
The University of Southern Mississippi The University of Southern Mississippi 

The Aquila Digital Community The Aquila Digital Community 

Honors Theses Honors College 

Spring 5-2015 

Polymerization of Blocked Isocyanate Functional Polymer Polymerization of Blocked Isocyanate Functional Polymer 

Surfaces and Post-Polymerization Modification By Thiol-Surfaces and Post-Polymerization Modification By Thiol-

Isocyanate Reactions Isocyanate Reactions 

Chase A. Tretbar 
University of Southern Mississippi 

Follow this and additional works at: https://aquila.usm.edu/honors_theses 

 Part of the Polymer Chemistry Commons 

Recommended Citation Recommended Citation 
Tretbar, Chase A., "Polymerization of Blocked Isocyanate Functional Polymer Surfaces and Post-
Polymerization Modification By Thiol-Isocyanate Reactions" (2015). Honors Theses. 331. 
https://aquila.usm.edu/honors_theses/331 

This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital 
Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila 
Digital Community. For more information, please contact Joshua.Cromwell@usm.edu, Jennie.Vance@usm.edu. 

https://aquila.usm.edu/
https://aquila.usm.edu/honors_theses
https://aquila.usm.edu/honors_college
https://aquila.usm.edu/honors_theses?utm_source=aquila.usm.edu%2Fhonors_theses%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/140?utm_source=aquila.usm.edu%2Fhonors_theses%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/honors_theses/331?utm_source=aquila.usm.edu%2Fhonors_theses%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu,%20Jennie.Vance@usm.edu


The University of Southern Mississippi 
 
 
 
 
 

POLYMERIZATION OF BLOCKED ISOCYANATE FUNCTIONAL POLYMER 
SURFACES AND POST-POLYMERIZATION MODIFICATION BY THIOL-

ISOCYANATE REACTIONS 
 
 
 

by 
 
 
 

Chase A. Tretbar 
 
 
 
 
 

A Thesis 
Submitted to the Honors College of 

The University of Southern Mississippi 
in Partial Fulfillment 

of the Requirements for the Degree of 
Bachelor of Science 

in the Department of Polymer Science and High Performance Materials 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

May 2015



ii 
 

  



iii 
 

Approved by 

 

 

 

 

 

___________________________________ 
Derek L. Patton, Ph.D., Thesis Adviser 
Associate Professor of Polymer Science 
 
 
 
 
 
 
 
 
 

___________________________________ 
Jeffrey Wiggins, Ph.D., Director 
Department of Polymers and High 

Performance Materials 
 
 
 
 
 
 
 
 
 

__________________________________ 
Ellen Weinauer, Ph.D., Dean 
Honors College 



iv 
 

ABSTRACT 

 

Direct polymerization of isocyanate-functional monomers has been achieved with 

controlled radical polymerizations (CRP) for precisely engineered modification platforms 

with highly reactive side chains.  However, despite the success of these strategies, the 

inherent reactivity of isocyanates still leads to adverse side reactions, such as hydrolysis, 

that are difficult to suppress.  Phenol, lactam, and oxime-based blocking agents have been 

used to limit the reactivity of isocyanates in applications such as multicomponent 

urethane coating systems.  The reactivity of these blocked isocyanates can be restored by 

thermal deprotection of the blocking agent to achieve the desired reactions.  In this work, 

we use blocked isocyanate-functional monomers for surface-initiated polymerization.  

The isocyanate functional group allows facile modification of the side chains by thiol-

isocyanate "click" reactions, while the blocking agent reduces detrimental side reactions 

like hydrolysis.  We investigate thermally labile blocking agents and report the synthesis 

and characterization of the blocked isocyanate-functional polymers, followed by 

deprotection and modification of the isocyanates by reaction with thiols. 

 

 

 

Key Terms: polymer, isocyanate, thiol, surface, click, brush  
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CHAPTER I: 

INTRODUCTION 

Applications for advanced functional materials that possess precisely engineered 

surface properties are expanding rapidly with the development of nanotechnology and the 

ever growing need to address resource, health, and energy issues.  Demand is increasing 

the necessity to fabricate soft material surfaces with precise control over architecture, 

domain size, functionality, polarity, and reactivity for an array of applications including 

antifouling coatings, biosensors, photovoltaics, and tissue engineered scaffolds.   

