its 

common use provides an opportunity for comparison. Evidence presented in this study, 

however, constrains comparisons on geographic scales or even site to site. Growth rates 

vary between animals born at different times and, thus, parameter values for growth 

models, such as Brody’s k, will also vary. Hence, the variation in growth rates between 

the populations summarized in Table 23 may be a result of the limited size and age 

ranges of the sampled animals, and not necessarily representative of the larger age range 

of the species at the various sites. For example, at Georges Bank, Lewis et al. (2001) 

estimated the age of only seven animals to be >40 years, whereas no animals younger 

than 54 years were sampled by for the Georges Bank population in Chapter II. Almost no 

overlap exists in the estimated ages of sampled individuals in these two studies. Whether 
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this is the cause of the difference between the estimated growth parameters for Georges 

Bank between the two studies is unclear, but considering the rapid, essentially 

exponential growth of juvenile ocean quahogs compared to the very slow, continuous 

growth of older individuals, such a possibility cannot be excluded.  

Differences in the size of ocean quahogs that were aged also likely had an 

influence on the varying growth rates throughout the species range. Murawski et al. 

(1982) sampled animals <60 mm from Long Island. Kilda et al. (2007) estimated the age 

of animals <86 mm. The Georges Bank population from Chapter II focused only on 

animals ≥80 mm. In our study, substantive variation in growth model parameters can be 

anticipated depending on the birth year of the animal at the New Jersey and Long Island 

sites, and perhaps also at the Southern New England site. For the purpose of comparison 

to the study using ocean quahogs from Georges Bank in Chapter II, the growth of the five 

oldest clams from each site was modeled using the von Bertalanffy growth equation. Had 

the growth of younger clams been modeled instead, parameter values likely would have 

differed substantially.  

Additionally, various methods were used to age the animals in the studies 

summarized in Table 23, some of which can produce less accurate age estimates than 

other methods, which would affect the resulting growth curves. In general then, the 

uniqueness of ocean quahog growth and the sensitivity to climate change due to the long 

life span of the species, which exceeds the cycle period of commonly studied climate 

cycles (e.g., ENSO, NAO, AMO – Sutton & Hodson 2003, Soniat et al. 2009, Nye et al. 

2014) limits comparability of growth parameters. In fact, determining a population-level 

growth model depends upon variation in growth being a product of random variation 
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between growth rates within and between cohorts, rather than directional change. That 

changing environmental conditions can modify growth model parameters within the time 

span of the life of a long-lived species is already well described for Atlantic surfclams, 

Spisula solidissima (Munroe et al. 2016, Chute et al. 2016) and other bivalve species 

(Brey et al. 2011). The much longer life span for ocean quahogs assures that any 

population with animals living through periods of climate change will be composed of 

animals with varying growth parameters, making a population estimate potentially 

illusory and certainly limiting between-population comparisons. 

Temperature is a primary determinant of growth in bivalves, being a strong 

effector of filtration and ingestion rate, respiration rate, and gametogenesis (e.g., 

Hofmann et al. 2006, Flye-Sainte-Marie et al. 2007, Munroe et al. 2013). Environmental 

factors such as mean annual temperature and food availability (e.g., Taylor & Brand 

1975b, Witbaard 1996, Begum et al. 2009, Ballesta-Artero et al. 2017) likely have an 

effect on growth rates throughout the range of this species. These factors may also 

explain the large disparity in maximum size of individuals at different sites; for example, 

the largest ocean quahog retrieved from New Jersey was 125-mm in shell length, whereas 

at the Southern New England site, the largest clam observed was only 108-mm, with only 

six individuals larger ≥105-mm encountered in the population sample. Furthermore, the 

age of animals at various sizes differed between sites, with the youngest ocean quahogs at 

each length typically from the New Jersey site, and the oldest typically belonging to 

Southern New England. These differences were evident in the correlation tests and 

confirmed in regression and ANCOVA analysis. As the most southern sampling site, the 
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New Jersey site probably has had the warmest mean annual bottom temperatures, which 

could facilitate rapid growth, as well as growth to larger size maxima.  

However, studies at different locations throughout the species range suggest that 

local temperature typically explains only about 10-30% of interannual shell growth 

variability (Schöne et al. 2003, Butler et al. 2010, Butler et al. 2013, but see evidence for 

even higher explanatory power provided by Marali & Schöne 2015, Reynolds et al. 

2017). Although this degree of explanatory power seems small, in all likelihood it 

identifies the key parameter leading to differential growth rates observed by these authors 

and identified in this study. The afore-referenced studies have used a variety of sea water 

temperatures as a proxy, including sea surface temperature, mean seawater temperature 

taken from a range of depths, and bottom water temperature. Bottom water temperature is 

the proximal temperature signal and the role of temperature in yearly growth is a complex 

interplay between age, size, and the seasonal temperature signal. Moreover, temperature 

also has an effect on the length of the growing season (Schöne et al. 2005a) and on food 

supply, both of which can influence temporal trajectories of population metrics (system 

memories - see Soniat et al. 1998) on as yet indeterminate, but multi-year, time scales. 

Accordingly, temperature can directly and indirectly result in differences in growth rates 

throughout the species range. Such variations would reduce the explanatory value of any 

single temperature proxy, even though much of the differentials in growth were 

ultimately a product of differences in the local temperature time series.  

 Furthermore, the northwest Atlantic continental shelf, in particular the New York 

Bight and Georges Bank, are among the most productive regions in the world (O’Reilly 

& Busch 1984); accordingly, differences in primary production throughout the Mid-
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Atlantic may help explain the differences in growth between the four sample populations 

in this study. According to a report by Witbaard et al. (1999) in a study in the North Sea, 

primary productivity was considered to be the most important determinant of growth rate. 

Similarly, Lewis et al. (2001) suggested that the fast growth of ocean quahogs from 

Georges Bank was likely a result of the high productivity in the Georges Bank region. 

Perhaps this may help elucidate why in this study, animals from Georges Bank had 

similar ages-at-size, growth rates, and maximum observed shell length as animals from 

Long Island. Possibly, changes in temperature have resulted in the changing relationship 

between birth year and age-at-size and growth rate at the Long Island site, whereas at 

Georges Bank, the growth rates similar to those observed in Long Island may be a due to 

the fact that Georges Bank is and has likely been a more productive region over the 

histories of these populations. What is clear is that, despite a range of studies on the 

physiology and behavior of this species (e.g., Taylor & Brand 1975b, Mann 1982, 

Oeschger & Storey 1993, Begum et al. 2009), we still do not have a physiological model 

that can accurately recapitulate the growth trajectory of this species in the way that is 

feasible for many other bivalves (see earlier references). 

One important unknown is the influence of ocean quahog density on growth rate. 

Dense populations of bivalves are known to compete for food, thereby limiting growth 

rate (Powell et al. 1995, Fréchette & Daigle 2002, Freitas et al. 2009). Ocean quahogs are 

considered to be near carrying capacity throughout their U.S. range today (NEFSC 

2017a) and this has likely been true through over half of the population’s history since 

initial colonization (Chapter II). Thus, some influence of population density on growth 

rates might be anticipated. Evidence does not support such an influence, however. 
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Lowest growth rates are recorded from New Jersey and Long Island early in the 

population’s history when population densities were likely much lower (Chapter II) and 

increasing population density on Georges Bank over the last 100+ years has not had any 

discernable influence on growth rates early or late in life. The fishing mortality rate has 

been well below the natural mortality rate over the history of the fishery (NEFSC 2017a) 

and the animals supporting the correlations between birth year and growth rate were 

nearly all born and grow to market size prior to the inception of the fishery, accordingly, 

the influence of changes in population density is an unlikely factor influencing the 

variations in growth rate as a function of birth year reported here. 

