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ABSTRACT 

IMPACTS OF OIL EXPOSURE DURING EARLY LIFE DEVELOPMENT STAGES 

IN SHEEPSHEAD MINNOWS (CYPRINODON VARIEGATUS) UNDER DIFFERENT 

ENVIRONMENTAL FACTORS 

by Danielle Justine Simning 

December 2017 

The release of approximately 5 million barrels of crude oil into the northern Gulf 

of Mexico during the 2010 Deepwater Horizon oil spill jeopardized estuarine ecosystem 

health from Texas to Florida.  These estuarine habitats, which serve as nurseries for many 

important fisheries are also prone to rapid fluctuations in environmental stressors such as 

oxygen concentration, and salinity.  The consequence of combined exposure to crude oil 

and suboptimal environmental factors during early life stage development of fish is still 

largely unknown.  The objective of this project was to investigate the impacts of exposure 

to crude oil in combination with varying environmental stressors on Cyprinodon 

variegatus survival, gene expression, and genotoxicity. 

 The post-larval developmental stage was the most sensitive early life stage to oil 

and abiotic stress.  Median lethal concentrations during the post-larval exposures 

followed a treatment dependent pattern with the greatest lethal effect seen under hypoxic-

high salinity conditions (64.55 µg/L ± 12.81).  Real-time PCR analysis identified down-

regulation of cyp1a1, epo, and arnt1, target genes involved in the two common defense 

pathways, the aryl hydrocarbon receptor signaling pathway which modulates metabolism 

of polycyclic aromatic hydrocarbons (PAHs), and the hypoxia inducible 1-α signaling 

pathway which is responsible for resilience to hypoxic stress, this was only observed 
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under hypoxic-high salinity environmental conditions in treatments with PAH 

concentrations greater than 226 µg/L.  Top toxicological functions impacted during post-

larval development in all treatment comparisons included cholesterol biosynthesis, 

cardiotoxicity, and hepatoxicity.  These findings indicate that the post-larval stage is the 

most sensitive to oil and environmental stress. 
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CHAPTER I – GENERAL INTRODUCTION AND METHODS 

Introduction 

Deepwater Horizon Oil Spill   

The 2010 Deepwater Horizon (DWH) oil spill threatened the ecosystem health of 

the many estuaries and coastal wetlands along the shores of the northern Gulf of Mexico 

(nGoM).  The distribution of approximately 4.9 million barrels of crude oil released from 

the Macondo wellhead along greater than 2100 kilometers of coastline from Texas to 

Florida, was influenced by spill mitigation efforts including use of two million gallons of 

chemical dispersants, surface skimming, and in situ burning (Liu et al., 2012; Nixon et 

al., 2016).  Oil distribution was also affected by sea surface processes such as currents 

and biochemical processes (Baker et al., 2016; Beyer et al., 2016; Liu et al., 2012).  The 

DWH oil spill was unique because the release of oil occurred at 1522 m water depth, 

which led to the formation of both deep water and surface plumes (Beyer et al., 2016; Liu 

et al., 2012).  Large deep sea plumes, up to 35 km long,  were measures at depths from 

500 to 1300 m (Spier et al., 2013; Valentine and Benfield, 2013).  PAH concentrations in 

deep sea plumes reached 189 µg/L, where highly toxic benzene, toluene, ethylbenzene, 

and xylenes (BTEX), were measured in concentrations less than 78 µg/L (Beyer et al., 

2016).  

Oil released from the Macondo wellhead that reached the surface formed large 

surface slicks cumulatively covering 112,000 km2 (Beyer et al., 2016). The thickness of 

the slick ranged from 0.1 to 1 mm (Beyer et al., 2016).  Though efforts to minimize oil 

exposure to marine habitats were employed following the DWH oil spill, including the 

use of dispersants and sea surface slick burning, more than 2100 km of nGoM shoreline 
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was impacted (Beyer et al., 2016; Liu et al., 2012; Michel et al., 2013; Nixon et al., 

2016).  Exposure to crude oil during development in fish has been documented to 

increase mortality and developmental abnormalities, and decrease growth rates in 

sheepshead minnows, zebrafish , and haddock (Hendon et al., 2008; Incardona et al., 

2004; Sørhus et al., 2016).  The focus of much research investigating oil contamination 

lethality and developmental effects in marine and fresh water fish has been focused on 

phenotypic and morphological responses to oil, but still uncertain are the molecular 

processes responsible for the effects observed after exposure to oil (Pasparakis et al., 

2016; Whitehead et al., 2012). 

Polycyclic Aromatic Hydrocarbons (PAHs) 

 The oil released from the Macondo wellhead was a light crude oil called Sweet 

Louisiana Crude Oil (SLCO) (Kirman et al., 2016).  SLCO has an average PAH 

composition of 10-45 % (Beyer et al., 2016; Jung et al., 2013; Liu et al., 2012; 

Ramachandran et al., 2006; Wang et al., 2014).  PAHs are considered highly toxic 

components of crude oil and have been documented to cause an array of deleterious 

phenotypic responses such as acute mortality, reduced growth, liver and gill damage, 

cardiac edema, skeletal deformity, and immunosuppression which is dependent on the 

number of aromatic carbon structures (Bayha et al., 2017; Brown-Peterson et al., 2015; 

Hendon et al., 2008; Incardona et al., 2004; Jones et al., 2017; Ramachandran et al., 

2006; Sammarco et al., 2013; Sørhus et al., 2016).  These compounds are not only toxic 

but considered to be persistent organic pollutants (POPs), retaining their toxicity for 

many years, and are major contaminants in marine environments throughout the world 

(Jin et al., 2015; Ramachandran et al., 2006; Turner et al., 2014; Wang et al., 2014).  
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PAHs are chemicals that contain multiple six carbon double bonded ring structures and 

the number of aromatic carbon rings influences the compounds toxicity to exposed 

organisms (Incardona et al., 2004; Turner et al., 2014).  Three and four aromatic carbon 

ring PAHs, including dibenzothiophene, phenanthrene, and pyrene, cause cardiac 

dysfunction including edema, and impair liver and skeletal developmental in zebrafish 

embryos (Incardona et al., 2004).  A study investigating the induction of cytochrome 

P450 1 alpha (cyp1a1) activity of 61 parent PAHs concluded that 4-6 ring PAHs 

exhibited similar effects on cyp1a1 activity as highly toxic dioxin chemicals in teleosts 

(Barron et al., 2004). 

 The main routes of PAH exposure in fish are passive diffusion at the gills and oral 

ingestion of contaminated food due to the lipophilic nature of the chemicals (Brauner et 

al., 1999; Evans et al., 2005; Turner et al., 2014).  Most of the metabolism and 

detoxification of PAHs in exposed fish is completed by phase I detoxification enzymes in 

the cytochrome P450 (cP450) super family (Yang, 1988).  The regulation of phase I and 

II detoxification enzymes including cP450 enzymes, is controlled by the aryl 

hydrocarbon receptor signaling pathway (AhR) which is activated in the presence of 

PAHs (Vorrink and Domann, 2014).  Organisms exposed to PAHs often metabolize them 

by cytochrome P450 enzymatic activity through oxidation reactions (Turner et al., 2014)  

Though cytochrome P450 enzymes are the main xenobiotic metabolism process used by 

organisms to increase elimination of PAH, this oxidative process often results in the 

production of more toxic secondary metabolites which have carcinogenic effects (Turner 

et al., 2014)   
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AhR Signaling Pathway 

 Teleosts have highly conserved molecular signaling pathways that mitigate the 

deleterious effects associated with PAH stress (Kewley et al., 2004; Vorrink and 

Domann, 2014).  The AhR signaling pathway is the dominant pathway to metabolize 

PAHs (Vorrink and Domann, 2014).  The role of the AhR pathway in the elimination of 

halogenated hydrocarbons, and PAHs has been the focus of many studies to understand 

xenobiotic toxicity and metabolism (Denison and Nagy, 2003; Vorrink and Domann, 

2014).  AhR is ubiquitously expressed and located in the cytoplasm of tissue cells 

(Denison and Nagy, 2003).  The conformational integrity of cytosolic AhR is maintained 

by chaperone proteins which include heat shock proteins (Hsp90), X-associated protein 2 

(Xap2), and p23.  Activation of AhR occurs when xenobiotic ligands such as PAHs bind 

to the receptor.  The activation of AhR results in a conformational change that cleaves off 

chaperone proteins and exposes the nuclear location sequence, initiating translocation 

into the cell nucleus.  Inside the nucleus, the activated AhR forms a heterodimer complex 

with the aryl hydrocarbon nuclear translocator protein (Arnt).  The AhR:Arnt complex 

then binds to the xenobiotic response elements (XREs) in the promoter region of genes 

responsible for phase I and phase II xenobiotic metabolism, most notably cytochrome 

P450 1 alpha 1 (cyp1a1) enzyme (Denison and Nagy, 2003).  The transcription of cyp1a1 

in all organisms leads to the accumulation of secondary reactive metabolites that produce 

DNA damage and disease (Di Giulio and Hinton, 2008; Nebert and Dalton, 2006).  The 

production and accumulation of reactive oxygen species metabolites via 

biotransformation of PAHs by cyp1a1 enzymatic metabolism results in the strict 
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regulation of the AhR pathway by the aryl hydrocarbon repressor receptor (AhRR) (Di 

Giulio and Hinton, 2008). 

The induction of the AhR pathway by exogenous ligands has been speculated to 

cause deleterious effects on immune and cholesterol synthesis pathways (Bayha et al., 

2017; Jones et al., 2017; Tanos et al., 2012).  PAH exposure has been documented to 

decrease functions of the innate and adaptive immune response in fish and mammals, 

most notably suppressing an organism’s ability to resist pathogenic infections (Bayha et 

al., 2017; Reynaud and Deschaux, 2006).  Exposure to PAHs has resulted in the 

formation of skin lesions in juvenile southern flounder, hepatic lesions in mummichog, 

and gill hyperplasia in gulf killifish (Bayha et al., 2017; Reynaud and Deschaux, 2006).   