This broad range of requirements necessitates the development of a modular 

approach to surface engineering – ideally one that (1) enables the rapid generation of a 

diverse library of functional surfaces from a single substrate precursor, (2) utilizes a 

structurally diverse range of commercially available or easily attainable reagents, (3) 

proceeds rapidly to quantitative conversions under mild conditions and (4) opens the door 

to orthogonal and site-selective functionalization. Recent advances in synthetic polymer 

chemistry have resulted in numerous fundamental scientific discoveries that enable the 

development of materials and surfaces with attributes such as those described above.1   

Among different techniques of functional surface engineering, the combination of 

surface-initiated polymerization (SIP) and post-polymerization modification (PPM) 

offers unique advantages.2 Surface-initiated polymerization opens the door to highly 

controlled polymer structures on the surface from a variety of commercially available 

monomers. Post-polymerization modification, on the other hand, is based on the direct 

polymerization of monomers bearing chemoselective handles that are inert towards the 
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polymerization conditions, but can be quantitatively converted to a broad range of 

functional groups in a subsequent step.3  PPM enables one to take full advantage of the 

versatility of the SIP technique while extending the range of functional groups that can be 

bestowed to the surface.   

This thesis leverages “thiol-click” reactions – particularly the reaction between a 

thiol and an isocyanate (NCO) - in combination with SIP to design and fabricate surfaces 

with facile, efficient routes to functionalization.  Given that isocyanates are highly 

reactive and inherently moisture sensitive, this work focuses specifically on the reaction 

of protected, or blocked NCOs with thiol functional groups via an addition-elimination 

route for post-modification of polymer brush surfaces.  As illustrated in Figure 1, the 

overarching goal of this prospectus is to elucidate the appropriate design of blocked 

NCOs and the most favorable reaction conditions to facilitate the thiol-blocked NCO 

reaction at ambient temperatures for polymer surface modification.  The stated goal will 

be pursued via exploration of the following research objectives:              

1. Synthesis of model blocked isocyanate compounds comprising imidazole, 

pyrazole, and 1,2,4-triazole as blocking agents, and reaction of these model 

compounds with thiols at ambient temperature to elucidate structure-reactivity 

relationships via kinetic analysis.       

2. Synthesis of polymer brush surfaces with pendent blocked-NCO functional 

groups via surface-initiated photopolymerization.  The moisture and temperature 

stability of these surface will be evaluated. 

3. Post-polymerization modification of blocked-NCO polymer brush surfaces with 

thiols using reaction conditions identified in objective 1. 
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Figure 1 - Schematic representation of the postpolymerization modification process on 

blocked isocyanate polymer brush surfaces.  The green “B” group represents an 

imidazole, pyrazole, or triazole blocking agent.  The thermally reversible regeneration of 

the reactive isocyanate is shown by the left arrow process, while the base-catalyzed 

addition-elimination reaction between the blocked-NCO and thiol is shown by the right 

arrow process.  
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CHAPTER II: 

LITERATURE REVIEW 

Surface-Initiated Polymerization 

Surface-initiated polymerization (SIP) represents one of the most effective and 

versatile methods for tailoring the physio-chemical properties of surfaces.4  SIP offers a 

direct means to control the density, thickness, and functionality of ultrathin films by 

growing polymer chains directly from surface bound initiators. At high grafting, the 

macromolecules adopt a highly stretched conformation extending perpendicular to the 

substrate surface in order to avoid chain overlap, or the so-called “polymer brush” 

conformation.5 The ability to conformally modify substrates of any geometry with 

outstanding film homogeneity at nanometer thicknesses offers many advantages over 

solution cast films.   Additionally, the three-dimensional brush conformation of SIP 

brushes greatly enhances the functionality of the surface by providing not only an 

opportunity to present functional groups at the interface, but also throughout the film – as 

each monomer unit is capable of carrying a functional moiety.6  This feature makes SIP 

vastly superior to self-assembled monolayers (SAMs) where functionality is limited to 

the outermost edge of the interface.  The ability to endow a surface with 3D functionality 

has tremendous advantages for applications where high functional group densities are 

required, e.g. membranes and biosensor chips.7  When properly designed, polymer films 

fabricated by SIP are stable under a variety of environmental conditions owing to the 

covalent interaction of the polymer chains with the substrate surface.   
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Post-Polymerization Surface Modification 

