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ABSTRACT 

A NEUROPROTECTIVE ROLE FOR MIR-1017,A NON-CANONICAL MIRNA 

by Matthew Anthony de Cruz 

December 2017 

miRNAs are post-transcriptional regulators of gene expression, with 

numerous being involved in neurobiology. Within the human genome a quarter of 

the identified miRNA loci derive from a class of miRNAs termed tailed mirtrons. 

Despite the identification of this large population of miRNA, no functional studies 

have been conducted to identify their role. In this study we examined the highly 

expressed and deeply conserved Drosophila 3’ tail mirtron, miR-1017, as a 

candidate to elucidate tailed mirtron functionality. We identified acetylcholine 

receptor transcripts, D5 and D2, as bona fide targets for miR-1017. 

Interestingly, D2 is also the host transcript for miR-1017. We utilized the 

GAL4/UAS system, to observe the miR-1017 expression pattern; furthermore we 

witnessed a disrupted feedback loop in the miR-1017 null background resulting in 

higher D2 transcriptional activation. This could be phenocopied with the 

acetylcholine receptor (AchR) activity antagonist, Donepezil, which likewise 

resulted in higher GFP expression. Together this suggests that D2 transcription 

is modulated by acetylcholine neurotransmission. Consistent with a role in 

dampening AchR activity miR-1017 mutant flies exhibit a neurodegeneration due 

to excitotoxicity. Ectopic expression of miR-1017 within an Alzhiemers disease fly 

model dampened the pathologenesis and improved neurological function and 

lifespan. Therefore revealing miR-1017, a 3’ tailed mirtron, as a significant 
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neuroprotector within Drosophila. The coupled expression of D2 and miR-1017 

works as a negative feedback loop that limits activity dependent transcription of 

D2. 
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CHAPTER I – INTRODUCTION 

1.1 miRNAs as Gene Regulators 

Over the last two decades miRNAs have widely become recognized as 

common post-transcriptional regulators of gene expression1. miRNAs have been 

identified in Plants, Animals and Viruses and have numerous roles including 

physiological response and cell differentiation during development2,3. 

Furthermore when miRNAs are dysregulated it can cause serious health 

problems including cancer4,5. Animal miRNAs are 22 nucleotides (nt) in length 

and only require 6-8 nt of complementarity to a target mRNA transcript6. The 

seed region of the mature miRNA, nt 2-8, is responsible for complementation to 

the mRNA7. Once bound to Argonaute (Ago) proteins and their target transcripts, 

miRNAs perturb ribosomal translation and cause mRNA degradation8. 

In 1993 the first miRNA was identified and hypotheses ensued suggesting 

that small RNA molecules could cause posttranscriptional gene silencing. The 

seminal studies in C. elegans examined heterochronic genes in larval 

development, specifically looking at lin-149. Through the use of Northern blotting 

they unexpectedly identified two small transcripts, lin-4L (61nt) and lin-4S (22nt), 

unbeknownst to them that this was the first identification of a pre-miRNA and 

mature miRNA respectively. After sequencing it was identified that the lin-4L 

transcript had a secondary structure based on complementary sequences within 

the transcript, this identified the first defining feature of miRNAs as having a 

hairpin structure. Furthermore they identified that the 61nt and 22nt transcript 
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had sequence complementarity to the 3’ UTR of lin-14 and recognized that lin-4 

could negatively regulate lin-14 translation by RNA-RNA interactions10. 

Since then thousands of miRNAs have been identified in many organisms 

and studies have begun characterizing functional roles. Studies in Drosophila 

have identified important miRNAs like the Bantam miRNA, which stimulates cell 

proliferation and prevents apoptosis11. In recent years, miRNAs have been 

implicated as important regulators of homeostasis. Of which several studies link 

miRNAs that serve as neuroprotectors within aging brains12. miR-181 and miR-

223 have been identified to regulate glutamate receptors, thereby directing the 

postsynaptic receptiveness to glutamate13. Furthermore, miR-485 has been 

identified to regulate presynaptically, by tuning expression levels of the synaptic 

vesicle protein SV2A, thus regulating the GluR2 receptor expression pattern14. In 

human studies, comparative analysis in neuroblastoma, cortical development 

and neuronal differentiation of embryonic stem cells, shows that miR-214 and 

miR-7 modulate neuronal differentiation and neurite growth15. Furthermore 

perturbed and misregulated miRNA expression patterns have been implied to aid 

neurodegenerative disorders16,17. 