Cholesterol synthesis is another pathway targeted by the activation of the AhR 

pathway (Regnault et al., 2014; Tanos et al., 2012; Xu et al., 2017).  Cholesterol 

biosynthesis is essential in the maintenance of cell structure and growth (Tanos et al., 

2012; Xu et al., 2017).  Over activation of biosynthesis pathways and increased 

accumulation of cholesterol in the liver is correlated to liver cancer and necrosis, while 

inhibition of cholesterol synthesis causes cellular apoptosis (Regnault et al., 2014; Tanos 

et al., 2012; Xu et al., 2017). 
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Figure 1. Diagram of the Aryl Hydrocarbon Receptor (AhR) Signaling Pathway 

activation and induction of cytochrome P450 1 alpha 1 (cyp1a1).   

In the presence of polycyclic aromatic hydrocarbons (PAHs) the AhR moves into the nucleus and forms a heterodimer with the Aryl 

Hydrocarbon Nuclear Translocator protein (ARNT).  This complex bind to the xenobiotic response elements (XRE) of DNA, acting as 

a transcription factor that induced transcription of cyp1a1, the main enzyme responsible for oxidative metabolism of PAHs and 

biomarker of oil exposure.   

 

DWH impact on estuary ecosystem health 

The three month duration during the spring of 2010 of the DWH oil spill has 

potential to negatively impact estuarine ecosystems along the nGoM.  Estuaries of the 

nGoM are highly productive and variable environments, which serve as critical nursery 

habitats for many important fisheries, both recreational and commercial (Chesney et al., 

2000; Sumaila et al., 2012).  The commercial fishery in the nGoM is one of the most 

productive in the world which produces approximately 600 million dollars a year, and a 

third of the fishery species depend on coastal estuarine and wetland habitats (Fodrie et al., 

2014; Mendelssohn et al., 2012).  Daily and seasonal fluctuations in temperature, salinity, 

and dissolved oxygen can cause stress to organisms that inhabit these ecosystems 

(Whitehead, 2013).  The potential for interaction effects to occur on both physiological 

and molecular levels in response to simultaneous exposure to crude oil and varying oxic 
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and salinity regimes is a concern when evaluating the impact of the 2010 DWH oil spill 

on the coastal estuaries of the nGoM.  Multiple studies have documented oil exposure 

decreasing blood hemoglobin levels and gill chloride cells in developing fish (Goanvec et 

al., 2011; Whitehead, 2013).  Morphological changes in gill structure result from oil 

exposure and produce organ-level responses that decreases gill permeability, ion 

regulation, and oxygen exchange (Evans et al., 2005; Goanvec et al., 2011; Whitehead, 

2013). Synergistic effects on fish health have been documented to occur among many 

environmental contaminates, including oil, and sub-optimal salinity and oxic regimes 

(Adeyemi and Klerks, 2012).  Most studies have focused on the effects of PAHs as a 

single stressor on fish health, but less is known about potential interaction effects 

between PAH exposure in combination with hypoxia and salinity, two common 

environmental stressors that impact larval fish health in nGoM estuaries which all rely on 

gill functions for homeostasis (Evans et al., 2005; Whitehead, 2013).   

Osmoregulation 

 Salinity varies in coastal estuarine environments on a daily basis due to tidal 

fluctuations and differing degrees of freshwater discharge from rivers (Haney, 1999; 

Nordlie, 1987).  Estuarine fishes have the ability to acclimate to rapid changes in salinity 

due to adapted ability to osmoregulate, which can be energetically costly (Nordlie et al., 

1991; Whitehead, 2013).  The gills are the main organs responsible for osmotic 

regulation in marine teleost (Evans et al., 2005; Sakamoto et al., 2001).  Marine teleosts 

ingest water to maintain a consistent internal osmotic gradient hypo-osmotic to the 

marine environments, as they are constantly losing water and gaining ions by means of 

osmotic pressure (Sakamoto et al., 2001).  Increased osmotic pressure during early life 
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stage development in fishes can lead to decreased growth and fitness, so in embryonic 

fish the chorion serves as a barrier to the external environment to reduce osmotic 

pressures on the embryo, allowing more energy to be allocated to development (Brown et 

al., 2011; Finn, 2007; Petereit et al., 2009; Sampaio and Bianchini, 2002).  Studies have 

documented salinity disrupting and negatively affecting fish development and growth, 

even in euryhaline fish species.  Patterson et al. (2012) investigated different salinity 

regimes on gulf killifish development and observed that low salinity resulted in decreased 

growth and survival due to increased osmotic pressure.  Brown et al. (2012) investigated 

embryogenesis under different salinities in gulf killifish and found that percent hatch was 

affected by salinity although heart rate and total length was not.  Brown et al. (2011) also 

investigated the combined effects of salinity and temperature on larval fish health.  

Increased time to hatch and total length was observed in high salinity (20 g/L) compared 

to low salinity (10 g/L).  Early life stage developmental influences of salinity on Nile 

tilapia were investigated and results indicated increased mortality of larvae with 

increased salinity (Fridman et al., 2012). 

Oxygen Tension  

Low oxygen tension is an environmental stressor that can impact estuarine 

habitats in the nGoM.  Hypoxia is defined as in situ dissolved oxygen concentration of 

2.0 mg/L or less (Bianchi et al., 2010; Eldridge and Roelke, 2010; Rabalais et al., 2002).  

Following the 2010 DWH oil spill, the same habitats impacted by spill contaminants 

were potentially also exposed to seasonal hypoxic conditions (Fleming et al., 2009; 

Whitehead, 2013).  The persistence and expansion of hypoxia in the nGoM is believed to 

be related to increased nutrient loading into riverine discharge which results in increased 
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algae blooms (Rabalais et al., 2002).  Eutrophication is the main process involved in 

anthropogenic hypoxic zone formation in the nGoM due to release of nutrient rich waters 

from the Mississippi River associated with increased fertilizer use in the Mississippi 

watershed (Bianchi et al., 2010; Rabalais et al., 2002). Seasonal nutrient discharge with 

the Mississippi River freshet, in conjunction with seasonal (summer) water-column 

density stratification, driven by salinity and temperature gradients results in the formation 

of hypoxic zones below the depth of the pycnocline in the nGoM (Bianchi et al., 2010; 

Eldridge and Roelke, 2010; Rabalais et al., 2002).  Hypoxic zones in nGoM estuaries are 

generally found in areas that have extended water residency time and temperature-salinity 

driven water stratification (Rabalais et al., 2002).  Community level effects associated 

with hypoxic zones are habitat degradation, oxygen depletion and a decrease in 

biodiversity (Rabalais et al., 2002).  Fish are highly adapted to the marine environment 

and have many mechanisms to combat the deleterious effects of hypoxia (Wu, 2002).  

For most fish, the gills serve as the primary organ responsible for respiration via a 

counter-current gas exchange system (Evans et al., 2005).   Fish respond to hypoxia by 

increased ventilation rates across the gills and activation of the hypoxia inducible factor 1 

alpha pathway (HIF-1α) which induces angiogenesis and erythropoiesis (Evans et al., 

2005; Kulkarni et al., 2010; Lai et al., 2006; Landry et al., 2007; Vorrink and Domann, 

2014).  

HIF-1α Signaling Pathway  

Hypoxia threatens ecosystem health and can cause mass mortality events, delayed 

organismal development, teratogenic effects, endocrine dysfunction, reduced hatching 

and reduced spawning rates (Dangre et al., 2010; Shang and Wu, 2004; Wu et al., 2003).  



 

10 

The hypoxia inducible 1 alpha signaling pathway is the primary pathway used to mitigate 

the negative effects of hypoxia (Vorrink and Domann, 2014).  The HIF-1α  pathway 

maintains cellular oxygen homeostasis by inducing the transcription of a suite of genes 

responsible for increased oxygen delivery, erythropoietin (epo), vascular endothelial 

growth factor (vegf), heme oxygenase-1, and glucose metabolism, glucose transporters 

(glut-1 and glut-4) (Kewley et al., 2004; Kumar and Choi, 2015; Vorrink and Domann, 

2014; Wu, 2002).  Normoxia leads to proteasome degradation of the HIF-1α receptors, 

regulated by ubiquitin proteins (Ub)  (Nikinmaa and Rees, 2005).  Prolyl hydroxylation 

enzymes PHD-1, PHD-2, and PHD-3 catalyze the proline residual hydroxylation on the 

HIF-1α receptor (Semenza, 2001).  The hydroxylation of the proline residuals is 

necessary to initiate binding of the von Hippel-Lindau tumor-suppressor protein (pVHL) 

(Kumar and Choi, 2015; Semenza, 2001).  Once the pVHL protein binds the HIF-1α 

receptor, the ubiquitin proteins (elongins B and C, Cullin 2 (Cul2), and Rbx1) also bind 

to the receptor which is quickly destroyed by 26S proteasome digestion (Semenza, 2001).  

In the absence of oxygen, the prolyl hydroxylase activity is inhibited so the proline 

residuals are not hydroxylated, thus enabling the binding of the pVHL to HIF-1α and 

subsequent proteasome degradation (Nikinmaa and Rees, 2005; Semenza, 2001). The 

active HIF-1α receptor relocates to the nucleus where it forms a heterodimer protein 

complex with the Arnt protein (Vorrink and Domann, 2014).  The HIF-1α:Arnt complex 

is a transcription factor that binds to the hypoxia response elements (HREs) in the 

promoter region of genes to allow increased oxygen delivery to hypoxic tissue by 
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erythropoiesis by induction of erythropoietin (epo) (Vorrink and Domann, 2014; Wu, 

2002).   

Figure 2. Diagram of the Hypoxia Inducible Factor 1 Alpha (HIF-1α) Signaling Pathway 

activation and induction of erythropoietin (epo).   

In normoxic conditions, the HIF-1α is degraded.  In hypoxic condition, the active HIF-1α receptor moves into the nucleus and forms a 

heterodimer with the Aryl Hydrocarbon Nuclear Translocator protein (ARNT).  This complex bind to the hypoxic response elements 

(HRE) of DNA, acting as a transcription factor that induced transcription of epo, a gene responsible for production of red blood cells 

to increase oxygenated blood circulation to hypoxic tissues.   