Despite recent advances in the SIP approach, there remains a large number of 

pendent functional groups that cannot be directly polymerized from the surface due to i) 

steep cost of functional monomer synthesis, ii) intolerance of the functional moiety in the 

polymerization process (i.e. reactivity, steric bulk), and iii) instability of the pendent 

functional group following polymerization (i.e. hydrolysis, oxidation, etc.).  This often 

necessitates the development of a modular approach to surface engineering in the form of 

post-polymerization modification (PPM) (i.e. transformation of reactive functional 

groups following the polymerization process). PPM of polymer surfaces, when combined 

with SIP, has evolved as a powerful approach to engineer polymer surfaces with complex 

functionality.8-10  PPM circumvents limitations associated with direct polymerization of 

functional monomers due to intolerance of many functional groups with the 

polymerization mechanism and/or reaction conditions (i.e. reactivity, steric hindrance, 

temperature/light sensitivity).11  PPM of reactive polymer surfaces in the brush regime – 

where polymer chains are densely grafted to a surface such that the polymer chains 

overlap, experience strong segmental repulsion and accordingly stretch perpendicular to 

the surface5, 12 – is particularly challenging. The stretching of the tethered chains reduces 

chain conformational entropy rendering the penetration of the brush by reactive modifiers 

from solution highly unfavorable.  Thus, the efficiency, depth of penetration, and 

homogeneity of the PPM process in the brush regime are ultimately dependent on 

parameters associated with i) the reaction conditions (i.e. reaction efficiency, solvent 

quality) ii) the tethered polymer brush (i.e. grafting density and thickness) and iii) the 

physical properties of the unbound, reactive modifier (i.e. molecular weight (MW), steric 
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bulk).  Thus, PPM of polymer brush surfaces necessitates the use of reactions with high 

reactivity and efficacy – such as those reactions described as “click” reactions (vide 

infra).  Presently, a broad range of chemical and biological moieties have been installed 

on brush surfaces via the PPM “click” methodologies providing surfaces for catalysis,13, 

14 separations,15 controlled release,16 patterning,17-20 barrier properties,21 and biological 

activity.22-24  

 

Figure 2 - Toolbox of thiol-click reactions.  EWG = electron withdrawing groups; X = 

Br, Cl and R1 = aliphatic or aromatic groups. 

Thiol-Click Reactions  

“Click” chemistries are known as “Robust, Efficient, Orthogonal” (REO) 

strategies to tailor-make polymeric materials with specific function. Among different 

“click” reactions, thiol-click reactions have emerged as valuable tools for the synthetic 

polymer chemist.  Specifically, electron rich alkenes (radical), alkynes (radical), electron 

poor alkenes (Michael addition), isocyanates (carbonyl addition), epoxies (SN2 ring 

opening), and halogens25-27 (SN2 nucleophilic substitution) all readily react with thiols, 
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thus comprising a toolbox of efficient chemical reactions as depicted in Figure 2.28  

Recently, we and others have shown thiol-based click reactions – such as thiol-ene29-33, 

thiol-yne17, 32, 34-37, and thiol-isocyanate38, 39 – to be a powerful approach for engineering 

multifunctional materials and surfaces in a modular fashion. These reactions proceed at 

room temperature with high efficiency and rapid kinetics, in the presence of 

oxygen/water, without expensive and potentially toxic catalysts, and are highly tolerant 

of a wide range of functional groups. The wide commercial availability of thiols as well 

as the rapid reaction kinetics of the base-catalyzed thiol–isocyanate reaction (using 1,8-

diazabicyclo[5.4.0] undec-7-ene (DBU) as the base) makes this reaction extremely 

attractive towards the fabrication of highly functional surfaces. Importantly, this 

chemistry lacks the need for protection of the clickable moiety during surface-initiated 

photopolymerization.  However, the sensitivity of the isocyanate function group to water 

under ambient conditions limits the stability of the brush surfaces upon storage.  The use 

of protected isocyanate groups that are stable under ambient conditions, but undergo 

rapid and reversible deprotection or direct displacement reactions with thiols would 

present an ideal platform for PPM of brush surface.  The concept of blocked isocyanates 

is discussed in the next section and represents the crux of this research prospectus.    

Blocked Isocyanates 

Isocyanates are highly reactive, inherently sensitive to water, and undergo rapid 

hydrolysis under ambient conditions if no precautions (i.e. dry nitrogen atmosphere) are 

implemented (Figure 3a).  In an unprotected form, isocyanates readily react with 

alcohols, amines and thiols to form urethane, urea, and thiourethane linkages, 

respectively, as shown in Figure 3a.  Collectively, these reactions underpin many 
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industrial technologies such as polyurethane coatings, foams, and thermoplastic 

elastomers.  The isocyanate functional group can be protected, or “blocked”, by reacting 

the isocyanate with an active hydrogen compound such as phenols, ketoximes, amides, 

and nitrogen heterocycles (i.e. imidazole,40 pyrazole41).42  In a typical application, 

blocked isocyanates are exposed to heat and undergo an elimination reaction to 

regenerate the reactive isocyanate and the active hydrogen compound.  In the presence of 

a nucleophile (i.e. alcohols, amines and thiols), the regenerated isocyanate can proceed as 

previously described to form urethane, urea, and thiourethane linkages.  The elimination-

addition blocking scheme, as shown in Figure 3a, has been used in coatings applications 

for shelf-stable formulations that can be activated at elevated temperatures; however, 

relatively high temperatures (100 – 200 °C) are often necessary to facilitate the 

deblocking reaction which can limit the applicability of blocked NCOs for certain 

applications.  The deblocking temperature depends on the structure of both the isocyanate 

and the blocking compound.  An alternate scheme to utilize blocked NCOs is shown in 