1.2 miRNA Biogenesis 

Encoded within the human genome are thousands of miRNAs, many of 

which are deeply conserved18, 19. A common feature among all miRNAs is that 

they are derived from hairpin structures20. However, there are numerous classes 

of miRNAs; canonical members require RNase III enzyme mediated excision and 
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processing, while non-canonical members transit through alternate biogenesis 

pathways21. 

Production of canonical miRNAs occurs after synthesis of primary miRNA 

(pri-miRNAs) transcripts by RNA polymerase II. Pri-miRNAs are identified by the 

microprocessor complex component Pasha, which leads to subsequent excision 

by Drosha, an RNase III domain-containing enzyme22. After excision the newly 

cleaved precursor-miRNA (pre-miRNA) are bound by Exportin-5 and transported 

to the cytoplasm in a Ran-GTP dependent manner23. Once within the cytoplasm 

another RNase III enzyme Dicer, processes the pre-miRNA to produce an RNA 

duplex24. The RNA duplex becomes incorporated into an Ago protein, one RNA 

strand, termed the “mature” miRNA, is preferentially loaded into an Ago complex 

and guides Ago to complementary mRNA targets 25. The loaded Ago protein is 

ready to regulate a target transcript’s expression (Figure 1.1)26. 

 

Figure 1.1 miRNA Biogenesis 

Canonical and atypical biogenesis pathways of 3 classes of miRNA 
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One variety of non-canonical miRNA is mirtrons27. Mirtrons, which are 

found within introns, are independent of Drosha cleavage and are produced by 

the spliceosome28. Mirtrons can be further categorized into conventional mirtrons 

and tailed mirtrons. Conventional mirtrons are short introns between exons, in 

which the splice sites directly meet the base of both hairpin arms29. After splicing 

and lariat debranching, the hairpin can continue onto Dicer processing and Ago 

loading (Figure 1.1). Tailed mirtrons possess an extended nucleotide tail 

attached to one of the hairpin arms, adjacent to either the 5’ or 3’ splice site. 

For tailed mirtron synthesis, a precursor-mRNA (pre-mRNA) must be 

transcribed by RNA polymerase II30. After transcription of the pre-mRNA, the 

spliceosome is recruited to cleave out introns, at the 5’ GU and 3’ AG sites, to 

produce a mature exonic mRNA31. Before a hairpin containing intron can 

continue through the biogenesis pathway they need debranching by the lariat 

debranching enzyme32. Once debranched, mirtrons fold into a hairpin structure 

and are ready for tail removal. For 5’ tailed mirtrons, it is not known whether the 

tails are cleaved by endonucleases or trimmed by exonucleases. However 

studies in Drosophila showed that 3’ tails can be trimmed by an exonuclease, the 

RNA exosome33. After tail removal, the hairpin is dicer-processible and the tailed 

mirtron continues through the canonical pathway (Figure 1.1). 

1.3 Tailed mirtrons: an unexplored area 

Over the past two decades, identification of miRNAs has become 

increasingly easier with the use of RNA sequencing tools to collect small RNA 

reads. Within the human genome, reports have identified 478 mirtron loci, of 
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which 410 belong to the 5’ tailed mirtron class34. This non-canonical population of 

miRNA encompasses a quarter of the miRNA loci in humans. miRNAs are being 

identified in the thousands for some model organisms and functional roles are 

being characterized for abundant canonical miRNA species. However despite the 

large population of tailed mirtrons in human, there has been limited to no 

research conducted to explore the functional roles of tailed mirtrons. 

miR-1017 is a 3’ tailed mirtron which resides within an intron of the 

nicotinic acetylcholine receptor alpha-2 subunit, commonly known as nAchR2 or 

D2 subunit. Interestingly, the TargetScan algorithm, a miRNA-mRNA targeting 

database, predicts miR-1017 can regulate its own host gene, D2. Amongst all 

the annotated tailed mirtrons, miR-1017 is by far the most highly expressed and 

highly conserved, being present in all 12 of the sequenced Drosophilids35. Due to 

the high expression level and deep species conservation of miR-1017, we 

hypothesize that miR-1017 has a significant role in Drosophila biology. Therefore 

miR-1017 is a prime candidate to explore whether tailed mirtrons possess a 

functional role. 
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CHAPTER II – Methods 

2.1 Fly strains 

w1118, D2-GAL4 (48952), UAS-mCD8::GFP (32184), mir-1017KO/TM3 

(58889), Elav-GeneswitchGAL4 (43642), UAS-ArcΑβ42 (33773), UAS-LUC-mir-

1017/TM3 (41208) were obtained from the Bloomington stock center. 