 

Cellular cross-talk between AhR and HIF-1α 

 Past research that investigated the effects of simultaneous exposure to PAH and 

hypoxic stress on aquatic organisms has indicated synergistic toxicity because of cellular 

cross-talk between the AhR and the HIF-1α signaling pathways (Fleming et al., 2009; 

Hendon et al., 2008; Schults et al., 2010; Vorrink and Domann, 2014; Yu et al., 2008).  

The AhR and HIF-1α receptors are both transcription factors that belong to the class I 

bHLH/PAS protein family, which must form heterodimer complexes with class II 

bHLH/PAS proteins to induce transcription of target genes (Kewley et al., 2004; Vorrink 

and Domann, 2014).  Arnt is a class II bHLH/PAS protein that is the shared binding 

partner in both the AhR and HIF-1α signaling pathways (Gassmann et al., 1997; Vorrink 
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and Domann, 2014).  The Arnt protein operates in both defense pathways, and is 

hypothesized to cause competitive inhibition of receptor binding resulting in activation of 

one pathway over the other.  The outcome of this is the inability of an organism to cope 

with both oxygen and PAH stress simultaneously (Gassmann et al., 1997; Pollenz et al., 

1999; Vorrink and Domann, 2014).  Since the discovery of Arnt as the shared binding 

partner for the AhR and HIF-1α pathways, synergistic toxicity studies have focused on 

cross-talk at the Arnt node to explain the increased mortality and phenotypic response of 

fish.  Many of these studies have proven inconclusive, and molecular processes involved 

in the synergistic toxicity of oil and hypoxic stress are largely still undetermined.   

Figure 3. Diagram of cross-talk between the Aryl Hydrocarbon Receptor (AhR) 

Signaling Pathway and the Hypoxia Inducible Factor 1 Alpha (HIF-1α) Signaling 

Pathway.   

The aryl hydrocarbon nuclear translocator protein (ARNT) is the shared transcription factor binding partner for both the AhR and the 

HIF-1α receptors. Simultaneous exposure to PAHs and hypoxia decreases an organisms ability to cope with both stressors due to 

saturation of available ARNT binding proteins. 

 

Global Transcriptomics  

 Technological advancements have enabled researches to increase our 

understanding of transcriptomics by investigating gene expression profile variability 
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during developmental stages and in combination with environmental stressors (Qian et 

al., 2014; Wang et al., 2009).  Hybridization-based techniques, microarrays and tag-based 

sequencing methods (e.g. SAGE, CAGE, and MPSS), were common methods used in 

early transcriptomics studies (Wang et al., 2009).  Major limitations associated with these 

techniques are the lack of pre-existing genome information, cross-hybridization, an 

inability to map short tags, and the inability of whole transcriptomic sequencing (Qian et 

al., 2014). To overcome limitations associated with hybridization-based and tag-based 

sequencing methods, researchers developed next generation sequencing (NGS) 

techniques (Ekblom and Galindo, 2010; Wang et al., 2009). 

 RNA sequencing is a method used for mapping and quantifying an organism’s 

transcriptome, and has been applied to fish species to better understand molecular 

responses to stressors (Qian et al., 2014; Schirmer et al., 2010).  NGS requires a small 

amount of RNA to produce large quantities of data with high resolution and sensitivity, in 

a short amount of time when compared to hybridization-based and tag-based methods 

(Qian et al., 2014).  Unlike microarray technology, RNA sequencing has multiple 

platforms, including 454 FLX pyrosequencing, SOLiD, Solexa GA (Illumina), and 

Heliscope (Ekblom and Galindo, 2010; Qian et al., 2014; Schirmer et al., 2010).  

Different sequencing methods are used by each platform which affects the number of 

reads and the length of the reads collected (Schirmer et al., 2010).  NGS techniques are 

advancing our knowledge of genomic responses in model and non-model species.  This 

information is enabling scientists to better understand the molecular processes involved 

in physiological changes and response to external stimuli and toxicants.  Increased 
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understanding of toxicant modes of action and molecular pathway responses is necessary 

in understanding ecosystem health and resilience. 

Overall this study was conducted to investigate how combined exposure to oil and 

environmental stress impacted Cyprinodon variegatus health.  The first objective was to 

determine periods of increased PAH sensitivity in combination with hypoxic and osmotic 

stress during early life development of sheepshead minnow, Cyprinodon variegatus.  The 

second objective was to investigate the occurrence of the cross-talk between the AhR and 

HIF-1α signaling pathways in early life development of C. variegatus under different 

environmental conditions. Finally, the last objective was to compare the global 

transcriptomic responses of C. variegatus to individual and combined exposure to oil, 

hypoxia, and oil + hypoxia. 

The hypothesis used to test these objectives were: 

H1:  Age will have an effect on Cyprinodon variegatus sensitivity and response to PAH 

toxicity. 

H0:  There will be no difference in sensitivity and response to PAH toxicity between the 

three developmental stages in Cyprinodon variegatus. 

H2:  Environmental factors will increase the toxicity of oil to Cyprinodon variegatus. 

H0:  Environmental factors will have no effect on early life stage development of 

Cyprinodon variegatus. 
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CHAPTER II - DEVELOPMENTAL AND PHENOTYPIC RESPONSE OF 

CYPRINODON VARIEGATUS TO SOURCE OIL FROM THE 2010 DEEPWATER 

HORIZON SPILL UNDER ADVERSE ENVIRONMENTAL CONDITIONS. 

Introduction 

The amount of oil released, timing, and location of the 2010 Deepwater Horizon 

(DWH) oil spill presented unique challenges to exposed wildlife and ecosystems.  The 

fisheries of the northern Gulf of Mexico (nGoM) were threatened following the release of 

4.9 million barrels of crude oil 60 miles off the coast of Louisiana following the 

explosion of the DWH drilling platform (Beyer et al., 2016; Nixon et al., 2016; Turner et 

al., 2014).  The release of oil into the nGoM occurred over an 87-day period, during 

spring and early summer months which coincident with both pelagic and coastal fish 

spawning periods (Chesney et al., 2000; Pasparakis et al., 2016; Whitehead, 2013).  The 

Sweet Louisiana Crude Oil (SLCO) released into the nGoM is a complex mixture of 

chemicals comprised of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and trace 

metals(Kirman et al., 2016; Liu et al., 2012).  Typically, 10 - 45% of SLCO is attributed 

to PAHs, which are known as persistent organic pollutes and are highly toxic to 

developing organisms (Incardona et al., 2004; Wang et al., 2014).  Numerous studies 

have documented and identified developmental toxicities characteristic of PAH exposure 

in freshwater and marine fish species (Brown-Peterson et al., 2015; Incardona et al., 

2005, 2004; Sørhus et al., 2016).  PAH exposure during early life stages is primary linked 

to acute mortality, delayed hatching rates, and increased cardiac dysfunction (Hendon et 

al., 2008; Incardona et al., 2004; Sørhus et al., 2016).  To better understand the extent of 

the 2010 DWH oil spill impacts on estuarine ecosystems in the nGoM, it is critical to 
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identify the early life stage of fish development most sensitive to PAH exposure effects.  

In addition, it is important to identify synergistic relationships associated with oil 

exposure under varying environmental parameters such as salinity and oxygen 

concentrations.  

Crude oil, hypoxia, and variable salinity have been documented to cause 

deleterious effects in multiple fish species.  Crude oil is known to cause cardiac 

dysfunction, abnormal craniofacial development, and impaired liver and kidney 

development in zebrafish, haddock, and gulf killifish (Incardona et al., 2006; Pasparakis 

et al., 2016; Sørhus et al., 2016).  Zebrafish exposed to hypoxia during embryonic 

development experienced delayed development and increased teratogenic effects, while 

embryonic carp exposure to PAHs resulted in caused low hatch rates and increased larval 

mortality (Shang and Wu, 2004; Wu et al., 2003).  Low salinity has also been 

documented to negatively affect fish development and growth, even in euryhaline fish 

species (Patterson et al., 2012).  Patterson et al. (2012) investigated different salinity 

concentrations (0.5, 5.0, 8.0 and 12 ppt) on gulf killifish development and reported low 

salinities resulted in decreased growth and survival in juvenile killifish due to increased 

osmotic pressure.  Brown et al. (2012) investigated embryogenesis in gulf killifish under 

different salinities, 0.4, 7, 15, and 30 g/L, results indicated that percent hatch success was 

affected by salinity, although heart rate and total length was not.  Brown et al. (2011) also 

investigated the combined effects of salinity and temperature on gulf killifish, the study 

reported delayed time to hatch in the high salinity (20 g/L) compared to the low salinity 

(10 g/L).  Early life stage developmental influences of salinity on Nile tilapia were 

investigated and results indicated increased mortality of larvae with increased salinity and 
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found delayed hatching rates were observed  in high salinities greater than 15 ppt (Brown 

et al., 2011; Fridman et al., 2012). 

Most studies have focused on the effects of PAHs as a single stressor on fish 

health, but less is known about potential interaction effects between PAH exposure in 

combination with hypoxia and salinity (Whitehead, 2013).  The objective of this study 

was to identify periods of increased PAH sensitivity in sheepshead minnow, Cyprinodon 

variegates.  The synergistic effects of oxygen and salinity stress during early life 

development stages of sheepshead minnow were also addressed.  Sheepshead minnows 

are a widely distributed estuarine fish that inhabit the temperate coastal waters along the 

east coast of the United States to the tropical coastal waters of Mexico (Haney and 

Nordlie, 1997).  This species displays continuous breeding events throughout the year 

that deposit fertilized embryos on the benthic surface of shallow estuarine and wetland 

habits (Kuntz, 1916).  Sheepshead minnows are considered a resilient fish species 

because they can physiologically acclimate to rapid and extreme fluctuations in 

temperature, salinity, and dissolved oxygen levels (Haney and Nordlie, 1997).  For these 

reasons, the sheepshead minnow was selected for study.  The hypotheses of this research 

were: 1) post-hatch developmental stage of C. variegatus is the most sensitive to PAH 

toxicity; 2) increased mortality and developmental abnormalities will be positively 

correlated with increasing salinity, in conjunction with PAH exposure; 3) the maximum 

mortality will be attributable to combined exposure to hypoxic conditions and PAHs 

during early life stage development of C. variegatus.  
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Methods 

Experimental animals  

All embryos and larvae used in this study were collected from a C. variegatus 

adult brood stock maintained at The University of Southern Mississippi’s (USM) Gulf 

Coast Research Laboratory (GCRL).  For each experiment, embryos were collected 

during natural spawning events.  Adult C. variegatus were acclimated to breeding water 

parameters (27 - 30°C) and placed on breeding diets one week before the breeding event.  