Figure 3b.  In the addition-elimination route, the nucleophile reacts directly with the 

blocked NCO to yield a tetrahedral intermediate followed by elimination of the blocking 

agent.   
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Figure 3 - (a) Scheme illustrating the blocking reaction of isocyanates and the 

elimination-addition reaction of blocked isocyanates at elevated temperatures.  The 

regenerated NCO group can readily react with various nucleophiles (alcohol, amines, 

thiols, water). (b) The addition-elimination route available by reaction of a nucleophile 

directly with a blocked isocyanate. 

 

While blocked NCOs have been widely used at elevated temperatures for 

crosslinking reactions in coatings applications43 (with contributions from both the 

elimination-addition and addition-elimination mechanisms), the exploration of blocked 

isocyanates as a postpolymerization modification approach has scarcely been reported.  A 

recent example by Bode et al.44 demonstrated the use of blocked isocyanates for post-
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polymerization end group modification of α,ω-telechelics (prepared by reversible 

addition-fragmentation chain transfer polymerization) via reaction of the blocked NCO 

end groups with small molecule amines and alcohols at elevated temperatures (130 °C).  

The addition-elimination scheme at ambient temperature has received minimal attention 

as a route to functional materials and surfaces.  The few examples reported in the peer-

reviewed literature have only focused on the reaction of primary amines with blocked 

NCOs under ambient conditions.45-47  To our knowledge, the reaction of thiols directly 

with blocked NCOs under ambient conditions has not been reported. 
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CHAPTER III: 

EXPERIMENTAL METHODS 

 

Surface characterization of polymer brushes can be somewhat of a challenge.  

Because of their reduced dimensionality, assumptions based on analogous solution or 

bulk systems do not necessarily hold. Indeed, other than synthesis, a large part of the 

success in investigating polymer brushes is proving their dimensionality and that the 

physical and chemical properties of polymers are unique when tethered to surfaces. By 

focusing on surface-initiated polymerizations on flat ideal surfaces, it is possible to take 

advantage of a wide variety of surface-sensitive spectroscopic, microscopic, and optical 

techniques.   

Techniques for determining the chemical functional group and molecular 

(elemental) species on synthesized polymer brushes include grazing angle Fourier 

transform infrared spectroscopy (gATR-FTIR) and ellipsometry. Grazing angle-FTIR 

will allow monitoring specific IR-sensitive functional groups, even at monolayer 

thicknesses.  This technique allows for functional group monitoring starting with surface 

initiator functionalization to polymer brush formation and modification.  Particularly, 

chemical group identification or disappearance of post-polymerization modified polymer 

brushes that have undergone chemical conversion will be assessed. Grazing angle-FTIR 

will be particularly useful in determining the complete disappearance blocking agents and 

appearance of thiocarbamate or isocyanate moieties as the blocking agents are removed. 
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This method can also be used to determine the thermal regeneration of the isocyanate 

form the blocking agent.  

Ellipsometry has been used widely and routinely to investigate film thickness of 

polymer brushes and was used to determine initiator monolayer thicknesses as well as 

polymer brush thickness. Ellipsometry measures a beam of polarized light that is 

reflected off of silicon surfaces. The change in refractive index from the standard can be 

correlated back to the surface thickness. Ellipsometry was performed before and after 

deprotection and functionalization through thiol-click reactions.  

Water contact angle (WCA) measurements provided by a contact angle 

goniometer will allow for the determination of surface energy or surface tension which is 

dependent on the hydrophobicity or hydrophilicity of the functional moieties incorporated 

into the polymer brush.  Static water contact angles will confirm the expected changes in 

wettability associated with each functional moiety conjugated to the surface.   

Materials 

All reagents, unless otherwise stated, were obtained at the highest purity available from 

Sigma Aldrich Chemical Company and used without further purification.  The pyrazole-

blocked isocyanate methacrylate (KarenzMOI-BPTM) was obtained from Showa-Denko, 

Inc. (Japan), and passed through a neutral alumina plug to remove inhibitor. 2-

isocyantoetyl methacrylate was obtained from TCI Chemicals. Wako Pure Chemicals, 

Ltd. was supplied for the low temperature initiator, V-70.    