Conclusions 

Interpreting temperature effects on growth rates of ocean quahogs throughout the 

history of the population is infeasible, as bottom water temperature records do not extend 

back to the time when colonization by this species began in the northwest Atlantic 

(Hulme & Jones 1994, Hanna et al. 2004). Chapter II suggested that initial ocean quahog 

colonization on the continental shelf of the U.S. east coast co-occurred with the ending of 

the Little Ice Age, as warming bottom water temperatures would have permitted 

colonization by ocean quahogs in areas previously unsuitable for survival due to colder 

temperatures. The timing of this colonization coincides with a report by Moore et al. 

(2017), which presented evidence of significant a warming trend in the northwest 

Atlantic Ocean beginning during the middle of the 19th century, the time period 

concurrent with the end of the Little Ice Age (Schöne et al. 2005b, Mann et al. 2009, 

Cronin et al. 2010). Moore et al. (2017) show this warming trend continuing through to 

the present time. The warming of the northwest Atlantic may explain the significant 
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correlation between birth year and the age at which individuals reach 60, 80, and 90 mm 

in shell length at the New Jersey and Long Island sites, as these two sites are closer to the 

southern end of the species range than the Georges Bank and Southern New England 

populations. Increased bottom water temperatures could facilitate faster growth directly 

through higher filtration rates or indirectly through increased food supply, which may 

explain why ocean quahogs born more recently are growing faster than those born long 

ago. Birth year had little influence on the age-at-size at the two northern sites, however, 

with the modest exception of clams 90 mm in length. As water temperatures continue to 

increase, it is possible that changing growth rates will become evident at smaller sizes in 

future decades within the Georges Bank and Southern New England populations. 

Nevertheless, the Moore et al. (2017) temperature proxy comes from the Labrador Sea, 

well north of Georges Bank, so the minor or absent temperature signal in the Southern 

New England and Georges Bank populations would seem to be unexpected. 

Reconstructed bottom water temperatures from 1875-1983 using A. islandica specimens 

from Georges Bank (Marsh et al. 1999) confirm the absence of a signal of increasing 

temperatures on Georges Bank. 

Regardless of the mechanism, growth rates of ocean quahogs from the New 

Jersey and Long Island sites have clearly increased through time, with the age at which 

animals reaching 60, 80, and 90 mm decreasing as birth years advanced to recent years. 

Correspondingly, the growth rates to 60, 80, 90, and post-90 mm were all negatively 

correlated with birth year; that is, younger clams grew significantly faster than older 

clams at a comparable size born decades previously. This relationship was only evident at 

the age at which animals reached 90 mm at the Georges Bank and Southern New England 
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site. This has important implications for fishery management, as ocean quahogs are 

becoming available to the commercial dredge in the southwestern region of the Mid-

Atlantic Bight faster than they have in the past. These results also pose interesting 

questions on the mechanism behind the spatially and temporally variable growth rates of 

ocean quahogs throughout the range of this species. In particular, ocean quahogs record 

the rise in ocean temperatures after the Little Ice Age in the Mid-Atlantic Bight southeast 

of southern New England, yet demonstrate no evidence of such a rise in the Southern 

New England and Georges Bank region, which would suggest a differential response of 

ocean circulation and its control of bottom water temperature in this region over the last 

200+ years. 
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CHAPTER V – CONCLUSIONS 

Parts of the information from this chapter have been published in the Journal of Shellfish 

Research or have been submitted for publication to the Marine Ecology Progress Series 

or the Journal of Experimental Marine Biology and Ecology. 

Pace, S. M., E. N. Powell, R. Mann, C. M. Long, & J. M. Klinck. 2017. Development of 

an age-frequency distribution for ocean quahogs (Arctica islandica) on Georges 

Bank. J. Shellfish Res. 36:41-53. 

Pace, S. M., E. N. Powell, R. Mann & C. M. Long. Submitted. Comparison of Age-

Frequency Distributions for Ocean Quahogs (Arctica islandica) on the Western 

Atlantic US Continental Shelf. Mar. Eco. Prog. Ser. 

Pace, S. M., E. N. Powell & R. Mann. Submitted. Two-hundred year record of increasing 

growth rates in the ocean quahog (Arctica islandica) in the western Atlantic 

Ocean. J. Exp. Mar. Biol. Ecol. 

While considerable research has been done on the biology of ocean quahogs as 

well as the age structure of various populations, limited information is available on the 

historic recruitment patterns of ocean quahogs and the uncertainty of the response of 

these animals as the stock is fished down has led to concerns about the sustainability of 

managing these long-lived animals. The variable growth rates of these clams result in 

geographical differences in the age structure of ocean quahog population throughout the 

range of the stock. The amount of time and resources required to age a sufficient number 

of ocean quahogs to develop age-length keys often limits studies to a single population. 

Additionally, the sample size used to assess a population will almost always 

underrepresent the entire age range present in a population as ocean quahogs commonly 
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exceed 200 years in age. Thus, a sample size of 200 animals assigns on average 

approximately one individual per year assuming no duplicates in age. It is also rare for a 

study to assess the age of animals from all sizes present in a population, e.g. from young 

of the year to the largest size observed, which limits the information about the population 

that can be drawn from the results. Furthermore, an age-length key produced for a 

specific population will not produce accurate age estimates due to the variable growth 

rates of these animals throughout the Atlantic Ocean. By investigating long-term 

recruitment trends for four populations throughout the range of the U.S. stock, this study 

contributes valuable information that can be used to inform stock assessments and to 

improve management of ocean quahogs.  

 In Chapter II, the long-term recruitment trends for a Georges Bank population 

were investigated through the analysis of annual growth lines in the hinge plate. Ages of 

animals representing the fully recruited size range were used to develop an age-length 

key, enabling reconstruction of the population age frequency. The population age 

frequency showed that the Georges Bank population experienced an increase in 

recruitment beginning in the late 1890’s. Initial settlement, documented by a few ocean 

quahogs that were much older, occurred much earlier, in the early 1800s. Following the 

late 1890s increase in recruitment, the population expanded rapidly reaching carrying 

capacity in 20 to 30 years. Recruitment was more or less continuous after this expansion, 

consistent with maintenance of a population at carrying capacity. Unusually large year 

classes were not observed, nor were significant periods of high recruitment interspersed 

with periods of low recruitment. One would expect to see large year classes if recruitment 

occurred only once or twice every several decades as previously thought. Finally, the 
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relationship of growth rate with age for the oldest clams was assessed using the time 

series of yearly growth increments and the resulting relationship fitted to three models 

(von Bertalanffy, Gompertz, and Tanaka’s ALOG curve). The ALOG model was clearly 

superior because it allows for persistent indeterminate growth at old age, rather than the 

asymptotic behavior of the other two, and because it allows for a rapid change in growth 

rate at what is presumed to be maturity.  

In Chapter III, geographic differences in the age structure of three additional 

populations of ocean quahogs throughout the range of the U.S. stock were examined. The 

ages of animals ≥80-mm shell length were estimated. The observed age frequency from 

each site was used to develop an age-length key enabling reconstruction of the population 

age frequency for the site. Within-site variability was high for both age at length and 

length at age; a single age-length key could not be applied and would not result in 

accurate age estimates for populations throughout the northwestern Atlantic. For most 

sites, initial colonization began 200-250 years BP, coincident with the ending of the Little 

Ice Age, with the southern populations being established first, consistent with a presumed 

warming from the south. All sites experienced an increase in recruitment beginning in the 

late 1800’s to early 1900’s, depending upon site, whereupon the populations reached 

carrying capacity and remained so characterized subsequently through more or less 

continuous low-level recruitment. The lag in population expansion following initial 

colonization is consistent with the extended time to maturity in this species. Major year 

classes and periods of curtailed recruitment were rare. All four populations, including the 

Georges Bank population, show evidence of high recruitment capacity when below 

carrying capacity and relatively continuous recruitment when at carrying capacity.  
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In Chapter IV, the growth rates of ocean quahogs from the four populations 

throughout the range of the U.S. stock were examined. Both geographic and temporal 

differences (on a scale of decadal or longer) in growth rates exist throughout the range of 

the stock. The age at which animals reached 60, 80, and 90 mm decreased significantly, 

and average growth rates to 60, 80, and 90 mm increased significantly with birth year at a 

New Jersey and a Long Island site, both located in the southwestern portion of the stock, 

since initial colonization, likely in response to increasing bottom water temperatures. 

