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ABSTRACT 

EFFECTS OF TEMPERATURE ON GROWTH AND MOLTING IN BLUE CRABS 

(CALLINECTES SAPIDUS) AND LESSER BLUE CRABS (CALLINECTES SIMILIS) 

by Abigail Ann Kuhn 

December 2017 

Temperature can exert impacts on many processes in ectotherms. With global 

temperatures rising due to climate change, many ectothermic species may exhibit changes 

in growth rates and size at maturity, and these changes can have population-level effects. 

Predicting responses of species to climate change will require not only knowledge of 

thermal tolerance limits, but also effects of temperature change on growth rates and other 

life history parameters. For arthropods that exhibit discontinuous growth (i.e., molting), 

this includes both intermolt period and growth per molt. Previous laboratory and field 

experiments suggest that temperature affects both intermolt period (IMP) and growth per 

molt (GPM) in many crustaceans, including blue crabs. Field surveys suggest that blue 

crabs reach maturity at larger sizes in cooler areas, and at smaller sizes in warm areas. In 

this study I investigate the effect of temperature on the growth process in blue crabs 

Callinectes sapidus and lesser blue crabs Callinectes similis, to examine differences in 

temperature sensitivity of growth rates across seasonal thermal regimes. Observed growth 

dynamics differed between species and were dependent on the time of collection and the 

temperature regime experienced by the crabs. Future research should examine the effect 

of temperature on growth in crabs from metamorphosis to maturity to determine if the 

response is consistent across all instars, and to directly assess effects of temperature on 

size at maturity.
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CHAPTER I - INTRODUCTION 

Global temperatures are changing and are projected to continue increasing (IPCC, 

2014). Temperature can influence many life history characteristics, especially in 

ectotherms (Atkinson, 1994; Hartnoll, 1982), and growth rates in particular are quite 

sensitive to temperature variation. In general, organisms reared at a warmer temperature 

grow at a faster rate but ultimately reach a smaller body size (Atkinson, 1994). This trend 

(the Temperature-Size Rule) has been observed across taxa in animals, plants, bacteria, 

and protozoans (Angilletta and Dunham, 2003). Similarly, there is often a positive 

association between body size and latitude (i.e., James’s Rule; Blackburn et al., 1999). 

With global temperatures rising (and substantial regional variation in rates of warming), 

species are likely to exhibit changes in growth rates and potentially size at maturity, and 

these changes can have population-level effects through altered predator-prey interactions 

(Araújo and Luoto, 2007; Sanford, 1999; Yang and Rudolf, 2010) and reproduction 

dynamics (Carson et al., 2010; Petes et al., 2008). Predicting species responses to climate 

change will require not only knowledge of thermal tolerance limits, but also effects of 

temperature change on growth rates and associated life history parameters. In 

commercially-harvested species, an understanding of thermal effects on growth rates will 

be necessary for successful stock assessment and management efforts, as effective 

fisheries management strategies rely on growth-related parameters including size at age 

and size at maturity (Froese et al., 2008). 

Crustaceans exhibit discontinuous growth where growth occurs only in short 

periods associated with each molt as the animal sheds its exoskeleton. This pattern, 

combined with the absence of structures useful for determining age (e.g., otoliths, scales, 
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vertebrae), precludes accurate size at age determination in crustaceans and therefore 

traditional growth models such as the von Bertalanffy growth curve (von Bertalanffy 

1938) cannot be used to estimate size at age. Instead, growth models for crustaceans 

include two parameters: (1) the change in size following a molt, known as the molt 

increment or growth per molt (GPM), and (2) the time interval between molts, called the 

intermolt period (IMP; Chang et al., 2012).  

Studies on several crab species have shown both similar and contrasting patterns 

of thermal effects on intermolt period and growth per molt, respectively. Increased 

temperatures lead to shorter intermolt periods in many species including the red king crab 

Paralithodes camtschaticus (Stoner et al., 2010), the snow crab Chionoectes opilio 

(Yamamoto et al., 2015), and the Dungeness crab Cancer magister (Kondzela and 

Shirley, 1993). The effect of temperature on growth per molt, however, is variable among 

species (Hartnoll, 1982). Red king crabs exhibit a positive and linear relationship 

between growth per molt and temperature (Stoner et al., 2010), while blue king crabs 

show no relationship (Stoner et al., 2013). Yet other species show more complex 

relationships, with GPM initially increasing with increasing temperature before 

decreasing at higher temperatures (Anger, 1984). These varying relationships between 

temperature and growth per molt may be due to trade-offs between the increase in size at 

each molt and the amount of time between molts. The inconsistency of GPM responses to 

temperature underlies the importance of further investigations of the effect of temperature 

on growth, specifically over multiple molts and over a range of temperatures.  