13 
 

 

Figure 4 - Chemical structures for blocked-NCO monomers. 

Synthesis 

Synthesis of Ethyl 3-(3,5-dimethyl-1H-pyrazole-1-carboxamido)propanoate (mNCOP): 

Ethyl-3-isocyanatopropionate (1.49 g, 10.4 mmol) was added dropwise over 15 minutes 

to a stirred solution of pyrazole (1 g, 10.4 mmol) in a 1:1 molar ratio in ether (50 mL). 

The reaction was allowed to run for an hour at room temperature.  The product was 

isolated from ether by rotary evaporation and re-dissolved in CH2Cl2.  The product was 

then transferred to a separatory funnel and washed separately with both 150 mL of 

deionized water and brine solution, respectively.  The organic layer was dried over 
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MgSO4, filtered, and the solvent was removed by rotary evaporation and high vacuum to 

give a colorless oil (2.05 g, 82.4% yield). 

Synthesis of 2-(1H-imidazole-1-carboxamido)ethyl methacrylate (NCOI): 

2-Isocyanatoethyl methacrylate (7.30 g, 47.0 mmol) was added dropwise over 15 minutes 

to a stirred solution of imidazole (3.20 g, 47.0 mmol) in a 1:1 molar ratio in ether (100 

mL). The reaction was allowed to proceed for an hour during which the product 

precipitates as a white solid.  Upon reaction completion, the white solid was filtered and 

dried under vacuum to give a yield of 9.94 g (95% yield). 

Synthesis of Ethyl 3-(1H-imidazole-1-carboxamido)propanoate (mNCOI): 

Ethyl-3-isocyanatopropionate (1.93 g, 13.5 mmol) was added drop wise to a stirred 

solution of imidazole (0.917 g, 13.5 mmol) in ether (50 mL) over 10 minutes.  The 

reaction was stirred for an hour at room temperature, while a white precipitate formed.  

After completion of the reaction, the solid precipitate was filtered, washed with ether, and 

dried under vacuum to give 2.58 g (91% yield). 

Synthesis of 2-(1H-1,2,4-triazole-1-carboxamido)ethyl methacrylate (NCOT): 

1,2,4-triazole (4.00 g, 58.0 mmol) was first dissolved in a solution consisting of 4:5 (v/v) 

THF (80 mL) to ether (100 mL). Next, 2-Isocyanatoethyl methacrylate (9.00 g, 58.0 

mmol) was added drop wise in a molar ratio of 1:1 to the 1,2,4-triazole mixture over the 

course of 15 minutes. The reaction was stirred for 3 hours, while the product precipitated 

as a white solid. After completion of the reaction, the solid precipitate was filtered, 

washed with a THF/ether mixture, and dried under vacuum to give 9.01 g (70% yield). 
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Synthesis of 3-(1H-1,2,4-triazole-1-carboxamido)propanoate (mNCOT): 

1,2,4-triazole (0.91 g, 13.2 mmol) was first dissolved in a solution consisting of 1:2 THF 

(15 mL) to ether (30 mL). Next, ethyl-3-isocyantopropionate (1.89 g, 13.2 mmol) was 

added dropwise in a molar ratio of 1:1 to the 1,2,4-triazole mixture over the course of 5 

minutes. The reaction was stirred for 2 hours, while the product precipitated as a white 

solid. The product was filtered, washed in a THF/ether mixture, and dried under vacuum 

to give 1.62 g (58% yield). 

Small molecule thiol exchange 

Small molecule model reactions were performed to determine the reaction kinetics of the 

exchange between thiol and blocked isocyanates at room temperature. The kinetic 

experiments consisted of a 1:1 molar ratio of thiol to blocked isocyanates. The exchange 

was catalyzed by triethylamine or DBU (at 10 and 30 mol percent) to determine the effect 

of catalyst concentration and type. The model reactions were monitored by NMR 

spectroscopy.  The two thiols that were used to monitor the rates were 1-hexanethiol and 

benzyl mercaptan as shown in Figure 5. The model blocked isocyanate was first 

dissolved in 1 mL deuterated DMSO to yield a 0.2 M solution.  The thiol component was 

then added to the blocked isocyanate solution and an initial NMR spectrum was obtained.  

After the initial NMR scans, the catalyst was added followed immediately by another 

NMR run to generate the first time point for the reaction.  Subsequent NMR spectra were 

obtained at various times to monitor the reaction conversion.    The appearance and 

disappearance of certain peaks relative to unchanging peaks allow for the determination 

of reaction progress. Conversion vs. time plots were created to analyze the reaction rate. 
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The kinetic studies were performed for three different blocked isocyanate model 

compounds to determine the impact of the specific blocking agent on the rate of the 

reaction. 