That is, growth rates vary temporally with birth date at the southwestern sites, with 

younger animals growing at a much faster rate in recent decades than those born many 

decades previously, whereas at the northern sites off southern New England and on 

Georges Bank, changes in growth rates through time are limited to older adult animals or 

absent altogether. Thus, at the southern portion of the range, variation in growth rate over 

time exists in all phases of ocean quahog life, whereas on Georges Bank, little evidence 

exists for any differential in growth rate over the last ~200 years. The fact that ocean 

quahogs record the rise in ocean temperatures after the Little Ice Age in the Mid-Atlantic 

Bight southeast of southern New England, yet demonstrate no evidence of such a rise in 

the southern New England and Georges Bank region, would suggest a differential 

response of ocean circulation and its control of bottom water temperature between the 

northern and southern portions of the Mid-Atlantic Bight over the last 200+ years. 

The research in this thesis provides substantial information about ocean quahog 

population dynamics that is essential to the management of this species. By describing 

the age, growth, and recruitment dynamics of this commercially important species, this 

thesis provides the first comprehensive population age frequencies for ocean quahogs in 
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the mid-Atlantic, which lend insight on long-term recruitment dynamics necessary to 

improve fishery management. Some of the most important knowledge gained from this 

research is that recruitment of ocean quahogs throughout the mid-Atlantic has been 

effectively continuous since the 1800s, alleviating concerns that recruitment is infrequent, 

occurring only a few times in several decades. These results have contributed to a 

successful benchmark assessment in 2017 by the NEFSC, and have subsequently be used 

to inform fishery management decisions by the Mid-Atlantic Fisheries Management 

Council’s Scientific and Statistical Committee
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APPENDIX A  

Tables 

Table 1  

Parameter estimates of von Bertalanffy and Gompertz models. 

 

 

 

 

Table 2  

Test statistics for each metric.  

 

 

 

 

Non-random statistics are shaded for each observed mean (𝐱̅), observed variance (var), observed mean of the difference in ages of animals ordered by their age (d 𝐱̅), and the observed variance 

of these differences (d var) in each size class.  The difference mean and variance are obtained from the difference between consecutive ages ordered by age. 

 Von Bertalanffy 

Estimate 

Von Bertalanffy 

Std. Error 

Gompertz  

Estimate 

Gompertz 

Std. Error 

Linf 101.9000 0.4223 100.6000 0.4086 

K 0.0225 0.0005 0.0285 0.0007 

t0 -12.3400 0.6254 5.6510 0.5057 

 
80 mm 85 mm 90 mm 95 mm  100 mm 105 mm 110 mm 

𝒙̅ 0.1 < P < 0.2 0.1 < P < 0.2 0.05 < P < 0.1 0.1 < P < 0.2 P = 0.005 0.6 < P < 0.7 0.3 < P < 0.4 

var 0.2 < P < 0.3 0.1 < P < 0.2 0.6 < P < 0.7 0.2 < P < 0.3 P < 0.005 0.05 < P < 0.1 0.05 < P < 0.1 

d  𝒙̅ P = 0.4 P = 0.4 P = 0.4 0.4 < P < 0.5 P = 0.4 0.4 < P < 0.5 P = 04 

d var 0.7 < P < 0.8 0.05 < P < 0.1 0.6 < P < 0.7 0.95 < P < 0.99 0.95 < P < 0.99 0.5 < P < 0.6 0.05 < P < 0.1 
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Table 3  

Age data from the original 20 clams sampled and the resample of 20 additional 

individuals in the 100-<105 mm size class. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Original ages Resample ages 

73 81 

75 82 

79 86 

99 90 

101 104 

103 107 

106 109 

106 113 

107 117 

110 122 

112 122 

114 123 

114 125 

115 128 

118 131 

121 135 

134 139 

165 152 

182 166 

198 198 
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Table 4  

Results of permutation tests comparing the first set of aged animals in the 100-<105 mm 

size class to the second.  

 With replacement: F Without replacement: T 

𝒙 P = 0.219 P = 0.320 

var P = 0.832 P = 0.694 

d  𝒙 - P = 0.622 

d var - P = 0.657 

For the left column, the observed mean (𝒙̅), observed variance (var), observed mean of the difference in ages of animals ordered by 

their age (𝑑 𝒙̅), and the observed variance of these differences (d var) in each size class for the two datasets were directly compared. 

Only the first two metrics can be evaluated as any test using a ‘with replacement’ option produces biased results for a set of 

differences between consecutive ages ordered by age. The second test, using a ‘without replacement’ option investigated the 

likelihood that the second set of ages represented a random draw from the combined dataset. 
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Table 5  

Age-length key: probability of each decadal age group occurring within each 5-mm size class. 

 
50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 

80 mm 0.138 0.184 0.161 0.204 0.168 0.066 0.079 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

85 mm 0.000 0.089 0.165 0.231 0.200 0.139 0.100 0.077 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

90 mm 0.000 0.238 0.175 0.108 0.150 0.113 0.121 0.096 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

95 mm 0.000 0.127 0.140 0.079 0.132 0.233 0.097 0.061 0.040 0.070 0.022 0.000 0.000 0.000 0.000 

100 mm 0.000 0.000 0.065 0.085 0.115 0.145 0.180 0.135 0.065 0.075 0.015 0.055 0.025 0.010 0.030 

105 mm 0.000 0.013 0.048 0.083 0.075 0.162 0.136 0.167 0.149 0.092 0.061 0.013 0.000 0.000 0.000 

110 mm 0.000 0.000 0.000 0.000 0.057 0.077 0.144 0.172 0.191 0.148 0.091 0.077 0.043 0.000 0.000 

Zero probabilities indicate the absence of animals at that size and age given the sampling constraints as discussed in the text. 



 

89 

Table 6  

Generated age frequency; number of individuals per tow at each age. Shaded boxes 

represent ages with the highest probability of occurring. 

 

 

Age N    Age N  Age    N  Age  N  Age      N 

51 6.86 81 44.99 111 23.57 141 2.43 171 0.03 

52 0.00 82 41.51 112 37.53 142 4.31 172 0.03 

53 6.86 83 41.10 113 20.95 143 3.39 173 0.72 

54 13.71 84 39.30 114 37.18 144 9.40 174 0.03 

55 9.14 85 44.16 115 41.83 145 1.93 175 0.03 

56 18.28 86 46.41 116 19.21 146 4.81 176 0.00 

57 15.99 87 40.20 117 26.94 147 5.11 177 0.00 

58 6.86 88 58.17 118 28.91 148 7.79 178 0.00 

59 13.71 89 50.44 119 21.28 149 0.44 179 0.00 

60 16.56 90 43.72 120 19.04 150 4.83 180 0.00 

61 6.86 91 45.63 121 17.08 151 2.43 181 0.00 

62 18.90 92 32.23 122 25.29 152 2.67 182 0.66 

63 32.48 93 74.74 123 38.60 153 0.91 183 0.00 

64 31.01 94 38.94 124 19.22 154 1.71 184 0.00 

65 47.49 95 44.78 125 11.54 155 0.74 185 0.00 

66 54.46 96 38.97 126 20.53 156 0.91 186 0.00 

67 58.84 97 29.74 127 9.15 157 1.52 187 0.00 

68 43.92 98 43.19 128 9.19 158 0.44 188 0.00 

69 45.15 99 28.57 129 0.91 159 1.66 189 0.00 

70 35.39 100 26.44 130 2.36 160 1.03 190 0.00 

71 61.24 101 20.67 131 2.52 161 0.88 191 0.00 

72 24.99 102 37.16 132 0.61 162 0.17 192 0.00 

73 32.99 103 40.78 133 6.66 163 0.13 193 1.33 

74 51.51 104 21.04 134 2.73 164 0.00 194 1.33 

75 31.10 105 18.99 135 2.24 165 0.74 195 1.33 

76 36.93 106 18.76 136 3.79 166 0.69 196 1.33 

77 49.56 107 30.58 137 4.97 167 1.35 197 0.66 

78 42.21 108 35.73 138 5.13 168 0.00 198 0.66 

79 26.22 109 42.49 139 5.52 169 0.08 199 0.66 

80 53.36 110 24.53 140 1.91 170 0.74 200 0.00 
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Table 7  

Observed age frequency; number of individuals per tow at each age. 