2.2 Construction of luciferase reporters 

microRNA binding sites were PCR-amplified, gel purified and ligated into 

Psicheck 2 vector (Promega) digested with NotI and XhoI. The D2 ORF 

fragment and D5 UTR fragment were ligated downstream of the Renilla 

reniformis reporter. D2-F 5’ CTAGGCGATCGCTCGACGAGCTCGCGGCCGCC 

TCAAAGATCAAATTCTAACCACCAACG 3’ and D2-R 5’ TTATTGCGGCAGC 

GGCCGACTAGTCTCGAGTTGTTGTAGAGCACGATGTCGG 3’. D5-F 5’ 

CTAGGCGATCGCTCGACGAGCTCGCGGCCGCGGATAAGCGAGGCGTTTT 

CATACAAA and D5-R 5’ TTATTGCGGCAGCGGCCGACTAGTCTCGAGGGG 

GAATGTGGCGTAATCACTTAG 3’. 

Mutant microRNA binding sites were generated by site-directed 

mutagenesis using splicing by overlap extension (SOEing) PCR. Two sets of 

primers were designed to amplify DNA from regions upstream and downstream 

of the mutated segment. These two PCR products were used in a SOEing PCR 

with the outside primers to create a product containing the mutated microRNA 

binding sites. D2-Mutant-F 5’ GTCACATCTAGGGCTGTGCCATCCGAGCACA 

TCTG 3’ and D2-Mutant-R 5’ GCACAGCCCTAGATGTGACGCCGCCATACT 
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CC. D5-Mutant-F 5’ CAATTTGTTCTAGGGCTACTCGTAGTAGGAAACGTAG 

GTG 3’ and D5-Mutant-R 5’ GAGTAGCCCTAGAACAAATTGAAGTTTTCCTAA 

AAGGTTTGG 3’. 

2.3 Luciferase assays 

S2 Drosophila cells were plated 1 hour before transfection and 

cotransfected in quadruplicate with 50l Grace’s insect medium (Gibco), 1l 

TransIT-Insect reagent (Mirus), supplemented with 100ng of Ub-GAL4, 200ng of 

UAS-DsRed-miR-1017, and 200ng of Psicheck vector. We performed all assays 

72 h after transfection with the dual luciferase assay (Promega) on a Synergy H1 

microplate reader (BioTek). 

2.4 RT-qPCR 

Total RNA was extracted from ~30 fly heads, per condition, with TRI 

reagent (MRC). Total RNA was isolated by chloroform phase separation and 

DNAse treated. cDNA was synthesized by random primers and Revert AID RT 

(Thermo scientific). RT-qPCR was performed using SYBR green (Thermo 

scientific). Primers used to assay D2 mRNA levels were F 5’ AGTACGTGG 

TCACCACCATGAC 3’ and R 5’ TCTCACAGCTGGACTTGAAGATGG 3’. 

Measurements were normalized to ribosomal 18s RNA F 5’ CAAAAAGTTGTGG 

ACGAGGCCAAC-3’ and R 5’ GTCCGATCACCGAAATTAAGCAGC 3’. 

2.5 Drug feeding 

Donepezil (ACROS organics) was dissolved in water and added at a final 

concentration of 10μM per gram of standard fly food. Mifepristone (ACROS 

organics) was dissolved in 100% ethanol and added at a final concentration of 
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100μM per gram of standard fly food. Food was stored overnight to ensure even 

distribution of the drug before use. 

2.6 Lifespan assay 

Approximately 100 flies of each genotype were reared at 26°C, under a 

12h: 12h light: dark cycle. Groups of approximately 20 flies were collected at 

eclosion and aged separately. Flies were transferred to fresh food vials every 4 

days, and the numbers of dead flies were counted daily. 

2.7 Climbing assay 

Approximately 40 flies of each genotype were placed in an empty plastic 

vial. Flies were tapped to the bottom and the number of flies within the top, 

middle, or bottom of the vial were scored after 15 seconds. Experiments were 

repeated five times, and a representative result shown. 

2.8 Immunocytochemistry 

Adult brains of each genotype were dissected in PBS and fixed in 4% 

paraformaldehyde for 20 min. Brains were washed five times with PBS 

supplemented with 0.1% Triton-X100 (PBT). Brains were blocked with PBT and 

5% Goat serum for 1 h at 4°C. Brains were incubated in primary antibody, rabbit 

anti-Caspase 3 (1:100, Cell Signalling, #9603S), overnight at 4°C. Brains were 

washed three times with PBT. Brains were mounted with DAPI and imaged by 

confocal microscopy. 
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CHAPTER III - miR-1017 transcriptional regulation of AchRs 

3.1 miR-1017 targets Ach receptor subunits 

miR-1017 resides within the 4th intron of D2, an acetylcholine (Ach) 

receptor subunit gene. Predicted targets of interest generated by TargetScan 

were identified as the D2 host transcript and a second nicotinic acetylcholine 

receptor alpha-5 subunit, known as D5 or nAchR5. The D2 opening reading 

frame contains a miR-1017 8mer site across 8 of the 12 sequenced Drosophilids, 

whilst the D5 3’ UTR contains a 8mer site in 9 of the sequenced Drosophilids. 