Breeding events were 12 -24 h periods which began with the placement of two breeding 

mats into each of the 12 C. variegatus raceways.  Breeding mats were removed from 

adult C. variegatus enclosures, and embryos were collected.  Collected embryos were 

combined into a single stock collection and rinsed with fresh water to remove any 

external saltwater parasites or pathogens.  Rinsed embryos were rolled on fine nylon 

mesh to remove the embryonic microvilli to prevent embryos from clumping together.  

Unfertilized embryos were removed, fertilized embryos were transferred to experimental 

chambers or holding tanks.  Embryos transferred to holding tanks were kept in 4 L glass 

containers and incubated at 30°C.  The water parameters of the holding tanks were 

normoxic and the salinity was either 10 or 30 ppt depending on the experimental regime.  

Once embryos hatched (96 hpf) the newly hatched larvae were either directly transferred 

to experimental chambers for the post-hatch assays, or to a second 4 L holding tank with 

same water parameters until used for the post-larval experiments.  The second holding 

tank had a 50% water renewal at 48 hph and began feeding.  At 96 hph the larvae were 

transferred to experimental chambers used for the post-larval assays.   
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Experimental Design 

To examine the individual and combined effects of PAH and environmental 

effects on the early life stage development in C. variegatus, 12 experiments were 

conducted.  The experiments were divided into three developmental stages: embryonic, 

post-hatch, and post-larval (Figure 4), which were each subjected to four different 

exposure regimes.  Experimental initiation began with a 48 h exposure period, followed 

by a depuration period (up to 8 dpf) (Figure 5).  The 48 h exposure period subjected 

embryos or larvae to four different HEWAF treatment concentrations (6.25%, 12.5%, 

50%, 100%) in combination with varying oxic (> 5.0 mg/L or 2.0 mg/L dissolved 

oxygen) and salinity (10 ppt or 30 ppt) regimes.  All exposure treatments were executed 

in quadruplicate, yielding a total of 20 test chambers for normoxic and hypoxic 

exposures.  During the depuration period, embryos or larvae were transferred to clean, 

normoxic conditions until experimental termination (12 dpf).  Feeding began after the 

absorption of the yolk-sac, 2 days post hatching.  Larvae were fed twice a day and the 

diet consisted of live rotifers for two days after the absorption of the yolk-sac, and then 

fed live brine shrimp nauplii until the experiment termination.  The experiments were 

static 48h, 100% water renewal conditions at 30°C and a 16 hour-light and 8 hour-dark 

photoperiods.   



 

 

2
0
 

Figure 4. Experimental design.   

This experimental design was used for all twelve, early life stage Cyprinodon variegatus experiments.  Early life stage development was divided into three life stages: embryonic (~ 15 hpf), 

post-hatch (10 hph), and post-larval (96 hph).  All three life stages were exposed to series of HEWAF concentrations, a control (0%), 6.25%, 12.5%, 50%, and 100% for 48 hours.  HEWAF 

exposures were ran under normoxic (≥5 mg/L) and hypoxic (2.0 mg/L) conditions.  Both normoxic and hypoxic HEWAF exposures were also conducted under low (10 ppt) and high salinity 

(30 ppt) conditions.  HEWAF concentrations were ran in quadruplicates with a varying number of test organisms dependent on life stage, embryonic (n=40), post-hatch (n=30), and post-larval 

(n=20). 
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Figure 5. Exposure windows.   

All early life stage development experiments begin with a 48 h exposure period to HEWAF treatments + oxic and salinity regime.  Following the 48 h exposure period organism are transferred 

to clean normoxic water and monitored until 12 dpf.  Three whole-body tissue samples were collected, 1) immediately after the 48 h exposure period, 2) after a short depuration period (48 – 96 

h), and 3) at termination.  All whole-body tissue sampling events are indicated by hashed lines. 
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Hypoxic Exposures 

 Hypoxic exposures were conducted in a Biospherix I-Glove incubator glovebox 

equipped with a PROOX model 360 oxygen control module.  The dissolved oxygen 

concentration in the test chambers was maintained at 2.0 mg/L, using nitrogen gas to 

manipulate atmospheric oxygen in the glovebox.  Water baths or heaters were added to 

maintain chamber at 30°C.  Test chambers with test solutions were placed in the gloves 

box 24 h prior to exposure initiation to allow for dissolved oxygen to decrease to 2.0 

mg/L and temperature to reach 30°C.  After desired water parameters were observed, test 

organisms were added to test chambers and the exposure began.  Following the 48 h 

exposure period, nitrogen gas flow to the chamber was turned off and ambient oxygen 

levels (≥ 5.0 mg/L) were maintained in the chamber for the duration of the experiment.  

Normoxic Exposures 

 Normoxic exposures were conducted in a Precision Incubator set at 30°C.  Test 

chambers with test solutions were placed in the incubator 4 h prior to exposure initiation 

to allow for test solution temperatures to reach 30°C.  After the test solution reached 

target 30°C, test organisms will be added and the exposure will begin.  The incubator 

temperature remained at 30°C for the duration of the exposure. 

Experimental monitoring 

Temperature, pH, dissolved oxygen, salinity, and ammonia, were monitored daily 

in all test chambers.  Observations of mortality and developmental abnormalities were 

recorded daily for all experimental test chambers.  Dead embryos or larvae were removed 

from the test chambers. 
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Artificial seawater 

 Artificial seawater was used for all experiments and for maintenance of adult C. 

variegatus brood stock. Artificial seawater used for this study was Fritz super concentrate 

two-part salt.  Experimental water was ultra-violet sterilized and filtered through 0.22µm 

nitrocellulose membrane filters to remove solid particles (ThermoScientific, Waltham, 

MA).  Treated experimental water was stored in 10 L Pyrex carboys and aerated until 

used.   

Preparation of High Energy Water Accommodated Factions (HEWAF) 

 HEWAF stock solution was prepared using the method for large volume HEWAF 

production described by Forth et al. (2016), with modifications.  Un-weathered, source 

oil collected from the DWH riser was used in the preparation of the stock HEWAF 

solution with a nominal concentration of 1 g/L.  HEWAF was prepared using a heavy-

duty blender (Waring Commercial).  Three liters of artificial seawater were combined 

with 3.6 mL of source oil in a 3.8 L stainless steel blender container. The water-oil 

mixture was mixed on the low setting for 30 seconds and transferred to a 4 L separatory 

funnel.  The separatory funnel containing the HEWAF solution was covered with 

aluminum foil, and allowed to settle for 1 hour.  Following the 1 h settling period, the 

HEWAF stock solution was used to prepare experiment treatment concentrations by 

dilution (Table 1). 
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 Treatment dilution calculations.   

Table 1 Nominal HEWAF solutions (control, 6.25%, 12.5%, 50% and 100%) were prepared in 500 mL batches and then distributed 

into test chambers.  All treatment dilutions were made from 1 g/L stock.   

 

Analysis of stock HEWAF  

 One liter of each stock HEWAF solution (1 g/L) was sampled directly after 

HEWAF preparation, before test solutions were diluted. Stock HEWAF samples were 

collected in 1 L amber bottles, preserved with 10 mL of stabilized HPLC grade 

Methylene Chloride (DCM) and stored at 4°C (Fisher Scientific, Hampton, NH).  

Samples were shipped overnight on ice for PAH analysis by gas chromatography coupled 

with tandem mass spectrometry (GC/MS/MS) at The Center for Environmental Sciences 

and Engineering (Storrs, Connecticut).  The total of PAH concentrations were quantified 

from all twelves HEWAF stock solutions by measuring 29 parent PAHs, alkyl PAHs, and 

alkyl PAH homologs (Table 2).  
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 Total Polycyclic aromatic (PAHs) measured in stock HEWAF solutions.   

List of the 29 PAHs measured by Gas Chromatography-Mass Spectrometry (GC-MS) in all twelve stock HEWAF solutions. 

 

Fluorescence analysis 

 Total petroleum hydrocarbons (TPH) were measured using the SpectraMax M2 

spectrometer.  A sample of 3.5 mL of exposure water was collected from each test 

chamber during water quality monitoring at 0 h, 24 h, 48 h, and 72 h.  The water samples 

were mixed with 3.5 mL of ethanol and stored in 7 mL scintillation vials at 4°C.  TPH 

was quantified by the amount of fluorescence absorbed between 270 and 380 nm 

wavelengths.  Fluorescence sample preparation and analysis followed methods described 

by Greer et al., (2012). 
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HEWAF PAH calculations   

 To quantify the amount of tPAH29 concentrations for the exposure test solutions, 

a linear regression model was used to obtain the relationship between the fluorescence 

values for each treatment and dilution concentrations.  The equation was modified to 

determine the dilution factor for each treatment using the corresponding fluorescence 

values.  Once the dilution factors were determined, they were multiplied by the tPAH29 

concentration to estimate the tPAH29 concentration for each experimental treatment.   