 

 

Age N Age N Age N Age N Age N 

51 0.00 81 56.99 111 37.68 141 0.00 171 0.00 

52 0.00 82 0.00 112 45.45 142 0.00 172 0.00 

53 0.00 83 37.30 113 38.47 143 0.00 173 0.32 

54 54.84 84 65.57 114 92.52 144 0.00 174 0.00 

55 0.00 85 56.99 115 7.30 145 0.00 175 0.00 

56 0.00 86 74.60 116 46.26 146 0.00 176 0.00 

57 27.42 87 54.84 117 20.68 147 1.84 177 0.00 

58 0.00 88 37.30 118 7.30 148 19.16 178 0.00 

59 27.42 89 77.29 119 37.30 149 0.00 179 0.00 

60 0.00 90 1.84 120 77.68 150 0.00 180 0.00 

61 0.00 91 27.42 121 7.62 151 0.32 181 0.00 

62 0.00 92 0.00 122 1.84 152 0.00 182 7.30 

63 0.00 93 130.29 123 37.68 153 0.00 183 0.00 

64 18.84 94 0.00 124 0.00 154 0.00 184 0.00 

65 114.45 95 74.60 125 0.32 155 0.00 185 0.00 

66 65.57 96 102.87 126 75.77 156 0.00 186 0.00 

67 92.14 97 0.32 127 1.84 157 0.00 187 0.00 

68 56.99 98 0.00 128 0.00 158 2.16 188 0.00 

69 65.57 99 46.44 129 0.00 159 0.00 189 0.00 

70 18.84 100 0.00 130 0.32 160 0.00 190 0.00 

71 76.44 101 7.30 131 3.68 161 0.00 191 0.00 

72 18.84 102 0.00 132 0.00 162 0.00 192 0.00 

73 44.60 103 26.14 133 0.00 163 0.32 193 0.00 

74 18.84 104 4.00 134 7.30 164 0.00 194 0.00 

75 64.29 105 0.00 135 0.32 165 7.30 195 0.00 

76 0.00 106 33.44 136 0.00 166 0.00 196 0.00 

77 0.00 107 36.88 137 2.47 167 0.00 197 0.00 

78 0.00 108 37.30 138 0.00 168 0.00 198 7.30 

79 7.30 109 39.99 139 0.00 169 0.00 199 0.00 

80 130.29 110 44.60 140 2.16 170 0.00 200 0.00 
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Table 8  

Test statistics comparing the observed distribution of ages to that expected from a random draw of ages from the age range 

recorded in the size class.  

 

 

 

 

 

 

 

 

The observed mean (𝒙̅), the observed variance (var), the observed mean of the differences of consecutive pairs of animals ordered by their age (𝑑 𝒙̅), and the observed variance of these 

differences (d var) within each size class for each site are shown for each site. Sizes are the lower size boundary of the size class. Cases where the observed distribution of ages were unlikely to 

be obtained by a random draw of ages in the observed age range are shaded. 

 

 
80 mm 85 mm 90 mm 95 mm 100 mm 105 mm 110 mm 115 mm 120 mm 

NJ 𝒙̅ P < 0.005 P < 0.05 P < 0.005 P < 0.1 P > 0.05 P > 0.9 P > 0.05 P < 0.005 P > 0.05 

NJ var P > 0.05 P > 0.05 P < 0.05 P = 0.6 P > 0.05 P > 0.05 P > 0.05 P < 0.05 P > 0.05 

NJ d 𝒙̅ P = 0.4 P = 0.4 P = 0.4 P > 0.05 P > 0.05 P = 0.4 P = 0.4 P > 0.05 P > 0.05 

NJ d var P > 0.05 P > 0.05 P > 0.9 P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.99 P > 0.05 

LI 𝒙̅ P < 0.005 P < 0.005 P < 0.005 P < 0.05 P > 0.05 P > 0.05 P > 0.05    
 

LI var P < 0.05 P < 0.05 P < 0.1 P > 0.05 P < 0.05 P > 0.05 P > 0.05    
 

LI d 𝒙̅ P = 0.4 P > 0.05 P > 0.05 P > 0.05 P > 0.95 P = 0.4 P > 0.05   
 

LI d var P > 0.99 P > 0.99 P > 0.99 P > 0.05 P > 0.05 P > 0.05 P > 0.05   
 

SNE 𝒙̅ P < 0.005 P > 0.05 P < 0.005 P > 0.05 P > 0.05 
    

SNE var P = 0.3 P > 0.05 P < 0.005 P > 0.05 P < 0.1 
  

 
 

SNE d 𝒙̅ P = 0.6 P = 0.6 P = 0.4 P > 0.05 P = 0.4 
    

SNE d var P > 0.05 P > 0.05 P > 0.99 P > 0.05 P > 0.05 
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Table 9  

Age data from the (1) original 20 clams chosen to be aged and (2) the resample of 20 

additional individuals for each site. 

 

 

 

 

 

 

 

 

 

 

 

 

New Jersey (NJ) 95-mm size class, the Long Island (LI) 90-mm size class, the Southern New England (SN) 90-mm size class, and the 

Georges Bank (GB) 100-mm size class. Shaded boxes highlight ages present in the first set of 20 that were also observed in the second 

set of 20. Note the selected size classes correspond to those classes with outliers and extended age ranges (Figure 12). 

 

NJ1 NJ2  LI1 LI2 SN1 SN2 GB1 GB2 

65 73 57 76 79 80 73 81 

69 81 60 82 81 87 75 82 

70 84 70 84 84 88 79 86 

73 89 71 87 84 91 99 90 

74 90 72 96 85 92 101 104 

75 104 77 99 90 93 103 107 

77 116 79 99 91 93 106 109 

79 131 94 100 91 93 106 113 

81 134 96 115 95 99 107 117 

86 134 98 127 103 100 110 122 

89 138 117 141 104 102 112 122 

90 140 131 156 106 103 114 123 

92 141 137 163 114 103 114 125 

105 143 145 168 118 103 115 128 

105 146 169 183 120 106 118 131 

109 146 177 189 128 106 121 135 

112 165 221 219 129 110 134 139 

113 169 227 222 132 112 165 152 

116 171 233 225 162 140 182 166 

153 173 240 243 172 141 198 198 
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Table 10  

Permutation test statistics for each test metric. 

 

 

 

Statics are shown for the observed mean (𝐱̅), observed variance (var), observed mean of the difference in ages of animals ordered by 

their age (d 𝐱̅), and the observed variance of these differences (d var). 

 

 
NJ LI SNE 

𝒙̅ P = 0.001 P = 0.210 P = 0.201 

var P = 0.011 P = 0.814 P = 0.097 

d  𝒙̅ P = 0.126 P = 0.501 P = 0.196 

d var P = 0.995 P = 0.706 P = 0.601 



 

For convenience, the probability of each decadal age group occurring within each 5-mm size class is provided. Population age frequencies derived in this 

study used the probability at each age rather than decadal age groups. 
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Table 11  

New Jersey age-length key. 