To examine whether miR-1017 had the ability to regulate its own host transcript, 

as well as the D5 transcript, we created constructs harbouring either wildtype or 

mutated sequences for the miR-1017 binding sites and fused each construct to 

the Renilla luciferase coding sequence. The mutant constructs were generated 

by SOEing PCR to introduce transversional mutations, of purine to pyrimidine 

and vice versa, to the predicted binding sites (Figure 3.1A).  A previously 

reported yan wildtype and double mutant luciferase construct were used as 

known controls33. We cotransfected S2(R+) cells with either wildtype or mutant 

Renilla constructs, and ectopically expressed miR-1017 as it is not endogenously 

expressed in the S2 culture, using ub-Gal4 and UAS-DsRed-mir-1017. We 

confirmed miR-1017 could inhibit the Renilla luciferase sensors, whilst the mutant 

constructs exhibit a clear derepression of the Renilla luciferase sensors (Figure 

3.1B). Revealing miR-1017 can repress the D2 ORF 5 fold (Student’s T-test; P 

< 0.001) and the D5 3’UTR 2 fold (Student’s T-test; P < 0.01). 
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Figure 3.1 Validation of miR-1017 binding sites 

miR-1017 acts by regulating acetylcholine receptor transcripts. (A) Predicted target sites for miR-1017 in the D2 

opening reading frame and the D  3’-UTR. Red, mutations introduced for mutant Renilla constructs. (B) 

Luciferase reporter assay. Control indicates wild type binding sites for miR-1017. Student’s T-test: *** and ** 

indicates <0.001 and <0.01 respectively. 

To examine if miR-1017 regulates similarly in vivo, we acquired mir-1017 

flies, which were generated by the Cohen group during their efforts to delete 

miRNAs from the fly genome36. As previously stated, miR-1017 has been 

identified via northern blotting in the male and female heads33. Therefore RNA 

was extracted from Wild type and mir-1017 heads, from Day 2 and Day 25 male 

and female heads. We performed RT-qPCR analysis on D2, the host transcript, 

to see if miR-1017 exerts similar ability in vivo. Indeed, the level of the D2 

mRNA was increased ~5 fold and ~2 fold in RNA isolated from day 2 and day 25 

miR-1017 mutant males respectively, compared to wild type males (Figure 3.2, 
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Student’s T-test; P < 0.001, < 0.05). Day 2 miR-1017 mutant females exhibit a 

~1.7 fold increase compared to wildtype (Student’s T-test: P < 0.05) whilst day 25 

miR-1017 mutant female show no significant difference Figure 3.2). 

Figure 3.2 RT-qPCR reveals in vivo regulation of D2 transcript 

RT-qPCR revealing in vivo derepression of D2 transcript levels from miR-1017 mutant males and females, aged 

day 2 or 25. Values were normalized against wild type flies. Student’s T-test: *** and * indicates <0.001 and <0.05 

respectively. 

3.2 Identifying the expression pattern of miR-1017 

To elucidate the expression pattern of miR-1017 we utilized the 

GAL4/UAS system. The GAL4/UAS system has become an important tool to 

study gene expression profiles in Drosophila, Zebrafish, cell culture and many 

other organisms37, 38. The GAL4/UAS system is widely used in Drosophila, with 

thousands of fly stocks. The system involves two factors: the GAL4 gene, which 

encodes the yeast transcriptional activator protein GAL4, and an Upstream 

Activation Sequence (UAS), an enhancer sequence that GAL4 specifically binds 

to activate transcription of a gene of interest or a reporter gene39. In fly lines the 
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GAL4 gene is frequently fused to tissue specific endogenous gene promoters, 

which allows for transcription of the GAL4 protein within those specified cells. 

 

Figure 3.3 Genetic tools to visualize the D2 expression pattern 

Utilization of the GAL4/UAS system used to visualize the miR-1017 host transcript 

Within our system we utilized two fly lines, D2-GAL4 and UAS-

mCD8::GFP, to visualize specific tissues within the Drosophila brain which 

express D2 and therefore miR-1017. The D2-GAL4 construct drives GAL4 

expression under the control of D2 transcriptional enhancer sequences. When 

activated by GAL4, the UAS-mCD8::GFP transgene transcribes a membrane 

tethered GFP fusion protein, leading to an easily identifiable D2 positive cell. As 

both D2-GAL4 and UAS-mCD8::GFP stocks are homozygous, female D2-

GAL4 and male UAS-mCD8::GFP flies were collected and crossed together 

(Figure 3.3). The progeny produced were dissected to inspect GFP expression in 

the Drosophila brain. 