Even studies on the same species show consistent IMP responses and inconsistent 

GPM responses to temperatures. Field surveys suggest that blue crabs reach maturity at 
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larger sizes in cooler areas, and at smaller sizes in warm areas (Fisher, 1999; Darnell et 

al., 2009; Hines et al., 2010). Laboratory studies suggest that temperature strongly affects 

IMP and may also affect GPM in blue crabs. Previous laboratory experiments have found 

that IMP decreases at higher temperature (Brylawski and Miller, 2006; Leffler, 1972; 

Tagatz, 1968). Leffler (1972) and Cunningham and Darnell (2015) observed a decrease in 

GPM at warmer temperatures but Tagatz (1968) and Brylawski and Miller (2006) did not 

observe any effect of increased temperature on GPM.  

Blue crabs, Callinectes sapidus Rathbun, are an ecologically and economically 

important species throughout their range, which spans from Nova Scotia to Argentina, 

including the Chesapeake Bay, Gulf of Mexico, and the Caribbean Sea. In 2015, blue 

crab landings in the United States totaled 159.6 million pounds for a dockside value of 

$237.6 million (NMFS, 2016). Stocks and landings of blue crabs have declined in recent 

years in areas with commercial fishing pressure, and decreases in size at maturity have 

been observed in some areas (Eggleston et al., 2004; Lipcius and Stockhausen, 2002). 

Decreases in size at maturity are especially concerning for female blue crabs because 

they undergo a terminal molt. The size at which female blue crabs reach maturity is the 

size they will remain throughout reproduction. Decreases in size at maturity could be the 

result of temperature shifts related to climate change, but additional research is needed to 

understand the factors that regulate growth and size at maturity in blue crabs. 

Temperature-driven shifts in growth could lead to changes in the age of entry into the 

fishery, reproductive output, size at maturity, and age at maturity.  

Lesser blue crabs, Callinectes similis Williams, commonly co-occur with C. 

sapidus but do not support a commercial fishery due to their smaller size and offshore 
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distribution. Hsueh et al. (1993) reported the maximum size of C. similis to be two-thirds 

the maximum size of C. sapidus. While several studies have focused on the effects of 

increased temperature on growth in C. sapidus, the influence of temperature on growth in 

C. similis has not been investigated.  

The goal of this study was to investigate the temperature-dependence of growth 

processes for blue crabs and lesser blue crabs. Specific objectives were to (1) determine 

effects of increased temperature on intermolt period, (2) examine the effects of increased 

temperature on growth per molt, and (3) determine if temperature affects size at a specific 

instar. 
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CHAPTER II – MATERIALS AND METHODS 

Crabs for all experiments (C. sapidus and C. similis) were collected as megalopae 

using a 500-μm mesh plankton net deployed during nighttime flood tides in the Aransas 

Pass inlet in Port Aransas, Texas (27.83813° N, 97.05027° W), then transported to the 

Gulf Coast Research Laboratory in Ocean Springs, MS. Individual megalopae were 

placed into six-well plates with 15-mL of artificial seawater (~30 ppt) in each well. Well 

plates were then placed in temperature-controlled incubators under various temperature 

treatments. There were two types of temperature treatments: 1) natural, seasonal 

temperature fluctuations, and 2) constant, stable temperatures. 

Two temperature treatments were used to examine growth rates under natural 

temperature fluctuations: ambient water temperature (relative to the collection site) and 

ambient + 5°C. Temperatures in the incubators were adjusted weekly to track current 

ambient water temperatures in Port Aransas, Texas, using data from the nearby 

NOAA/NOS/CO-OPS station 8775237 (2.27 km from the collection site) and/or National 

Data Buoy Center (NDBC) station PTAT2 (1.35 km from the collection site). The 

ambient + 5°C treatment was capped at a maximum of 35°C to avoid mortality at higher 

temperatures. Multiple collections occurred to examine differences in temperature 

sensitivity of growth rates across seasonal thermal regimes (Table 1, Figure 1). Three 

temperature treatments were used to examine growth rates under constant temperatures, 

using only C. sapidus: 20°C, 25°C, and 30°C. Crabs were collected on July 21, 2017 

using the methods described above and reared at the constant experimental temperatures 

until the fifth instar. 
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Table 1 Sample sizes for each growth experiment 

Experiment 

# 

Collection 

Date 

Ambient Ambient +5°C Target molt 

stage for 

conclusion 

of 

experiment 

C. 

sapidus 

C. 

similis 

C. 

sapidus 

C. 

similis 

1 
Feb. 20, 

2016 
– 40 – 40 12 

2 May 8, 2016 20 – 20 – 10 

3 
Feb. 25, 

2017 
10 20 10 20 5 

 

 

Figure 1. Seasonality of the temperatures experienced by crabs collected in February 

2016, May 2016, and February 2017. Arrows indicate collection date. 