 

Figure 5 - Reaction between thiols and ethyl 3-(1H-imidazole-1-

carboxamido)propanoate used to elucidate thiol/blocked-NCO reaction kinetics.  

Surface-Initiated Photopolymerization.   

Silicon wafers were cleaned and functionalized with a surface-based initiator as reported 

in previous literature.17 The imidazole, pyrazole, and triazole-based monomers were then 

individually dissolved in DMSO to create 1.0 M solutions. The monomer solutions were 

then degassed for 30 minutes by purging with dry N2. The polymerization reaction were 

performed in a N2 purged glovebox to eliminate the interference of oxygen. The initiator-

functionalized silicon wafers were immersed in the monomer solution and subsequently 

irradiated with UV light for four different time periods: 15min, 20min, 25min and 30min. 

The UV light used was an Omnicure 1000 Series at a wavelength of approximately 

365nm. The intensity of the UV light was 70mW/cm2. After polymerization, substrates 

were thoroughly washed in DMSO, THF and toluene.  
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Post-polymerization Modification of Blocked-NCO Brushes with Thiols.   

The polymerized substrates were submerged into tetrahydrofuran (THF), where various 

thiols (i.e. 1-hexanethiol, benzyl mercaptan, 1-dodecanethiol, and 1-thioglycerol) were 

added separately. Triethylamine and DBU were added separately to catalyze the 

exchange reaction at a concentration of 10mol percent relative to the concentration of 

thiol. The substrates were allowed to react overnight in a test tube shaker, where they 

were subsequently rinsed with THF and toluene to remove excess thiol and catalyst. The 

extent of the reaction was monitored through gATR-FTIR, while changes in water 

contact angle were measured using a contact angle goniometer. 

Small Molecule Characterization.    

All synthesized molecules described above will be characterized for chemical 

composition and primary macromolecular structure. Proton spectroscopy were primarily 

used to determine chemical composition, structure and purity. The model monomers were 

dissolved in deuterated DMSO and ran on a 300MHz Bruker NMR spectrometer. 

Surface Characterization.  

Wettability of the unmodified and modified polymer brushes were monitored by a Ramé-

hart 200-00 Std.-Tilting B. goniometer. Static (θsw) contact angles were measured using 

10 μL water droplets in combination with DROPimage Standard software. Ellipsometric 

measurements were carried out using a Gaertner Scientific Corporation LSE ellipsometer 

with a 632.8 nm laser at 70° from the normal. Refractive index values of 3.86, 1.45, 1.43 

and 1.5 for silicon, oxide layer, photoinitiator monolayer and all polymer layers, 

respectively, were used to build the layer model and calculate layer thicknesses.27, 28 
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The chemical nature of the polymer brush surfaces was characterized by Fourier 

transform infrared spectroscopy (FTIR) in grazing-angle attenuated total reflectance 

mode (gATR-FTIR) using a ThermoScientific FTIR instrument (Nicolet 8700) equipped 

with a VariGATR™ accessory (grazing angle 65°, germanium crystal; Harrick 

Scientific). Spectra were collected with a resolution of 4 cm-1 by accumulating a 

minimum of 128 scans per sample. All spectra were collected while purging the 

VariGATR™ attachment and FTIR instrument with N2 gas along the infrared beam path 

to minimize the peaks corresponding to atmospheric moisture and CO2. Spectra were 

analyzed and processed using Omnic software.  
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Chapter IV: 

Results 

Synthesis of Blocked Isocyanate Monomers 

 

Figure 6 – NMR spectrum of a) NCOP, b) NCOI, and c) NCOT. 

 

  A series of blocked-isocyanto ethyl methacrylate monomers with a range of 

deblocking temperatures were either synthesized or obtained commercially. The blocking 

groups were varied to investigate their deblocking conditions at room temperature via 
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nucleophilic displacement of the blocking agent with a thiol. Imidazole-protected and 

triazole-protected isocyanate monomers were synthesized successfully and in high yield 

through a facile synthesis route. The pyrazole-protected isocyanate monomer was 

obtained commercially from Showa-Denko, Inc. The NMR spectra for the all of the 

protected isocyanate monomers are shown in Figure 6. The NMR spectra indicate that 

these monomers can be obtained in high purity. In figure 6a, peaks g, h, and I correspond 

to the pyrazole blocking agent. In Figure 6b, peaks g, h, and i correspond to the imidazole 

blocking agent. In Figure 6c, peaks g and h correspond to the triazole blocking agent. 
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Synthesis of Blocked Isocyanate Model Compounds 

 

Figure 7 – NMR spectrum of a) mNCOP, b) mNCOI and c) mNCOT. 