Using confocal microscopy we observed GFP positive cells in the 

suboesophageal (SOG) region, which included both cells within the region and 

associated surrounding neuropils (Figure 3.4A&B). The SOG region has a role in 
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processing gustatory signals, in which the region is entangled with sensory 

neurons, extended from the proboscis and maxillary palp40. After identifying GFP 

labelling within neuropils, we examined whether the expression was isolated to 

central nervous system (CNS) neurons, or whether expression included 

projections for the peripheral sensory neurons by examining the proboscis and 

maxillary palp in 3-day-old pupa. GFP positive cells were identified in both the 

proboscis and maxillary palp; therefore suggesting miR-1017 may have a role 

within both the central and peripheral nervous system (Figure 3.4C). Lastly GFP 

expression was observed within the larval CNS (Figure 3.4D). GFP expression 

observed within the CNS, which may implicate that miR-1017 could regulate its 

predicted targets during development of the Drosophila head. 

Figure 3.4 Visualization of the D2 expression pattern in the CNS 

Confocal images showing expression of GFP under Dα2-GAL4 control. A) Expression in the adult CNS in the 

SOG. B) Magnification of SOG C) Expression in proboscis and maxillary palp in 3 day pupa. D) Expression in 

larval CNS. DAPI in violet 
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After examining the D2 GFP expression, we speculated whether there 

might be a phenotypic manifestation in those cells in a miR-1017 null 

background. To assess whether there is a phenotypic difference we incorporated 

the GAL4/UAS system within the mutant background (Figure 3.5). To achieve a 

homozygous system, fly stocks containing balancer chromosomes were used. 

Balancer chromosomes cannot participate in crossing over events during 

meiosis, therefore once our desired transgenes have recombined onto the same 

chromosome they were stabilized within the stock. The balancer chromosomes 

used in our experiment was MKRS/TM6B, both balancers have dominant marker 

phenotypes allowing for easy identification throughout the genetic cross. 

 

Figure 3.5 Incorporating the GAL4/UAS system into mir-1017background 

The genetic cross used to establish the GAL4/UAS system within the mir-1017 null background. 
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All desired transgenes are located on the 3rd chromosome. Crossing over 

during meiosis only occurs within female flies; therefore female progeny from the 

first cross were brought forth to the next cross with the balancer chromosome 

flies41. The mir-1017 mutant line does not present a phenotypic selective 

marker; therefore to insure a successful recombinant we performed PCRs taken 

from DNA extracted from the fly legs. The flies which have the recombinant 

chromosomes, D2-GAL4,mir-1017  and UAS-mCD8::GFP,mir-1017, were 

crossed together to create our transgenic GAL4/UAS system within the mir-

1017 background. 

The wild type females exhibit a low expression of D2 GFP, whilst mutant 

female flies show an increased GFP expression (Figure 3.6). The mutant females 

had increased GFP suggesting a disruption of a feedback loop, resulting in 

higher activation of the D2 enhancer sequences. As GFP expression is a direct 

readout of D2 transcriptional we sought to determine if the increased GFP 

patterning was attributed to an increase in Ach receptor activity. To test this we 

treated wild type females with donepezil, an inhibitor of acetylcholinesterase 

(AChE). Inhibition of AChE reduces the degradation of Ach and therefore will 

induce an increased Ach receptor activity. Our findings show the donepezil 

treated female exerts a high D2 GFP expression pattern (Figure 3.6). These 

findings indicate that D2 transcriptional activation may occur by an activity 

dependent manner, caused by heightened Ach receptor activity. 
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Figure 3.6 D2 transcription is regulated by AchR activity 

D2 GFP expression pattern reveals D2 transcriptional activation is dependent on acetylcholine receptor 

activity. 
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CHAPTER IV – The neuroprotective role of miR-1017 

4.1 miR-1017 neuroprotective role within Drosophila 

Previous studies of Alzheimer’s disease (AD) fly models have shown 

elevated levels of miR-101742. One of the defining features of AD is increased 

firing of background action potentials43. Furthermore increased receptor activity 

can cause reactive oxygen species to develop, which subsequently leads to 

neuronal cell death44. These Ach receptors have become a focal point for 

pharmaceutical drug therapies, including Donepezil an AChE inhibitor, in an 

attempt to prevent or dampen AD symptoms45. With our knowledge that miR-

1017 regulates Ach receptor activity, we began to hypothesize if the elevated 

miR-1017 could be a cellular attempt to repress the receptor activity. Therefore to 

test whether miR-1017 has a role in preventing a neurotoxic state we performed 

neurological assays with mir-1017 and wild type flies. 