Incubators were checked daily to ensure water temperature was consistent within 

treatments during each experiment. The light cycles in the incubators were adjusted 

weekly based on the timing of sunrise and sunset at the collection site (to the nearest five 

15 

20 

25 

30 

35 

40 

1/31 5/10 8/18 11/26 3/6 6/14 

T
e

m
p
e

ra
tu

re
 (

°C
) 

Date 

Ambient 

Ambient +5°C 



 

7 

minutes). After metamorphosis from megalopa to the first juvenile instar, the crabs were 

checked daily for molting and fed an appropriate food type based on their size. Carapace 

width in millimeters was measured following each molt. The crabs were fed ad libitum to 

minimize any effects of possible starvation on growth. For the first six instars, the crabs 

were fed a mixture of Artemia spp. nauplii one- and two-day post-hatch (~50/50 mix). 

The two-day post-hatch Artemia was enriched with algae paste (Isochrysis spp.) to 

supplement the low nutritional value of the nauplii. From the seventh instar to the twelfth 

instar, crabs were weaned off Artemia and offered initially two sizes of commercial 

shrimp pellets (Ziegler shrimp diet) and later small pieces of frozen shrimp. When 

molting occurred, the old exoskeleton was removed and carapace width measured. The 

carapace width of each crab was measured within one day after each molt and the crabs 

were measured with a stereoscopic microscope with an ocular micrometer, digital 

calipers, or a ruler throughout the course of the experiment, depending on crab size. 

Crabs were moved to larger containers as they increased in size to ensure growth 

was not limited by the size of the container. Once the carapace width of the crab reached 

one-third of the diameter of the container, the crab was placed in a larger container. Crabs 

were moved from well plates (15.5 mL capacity, 3.48 cm diameter) to 237 mL jars (6.03 

cm diameter) to one gallon (16.2 cm diameter) and two gallon (20.6 cm diameter) 

buckets as needed. Water in the containers was changed daily in order to prevent death 

due to buildup of waste products. 

Data were analyzed primarily using linear mixed effects models, with individual 

crab ID as a random effect (to account for repeated measurements on individual crabs) 

using JMP v. 13.0.0 (SAS Institute, Inc., Cary, NC). Callinectes sapidus and C. similis 
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were analyzed separately and each experiment was analyzed independently since 

megalopae were collected during different seasons. The timing of molting was analyzed 

using a linear mixed-effects model with IMP (calculated as the length of time in days 

between one molt and the subsequent molt) as the response variable with temperature 

treatment, instar, and the treatment × instar interaction as fixed effects, and crab ID as a 

random effect. Growth per molt was analyzed using postmolt CW as the response 

variable with temperature treatment, premolt CW, and the treatment × premolt CW 

interaction as fixed effects, and crab ID as a random effect. Size-at-stage was analyzed 

using a linear mixed-effects model with postmolt carapace width (CW) as the response 

variable, with temperature treatment, instar, and the treatment × instar interaction as fixed 

effects, and crab ID as a random effect. 

Experiments conducted under naturally fluctuating temperatures (Table 1) were 

analyzed using the methods described above. For the experiment conducted under 

constant temperatures, size-at-stage and growth per molt were analyzed as above. The 

timing of molting was analyzed using a linear mixed-effects model with IMP as the 

response variable with temperature treatment, premolt CW, and the treatment × premolt 

CW interaction as fixed effects, and crab ID as a random effect. 
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CHAPTER III  - RESULTS 

Callinectes similis 

Growth trajectories for both experiments differed between the two temperature 

treatments due to differences in both IMP and GPM (Figure 2). C. similis collected in 

February 2016 were reared to the J12 instar and C. similis collected in February 2017 

were reared to the J5 instar. 18 individuals survived to the 12th juvenile instar, and 

reached J12 after 179.8 ± 22.13 days (mean ± SD) when raised under ambient 

temperatures and 12 individuals survived to the 12th juvenile instar after 133.9 ± 15.70 

days when reared under ambient +5°C temperatures in the February 2016 experiment 

(Figure 2a). 19 individuals survived to the 5th juvenile instar, and reached J5 after 39.58 

± 2.292 days (mean ± SD) when raised under ambient temperatures and all 20 individuals 

survived to the 5th juvenile instar after 30.9 ± 4.19 days when reared under ambient +5°C 

temperatures in the February 2017 experiment (Figure 2b). 
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Figure 2. Mean growth trajectories as a function of time since metamorphosis for each 

temperature treatment for C. similis crabs collected in February 2016 (a) and February 

2017 (b). Line type indicates temperature treatment. Each data point represents a single 

postmolt CW measurement. 