 

Small molecule analogs of the blocked isocyanate monomers, lacking the reactive 

double bonds found in the monomers, were synthesized. The model compounds were 

used to monitor the exchange reaction between the blocking agent and thiols at room 

temperature in the presence of base catalyst in order to easily determine the time scales 
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and conditions for these reactions.  Model blocked isocyanates were used instead of the 

blocked isocyanate monomers for these model reactions due to the possibility of Michael 

addition between the acrylate groups in the monomers and the thiol anions. The small 

molecule compounds were synthesized in high purity and the NMR spectra for all of the 

molecules can be found in Figure 7. In Figure 7a, peaks f, g and h correspond to the 

pyrazole blocking agent. In Figure 7b, peaks f, g and h correspond to the imidazole 

blocking agent, while in Figure 7c, peaks f and g correlate to the triazole blocking agent.  

Model Blocked Isocyanate Reactions 

 

Figure 8 – Conversion vs. time plot of thiol exchange with NCOT and TEA as catalyst. 

 

The exchange between the model blocked isocyanates and various thiols were 

monitored to determine the deblocking conditions for the different blocking agents via 

direct nucleophilic displacement. The percent conversion of the blocking agents to 
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thiocarbamate linkages was determined by 1H NMR spectroscopy and plotted versus 

time in order to study the efficiency of the reactions. Conversion was measured by 

comparing the integrations 1H NMR peaks unaffected by the model reactions with the 

integrations of those peaks in that shift as the reaction progresses. Figure 8 shows the 

calculated conversions with time for the exchange mNCOT with benzyl mercaptan and 1-

hexane thiol in the presence of both 10 mol% and 30 mol% triethylamine (TEA) catalyst. 

At 10 mol% TEA, benzyl mercaptan rapidly proceeds to 75% conversion, and at 10 

mol% TEA, 1-hexane thiol approaches 70% conversion after almost three hours.  At 30 

mol% TEA, the reactions with both benzyl mercaptan and 1-hexanethiol reach nearly 

100% conversion after about 20 minutes.   

 

Figure 9 – Conversion vs. time plot with mNCOT and DBU as catalyst. 
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In Figure 9, we can see that 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) provides 

very rapid catalysis of the thiol-isocyanate reactions when compared to the same mole 

percentages of TEA. For both 1-hexanethiol and benzyl mercaptan, nearly 100% 

exchange took place within the first five minutes. At 1 mol% DBU, the conversion of 

blocked isocyanate to thiocarbamate is more gradual and only reaches about 70% 

conversion after 20 minutes. Future studies will investigate the interplay between heat 

and catalyst amounts to determine if there are intermediate conditions that lead to 

efficient deblocking reactions at mild temperatures and low catalyst amounts.  

Polymerization of Blocked Isocyanates 

The blocked isocyanate monomers (NCOP, NCOI and NCOT) were polymerized from 

the surface of silicon wafers through surface initiated polymerization (SIP). A surface-

bound photoinitiator was used to initiate the reaction in the presence of UV light. The 

silicon wafer was placed into the monomer solution and subsequently subjected to UV 

light. The polymerization was allowed to proceed until the films were of sufficient 

thickness to perform characterization through grazing angle ATR-FTIR. The FTIR 

spectrum of the polymer brushes can be found in figure 10.  
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Figure 10 – gATR-FTIR spectrum of pNCOP-, pNCOI- and pNCOT-based polymer 

brushes. The 3,5-dimethyl pyrazole peak is around 2850 cm-1. The imidazole peak is 

around 1390 cm-1. The triazole peak is around 1350 cm-1. 

Modification of Poly(2-(1H-1,2,4-triazole-1-carboxamido)ethyl methacrylate) 

(pNCOT) 

Surface brushes polymerized using triazole-protected isocyanate monomers were 

modified using various types of thiols. These exchange reactions were carried out at room 

temperature as described in Methods 1.5. The thiols that were used for the exchange were 

1-dodecanethiol, benzyl mercaptan, furfuryl mercaptan, 1-thioglycerol and 3-
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mercaptopropionic acid. These thiols were chosen for their unique IR signature, as well 

as a diverse degree of hydrophobicity/hydrophilicity. After the exchange reaction was 

complete, gATR-FTIR spectroscopy was perform on the surfaces. The resultant IR 

spectrum can be found in figure 11. 

 

Figure 11 – FTIR spectrum of thiol-modified pNCOT surface brushes using 10b) 1-

dodecanethiol, 10c) benzyl mercaptan 10d) furfuryl mercaptan 10e) thioglycerol and 10f) 

3-mercaptopropionic acid. 
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The indicative fingerprints of each thiol can be found in the FTIR spectrum in figure 11. 