To assess whether male and female miR-1017 mutant flies undergo 

neurodegeneration, we performed a lifespan analysis of male (n=151) and 

female (n=150) mutant flies, comparing them to wild type flies (n=135), and 

monitored the rate of death daily. mir-1017 males showed a sharply reduced 

adult lifespan, with survival declining rapidly between days 20-30. mir-1017 

females exhibit a reduced adult lifespan, but not as severe as the male mutants 

(Figure 4.1, Cox proportional hazard ratio test; P <0.001 comparing wild type, 

miR-1017 male and female). 
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Figure 4.1 miR-1017 mutant reduced lifespan 

Male and female miR-1017 mutants demonstrate a severely reduced lifespan compared to wild type. Cox 

proportional hazard ratio test; P <0.001 comparing wild type, miR-1017 male and female. 

Furthermore miR-1017 mutants present an early-onset neurological 

deficit when compared to wild type. By day 20, 50-65% of male mutants (n=47) 

were impaired in their performance in a climbing assay (Figure 4.2, ANOVA: P 

<0.001), and 40-50% female mutants (n=48) were impaired compared to wild 

type (n=58) (Figure 4.2, ANOVA; P < 0.05). Male mutants show a greater deficit 

compared against female mutants (Figure 4.2, ANOVA; P <0.01). On day 30 both 

mutants exhibit severe neurological deficits with males (100%) and females 

(87.5%) impaired climbing ability compared to wild type (Figure 4.2, ANOVA, P < 

0.001). Furthermore male mutants climbing ability is poorer than the female 

mutants (ANOVA; P <0.01). Reduced adult lifespan and neurological deficits are 

characteristics of Drosophila models of neurodegeneration46.  
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Figure 4.2 miR-1017 mutants are neurologically impaired 

Climbing assay analysis reveals that neurological deficits arise early in miR-1017 mutant males and females, 

suggesting an early-onset neurodegeneration. 

Moreover we used an antibody against the active form of Caspase 3, to 

identify whether mir-1017 mutants were undergoing apoptotic cell death. Both 

male and female mir-1017 mutants have a greater population of apoptotic cells 

by day 30 compared to the wild type (Figure 4.3). These findings suggest that 

miR-1017 mutants are presenting an excitotoxic neurodegeneration. 
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Figure 4.3 miR-1017 mutants exhibit an increased amount of apoptosis 

Caspase-3 antibody stain on day 30 presents a higher population of apoptotic cells in miR-1017 mutants 

compared to wild type. 

4.2 Neuroprotection by miR-1017 within a neurodegeneration model 

To test whether miR-1017 has a neuroprotective role against an 

excitotoxic state we ectopically drove miR-1017 in an AD fly model and 

compared it to the control group, to do this we utilized the GAL4/UAS system. To 

establish a standardized life expectancy for the AD fly model, two fly lines were 

utilized, Elav-Geneswitch:GAL4 and UAS-ArcΑβ42. Elav is a protein exclusively 

expressed within neurons, making GAL4 expression localized only to neuronal 

cells. The Geneswitch system utilizes the fusion of the ligand-binding domain of 

the human progesterone receptor with the transcriptional activation domains of 

GAL447. The Geneswitch system was chosen to allow for inducible expression of 

the AD transgene after eclosion. Therefore activation of GAL4 required induction 

by the steroid mifepristone, which was easily introduced to the adult flies’ diet48.  
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To ectopically drive miR-1017 in AD fly model a homozygous AD 

transgenic stock had to be created. To achieve this we used the 

SpHid;LgHid/Sm;TM6B balancer chromosome stock (Figure 4,4). 

SpHid;LgHid/Sm;TM6B stock is second (Sm) and third chromosomal (TM6B) 

balancers, which contains a copy of the heat shock activated Hid genes, which is 

a pro-apoptotic protein49. UAS-ArcΑβ42 (2nd chromosomal) and Elav-

Geneswitch:GAL4 (3rd chromosomal) were crossed, the desired transgenes were 

on separate chromosomes therefore gender of the selected progeny was 

unimportant. Progeny was crossed with SpHid;LgHid/Sm;TM6B, the resulting 

progeny were heated shocked to select for flies in possession of Sm;TM6B. 

Progeny produced that were carriers of both transgenes have an increased depth 

of phenotypic red eye therefore those flies were selected for crossing to UAS-

miR-1017. 