 
80 mm 85 mm 90 mm 95 mm 100 mm 105 mm 110 mm 115 mm 120 mm 

20 0.335 0.167 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

30 0.421 0.179 0.025 0.000 0.000 0.000 0.000 0.000 0.000 

40 0.182 0.159 0.108 0.000 0.000 0.000 0.000 0.000 0.000 

50 0.062 0.115 0.104 0.000 0.000 0.000 0.000 0.000 0.000 

60 0.000 0.083 0.125 0.087 0.083 0.000 0.000 0.000 0.000 

70 0.000 0.103 0.179 0.129 0.079 0.017 0.000 0.000 0.000 

80 0.000 0.068 0.192 0.122 0.116 0.100 0.004 0.061 0.000 

90 0.000 0.036 0.108 0.109 0.139 0.144 0.061 0.147 0.000 

100 0.000 0.091 0.050 0.078 0.130 0.194 0.082 0.113 0.000 

110 0.000 0.000 0.038 0.073 0.176 0.181 0.126 0.130 0.000 

120 0.000 0.000 0.021 0.058 0.125 0.207 0.165 0.108 0.100 

130 0.000 0.000 0.004 0.087 0.065 0.157 0.095 0.134 0.290 

140 0.000 0.000 0.042 0.087 0.088 0.000 0.165 0.100 0.080 

150 0.000 0.000 0.004 0.067 0.000 0.000 0.134 0.069 0.140 

160 0.000 0.000 0.000 0.062 0.000 0.000 0.074 0.069 0.260 

170 0.000 0.000 0.000 0.044 0.000 0.000 0.091 0.022 0.130 

180 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 

190 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

210 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.000 

220 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000 
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Table 12  

Long Island age-length key. 

 
80 mm 85 mm 90 mm 95 mm 100 mm 105 mm 110 mm 

40 0.154 0.154 0.118 0.000 0.000 0.000 0.000 

50 0.245 0.231 0.140 0.069 0.000 0.000 0.000 

60 0.146 0.159 0.127 0.092 0.000 0.000 0.000 

70 0.146 0.163 0.127 0.055 0.000 0.000 0.000 

80 0.110 0.140 0.086 0.062 0.016 0.000 0.000 

90 0.075 0.077 0.100 0.069 0.041 0.000 0.000 

100 0.059 0.022 0.031 0.069 0.012 0.000 0.000 

110 0.015 0.000 0.072 0.067 0.008 0.007 0.048 

120 0.000 0.000 0.050 0.057 0.020 0.059 0.138 

130 0.027 0.050 0.040 0.051 0.090 0.027 0.229 

140 0.019 0.000 0.027 0.042 0.119 0.035 0.138 

150 0.000 0.000 0.004 0.021 0.107 0.087 0.131 

160 0.000 0.000 0.004 0.046 0.144 0.099 0.138 

170 0.000 0.000 0.004 0.037 0.107 0.115 0.159 

180 0.000 0.000 0.009 0.032 0.078 0.131 0.013 

190 0.000 0.000 0.050 0.032 0.099 0.091 0.000 

200 0.000 0.000 0.004 0.041 0.028 0.087 0.000 

210 0.000 0.000 0.000 0.042 0.028 0.067 0.000 

220 0.000 0.000 0.000 0.028 0.041 0.059 0.000 

230 0.000 0.000 0.000 0.032 0.049 0.051 0.000 

240 0.000 0.000 0.000 0.046 0.004 0.067 0.000 

250 0.000 0.000 0.000 0.000 0.000 0.011 0.000 
For convenience, the probability of each decadal age group occurring within each 5-mm size class is provided. Population age 

frequencies derived in this study used the probability at each age rather than the decadal age group. 
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Table 13  

Southern New England age-length key. 

 

 

 

 

 

 

 

For convenience, the probability of each decadal age group occurring within each 5-mm size class is provided. Population age 

frequencies derived in this study used the probability at each age rather than the decadal age group. 

 

 
80 mm 85 mm 90 mm 95 mm 100 mm 

70 0.190 0.116 0.059 0.031 0.033 

80 0.372 0.238 0.131 0.095 0.042 

90 0.295 0.333 0.154 0.090 0.084 

100 0.140 0.216 0.181 0.150 0.096 

110 0.000 0.095 0.154 0.072 0.180 

120 0.000 0.000 0.125 0.100 0.197 

130 0.000 0.000 0.086 0.040 0.100 

140 0.000 0.000 0.063 0.113 0.138 

150 0.000 0.000 0.013 0.118 0.046 

160 0.000 0.000 0.009 0.168 0.071 

170 0.000 0.000 0.020 0.018 0.004 
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Table 14  

Generated age frequency for New Jersey. 

Age N Age   N Age N 
 

Age 
    N 

 

Age 
   N Age   N Age N 

20 5.77 50 19.95 80 20.49 110 17.53 140 15.19 170 2.3 200 0 

21 4.62 51 13.96 81 25.78 111 19.94 141 8.2 171 5.35 201 0 

22 6.93 52 2.31 82 22.29 112 9.88 142 9.62 172 4.97 202 0 

23 4.62 53 18.54 83 23.77 113 16.22 143 12.06 173 5.31 203 0 

24 5.77 54 10.42 84 25.28 114 9.63 144 20.55 174 2.73 204 0 

25 15.88 55 5.78 85 32.19 115 9.08 145 6.33 175 3.33 205 0 

26 23.81 56 10.45 86 18.93 116 17.84 146 5.92 176 0.21 206 0 

27 18.09 57 5.83 87 16.12 117 14.9 147 7.82 177 0.21 207 0 

28 22.74 58 11.76 88 23.78 118 12.81 148 14.73 178 0.43 208 0 

29 19.3 59 8.24 89 32.29 119 22.84 149 3.73 179 0.23 209 0 

30 14.68 60 21.21 90 15.6 120 15.47 150 4.38 180 0.21 210 0 

31 20.45 61 6.9 91 23.1 121 14.24 151 7.08 181 0 211 0 

32 23.89 62 15.14 92 16.34 122 13.18 152 5.01 182 0 212 0 

33 8.03 63 14.68 93 34.16 123 6.41 153 5.79 183 0 213 0 

34 13.68 64 9.42 94 21.43 124 10.24 154 2.89 184 0 214 0 

35 21.66 65 11.47 95 13.21 125 11.33 155 2.97 185 0 215 0.04 

36 15.88 66 15.11 96 19.44 126 17.62 156 3.52 186 0 216 0.04 

37 20.69 67 30.2 97 2.53 127 13.27 157 5.16 187 0 217 0.02 

38 11.5 68 17.55 98 18.92 128 12.27 158 1.51 188 0 218 0.02 

39 15.04 69 23.65 99 31.17 129 7.05 159 1.72 189 0 219 0.02 
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Table 14 (continued) 

 

40 12.65 70 21.58 100 14 130 9.29 160 2.7 190 0 220 0.04 

41 13.76 71 22.15 101 13.58 131 21.63 161 3.34 191 0 221 0.02 

42 24.33 72 22.6 102 17.94 132 8.56 162 2.12 192 0 222 0.02 

43 11.68 73 26.71 103 16.65 133 7.81 163 1.5 193 0   

44 18.48 74 17.4 104 20.02 134 13.21 164 1.05 194 0   

45 15.15 75 23.09 105 16.1 135 10.04 165 5.33 195 0   

46 14.02 76 20.53 106 24.8 136 7.26 166 2.71 196 0   

47 19.58 77 21.15 107 15.53 137 1.78 167 5.87 197 0   

48 12.73 78 20.16 108 15.39 138 6.41 168 0.31 198 0   

49 8.14 79 26.42 109 15.09 139 6.98 169 7.85 199 0     
Standardized to the number of individuals per tow at each age. Percentages can be obtained by dividing by 2111, the total number of animals measured ≥80-mm in shell length. 
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Table 15  

Generated age frequency for Long Island. 