Embryonic Assays 

 The effects of PAH exposure on embryonic development in C. variegatus were 

examined under four combinations of parameters: normoxic + low salinity, normoxic + 

high salinity, hypoxic + low salinity, and hypoxic + high salinity.  For all experiments, 50 

embryos (≤ 15 hours post fertilization (hpf)) were randomly transferred into PYREX 150 

ml crystalizing dishes containing 100 ml of UV sterilized and filtered artificial seawater 

controls (n=4) and four HEWAF treatments (6.25%, 12.5%, 50%, 100% (n=4 for each 

concentration)).  Embryonic experiments consisted of an initial 48 h exposure followed 

by a 10 day depuration period.  There were three whole body tissue sampling events at 48 

h, 96 h, and 288 h.  Each sampling event consisted of ten embryo/larvae randomly 

sampled and pooled from each test chamber.  Images were taken of sampled organisms 

for growth analysis.  Heart rates were recorded for a subsample (n=10) of embryos at 24 

and 48h.  Hatch rates and embryonic abnormalities were also monitored during the 

embryonic assays. 

Post-Hatch Assays 
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 The effects of PAH exposure on recently hatched C. variegatus larvae was 

examined under the four combinations of environmental parameters described above.  

For all experiments, 30 larvae (< 10 hours post hatch (hph)) were randomly transferred 

into PYREX 150 ml crystalizing dish containing 100 ml of UV sterilized and filtered 

artificial seawater controls (n=4) and four HEWAF treatments (6.25%, 12.5%, 50%, 

100% (n=4 for each concentration)).  Post-hatch experiments consisted of an initial 48 h 

exposure period followed by a 6 day depuration period.  There were whole body tissue 

sampling events at 48 h, 144 h, and 192 h.  Each sampling event consisted of ten larvae 

randomly sampled and pooled from each test chamber.  Images were taken of sampled 

organisms for total growth and developmental abnormality analysis. 

Post-larval Assays  

 The effects of PAH exposure on actively feeding C. variegatus larvae were 

examined under the four combinations of environmental parameters described above.  

For all experiments, 20 larvae (< 10 hph) were randomly transferred into PYREX 150 

mL crystalizing dish containing 100 ml of UV sterilized and filtered artificial seawater 

controls (n=4) and four HEWAF treatments (6.25%, 12.5%, 50%, 100% (n=4 for each 

concentration)).  Post-larval experiments consisted of an initial 48h exposure period 

followed by a 2 day depuration period.  There were two whole body tissue sampling 

events at 48 h and 96 h.  Each sampling event consisted of ten larvae randomly sampled 

and pooled from each test chamber.  Images were taken of sampled organisms for total 

growth and developmental abnormality analysis. 

Survivability Monitoring 



 

28 

 Survivorship and development observations were recorded daily for all 

experimental test chambers.  Dead embryos or larvae were recorded and removed from 

the test chambers.  Cumulative mortality was calculated daily for each treatment 

condition for all developmental stages using the % mortality formula [(# of larvae alive/ # 

of larvae or embryos at test initiation) *100].  Cumulative embryo mortality was also 

recorded during the embryonic assays using the % embryo mortality formula [(# of viable 

embryos + dead embryos / the initial # of embryos) *100]. 

Heart Rate Analysis  

 Heart rates were measured at 24 hpf and 48 hpf in a subsample of 10 embryos 

from each experimental chamber (n=10).  The heart rates were manually counted in test 

chambers using a Nikon SMZ1500 Stereoscope.  For each embryo, heart rates were 

counted for 10 seconds and then converted to beats per minute (BPM). 

Hatching 

 Hatch success was measured by calculating the percent of hatch and time to hatch 

across the HEWAF treatments and four exposure regimes.  Percent hatch was calculated 

using the formula [(#hatched larvae / # embryos)]. 

Water Quality Monitoring 

 Daily water quality was performed and recorded.  Water quality parameters 

measured were: temperature, pH, dissolved oxygen, salinity, and ammonia.  Test 

parameters were measured in every test chamber during daily observations.  Temperature 

and dissolved oxygen were measured using an optic YSI, pH was measured using a pH 

meter, salinity was measured with a refractometer, and ammonia was measured with test 

strips. 
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Image collection and analysis 

 Photo documentation was used to assess growth and developmental abnormalities 

of C. variegatus.  Photos were taken at the initiation of exposures and during sampling 

events (48h, 96h, and termination).  Ten randomly selected larvae were collected for 

sampling and imaging.  Larvae and 5 ml of test chamber water were individually 

transferred to depression microscope slides for imaging.  A Nikon SMZ1500 Stereoscope 

with a Nikon digital camera DXM 1200C was used for capturing images which were 

stored on an external hard drive (Nikon Instruments Inc., Melville, NY).  iSolution lite 

imaging software was used for calibrating and measuring growth of larvae (IMT i-

Solution INC., Easlley, SC).     

Final length in millimeters was measured at the termination of all experiments and 

recorded for later comparisons between treatments and across developmental stages.  

Images were also used to document abnormal embryonic development in the embryonic 

assays.  Embryonic abnormalities recorded included eye pigmentation, spinal curvature, 

and cardiac edema. 

Statistics  

 The means of the treatment replicates and the standard deviation are presented in 

this chapter.  Multiple linear regressions were used for each developmental stage to 

determine significance of stressors on mortality, growth, heart rate, and hatching using 

SigmaPlot 11.0 (Systat Software, Inc., San Jose, CA).   Significance was considered at p 

< 0.05.  Lethal concentrations of PAHs were calculated (LC50) for all developmental 

stages in R and RStudio (R Foundation for Statistical Computing, Vienna, Austria; 

RStudio, Inc., Boston, MA).  The LC50 values were calculated using the Dose Response 
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Curve (dcr) R package, which used a linear model to determine the concentration at 

which 50% of the experimental population resulted in mortality (Ritz et al., 2015).  A 

one-way analysis of variance (ANOVA) was used to examine significance between heart 

rates between treatment groups using SigmaPlot 11.0 (Systat Software, Inc., San Jose, 

CA).  Raw heart beat data was used to perform one-way ANOVA with a significance 

level of 0.001.  All tests but one (embryonic normoxic-low salinity 24 h heart rate) failed 

a Shapiro-Wilk normality test and one test (embryonic normoxic-low salinity 24 h heart 

rate) failed the equality of variance test.  The Holm-Sidak method was used as the 

multiple test correction for all ANOVAs.   

Results 

Water chemistry analysis 

The concentration and abundance of the 29 PAH and PAH homologs measured 

from all 12 HEWAF solutions are represented in Figure 6. The most prominent PAH 

constitutes in all HEWAF solutions included naphthalene, methyl naphthalene, dimethyl 

naphthalene, and 2-methyl naphthalene.  The PAH constituents between HEWAF 

samples remained constant, but test solution concentrations varied within and between 

developmental stages.  To determine how salinity influences PAH concentration in the 

treatments, the tPAH29 concentrations of treatments were used in a linear regression to 

examine differences in PAH concentrations dependent on salinity (Figure 7).  The PAH 

concentrations from the embryonic assays resulted in increased PAH concentrations 

observed in the 30 ppt treatments when compared to the 10 ppt treatments under both 

oxic regimes (Figure 7A & B).  The treatment PAH concentrations for the post-hatch 

developmental stage resulted increased PAH concentration observed in normoxic-low 
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salinity (10 ppt) exposures, while the opposite was observed in hypoxic assays were high 

salinity conditions resulted in greater PAH concentrations (Figure 7C & D).  In the post-

larval assays, the PAH treatment concentrations in the normoxic – high salinity (30 ppt) 

exposures resulted in higher PAH concentrations observed in the higher HEWAF 

treatments (Figure 7E).  Similar slopes were obtained from the PAH concentration linear 

regressions for the post-larval hypoxic assays, indicating that salinity had no effect on 

PAH concentration in the post-larval hypoxic assays (Figure 7F).  The linear regression 

analysis of the HEWAF treatment concentrations resulted in a pattern of increased PAH 

concentrations with increased salinity.  Another important result was that higher overall 

PAH concentrations were measured in hypoxic assays both within and across 

developmental stage exposures.  The 100% HEWAF treatment concentrations for the 

normoxic assays were 268.38 ± 4.57 (10 ppt) and 368.55 ± 11.15 (30 ppt) for the 

embryonic exposures, 368.55 ± 4.23 (10 ppt) and 242.15 ± 9.07 (30 ppt) for the post-

hatch exposures, and 198.56 ± 11.21 (10 ppt) and 274.00 ± 4.93 (30 ppt) for the post-

larval exposures.   The 100% HEWAF treatment concentrations for the hypoxic assays 

were 364.51 ± 70.16 (10 ppt) and 501.12 ± 30.63 (30 ppt) for the embryonic exposures, 

319.58 ± 12.92 (10 ppt) and 511.75 ± 30.88 (30 ppt) for the post-hatch exposures, and 

223.68 ± 18.98 (10 ppt) and 293.20 ± 111.66 (30 ppt) for the post-larval exposures (Table 

3). 

  



 

32 

Figure 6. Stock HEWAF PAH Composite measured by Gas Chromatography-Mass 

Spectrometry (GC-MS) analysis. 

 The measured PAH concentrations (µg/L) from the 100% HEWAF from all 12 exposures was quantified by measuring 29 PAHs 

constituents.  PAH concentration (µg/L) of the 4 embryonic assays (A), PAH concentration (µg/L) from the post-hatch assays (B), and 

the bottom graph is the PAH concentration (µg/L) from the post-larval assays (C). 
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Figure 7. Relationship between PAH dilution and salinity concentration.   

Linear regressions show the differences between the slopes of the HEWAF nominal treatment concentrations (µg/L) dependent on 

salinity.  HEWAF dilution concentrations are represented by developmental stage, embryonic (A & B), Post-Hatch (C & D), and Post-

Larval (E & F) and by oxic regime. The bars are the standard deviation between treatment replicates and the PAH concentrations are 

derived from the measured tPAH29. 
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 tPAH29 HWEWAF concentration for nominal exposure dilutions.   

Calculated treatment dilutions (µg/L) ± standard deviation. 

 

Lethal Concentration Analysis (LC50) 

The LC50 values for the embryonic and post-hatch assays were not able to be 

calculated due to the low or no mortality that occurred during the 48-h exposure period.  