Figure 11a is the silicon wafer with only the polymerized NCOT monomer, and as the 

exchange reaction proceeds, the triazole peaks disappear and the thiol peaks emerge.  

 

Water contact angle  

 Substrates modified with NCOI were reacted with 1-dodecanethiol and 1-

thioglycerol to demonstrate control of surface properties via room temperature 

modification of blocked isocyanates via thiol-isocyanate reactions. It was expected that 

the hydrophobic thiol (1-dodecane thiol) would increase the water contact angle and 

create a more hydrophobic surface upon reaction. Conversely, 1-thioglycerol was reacted 

with the blocked isocyanates to create a more hydrophilic surface and therefore decrease 

the water contact angle. The modifications were monitored by water contact angle and 

FTIR, which are shown in Figure 12.  
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Figure 12 – Water contact angle and FTIR of modified pNCOI brushes with 1-dodecane 

thiol and 1-thioglycerol. 11a) Polymerized NCOI monomer 11b) water contact angle 

(WCA) of imidazole-blocked pNCO brush 11c) 1-dodecanethiol modified pNCOI brush 

11d) 1-thioglycerol modified pNCOI brush 11e) WCA of 1-dodecanethiol modified 

pNCOI brush 11f) WCA of 1-thioglycerol modified pNCOI brush. 

 In Figure 12, it can be seen that the water contact angle of 1-dodecanethiol was 

increased by approximately 21°, going from 75° to 96°. Also, the appearance of peaks in 

the IR spectrum in Figure 12a corresponding to the hydrocarbon tail of 1-dodecanethiol 

can be seen around 2900cm-1. When pNCOI brushes were reacted with 1-thioglycerol, a 

decrease in water contact angle of approximately 10° was observed. The presence of 1-
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thioglycerol was confirmed through FTIR with the appearance in alcohol groups around 

3350cm-1.  

 

Thermal regeneration of blocked isocyanates 

 In addition to deblocking the blocked isocyanates at room temperature via direct 

nucleophilic displacement, a more traditional thermal regeneration of the isocyanate from 

its protected form was also explored. It was found that after SIP of the NCOT monomer, 

the triazole blocking agent could be deprotected at 100°C and in vacuo. Silicon substrates 

that had been modified triazole-blocked polymers and imidazole-blocked polymers were 

placed modified-side up in a vacuum oven at 100 ºC and gATR-FTIR spectra (Figure 13) 

were collected before deblocking and after 18 hours in the vacuum over. The appearance 

of a peak at 2275 cm-1 corresponding to isocyanate demonstrates that the blocking agents 

could be successfully removed and the isocyanate functionality restored.  The presence of 

a peak around 1373 cm-1 in both IR spectra for the imidazole-blocked brushes indicates 

that there is remaining blocked imidazole after thermal treatment.  This may be a result of 

the imidazole blocking agents being unable to leave the brush surface due to steric 

hindrance or that longer times at elevated temperatures in the vacuum oven are need to 

remove the blocking agent completely.  
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Figure 13 – Thermal regeneration of blocked isocyanates 12a) pNCOT brushes 12b) 

deprotected pNCOT brushes 12c) pNCOI brushes 12d) deblocked pNCOI brushes. 
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Chapter V: 

Conclusion 

 The goal of this research project was to synthesize protected isocyanate-functional 

brushes, and to then determine the kinetic and thermodynamic parameters needed to 

exchange those blocking agents with thiols. A series of blocked isocyanate methacrylate-

based monomers were synthesized successfully and in high yield. Small molecule 

analogs of the blocked isocyanate monomers were also successfully synthesized and used 

to determine the conversion of the exchange between blocking agent and thiol, using 

DBU and, in one case, TEA as catalysts. The model compounds blocked with imidazole 

and 1,2,4-triazole were found to have a very rapid conversion to thiocarbamate linkages 

in the presence of DBU  Triazole-model compounds were also found to reach high 

conversions rapidly using TEA at high mole percentages of catalyst. Blocked isocyanate-

functional polymer brushes were successfully synthesized by surface-initiated 

photopolymerization and characterized by ellipsometry and gATR-FTIR. Once formed, 

the imidazole and 1,2,4-triazole blocked polymer brushes could then be deblocked 

through application of vacuum and heat, or by room temperature nucleophilic 

displacement of the blocking agent with a thiol. Finally, through water contact angle we 

observed that modification of the blocked isocyanate brushes could change the 

hydrophobicity or hydrophilicity of the silicon surface, dependent upon the 

hydrophobicity/hydrophilicity of the thiol modifier.  
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