Age     N Age  N Age   N Age   N Age  N 
  

Age 
  N 

 

Age 
N Age N 

40 6.62 70 15.64 100 8.89 130 6.24 160 1.82 190 2.1 220 1.52 250 0 

41 17.88 71 17.44 101 8.03 131 10.37 161 2.91 191 7.31 221 1.79 251 0.1 

42 13.41 72 20.12 102 5.83 132 4.24 162 2.61 192 4.33 222 2.13 252 0.1 

43 13.4 73 32.52 103 14.57 133 7.12 163 4.15 193 5.6 223 0.56 253 0 

44 20.13 74 25.39 104 9.76 134 10.57 164 4.28 194 3.97 224 1.1 254 0.1 

45 37.88 75 24.94 105 9.24 135 13.89 165 2.16 195 2.88 225 0.88 
  

46 33.54 76 35.24 106 3.53 136 20.96 166 2.94 196 3.93 226 0.76 
  

47 22.45 77 19.11 107 9.32 137 4.56 167 3.59 197 5.44 227 1.81 
  

48 24.46 78 25.6 108 4.47 138 2.99 168 3.09 198 1.85 228 0.44 
  

49 31.18 79 23.22 109 4.77 139 1.21 169 1.54 199 6.4 229 1.19 
  

50 26.79 80 17.88 110 10.26 140 9.97 170 4.35 200 1.81 230 2.15 
  

51 26.66 81 18.67 111 3.95 141 8.81 171 1.49 201 1.1 231 0.9 
  

52 33.51 82 21.93 112 4.91 142 2.29 172 1.83 202 1 232 0.98 
  

53 37.97 83 34.78 113 6.72 143 7.16 173 3.41 203 4.41 233 1.42 
  

54 15.09 84 14.57 114 3.53 144 2.81 174 2.19 204 0.98 234 1.17 
  

55 34.73 85 19.09 115 6.15 145 2.91 175 1.37 205 1.42 235 1.44 
  

56 45.07 86 16.5 116 8.12 146 6.5 176 2.18 206 3.04 236 2.05 
  

57 30.24 87 16.05 117 6.05 147 0.81 177 2.63 207 1.1 237 1.54 
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Table 15 (continued)  

58 39.68 88 16.06 118 3.16 148 2.7 178 1.57 208 0.98 238 0.9 
  

59 48.52 89 15.54 119 9.88 149 2.8 179 3 209 1.28 239 1.02 
  

60 20.93 90 19.03 120 1.56 150 1.37 180 1.62 210 0.84 240 3.21 
  

61 24.67 91 14.14 121 3.8 151 4.55 181 2.29 211 1 241 2.4 
  

62 24.07 92 19.42 122 8.41 152 1.18 182 4.19 212 1.52 242 2.6 
  

63 24.6 93 15.9 123 3.48 153 0.68 183 3.06 213 1.76 243 2.21 
  

64 16.06 94 11.51 124 4.48 154 0.85 184 4.07 214 1.89 244 0.54 
  

65 12.95 95 8.9 125 5.07 155 2.46 185 1.38 215 2.23 245 1.72 
  

66 36.58 96 8.89 126 5.01 156 2.79 186 1.37 216 0.83 246 0.2 
  

67 20.43 97 15.64 127 2.26 157 1.69 187 0.5 217 0.54 247 0.44 
  

68 33.4 98 21.5 128 3.6 158 1.2 188 3.35 218 1.44 248 0.2 
  

69 32.54 99 15.64 129 4.76 159 2.57 189 0.84 219 2.77 249 0     
Standardized to the number of individuals per tow at each age. Percentages can be obtained by dividing by 1910, the total number of animals measured ≥ 80-mm in shell length. 

 



 

101 

Table 16  

Generated age frequency for Southern New England.  

Age N Age N Age N Age N 

72 10.71 98 59.17 124 6.48 150 3.52 

73 10.71 99 46.61 125 6.10 151 1.92 

74 24.98 100 46.12 126 6.39 152 2.25 

75 31.56 101 26.94 127 5.32 153 0.74 

76 45.45 102 26.69 128 5.11 154 0.40 

77 37.34 103 43.85 129 4.66 155 0.81 

78 58.52 104 47.29 130 4.04 156 0.47 

79 22.28 105 29.27 131 6.08 157 2.32 

80 25.22 106 37.02 132 6.97 158 1.00 

81 44.96 107 26.39 133 3.66 159 0.66 

82 49.26 108 18.44 134 3.88 160 1.80 

83 57.90 109 10.40 135 1.78 161 1.21 

84 69.21 110 23.20 136 2.04 162 1.99 

85 41.92 111 14.36 137 4.00 163 1.66 

86 38.32 112 22.38 138 1.96 164 2.54 

87 39.31 113 19.99 139 0.00 165 1.47 

88 47.16 114 7.70 140 2.44 166 0.78 

89 71.76 115 4.80 141 4.59 167 1.54 

90 36.64 116 10.16 142 3.22 168 1.40 

91 63.03 117 3.59 143 4.59 169 2.22 

92 48.74 118 4.77 144 4.44 170 4.11 

93 45.53 119 6.25 145 3.69 171 1.89 

94 53.87 120 5.30 146 1.92 172 2.41 

95 46.80 121 8.27 147 1.85 
  

96 44.34 122 3.29 148 2.70 
  

97 43.62 123 2.63 149 3.06 
  

Standardized to the number of individuals per tow at each age. Percentages can be obtained by dividing by 1805, the total number of 

animals measured ≥80-mm in shell length. 
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Table 17  

New Jersey age frequency based solely on the animals aged and standardized to the number of 

individuals per tow at each age. 

Age N Age N Age N Age N Age N Age N Age N 

20 0.00 50 0.00 80 26.24 110 6.19 140 11.22 170 2.33 200 0.00 

21 0.00 51 0.00 81 42.72 111 0.00 141 11.22 171 11.22 201 0.00 

22 0.00 52 13.86 82 48.63 112 11.22 142 0.00 172 0.00 202 0.00 

23 0.00 53 0.00 83 0.00 113 11.46 143 11.46 173 11.22 203 0.00 

24 13.86 54 0.00 84 31.03 114 0.00 144 42.89 174 0.00 204 0.00 

25 27.71 55 12.42 85 56.70 115 0.00 145 0.00 175 0.00 205 0.00 

26 26.28 56 0.00 86 11.22 116 54.87 146 51.03 176 0.00 206 0.00 

27 12.42 57 13.86 87 5.96 117 22.61 147 0.00 177 2.33 207 0.00 

28 24.84 58 0.00 88 48.63 118 0.00 148 0.00 178 0.00 208 0.00 

29 37.26 59 0.00 89 64.88 119 28.35 149 0.24 179 0.00 209 0.00 

30 12.42 60 28.35 90 36.30 120 16.82 150 2.33 180 0.00 210 0.00 

31 24.84 61 0.00 91 0.00 121 46.75 151 0.00 181 0.00 211 0.00 

32 52.56 62 0.00 92 11.22 122 0.00 152 4.87 182 0.00 212 0.00 

33 0.00 63 0.00 93 2.33 123 0.00 153 11.22 183 0.00 213 0.00 

34 0.00 64 20.28 94 34.54 124 2.33 154 0.00 184 0.00 214 0.00 

35 0.00 65 39.57 95 2.33 125 10.62 155 0.00 185 0.00 215 0.00 

36 12.42 66 0.00 96 40.56 126 26.24 156 2.33 186 0.00 216 0.00 

37 12.42 67 13.86 97 0.24 127 22.81 157 0.00 187 0.00 217 0.00 

38 13.86 68 0.00 98 28.35 128 0.00 158 0.24 188 0.00 218 0.00 

39 13.86 69 11.22 99 0.00 129 2.33 159 2.33 189 0.00 219 0.00 

40 12.42 70 11.22 100 20.52 130 0.00 160 0.00 190 0.00 220 0.24 

41 12.42 71 42.21 101 0.00 131 29.33 161 0.00 191 0.00 221 0.00 

42 42.21 72 0.00 102 0.00 132 0.00 162 0.00 192 0.00 222 0.00 

43 0.00 73 50.79 103 5.96 133 5.96 163 11.22 193 0.00   

44 12.42 74 39.57 104 31.50 134 25.01 164 0.00 194 0.00   

45 0.00 75 39.57 105 22.68 135 0.24 165 11.22 195 0.00   

46 42.21 76 28.35 106 0.00 136 0.00 166 0.00 196 0.00   

47 13.86 77 53.43 107 5.96 137 0.20 167 0.00 197 0.00   

48 0.00 78 19.81 108 23.83 138 11.46 168 2.97 198 0.00   

49 40.77 79 31.50 109 27.41 139 0.24 169 11.22 199 0.00   
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Table 18  

Long Island age frequency based solely on the animals aged and standardized to the number of individuals per tow at each age. 