LC50 values for all four exposure regimes were calculated for the post-larval 

developmental stage (Table 4).  The results showed a shift in the sigmodal curve for the 

LC50 values toward the left with the addition of stressor combinations (Figure 8).  The 

normoxic-low salinity exposure had the highest LC50 value 207. 13 ± 15.50 µg/L, which 

correlates to the lowest toxicity to free feeding SHM larvae.  The combination of oil, 

hypoxia, and high salinity resulted in similar LC50 values (103.93 ± 15.63 µg/L and 

103.16 ± 14.65 µg/L, respectively).  The exposure regime with the lowest LC50, 
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indicating the highest toxicity to the larval SHM, was the simultaneous exposure of all 

three stressors, HEWAF, hypoxia, and high salinity (hypoxic + high salinity) with a value 

of 64.55 ± 12.81 µg/L (Table 4). 

 

Figure 8. Modified Post-larval median lethal concentrations (LC50) Box and whisker plot.   

Lethal concentrations at which mortality occurred in half the treatment population is represented by the middle bar in the box plot and 

the top and bottom bar represent the standard error.   
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 Post-Larval Median Lethal concentrations (LC50) for each exposure regime with 

standard error.  

 

Embryonic assays  

 Low percent mortality under all four exposures regimes regardless of PAH 

concentration was observed during the embryonic assays with mortality never exceeding 

50% (Figure 9A).  A multiple linear regression revealed that PAHs (p = 0.004) and 

dissolved oxygen (p < 0.001) had significant effects on the observed mortality during 

embryonic assays, while salinity had no significant effect (Table 5).  Final growth was a 

sub-lethal endpoint also assessed using a multiple linear regression.  The analysis 

indicated that two stressors significantly impacted the final lengths of the larvae: 

dissolved oxygen (p = 0.001) and salinity (p < 0.001), while PAH concentration showed 

no significant effect on larval growth (Figure 12A and Table 6).   
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Sub-lethal developmental toxicity endpoints included final growth, heart rate 

measurements, and hatch success embryos.  Heart rate measurements were recorded as 

beats per minute (BPM) at 24 and 48 hpf (Figure 10 and 11 respectively).  Heart rates at 

24 hpf were significantly affected by both PAHs (p = 0.039) and dissolved oxygen 

concentrations (p < 0.001), whereas the heart rates at 48 hpf were only significantly 

impacted by PAH concentrations (p = 0.032) (Table 10).  The effects of salinity, DO, and 

PAHs on embryonic hatch was measured at 96 hpf.  The statistical analysis on percent 

hatched embryos at 96 hpf indicated that PAH (p < 0.001) and DO concentrations (p < 

0.001) had significant effects on hatching success of exposed embryos (Table 11). 
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Figure 9. Percent cumulative mortality.   

Cumulative mortality for all three developmental stages, embryonic (A), post-hatch (B), and post-larval (C), under all four exposure 

regimes. 
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Figure 10. Embryonic heart rate response to HEWAF exposure under different 

environmental conditions at 24 h.   

All graphs represent heart rate in beats per minute (BPM) response to HEWAF treatments in the presence of A) normoxic – low 

salinity conditions, B) hypoxic – low salinity conditions, C) normoxic – high salinity conditions, and D) hypoxic – high salinity 

condtions.  Letters indicate significance with a p-value >0.05. 
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Figure 11. Embryonic heart rate response to HEWAF exposure under different 

environmental conditions at 48 h.   

All graphs represent heart rate in beats per minute (BPM) response to HEWAF treatments in the presence of A) normoxic – low 

salinity conditions, B) hypoxic – low salinity conditions, C) normoxic – high salinity conditions, and D) hypoxic – high salinity 

conditions.  Letters indicate significance with a p-value >0.05.  

 

Post-hatch assay results 

The post-hatch developmental stage resulted in the lowest cumulative mortality 

observed between all three developmental stages after exposure to the four experimental 

regimes and HEWAF treatments (Figure 6B).  Less than 50% mortality occurred in all 

four exposure regimes regardless of HEWAF concentration, similar to the embryonic 

results.  The percent mortality observed during the post-hatch developmental stage assays 
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were most significantly affected by the environmental stressors salinity (p < 0.001) and 

DO (p = 0.005), and that PAH concentration had no significant effect on cumulative 

mortality, according to the multiple linear regression analysis (Table 5).  Final growth 

was the non-lethal developmental endpoint used to investigate the effects of PAH and 

environmental stressors on larval health.  The multiple linear regression analysis 

indicated that the final growth during the post-hatch developmental stage assays was 

most significantly affected by PAH concentration (p < 0.001) and salinity (p < 0.001) 

(Figure 12B and Table 6).    

Post-larval assay results 

The results from the cumulative percent mortality and final length analysis during 

the post-larval assays indicated that the post-larval developmental stage is most sensitive 

to the individual and combined effects of salinity, hypoxia, and PAH exposure (Figure 

6C).  Cumulative percent mortality observed during the post-larval assays was 

significantly affected by all three stressors: salinity (p < 0.001), DO (p < 0.001), and PAH 

concentrations (p < 0.001) according the multiple linear regression analysis (Table 3).  

The final length measurements from the post-larval assays were also significantly 

affected by all stressors salinity (p < 0.001), DO (p = 0.041), and PAH (p < 0.001) 

(Figure 12C and Table 4). 
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Figure 12. Final Length (mm) of larval Cyprinodon variegatus at termination (12 dpf) in 

response to HEWAF treatments and exposure conditions.   

Embryonic final length for all four exposure conditions (A), post-hatch final length for all four exposure conditions (B), and post-

larval final length for all four exposure conditions (C).  
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 Multiple linear regression (MLR) for cumulative mortality across all 

developmental stages.   

Significance defined as p < 0.05. 

 

 Multiple linear regression (MLR) for final growth across all developmental 

stages.  

Significance defined as p < 0.05. 

 

 Multiple linear regression (MLR) for embryonic heart rates impacted during 

embryonic exposures.  

Significance defined as p < 0.05. 
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 Multiple linear regression (MLR) for embryonic mortality and hatch success. 

Significance defined as p < 0.05. 

 

Comparative results  

The combined cumulative mortality results from all 12 experiments suggested that 

the post-larval developmental stage in C. variegatus is the most sensitive to the individual 

and combined exposure of PAHs and adverse environmental conditions.  The highest 

cumulative mortality occurred during the post-larval assays, with over 50% mortality 

observed for all tested HEWAF treatments in three out of the four exposure regimes.  The 

second highest cumulative mortality was observed during the embryonic assays and was 

only significantly affected by PAH contamination and DO concentrations.  Finally, the 

embryonic stage showed the least effects on cumulative mortality rates.  These data 

suggest that yolk-sac larvae are the most resilient to acute lethal effects of PAH exposure 

under adverse environmental conditions. 

Discussion 

The decreased survival observed in the post-larval developmental stage seen here 

in provides further evidence to support the post-larval developmental stage in C. 

variegatus as the most sensitive to PAH exposure.  Increased lethal effects of PAH 

exposure during larval fish development has been observed in sheepshead minnows 
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exposed to a single PAH treatment, pyrene, at concentrations of 60 and 120 ppb (Hendon 

et al., 2008).  Larval enhanced toxicity to PAHs has also been observed in mahi-mahi and 

zebrafish species when compared to embryonic mortality (Incardona et al., 2004; Mager 

et al., 2016).   

 The minimal effects of PAH exposure on growth of C. variegatus during all three 

developmental stages maybe be explained by the timing and duration of the PAH 

exposure.  All oil exposures occurred at the transition point into the next developmental 

stage which only lasted for 48 hours, after which the surviving embryos/larvae were 

transferred to clean, normoxic water and monitored until 12 dpf.  The acute exposure to 

oil under varying environment conditions was not enough to cause significant differences 

in growth rates within and between developmental stages.  

 The post-larval developmental stage exhibited the highest cumulative mortality 

from HEWAF exposure among all four exposure conditions, but salinity and hypoxia 

significantly affected the toxicity of oil during the embryonic and post-hatch assays as 

well.  High salinity conditions (30 ppt) correlated to increased cumulative mortality in the 

post-hatch and post-larval assays, but had no significant effects on embryonic mortality.  

The MS-GC and fluorescence analysis of the stock and treatment HEWAF solutions from 

the current set of experiments show similar concentrations of PAHs between the low and 

high salinity regimes, contradicting previous research suggesting that the bioavailability 

of oil decreases with increased salinity conditions (Ramachandran et al., 2006).  Due to 

similar levels of PAHs being found in both salinity regimes, the differential effects of 

salinity on the mortality and growth of the exposed organisms may be a result of 
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increased osmotic pressure and metabolic cost, rather than differences in PAH 

concentrations (Ramachandran et al., 2006; Whitehead, 2013).   

 Salinity changes not only elicit responses in living organisms, but can also 

influence the presence and persistence of other adverse environmental conditions such as 

hypoxia.  Hypoxia is a common marine stressor which is the result of both natural and 

anthropogenic sources, with increased hypoxia during the summer months in the estuaries 

along the nGoM (Bianchi et al., 2010; Rabalais et al., 2002).  In this experiment, hypoxia 

also had a significant effect on mortality across all early life stages of C. variegatus, but 

only significantly impacted total growth in embryonic and post-larval assays.  The 

increased HEWAF toxicity in the presence of hypoxia is most likely related to the gills 

and increased metabolic demands.   

The synergistic potential of all treatments on both mortality and growth was most 

severe during the post-larval assays.  The LC50 values decreased as the number of 

stressors increased.  The increase in HEWAF toxicity with the combination of stressors 

can possibly be explained by increased metabolic demands and the gill morphology and 

function.   

 Embryonic fish are enclosed by the chorion, which provides a barrier between the 

embryo and the external environmental, therefore limiting the direct contact with oil.  

The post-hatch developmental stage was hypothesized to be the most sensitive PAH 

exposure, but displayed the highest resilience to PAHs.  The oil exposure during the post-

hatch developmental stage occurred while the larvae had yolk-sacs and were not feeding 

freely which may have limited the ingestion of PAHs.  The increased sensitivity of the 

post-larval SHM to PAH exposure may be explained by increased exposure to PAHs and 
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increased metabolic demand.  The larvae used for the post-larval assays were 96 hph and 

freely feeding on brine shrimp nauplii, which could have been due to increased exposure 

of oil via ingestion as well as exposure at the gills.  