 

Intermolt period for C. similis collected in February 2016 ranged from 3–42 days. 

Temperature, instar number, and the temperature × instar interaction all had a significant 

effect on IMP (Table 2, Figure 3a). In general, IMP increased with each subsequent molt 
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and was longer for crabs reared at ambient temperatures than for crabs reared at ambient 

+ 5°C temperatures. There was also a significant temperature × instar interaction, as the 

difference between the two temperature treatments was not constant across instars. Yet, 

in all instars where IMP differed between the temperature treatments, IMP was always 

greater in the ambient treatment than the ambient +5°C treatment.  Intermolt period for 

the February 2017 C. similis experiment ranged from 4–13 days, with a significant effect 

of temperature treatment and instar (Figure 3b); IMP was significantly longer for crabs 

reared at ambient temperatures than for crabs reared at ambient + 5°C temperatures. 

 

Table 2 Summary of mixed-model ANCOVA results, testing effects of increased 

temperature, instar, and the interaction of temperature and instar on IMP for C. similis 

crabs collected in February 2016 (a) and February 2017 (b). Significant P values are 

indicated in bold. 

 a) February 2016 b) February 2017 

Source DF F P DF F P 

Temperature 1, 95.29 117.20 <0.0001 1, 35.7 61.79 <0.0001 

Instar 10, 569.3 248.26 <0.0001 3, 111 101.7 <0.0001 

Temperature  Instar 10, 569.3 8.3621 <0.0001 3, 111 0.3183 0.8122 
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Figure 3. Mean (± SD) intermolt period at each juvenile instar for C. similis collected in 

February 2016 (a) and February 2017 (b) and reared at ambient temperatures (gray bars) 

and ambient + 5°C temperatures (white bars). n=40 crabs for February 2016 (a) and n=20 

crabs for February 2017 (b). * indicates a significant difference between temperature 

treatments at P < 0.05. 

Postmolt CW was strongly related to premolt CW, and was also dependent on 

temperature treatment (Table 3), with greater postmolt CW (relative to premolt CW; i.e., 

greater growth per molt) in the ambient treatment for crabs in the February 2016 

experiment. The significant temperature × premolt CW interaction indicates a difference 
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in the slopes of the postmolt CW vs. premolt CW regressions (Figure 4a). Postmolt CW 

relative to premolt CW is larger for crabs in the ambient temperature treatment. Postmolt 

CW was strongly related to premolt CW, and was also dependent on temperature 

treatment for crabs in the February 2017 experiment as well. Postmolt CW increased with 

increasing premolt CW but the non-significant temperature × premolt CW interaction 

indicates no difference in the slopes of the postmolt CW vs. premolt CW regressions 

(Figure 4b). 

 

Table 3 Summary of mixed-model ANCOVA results, testing effects of increased 

temperature, premolt CW, and the interaction of temperature and premolt CW on GPM 

for C. similis crabs collected in February 2016 and February 2017. Significant P values 

are indicated in bold. 

 a) February 2016 b) February 2017 

Source DF F P DF F P 

Temperature 1, 77.89 9.7674 0.0025 1, 36.4 5.0010 0.0314 

Premolt CW 1, 616.8 86906 <0.0001 1, 118 11640 <0.0001 

Temperature  Premolt CW 1, 616.8 4.6517 0.0314 1, 118 0.3295 0.5670 
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Figure 4. Postmolt CW as a function of premolt CW for C. similis collected in February 

2016 (a) and February 2017 (b) and reared at ambient temperatures (solid circles) and 

ambient + 5°C temperatures (open circles). Regression lines (ambient temperature 

treatment, solid line; ambient + 5°C, dashed line) indicate significant interaction effect of 

temperature and premolt CW on postmolt CW. 