 

Age N Age N Age N Age N Age N Age N Age N Age N 

40 0.00 70 6.18 100 6.18 130 0.00 160 4.00 190 4.00 220 0.00 250 0.00 

41 0.00 71 6.18 101 0.00 131 31.03 161 1.32 191 0.00 221 6.18 251 0.00 

42 0.00 72 6.18 102 0.00 132 0.00 162 1.19 192 0.00 222 6.18 252 0.00 

43 0.00 73 24.85 103 0.00 133 4.00 163 6.18 193 0.00 223 0.00 253 0.00 

44 24.26 74 0.00 104 0.00 134 0.00 164 0.00 194 0.00 224 4.00 254 0.00 

45 48.91 75 0.00 105 0.00 135 49.50 165 4.00 195 1.19 225 6.18   
46 0.00 76 6.18 106 0.00 136 0.00 166 8.13 196 0.00 226 0.00   
47 24.65 77 6.18 107 0.00 137 6.18 167 0.00 197 0.00 227 6.18   
48 49.11 78 24.85 108 0.00 138 4.00 168 7.37 198 0.00 228 0.00   
49 49.11 79 6.18 109 0.00 139 0.13 169 6.18 199 28.85 229 0.00   
50 72.78 80 0.00 110 24.26 140 24.26 170 4.00 200 0.00 230 0.00   
51 48.91 81 48.91 111 0.00 141 6.18 171 0.00 201 0.00 231 0.00   
52 0.00 82 55.48 112 0.00 142 0.25 172 0.00 202 0.00 232 0.00   
53 98.22 83 24.65 113 0.00 143 0.00 173 1.19 203 0.00 233 6.18   
54 24.26 84 30.44 114 0.00 144 5.19 174 0.00 204 0.00 234 0.00   
55 49.30 85 24.65 115 6.18 145 10.17 175 0.00 205 0.00 235 4.00   
56 98.21 86 0.00 116 0.00 146 4.00 176 0.00 206 0.00 236 0.00   
57 54.70 87 6.18 117 6.18 147 0.00 177 10.30 207 0.00 237 0.00   
58 99.00 88 24.85 118 0.00 148 0.00 178 1.19 208 1.19 238 0.00   
59 73.17 89 0.00 119 0.00 149 5.19 179 0.00 209 1.19 239 0.00   
60 6.18 90 28.85 120 0.00 150 0.00 180 0.00 210 0.00 240 6.18   
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Table 18 (continued) 

 

61 24.85 91 24.85 121 0 151 28.85 181 4 211 0 241 0   
62 73.76 92 0 122 0 152 0 182 0 212 1.19 242 0   
63 0 93 24.85 123 1.32 153 0 183 6.18 213 0 243 0   
64 24.85 94 6.18 124 0 154 4 184 0 214 0 244 0   
65 24.65 95 0 125 1.19 155 4 185 0 215 0 245 6.18   
66 0 96 12.35 126 24.85 156 6.18 186 0 216 4 246 0   
67 0 97 0 127 6.18 157 0 187 1.19 217 1.19 247 0   
68 24.65 98 6.18 128 0.13 158 0 188 1.19 218 2.38 248 1.19   
69 48.52 99 12.35 129 0 159 0 189 6.18 219 8.56 249 0     
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Table 19  

Southern New England age frequency based solely on the animals aged and standardized to the 

number of individuals per tow at each age. 

Age N Age N Age N Age N 

72 0.00 98 67.16 124 1.00 150 0.00 

73 39.25 99 65.39 125 3.65 151 0.00 

74 0.00 100 51.48 126 3.65 152 7.30 

75 27.91 101 3.65 127 0.00 153 0.00 

76 39.25 102 40.13 128 8.58 154 0.00 

77 78.50 103 63.21 129 10.58 155 0.00 

78 0.00 104 15.88 130 0.00 156 3.65 

79 8.58 105 0.00 131 1.00 157 3.65 

80 51.48 106 104.23 132 8.58 158 3.65 

81 69.04 107 27.91 133 1.00 159 0.00 

82 27.91 108 0.00 134 1.00 160 0.00 

83 117.75 109 0.00 135 0.00 161 0.00 

84 45.06 110 64.39 136 0.00 162 9.57 

85 64.39 111 1.00 137 3.65 163 3.65 

86 0.00 112 37.48 138 0.00 164 3.65 

87 8.58 113 0.00 139 0.00 165 0.00 

88 87.08 114 8.58 140 8.58 166 0.00 

89 0.00 115 0.00 141 8.58 167 1.00 

90 8.58 116 0.00 142 0.00 168 3.65 

91 92.88 117 0.00 143 0.00 169 0.00 

92 103.64 118 12.23 144 0.00 170 0.00 

93 120.79 119 1.00 145 0.00 171 0.00 

94 79.50 120 8.58 146 0.00 172 8.58 

95 8.58 121 0.00 147 0.00   
96 39.25 122 1.00 148 1.00   
97 3.65 123 0.00 149 0.00   
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Table 20  

Summary of the age structure and period over which rapid recruitment occurred at each site, including Georges Bank (Chapter 

II). 

 

 

 

 

Expansion years are visually approximated from Figure 13. Population age frequencies were used to determine age percentiles. 

Region Oldest animal          

(observed) 

Recruitment 

expansion start 

Recruitment 

expansion end 

Youngest animal 

    (observed) 

5th, 25th, 50th, 

75th percentile age 

NJ 220 (1795) 1855 1900 24 (1991) 30, 70, 121, 171 

LI 248 (1767) 1895 1935 44 (1971) 50, 93, 147, 200 

SNE 172 (1843) 1900 1915 73 (1942) 77, 97, 122, 147 

GB 198 (1817) 1890 1920 54 (1961) 58, 88, 125, 162 
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Table 21  

Model selection results for each site using maximum R-squared selection to predict birth 

year. 

Candidate model R square Cp p-value 

New Jersey    

Birth year ~ len 0.6241 377.2133 < 0.0001 

Birth year ~ len + d80 0.8370 122.4907 < 0.0001 

Birth year ~ len + d90 + d80 0.9153 30.0737 < 0.0001 

Birth year ~ len + dlen + d90 + d80 0.9285 16.2522 < 0.0001 

Birth year ~ len + dlen + d90 + d80 + d60 0.9386 6.0000 < 0.0001 

Long Island    

Birth year ~ len 0.6228 244.2283 < 0.0001 

Birth year ~ len + d80 0.8956 25.4769 < 0.0001 

Birth year ~ len + d90 + d80 0.9137 12.8192 < 0.0001 

Birth year ~ len + d90 + d80 + d60 0.9266 4.3747 < 0.0001 

Birth year ~ len + dlen + d90 + d80 + d60 0.9271 6.0000 < 0.0001 

Georges Bank    

Birth year ~ len 0.3609 166.5788    0.0001 

Birth year ~ len + d80 0.7692 42.3623 < 0.0001 

Birth year ~ len + dlen + d80 0.8594 16.4636 < 0.0001 

Birth year ~ len + dlen + d90 + d60 0.8934 7.9490 < 0.0001 

Birth year ~ len + dlen + d90 + d80 + d60 0.9062 6.0000 < 0.0001 

Southern New England    

Birth year ~ len 0.3752 226.5912    0.0011 

Birth year ~ len + d80 0.8066 57.6249 < 0.0001 

Birth year ~ len + dlen + d80 0.9099 18.7007 < 0.0001 

Birth year ~ len + dlen + d90 + d80 0.9343 11.0409 < 0.0001 

Birth year ~ len + dlen + d90 + d80 + d60 0.9520 6.0000 < 0.0001 
Birth year predicted using length (len), average growth rate birth to 60 mm (d60), 60-80 mm (d80), 80-90 mm (d90), and post-90 mm 

(dlen).
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Table 22  

Regression results for the two and three variable models to predict birth year. 