 A common factor linking all three of the stressors is their dependence on the gills.  

Fish gills have direct contact with the external environment, and serve a critical role ion 

and gas exchange (Evans et al., 2005).  The morphology of the gills is comprised of 

counter current vascular systems and lipid rich tissues to aid in transport of oxygen and 

ions with the environment, but these morphological characteristics make the gills the 

primary route of oil exposure in fish (Evans et al., 2005; Ramachandran et al., 2006).  

The lipid rich tissues of the gills PAHs to passively diffuse across the gill membranes, 

inducing local and systemic metabolic responses (Ramachandran et al., 2006).  Changes 

to gill structure and ability as a result of oil contamination can cause confounding effects 

on routine metabolic functions to maintenance internal ion and oxygen homeostasis.   

 The increased toxicity of HEWAF observed during the post-larval assays could be 

a result of impaired osmoregulation, inhibiting the larvae’s responses to increased 

osmotic pressure.  These data provide similar results to oil exposures under different 

salinity conditions in intraperitoneal injected rainbow trout, which also resulted in 

inhibited osmoregulation functions, independent of gill morphology (Engelhardt et al., 

1981).  Oil contamination has also been documented to change to the gill tissue and cell 

structures, decreasing the exposed fish’s osmoregulatory ability (Goanvec et al., 2011; 

Whitehead, 2013).  Research investigating oil exposure on gulf killifish documented 

altered gene regulation of multiple ion transporters in the gills of exposed fish after oil 

exposure (Whitehead et al., 2012).  Oil exposure to juvenile turbot decreased the number 
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of mucocytes and chloride cells in gill epithelium and oil exposure to juvenile flounder 

resulted in lamellar telangiectasia and epithelial proliferation which decreased osmotic 

regulatory ability in juvenile fish (Brown-Peterson et al., 2015; Goanvec et al., 2011).  

Fish embryos are protected from the external environmental conditions by the chorion 

which prevents direct contact of oil to the developing embryo, further indicating that the 

synergist effects of salinity on the oil toxicity may be a result of physical damage of oil at 

the gills and loss of osmoregulatory ability.   

 The additive effect of hypoxia on the toxicity of HEWAF may also be a result of 

inhibited oxygen exchange at the gills.  Oil exposure under normoxic environmental 

conditions has been documented to decrease the vascular oxygen levels as a result of 

decreased hematocrit levels in catfish (Brauner et al., 1999).  Morphological changes to 

the gill structures, such as epithelium necrosis and inflammation, has been documented in 

juvenile brown spot grouper, flounder, and zebrafish (Brown-Peterson et al., 2015; 

Sørhus et al., 2016)  The changes in gill morphology can limit the surface area of the gill 

lamellae and decrease oxygen exchange.   

 The current research identified that in sheepshead minnows, post-larval 

developmental stage is the most sensitive early life stage to oil exposure.  The research 

also determined that HEWAF exposure under hypoxic - high salinity conditions resulted 

in a synergistic toxicity effects of oil to larvae SHM.  The findings from this experiment 

provide critical evidence to further understanding of the impact of oil on developing 

organisms in estuarine habitats in the presence of environmental stressors 
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CHAPTER III  - CROSS-TALK BETWEEN THE ARYL HYDROCARBON 

RECEPTOR SIGNALING PATHWAYS (AHR) AND THE HYPOXIA INDUCIBLE 

FACTOR 1-ALPHA SIGNALING PATHWAY (HIF-1Α)  

Introduction 

On April 20, 2010, the largest marine oil spill in U.S. history occurred when the 

Deepwater Horizon (DWH) oil rig exploded (Allan et al., 2012; Sumaila et al., 2012).  

An estimated 4.9 million barrels of crude oil were released into the northern Gulf of 

Mexico (nGoM), impacting more than 2100 km of coastline ecosystems, including 

estuarine habitats (Allan et al., 2012; Beyer et al., 2016; McNutt et al., 2012; Whitehead, 

2013).  Polycyclic aromatic hydrocarbons (PAHs) are highly toxic components of crude 

oil and known to cause cardiac edema, and abnormal liver, gill, and skeletal development 

(Brown-Peterson et al., 2015; Hendon et al., 2008; Incardona et al., 2004; Jones et al., 

2017; Ramachandran et al., 2006; Sørhus et al., 2016).  The impacts of the mass release 

of crude oil into the nGoM are further compounded due to the extent of hypoxic 

conditions these same coastal habitats.  Hypoxia threatens the ecosystem health of 

habitats and has been known to cause mass mortality events, delayed development, 

teratogenic effects, endocrine dysfunction, reduced hatching success and spawning rates 

(Dangre et al., 2010; Shang and Wu, 2004; Wu et al., 2003).  Simultaneous exposures to 

PAH and hypoxic stress on aquatic organisms have indicated a potential synergistic 

toxicity to occur because of cellar cross-talk between the Aryl Hydrocarbon Receptor 

Signaling (AhR) and the Hypoxia Inducible Factor 1 alpha signaling (HIF-1α) pathways 

(Fleming et al., 2009; Hendon et al., 2008; Schults et al., 2010; Vorrink and Domann, 

2014; Yu et al., 2008).  Cross talk between the AhR and HIF-1α pathways inhibit an 
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organism’s ability to simultaneously metabolize PAHs and increase oxygen delivery to 

hypoxic tissues which decreases individual fitness. 

Since the discovery of aryl hydrocarbon nuclear translocator protein (Arnt) as the 

shared binding partner for the AhR and HIF-1α pathways, synergistic toxicity studies 

have focused on cross-talk between these two pathways at the Arnt node to explain the 

increased mortality and phenotypic response of fish in the presence of both stressors.  

Many of the results produced from these studies have proven to be inconclusive and 

molecular processes involved in the synergistic toxicity of oil and hypoxic stress are still 

undetermined.  This research has provided vital information concerning the toxicity and 

modes of action of individual constituents of oil and oil mixtures, but has ignored 

interaction between oil and environmental factors.  Therefore, the inclusion of abiotic 

factors in the examination of oil exposure on fish health is critical to understanding of 

how oil exerts toxicity to marine organism in natural environments (Adams, 2005; 

Whitehead, 2013).   

 The current research addresses gaps in knowledge regarding the effects of 

complex oil mixtures in combination with multiple environmental stressors.  Sheepshead 

minnow (SHM) were used in this study because they are a common estuarine species 

distributed throughout the nGoM (Kuntz, 1916).  The SHM also breeds year-around and 

is a benthic egg layer, which increases its exposure risk to both hypoxia and PAHs during 

early life stage development (Hendon et al., 2008; Kuntz, 1916).  The objective of this 

research is to investigate the occurrence of the cross-talk between the AhR and HIF-1α 

signaling pathways in early life development of sheepshead minnow (Cyprinodon 

variegatus) under different environmental conditions.  Specifically, the research wanted 
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to identify developmental windows of increases sensitivity to crude oil, synergistic 

relationships with abiotic factors, and molecular modes of toxicity.  Real-time 

quantitative polymerase chain reactions (qPCR) to measure AhR and HIF-1α pathway 

activity. The results from this study provide evidence that synergistic toxicity of oil and 

environmental factors was influenced by exposure conditions, age, and arnt1 expression. 

Methods 

Experimental Design 

To investigate potential cross-talk between the AhR and the HIF-1α signaling 

pathways a series of twelve static 48 h HEWAF exposures were designed.  The 

experiments were divided into three developmental stages: embryonic (≤15 hpf), post-

hatch (≤10 hph), and post-larval (96 hph).  All developmental stages were subjected to 

four different environmental condition combinations normoxic-low salinity (≥ 5.0 mg/L – 

10 ppt), hypoxic-low salinity (2.0 mg/L – 10 ppt), normoxic-high salinity (≥ 5.0 mg/L – 

30 ppt), and hypoxic-high salinity (2.0 mg/L – 30 ppt).  Experiments began with a 48 h 

exposure period that subjected embryos or larvae to 4 different HEWAF treatment 

concentrations (6.25%, 12.5%, 50%, 100%) in combination with the four different 

exposure regimes.  All exposure treatments were executed in quadruplicates, for a total of 

20 test chambers.  After the exposure period, a subset of embryos/larvae (n=10) were 

sampled for whole body tissue analysis. 

Normoxic Assays. 

Normoxic exposures were conducted in a Precision Incubator set at 30°C (VWR, 

Radnor, PA).  Low and high salinity exposures were conducted under normoxic 

conditions for each developmental stage.  Test chambers were placed in the incubator 4 h 



 

52 

prior to exposure initiation to allow for test solution temperatures to reach 30°C.  After 

the test solution reached target 30°C, test organisms were added and initiated exposures.  

The incubator temperatures were maintained at 30°C for the duration of the experiments.   

Hypoxic Assays 

Hypoxic exposures were conducted in a BioSpherix I-Glove incubator glovebox 

equipped with a PROOX model 360 oxygen control module (BioSpherix, Ltd. Parish, 

NY).  The dissolved oxygen levels in the test chambers were maintained at 2.0 mg/L, by 

using nitrogen gas to manipulate the atmospheric oxygen.  Temperature was maintained 

at 30°C using heaters (for embryonic exposures) and water baths (post-hatch and post-

larval exposures).  Low and high salinity exposures were conducted under hypoxic 

conditions for each developmental stage.  Test chambers were placed in the glovebox 12 

h prior to exposure initiation to allow for dissolved oxygen levels to decrease to 2.0 mg/L 

and temperatures to reach 30°C.  After desired water parameters were reached, test 

organisms were added to test chambers and the exposures began.   

HEWAF Preparation  

 Source oil from the Gulf of Mexico Research Initiative (GoMRI) was used to 

make 1 g/L stock HEWAF solutions for all twelve exposures.  HEWAF was made 

following Natural Resource Damage Assessment (NRDA) methods described by Forth et 

al. (2017) as described in chapter II (Forth et al., 2017). 