 

 

 

 

 

 

 

Figure 4.4 Introducing ectopically driven miR-1017 into an AD fly model 

The genetic cross used to implement ectopically driven miR-1017 in an AD fly model 
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To understand whether ectopically driven miR-1017 could dampen or 

rescue the AD phenotype, we performed a lifespan analysis. Indeed miR-1017 

improved survival of the AD fly model (Figure 4.5, Cox proportional hazard ratio 

test; P < 0.001). The AD fly model (n=129) severely declined between days 45-

55, whilst the miR-1017-AD fly model (n=163) exhibited a declining lifespan 

between days 50-60. However 25% of miR-1017-AD flies surpassed the lifespan 

of the AD fly model. Both induced AD lines were significantly different to their 

uninduced control counterparts (Figure 4.5, Cox proportional hazard ratio test; P 

<0.001).  

 

Figure 4.5 Ectopic miR-1017 extends lifespan of AD fly model 

Lifespan analysis presents an extension of lifespan of AD flies when miR-1017 is ectopically driven. Mife+/- 

indicates mifepristone induction/uninduced. Cox proportional hazard ratio test; P <0.001 comparing AD against 

miR-1017 AD fly model’s. 
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Some studies have shown that transgenes can alter lifespan, however our 

uninduced lines show no reduced lifespan, of which their comparable lifespan is 

not significantly different (Figure 4.5, Cox proportional hazard ratio test; P = 0.71) 

Furthermore ectopically driven miR-1017 can rescue climbing ability of the 

AD fly model. Day 25 genotypes performed well in the climbing assay. However 

the AD fly model (n=43) exhibited a slight reduction in climbing ability with 

approximately 20% of flies showing neurological deficits compared to the miR-

1017-AD fly model (Figure 4.6, ANOVA; P < 0.01). By day 45, the AD fly model 

presented severe neurological deficits, with 94% of flies performing poorly in the 

climbing assay (Figure 4.6, ANOVA; P < 0.001). In comparison 55% of the miR-

1017-AD fly model performed poorly in the climbing assay (Figure 4.6, ANOVA; 

P < 0.001 compared to the AD fly model). Neither uninduced genotype performed 

poorly, and were not significant different (Figure 4.6, ANOVA; P = 0.27). These 

findings indicate that miR-1017 can dampen the symptoms exhibited from an 

excitotoxic neurodegenerative state. Further supporting the role of miR-1017 as a 

cellular response to regulate neurological receptor activity. 
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Figure 4.6 Ectopic miR-1017 improves neurological function 

Climbing assay analyses demonstrate a deterioration of the AD fly model climbing ability, which ectopic miR-

1017 improves the climbing ability of the AD fly model. 
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CHAPTER V – Discussion 

Despite the high population of tailed mirtron loci within the human 

genome, no research has been reported that examines the roles of these 

miRNAs. The reason for the lack of research conducted may be attributed to the 

fact that mirtrons are not highly expressed or well conserved. However this 

miRNA species may in fact give rise to species-specific evolution. There are 

numerous abundant miRNAs that are broadly expressed across animals because 

they are essential for development, however mirtrons seem to be better 

conserved amongst close relatives50. When we examine Drosophila miR-1017, 

we can clearly see that the 3’ hairpin arm, is deeply conserved. When 

considering how miR-1017 became a functionality important miRNA within the 

Drosophila species, it’s worth noting that we have identified it regulates AchR 

activity. Ach is the neurotransmitter in the CNS for insects, whilst in animal’s 

glutamate is the primary CNS neurotransmitter51. Therefore when diverging from 

other insects, Drosophila may have incurred a mutation which gave rise to the 

birth of miR-1017. Whilst we know that miR-1017 mutants are viable and produce 

offspring, they exhibit a reduced lifespan and neurological deficits. Therefore the 

birth of miR-1017 may have given rise to a well-maintained neurotransmission 

and extended lifespan, which would improve fitness and benefit the evolution of 

the Drosophila species. Using Drosophila’s miR-1017 as a candidate, we have 

for the first time identified the function and phenotype of one of these miRNA. 

Of the 241 predicted binding sites of miR-1017, 86.7% of the predicted 

targets are expressed within Drosophila neurons (GSE1060). Of the 209 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1060
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predicted target genes, 18 (8.6%) of those are known to be involved in 

neurotransmission. Our findings suggest that miR-1017 acts to regulate Ach 

receptor transcripts and thereby modulating Ach synaptic transmission. 