 

 

 

 

 

 

 

The two-variable model uses the average growth rate birth to 60 mm (d60) and 60-80 mm (d80), and for the three-variable model, 80-

90 mm (d90). 

Model R squared Cp p-value 

NJ    

Birth year ~ d60 + d80 

Birth year ~ d60 + d80 + d90 

0.3897 

0.3798 

3.0000 

4.0000 

< 0.0001 

< 0.0001 

LI    

Birth year ~ d60 + d80 

Birth year ~ d60 + d80 + d90 

0.5861 

0.7189 

3.0000 

4.0000 

< 0.0001 

< 0.0001 

GB    

Birth year ~ d60 + d80 

Birth year ~ d60 + d80 + d90 

0.0172 

0.2800 

1.3022 

4.0000 

0.6516 

0.0702 

SN    

Birth year ~ d60 + d80 

Birth year ~ d60 + d80 + d90 

0.0416 

0.5058 

1.0008 

4.0000 

0.6264 

0.0446 
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Table 23  

Von Bertalanffy growth parameters for ocean quahogs from previously published studies 

and this study. 

Parameters from this study used only the five oldest animals at each site. 

 
L∞ (mm) k 

Long Island (Murawaski 1982) 107.6 0.02 

Kiel Bay (Brey et al. 1990) 93.6 0.07 

Mid-Atlantic Bight (NEFSC 1995) 97.3 0.03 

Georges Bank (Lewis et al. 2001) 97.6 0.06 

Iceland (Thorarinsdottir and Jacobson 2005) 99.9 0.02 

Iceland (Kilada et al. 2007) 92.5 0.03 

St. Mary's Bay (Kilada et al. 2007) 87.6 0.05 

Sable Bank (Kilada et al. 2007) 90.48 0.05 

Belfast Lough (Ridgeway et al. 2012) 93.7 0.03 

Georges Bank (Pace et al. 2017) 

New Jersey (this study) 

Long Island (this study) 

Southern New England (this study) 

101.9 

115.3 

104.73 

94.62 

0.02 

0.02 

0.01 

0.03 
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APPENDIX B  

Figures 

 

 

 

 

 

 

 

Figure 1. Length-at-age model fits using the von Bertalanffy relationship (A) and 

Gompertz relationship (B). 
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Figure 2. ALOG equation (Eq. 3) fit to age-at-growth increment width (A). Integrated 4-

parameter ALOG equation (Eq. 4) fit to age-at-length (B). 
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Figure 3. Length-frequency distribution for all animals collected and measured at the 

Georges Bank site. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Observed age-at-length of 156 aged ocean quahogs. 
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Figure 5. Observed age range within each 5-mm size class. 

Dark horizontal lines are the medians, boxes show the interquartile range (IQR), error bars represent the full age range excluding 

outliers (circles) ±1.5IQR outside of the box. 
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Figure 6. Age-frequency distribution of the Georges Bank population. 
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Figure 7. Age-frequency distribution generated from the Tanaka growth curve.
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Figure 8. Map of sample collection sites: New Jersey (square), Long Island (circle), 

Southern New England (star), and Georges Bank (triangle). 
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Figure 9. An example of a polished cross-section through the hinge plate of an ocean quahog. 

The early-in-life annual growth lines are annotated (black dots) with markers using the Object J plugin for the software Image J.
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Figure 10. Size frequency distribution of all measured clams from (A) New Jersey, (B) 

Long Island, and (C) Southern New England. 
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Figure 11. Age estimates for animals based on direct counts of hinge growth lines. (A) 

New Jersey, (B) Long Island, and (C) Southern New England. 

 See Figure 4 for Georges Bank.
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Figure 12. Observed age range for each size class for (A) New Jersey, (B) Long Island, 

and (C) Southern New England. 

Size values represent the lower boundary of each size class. Dark horizontal lines are the median ages of animals plotted in Figure 4, 

boxes show the interquartile range (IQR) of these ages, error bars represent the full age range excluding outliers (circles) ±1.5 IQR 

outside of the box.
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Figure 13. Age frequency distributions for (A) New Jersey, (B) Long Island, (C) Southern New England, and (D) Georges 

Bank (Chapter II).  

Truncation at young ages is due to sample truncation at 80-mm; smaller and by inference mostly younger clams were not aged. Note that the x-axis and y-axis scales differ among plots.
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Figure 14. Birth year versus age at 60 mm for (A) New Jersey, (B) Long Island, (C) 

Georges Bank, and (D) Southern New England.  

Regression lines indicate significant regressions (P ≤ 0.05). 
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Figure 15. Birth year versus age at 80 mm for (A) New Jersey, (B) Long Island, (C) 

Georges Bank, and (D) Southern New England.  

Regression lines indicate significant correlations (P ≤ 0.05).
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Figure 16. Birth year versus age at 90 mm for (A) New Jersey, (B) Long Island, (C) 

Georges Bank, and (D) Southern New England. 

 Regression lines indicate significant correlations (P ≤ 0.05).
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Figure 17. Plots of birth year versus average growth rate for birth to 60 mm for (A) New 

Jersey, (B) Long Island, (C) Georges Bank, and (D) Southern New England. 

Regression lines indicate significant correlations (P ≤ 0.05).
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Figure 18. Plots of birth year versus average growth rate from 60 to 80 mm for (A) New 

Jersey, (B) Long Island, (C) Georges Bank, and (D) Southern New England. 

 Regression lines indicate significant correlations (P ≤ 0.05).
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Figure 19. Plots of birth year versus average growth rate from 80 to 90 mm for (A) New 

Jersey, (B) Long Island, (C) Georges Bank, and (D) Southern New England.  

Regression lines indicate significant correlations (P ≤ 0.05).
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Figure 20. Plots of birth year versus average growth rate post-90 mm for (A) New Jersey, 

(B) Long Island, (C) Georges Bank, and (D) Southern New England. 

 Regression lines indicate significant correlations (P ≤ 0.05).
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Figure 21. Plots of the least square means values and associated 95% confidence 

intervals for each site. 

Georges Bank (GB), Long Island (LI), New Jersey (NJ), and Southern New England (SN), for (A) age at 60 mm, (B) age at 80 mm, 

and (C) age at 90 mm. The values are not the true mean age at each size; rather they are the post-hoc least squares mean values and 

associated confidence limits.
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Figure 22. Plots of the least square means values and associated 95% confidence 

intervals for each site. 

 Georges Bank (GB), Long Island (LI), New Jersey (NJ), and Southern New England (SN), for average growth rates: (A) birth to 60 

mm, (B) 60 to 80 mm, (C) 80 to 90 mm, and (D) post-90 mm. The values are not the mean age at each size; rather they are the post-

hoc least squares mean values and associated confidence intervals.
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Figure 23. Plots of observed versus predicted birth year based on the best 3 variables in 

the five variable regression models in Table 21 for each site. 

(A) New Jersey, (B) Long Island, (C) Georges Bank, and (D) Southern New England. Solid lines indicate significant regressions from 

multiple regression models.
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Figure 24. Plots of observed versus predicted birth year based on the regressions shown 

in Table 2 using only early growth rates (birth to 60 and 60-80 mm) for each site. 

(A) New Jersey, (B) Long Island, (C) Georges Bank, and (D) Southern New England. Solid lines indicate significant regressions from 

multiple regression models.
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Figure 25. Plots of observed versus predicted birth year based on the 3-variable 

regression models in Table 2 for each site.  

(A) New Jersey, (B) Long Island, (C) Georges Bank, and (D) Southern New England. Solid lines indicate significant regressions from 

multiple regression models. Georges Bank regression (dashed line) not significant at α = 0.05 (Table 22).
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