The negative response of growth per molt to increased temperature resulted in 

crabs reaching each instar at a smaller size when reared at the warmer ambient + 5°C 

temperatures compared to crabs reared at ambient temperatures in the February 2016 
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experiment. Significant differences in postmolt CW between the two temperature 

treatments were observed in instars J8–J12 (Table 4, Figure 5a). Postmolt CW was not 

significantly different between the temperature treatments during the first seven instars, 

although there was a consistent trend of larger size in the ambient treatment. The 

increasing difference in mean postmolt CW between the two temperature treatments as 

the crabs progressed through the juvenile instars is reflected in the significant temperature 

× instar interaction. There was a marginally-significant difference (P = 0.0515) in size at 

age between the temperature treatments for crabs in the February 2017 experiment (Table 

4, Figure 5b), with a trend of larger size in the ambient treatment. The increasing 

difference in mean postmolt CW between the two temperature treatments as the crabs 

progressed through the juvenile instars is reflected in the significant temperature × instar 

interaction. 

 

Table 4 Summary of mixed-model ANCOVA results, testing effects of increased 

temperature, instar, and the interaction of temperature and instar on postmolt CW for C. 

similis crabs collected in February 2016 and February 2017. Significant P values are 

indicated in bold. 

 a) February 2016 b) February 2017 

Source DF F P DF F P 

Temperature 1, 92.0 34.780 <0.0001 1, 38.08 4.0437 0.0515 

Instar 11, 628 3228.4 <0.0001 4, 151.2 3152.8 <0.0001 

Temperature  Instar 11, 628 9.4582 <0.0001 4, 151.2 5.7183 0.0003 

 



 

16 

 

Figure 5. Mean (± SD) postmolt CW at each juvenile instar for C. similis collected in 

February 2016 (a) and February 2017 (b) and reared at ambient temperatures (gray bars) 

and ambient + 5°C temperatures (white bars). n=40 crabs for February 2016 (a) and n=20 

crabs for February 2017 (b). * indicates a significant difference between temperature 

treatments at P < 0.05. 
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Callinectes sapidus 

Growth under natural temperature fluctuations 

Increased temperatures did not significantly alter IMP or GPM for crabs collected 

in May 2016 (Figure 6a) but increased temperatures significantly shortened IMP for crabs 

reared in ambient +5°C temperatures in the February 2017 experiment (Figure 6b). C. 

sapidus collected in February 2017 were reared to the J5 instar. All ten individuals 

survived to the 5th juvenile instar, and reached J5 after 42.1 ± 5.20 days (mean ± SD) 

when raised under ambient temperatures and all ten individuals survived to the 5th 

juvenile instar after 29.3 ± 2.63 days when reared under ambient +5°C temperatures. 
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Figure 6. Mean growth trajectories as a function of time since metamorphosis for each 

temperature treatment for C. sapidus crabs collected in May 2016 (a) and February 2017 

(b). Line type indicates temperature treatment (May 2016 shows the mean of both 

treatments, as there was no difference between treatments in IMP or GPM). Each data 

point represents a single postmolt CW measurement. 

The effect of increased temperature on IMP for C. sapidus crabs reared under 

natural temperature fluctuations differed between the two collections (Table 5). Intermolt 
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temperature treatment (Figure 7a). Intermolt period for the February 2017 experiment 

ranged from 4–25 days, with a significant effect of temperature treatment (Figure 7b); 

IMP was significantly longer for crabs reared at ambient temperatures than for crabs 

reared at ambient + 5°C temperatures. 

 

Table 5 Summary of mixed-model ANCOVA results, testing effects of increased 

temperature, instar, and the interaction of temperature and instar on IMP for C. sapidus 

crabs collected in May 2016 and February 2017. Significant P values are indicated in 

bold. 

 a) May 2016 b) February 2017 

Source DF F P DF F P 

Temperature 1, 18.86 0.6386 0.4342 1, 18 48.35 <0.0001 

Instar 8, 149.1 9.764 <0.0001 3, 54 45.33 <0.0001 

Temperature  Instar 8, 149.1 0.7642 0.6348 3, 54 0.5094 0.6775 
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Figure 7. Mean (± SD) intermolt period at each juvenile instar for C. sapidus collected in 

May 2016 (a) and February 2017 (b) and reared at ambient temperatures (gray bars) and 

ambient + 5°C temperatures (white bars). 