Luciferase assays and RT-qPCR data revealed derepressed transcript levels in 

the miR-1017 mutant constructs and flies, therefore identifying D5 and D2 as 

bona fide targets of miR-1017 (Figure 3.1&2). The GFP expression pattern of 

D2 transcription indicates males have highly active transcription of the D2 

transcript (Data not shown). When considered with the qPCR data which 

revealed a near 5 fold depression of the D2 transcript in the male mutants, we 

can hypothesize that transcription in males is much higher, and that D2 is being 

regulated post-transcriptionally by miR-1017. In comparison, the females 

exhibited low GFP patterns, suggesting a much lower activation for D2 

transcription. The mutant GFP phenotype presented a slightly higher D2 GFP 

expression pattern, consistent with the qPCR data, which may suggest disruption 

of a feedback loop. Our hypothesized mechanism is that increased D2 

transcript levels and therefore Ach receptors, results in an increase in Ach 

neurotransmission, which may in turn promotes transcription of the D2 

transcript. This was supported by our donepezil treatment, which phenotypically 

showed that increased Ach receptor activity induced by donepezil increased the 

D2 GFP pattern, presenting a higher D2 transcriptional activation (Figure 3.6). 

This could be further supported by the phenotypic observations made in 

the miR-1017 mutants, which exhibit a neurodegeneration. Both male and female 
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miR-1017 mutants had a reduced lifespan, performed poorly in the climbing 

assays and presented a higher number of apoptotic cells compared to wild type 

controls (Figure 4.1&2). Furthermore the male miR-1017 mutants display a 

greater neurological deficit than females, potentially due to differentiate 

transcriptional expression of D2. Our phenotypic studies support our hypothesis 

that miR-1017 serves as a neuroprotective miRNA. 

In Drosophila, another neuroprotective miRNA has been identified as miR-

1000. miR-1000 modulates VGlut mRNA levels, in turn regulating glutamate 

synaptic activity. Interestingly they hypothesized that miR-1000 expression was 

an activity-dependent mechanism, in which photoreceptor activity regulated miR-

1000 expression52. With this in mind, we could hypothesize that miR-1017 

expression is controlled by an activity dependent mechanism. Our miR-1017 

mutant study has revealed an increase in Ach receptor transcripts, which 

appears to be caused by increased Ach receptor activity, leads to an excitotoxic 

state. However if we consider that a destabilization or an increase in Ach 

neurotransmission in a wild type model would lead to transcription of D2 and 

thereby miR-1017. The expression of miR-1017 can then act post 

transcriptionally to down regulate Ach transcripts, and therefore balance Ach 

receptor activity, thereby suggesting an activity dependent mechanism (Figure 

5.1). When we treated the GAL4/UAS wild type females with donepezil, an 

inhibitor of acetylcholinesterase, we observed a higher GFP expression, which 

indicates that D2 transcription is induced by the increased AchR activity caused 

by the donepezil treatment. 
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Figure 5.1 Proposed mechanism for AchR transcription 

Proposed mechanism for AchR transcription (Positive feedback loop) and miR-1017 post-transcriptional 

regulation of AchR transcripts (Negative feedback loop). 

One of the most common neurodegenerative diseases is Alzheimer’s 

disease. The commonly associated pathology is the aggregation of amyloid-β 

plaques in the synaptic cleft53. Amyloid-β plaques cause a neurotransmitter 

dysregulation, which induces an increased firing of background action 

potentials54. The increased ion flux associated with spurious channel activity 

results in reactive oxygen species, which in turn induces neuronal apoptosis55. 

Pharmaceutical options to treat AD include Donepezil (AChE inhibitor) and 

Memantine (glutamate receptor inhibitor), these drugs attempt to improve the 

neurological integrity of AD patients, however no pharmaceutical drug has been 

proved to be curative. To be understand AD, creation of an AD fly model has 

allowed for an in vivo examination of protein-protein interactions and a better 

understanding of unknown AD mechanisms56. Interestingly, when we ectopically 
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expressed miR-1017 in an AD fly model, we were able to alleviate the 

pathogenesis, therefore supporting the repressible activity of miR-1017 in an 

excitotoxic state (Figure 4.5&6). Despite presenting a reduced lifespan and poor 

climbing ability, the AD fly model did not present a Caspase-3 phenotype. This 

may suggest that the ectopically driven Αβ42 plaques may induce a caspase 

independent apoptosis57. 

To conclude, the importance of this study has elucidated a class of miRNA 

that has yet to be studied. Tailed mirtrons, which encompass a quarter of the 

miRNA loci in human, have previously been overlooked. Here we demonstrate a 

phenotype and role of a 3’ tailed mirtron within Drosophila, therefore identifying 

their significance as a miRNA. 
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