In both experiments under natural temperature fluctuations (Table 6), there was 

no effect of increased temperature on growth per molt. Although there was a strong effect 

of premolt CW on postmolt CW, there was no effect of temperature treatment or 

temperature  premolt CW interaction. Growth per molt based on postmolt CW was 

dependent only on premolt CW, and thus postmolt CW significantly increased with 

increasing premolt CW (Figure 8).  
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Table 6 Summary of mixed-model ANCOVA results, testing effects of increased 

temperature, premolt CW, and the interaction of temperature and premolt CW on GPM 

for C. sapidus crabs collected in May 2016 and February 2017. Significant P values are 

indicated in bold. 

 a) May 2016 b) February 2017 

Source DF F P DF F P 

Temperature 1, 19.63 0.1292 0.7231 1, 17.54 1.4083 0.2512 

Premolt CW 1, 177.8 5805 <0.0001 1, 54.24 4866.7 <0.0001 

Temperature  Premolt 

CW 

1, 177.8 0.02270 0.8803 1, 54.24 1.7665 0.1889 
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Figure 8. Postmolt CW as a function of premolt CW for C. sapidus crabs collected in 

May 2016 (a) and February 2017 (b). Regression lines indicate a significant effect of 

postmolt CW (mm) with increasing premolt CW. n=20 crabs in ambient treatment (solid 

circles), n=24 crabs in ambient + 5°C treatment (white circles). 

The lack of an effect of temperature on GPM and postmolt CW resulted in similar 

CWs between the two treatments at each stage. Although carapace width increased at 

each instar, there was no significant effect of temperature treatment (Table 7, Figure 9).  
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Table 7 Summary of mixed-model ANCOVA results, testing effects of increased 

temperature, instar, and the interaction of temperature and instar on postmolt CW for C. 

sapidus crabs collected in May 2016 and February 2017. Significant P values are 

indicated in bold. 

 a) May 2016 b) February 2017 

Source DF F P DF F P 

Temperature 1, 22.24 2.283 0.1449 1, 18 0.2077 0.6540 

Instar 9, 171.1 215.8 <0.0001 4, 72 732.3 <0.0001 

Temperature  Instar 9, 171.1 0.4675 0.8948 4, 72 1.082 0.3719 
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Figure 9. Mean (± SD) postmolt CW at each juvenile instar for C. sapidus crabs collected 

in May 2016 (a) and February 2017 (b) and reared at ambient temperatures (gray bars) 

and ambient + 5°C temperatures (white bars). 

 

Growth under constant experimental temperatures 

Growth trajectories differed between the three temperature treatments due to 
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reared to the J5 instar. Crabs reared at 20°C (n=34) reached J5 at an average of 38.85 ± 

2.11 days (mean ± SD) and crabs reared at 25°C (n=31) reached J5 at an average of 26.6 

± 2.22 days, while crabs reared at 30°C (n=35) reached J5 at an average of 24.71 ± 2.76 

days. 

 

Figure 10. Mean growth trajectories as a function of time since metamorphosis for each 

temperature treatment for C. sapidus crabs collected in July 2017. Line type and color 

indicates temperature. Each data point represents a single postmolt CW measurement. 

 

Temperature, premolt CW, and the temperature × premolt CW interaction all had 

a significant effect on IMP (Table 8). In general, IMP increased with increasing premolt 

CW and was longer for crabs reared at 20°C than for crabs reared at 25°C or 30°C. The 

significant temperature × premolt CW interaction indicates a difference in the slopes of 

the IMP vs. premolt CW regressions. As temperature increased, the effect of premolt CW 

on IMP was reduced (i.e., decreasing slope with increasing temperature in Figure 11). 

This resulted in a greater effect of temperature on IMP at larger sizes. 
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Table 8 Summary of mixed-model ANCOVA results, testing effects of increased 

temperature, premolt CW, and the interaction of temperature and premolt CW on IMP 

for C. sapidus crabs collected in July 2017. Significant P values are indicated in bold. 

Source DF F P 

Temperature 2, 90.93 194.7942 <0.0001 

Premolt CW 1, 324.7 147.9610 <0.0001 

Temperature × Premolt 

CW 

2, 324.5 50.5502 <0.0001 

 

 

Figure 11. Intermolt period as a function of premolt CW for C. sapidus collected in July 

2017 and reared at 20°C (solid circles), 25°C (gray circles) and 30°C (open circles). 

Regression lines (20°C, solid line; 25°C, dotted line; 30°C, dashed line) indicate 

significant interaction effect of temperature and premolt CW on IMP. 

 

Postmolt CW was strongly related to premolt CW, and was also dependent on 

temperature treatment (Table 9), with greater postmolt CW (relative to premolt CW; i.e., 

greater GPM) in the 20°C treatment (Figure 12). 
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Table 9 Summary of mixed-model ANCOVA results, testing effects of increased 

temperature, premolt CW, and the interaction of temperature and premolt CW on GPM 

for C. sapidus crabs collected in July 2017. Significant P values are indicated in bold. 

Source DF F P 

Temperature 2, 100.1 59.9134 <0.0001 

Premolt CW 1, 320.3 197.9192 <0.0001 

Temperature × Premolt 

CW 

2, 320.3 2.6028 0.0756 

 

 

Figure 12. Postmolt CW as a function of premolt CW for C. sapidus crabs collected in 

July 2017 and reared at 20°C (solid circles), 25°C (gray circles) and 30°C (open circles). 

Regression lines (20°C, solid line; 25°C, dotted line; 30°C, dashed line) indicate larger 

postmolt CW at larger premolt CW. 

 

The negative effect of increased temperature on GPM resulted in crabs reaching a 

smaller size at each stage when reared at 30°C compared to crabs reared at 20°C and 

25°C (Table 10). There were significant differences in postmolt CW between the two 

temperature treatments in instars J3–J5 (Figure 13).  Postmolt CW was not significantly 
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different between the temperature treatments at the first or second instars, although there 

was a consistent trend of larger size in the 20°C treatment. The increasing difference in 

mean postmolt CW between the two temperature treatments as the crabs progressed 

through the juvenile instars is reflected in the significant temperature  instar interaction. 

 

Table 10 Summary of mixed-model ANCOVA results, testing effects of increased 

temperature, instar, and the interaction of temperature and instar on postmolt CW for C. 

sapidus crabs collected in July 2017. Significant P values are indicated in bold. 

Source DF F P 

Temperature 2, 84.55 28.2355 <0.0001 

Instar 4, 373.9 5177.811 <0.0001 

Temperature  Instar 8, 373.9 31.9543 <0.0001 

 

 

Figure 13. Mean (± SD) postmolt CW at each juvenile instar for C. sapidus crabs reared 

at 20°C (black bars, n=34), 25°C (gray bars, n=31), and 30°C (white bars, n=35). Letters 

indicate significant differences based on post-hoc Tukey’s HSD tests (levels connected 

by same letter are not significantly different). 
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CHAPTER IV – DISCUSSION 

This study investigated the effect of temperature on the growth process in blue 

crabs Callinectes sapidus and lesser blue crabs Callinectes similis. Results differed 

between species and were also dependent on the timing of collection and the temperature 

regime experienced by the crabs.  

 Both C. similis and C. sapidus both exhibited a shorter IMP under increased 

temperatures, consistent with previous studies on C. sapidus (Brylawski and Miller, 

2006; Cadman and Weinstein, 1988; Cunningham and Darnell, 2015; Leffler, 1972; 

Tagatz, 1968) and other brachyuran crabs (Anger, 1984; Kondzela et al., 2015). Increased 

temperature almost universally increases the rates of physiological processes (Gillooly et 

al., 2001), including those associated with molting, thus shortening the period between 

molts. In experiments rearing crabs under natural temperature fluctuations, the warmer 

ambient +5°C treatment only had a significant effect on IMP for C. sapidus crabs 

collected in February 2017, with no effect of increased temperature on IMP for C. 

sapidus crabs collected in May 2016. This is likely the result of the non-linearity of 

temperature dependence of most physiological processes. Typically, the rate of 

physiological processes increases with increasing temperature up to some optimum 

temperature, before dropping off rapidly as the organism approaches its upper thermal 

limit (Huey and Kingsolver, 1989; Huey and Stevenson, 1979). We would thus expect 

IMP to decrease with increasing temperature up to a maximum before increasing at 

higher temperatures due to thermal stress. It is possible that, during the May 2016 

experiment, our ambient and ambient +5°C treatments straddled the optimum 

temperature (i.e., where IMP would be at a minimum), resulting in similar IMPs in the 
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two treatments. Further experiments across a range of temperatures to clarify the form of 

the temperature-IMP relationship are needed to fully test this hypothesis. 

 Intermolt period generally increased with increasing premolt size. As crabs grew, 

the molts became less frequent. This was observed in all experiments, with IMPs as short 

as 2–3 d in the early juvenile (J1–J3) stages, or as long as 35 d in the later juvenile stages 

(>J10). Interestingly, when C. sapidus was reared under constant experimental 

temperatures, the effect of premolt size on IMP was reduced as temperatures were 

increased (Figure 9). At the highest temperature tested (30°C), IMP was constant across 

the range of sizes tested (J1–J5, 2.39–7.77 mm CW).  

Effects of increased temperature on growth per molt (GPM) were less consistent. 

C. similis collected in February 2016 and February 2017 showed a significant decrease in 

GPM at warmer temperatures while C. sapidus collected at the same time showed no 

effect of temperature on GPM. This suggests that C. similis is more sensitive to increases 

in temperature than C. sapidus, which is consistent with their offshore distribution and 

thus more stable thermal regime relative to the estuarine distribution of C. sapidus. A 

negative effect of increased temperature on GPM was only observed in C. sapidus when 

held under constant experimental temperature treatments; C. sapidus reared under natural 

temperature fluctuations showed no effect of temperature on GPM, which may be a result 

of increased variation in GPM due to varying temperatures, as crabs were molting to each 

stage at different temperatures, even within a single treatment. When reared under 

constant experimental temperatures, GPM decreased as temperature increased. 

Cunningham and Darnell (2015) and Leffler (1972) also observed decreasing GPM with 

increasing temperature in C. sapidus. This pattern, and the resulting effects on body size 
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at each stage, is consistent with the Temperature-Size Rule (Atkinson, 1994), which 

states that organisms reared at a warmer temperature grow faster, but ultimately reach a 

smaller body size. Other studies, however, did not observe any effect of temperature on 

GPM in C. sapidus (Brylawski and Miller, 2006; Tagatz, 1968). The inconsistency in 

GPM results among these studies may be due to differences in temperature sensitivity of 

GPM as a function of juvenile instar, premolt size, or the range of temperatures tested (as 

observed for IMP, above). Decreasing GPM at increasing temperature may be due to 

differences in the temperature sensitivity of the molt process (controlling IMP) and the 

resource accumulation process (controlling GPM). If the molt process is more sensitive to 

temperature increases, IMP may decrease but resource accumulation may not increase at 

a sufficient rate to maintain a constant GPM. Physiological demands also increase with 

increasing temperatures (Gillooly et al., 2001) and physiological stress may also affect 

growth per molt. 

Although temperature clearly has an impact on the molting process in brachyuran 

crabs, results differed between species, collection dates, and experimental protocols (i.e., 

constant vs. fluctuating temperatures). Differences between species are to be expected, 

reflecting adaptations to their particular environment. C. similis has an offshore 

distribution and would thus experience more stable temperatures than would C. sapidus, 

which has an estuarine distribution during the juvenile and adult phases of the life cycle. 

Among the experiments conducted with C. sapidus, discrepancies in the results may be 

due to the timing of collection or the range of temperatures tested. Crabs collected in 

early spring (February) experienced temperature fluctuations beginning at a much cooler 

temperature than crabs collected in early summer (May). Temperature at metamorphosis 
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for February-collected crabs was as low as 18.8°C whereas the lowest temperature at 

metamorphosis for May-collected crabs was 25.2°C. Effects of increased temperature on 

the molting process are likely non-linear, as discussed above. Additionally, effects of 

increased temperature on GPM were much clearer when crabs were reared at constant 

experimental temperatures. Rearing crabs under naturally fluctuating temperatures 

(ambient and ambient +5°C) introduced another source of variation due to seasonal 

temperature changes that may have masked the effects of increased temperature on GPM 

observed under constant temperatures.  

Although results were not consistent across all experiments, crabs reared at 

warmer temperatures generally molted more frequently due to the negative effect of 

increased temperature on IMP and, in some experiments, were smaller at each instar due 

to the negative effect of increased temperature on GPM. If this pattern remained 

consistent throughout the juvenile period, it could result in crabs reaching maturity at a 

smaller size, and potentially earlier age during warmer years or as ocean temperatures 

increase due to climate change. However, snow crabs possess the ability to delay 

maturity to a later molt and therefore increased temperatures actually lead to snow crabs 

reaching maturity at a larger size (Burmeister and Sainte-Marie, 2010; Orensanz et al., 

2007). It is unknown if the number of molts to maturity is fixed or plastic for blue crabs. 

Smaller size at maturity in female crabs may lead to decreases in individual reproductive 

output, as female body size is a primary factor limiting single-clutch fecundity in 

brachyuran crabs (Hines, 1982). Additionally, smaller size at maturity (and thus smaller 

maximum size for females, who undergo a terminal molt to maturity) may alter predator-

prey interactions and result in increased mortality rates due to predation. Future research 
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should examine the effect of temperature on growth in crabs from metamorphosis to 

maturity to determine if the response is consistent across all molts, and to directly assess 

effects of increased temperature on size at maturity.  
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