Water chemistry analysis 

The concentration of tPAH29 in all test chambers was calculated using Gas 

Chromatography- Mass spectrometry (GC-MS) stock for solutions and fluorescence 

readings from the individual test chambers as described in the methods section of chapter 
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II.  The known oil concentrations values were used in a linear regression model described 

in more detail in the methods section of chapter II.  

To quantify the amount of tPAH concentrations for the exposure test solutions, a 

linear regression model was made in Sigma Plot.  The linear regression was used to 

obtain the relationship between the treatments fluorescence values and dilutions in the 

form of a line equation.  The equation was modified to determine the dilution factor for 

each treatment using the corresponding fluorescence values.  Once the dilution factors 

were determined they were multiplied by the tPAH29 concentration to estimate the 

tPAH29 concentration for each experimental treatment.   

Tissue collection  

To examine gene expression during the early life stages of SHM in response to oil 

and environmental stressors, pooled whole-body tissue samples were collected directly 

following the 48 h exposure period.  For embryonic exposures, 10 embryos were 

randomly sampled, flash frozen with liquid nitrogen in a 1.0 mL cryofreeze tube and 

stored at -80°C until downstream analysis was performed.  For the post-hatch and post-

larval exposures, 10 larvae were randomly sampled and stored in 1.5 mL centrifuge tubes 

filled with 750 mL of RNA later at -80°C until downstream analysis was performed. 

RNA Isolation and cDNA Synthesis  

Total RNA was isolated from pooled whole-body tissue samples collected at 48 h.  

Qiagen’s RNeasy Mini Kit was used for RNA isolation, following manufactures protocol 

with modifications (Qiagen, Valencia, CA).  To increase RNA yield, all 1200 µL of 

homogenate sample was added to RNeasy spin columns.  To increase the RNA purity, a 

second rinse with RW1 buffer was performed to minimize salt contamination.  The 
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concentration and purity of the total RNA was measured using NanoDrop 2000 

Spectrophotometer and RNA samples were stored in -80°C (ThermoScientific, Waltham, 

MA).  Total RNA samples isolated from 48 h samples was reverse transcribed into cDNA 

using the RevertAid RT kit (ThermoScientific, Waltham, MA).  cDNA synthesis 

followed manufacture’s protocol for 20 µL reactions.   

Real-time Polymerase Chain Reaction (qPCR) 

To examine the activation of AhR and HIF-1α pathways, the expression of 

cyp1a1, epo, and arnt1 were measured using qPCR from the 48 h total RNA samples 

(Table 9).  Gene expression of cyp1a1, epo, arnt1 and the endogenous control 18s rRNA, 

were measured using the quantitation-Comparative CT (ΔΔCT) methods with Fast 

SYBERTM Green Master Mix measured on an ABI 7500 Fast real time PCR machine 

(Applied Biosystems, Foster City, CA).  Ct values were converted to fold change 

expression relative to control treatments using DataAssist™ software (ThermoScientific, 

Waltham, MA).  The activity of the AhR and HIF-1α signaling pathways was predicted 

using the relative gene expression values of the target genes.  The relative gene 

expression of the target genes was measured in all three developmental stages: 

embryonic, post-hatch and post-larval, under low (10 ppt) and high (30 ppt) salinity 

conditions.  All HEWAF treatments were normalized to the experimental control 

samples, and the gene expression of cyp1a1, epo, and arnt1 were normalized using the 

endogenous control gene, 18s rRNA.  Target genes primers sequence, size and melting 

points are listed in Table 9. 
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 Cyprinodon variegatus specific primers used to measure relative gene expression 

of target genes. 

 

Results 

Embryonic Assays  

 The relative gene expressions of target genes (cyp1a1, epo, and arnt1) were 

measured by qPCR methods to elucidate the potential cross-talk between the AhR and 

HIF-1α signaling pathways.  The relative gene expression of cyp1a1 was up-regulated for 

both oxic regimes under low salinity conditions (Figure 13A and B).  Fold change 

expression for epo and arnt1 in the normoxic-low salinity exposure did not exceed 1-fold 

change, and no treatment patterns were observed.  Similar expression patterns for epo and 

arnt1 were observed under the hypoxic-low salinity conditions (Figure 13B).  Up-
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regulation of epo and arnt1 was observed in all HEWAF treatments except 12.5% 

treatment which was down-regulated (Figure 13B).  

Upregulation of cyp1a1 was observed in both the normoxic and hypoxic- high 

salinity exposures in a treatment dependent manner (Figure 14A and B).  The regulation 

pattern of epo and arnt1 was similar under normoxic-high salinity condition, resulting in 

up-regulation of both genes in all treatments except the 12.5% HEWAF treatment (Figure 

14A).  Under hypoxic-high salinity conditions epo showed upregulation in all treatments 

except the highest HEWAF treatment.  No clear expression pattern of arnt1 under 

hypoxic-high salinity conditions were observed, but decreased expression of arnt1 was 

observed in both the 50 and 100% HEWAF treatments (Figure 14B). 

Post-Hatch Assays  

 The expression of cyp1a1 was upregulated in the low salinity exposures under 

both oxic regimes (Figure 15A and B).  Under hypoxic conditions, the expression of 

cyp1a1 increased in a dose dependent pattern, while no clear treatment pattern was 

observed under normoxic conditions (Figure 15A).  No discernible patterns of epo and 

arnt1 expression were noted in the normoxic-low salinity exposures, but increased down-

regulation of arnt1 was observed in the 6.25 %, 12.5%, and the 100% HEWAF 

treatments (Figure 15A).  The hypoxic-high salinity condition induced an up-regulation 

of both epo and arnt1 in a dose dependent manner, though epo resulted in a stronger 

expression response (Figure 15B).   

The expression pattern of cyp1a1 under high salinity conditions was similar to the 

expression pattern observed in the low salinity exposures, up-regulation occurred under 

both normoxic and hypoxic conditions.  Up-regulation of epo expression was observed in 
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both the normoxic-high salinity and hypoxic-high salinity exposures, while no clear 

pattern was noted under normoxic conditions, a dose-dependent increase of epo was 

observed in the hypoxic exposure.  No apparent pattern of arnt1 expression was observed 

in the high salinity exposures, except under normoxic conditions, down-regulation 

occurred in the 6.25%, 50%, and 100% HEWAF treatments while only up-regulation of 

arnt1 was observed under hypoxic conditions (Figure 16A and B).   

Post-Larval assays 

 Regulation of cyp1a1 during post-larval development in the low salinity assays 

resulted in up-regulation in all treatments for both oxic regimes (Figure 17A and B).  The 

normoxic-low salinity exposure resulted in a dose dependent down-regulation of both epo 

and arnt1 while up-regulation was only seen in the control and the lowest HEWAF 

treatments for epo, and only in the control treatments for arnt1 (Figure 17A).  Hypoxic-

low salinity conditions induced a dose-dependent increase of epo expression which was 

opposite of the expression patterns observed under normoxic conditions, while similar 

down-regulation patterns were obtained for expression of arnt1 under both oxic regimes 

(Figure 17B). 

A dose dependent increase in cyp1a1 relative gene expression was observed under 

normoxic-high salinity conditions (Figure 18A).  Conversely under hypoxic-high salinity 

conditions increased cyp1a1 expression was only recorded in the lowest (6.25% and 

12.5%) HEWAF treatments and a significant down-regulation of cyp1a1 was observed in 

the highest (50 and 100%) HEWAF treatments (Figure 18B).  The down regulation of 

cyp1a1 is not only unique to the hypoxic-high salinity exposure, but also only occurred in 

the post-larval developmental stage.  The expression of epo under both oxic regimes 
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resulted in a dose-dependent pattern.  In normoxic conditions, up-regulation of epo was 

recorded in all treatments, while under hypoxic conditions up-regulation was only 

observed in the lowest HEWAF treatments and down-regulation of gene expression was 

observed in the two high HEWAF treatments (Figure 18A).  Minor down-regulation of 

arnt1 expression was recorded in the 3 highest HEWAF treatments under normoxic-high 

salinity conditions.  Under hypoxic-high salinity conditions arnt1 expression was slightly 

upregulated in the 6.25 and 12.5% treatments, while 4-fold decrease was observed in the 

50 and 100% treatments (Figure 18B).   

Across treatment analysis 

 The embryonic exposures resulted in the greatest observed expression of cyp1a1 

under both salinity regimes (Figure 10 and 11).  Expression of epo in the post-larval, high 

salinity exposure results in the highest upregulation of epo across all developmental 

stages (Figure 15).  No clear expression patterns of arnt1 were observed within or across 

developmental stages.  A general trend of decreased regulation was observed in the post-

hatch and post-larval exposures in the HEWAF treatments relative to the controls with 

the strongest decreased expression occurred under low salinity conditions (Figure 12 and 

14).  A similar dose-dependent response of cyp1a1 was observed in the both salinity 

conditions for the post-hatch exposures and the low salinity post-larval exposure.  A 

complete down-regulation of cyp1a1 expression was observed only in the post-larval 

developmental stage, only under hypoxic and high salinity environmental conditions in 

the two highest HEWAF treatments (Figure 15). No clear pattern of epo expression was 

observed in all the embryonic and post-hatch exposures.  The expression of epo from the 

high salinity, post larval exposure resulted in a similar pattern to the cyp1a1 expression, 
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complete down-regulation of epo mRNA was observed in the two highest HEWAF 

treatments (Figure 15).   

Figure 13. Cyprinodon variegatus embryonic relative gene expression of cyp1a1, epo, 

and arnt1 in response to HEWAF exposure under low salinity (10 ppt) conditions in 

combination with different oxic regimes.   

Target gene response under normoxic conditions (≥ 5.0 mg/L) (A) and target gene expression under hypoxic conditions (2.0 mg/L) 

(B).  Gene expression data was normalized to 18s rRNA. 

Figure 14. Cyprinodon variegatus embryonic relative gene expression of cyp1a1, epo, 

and arnt1 in response to HEWAF exposure under high salinity (30 ppt) conditions in 

combination with different oxic regimes.   

Target gene response under normoxic conditions (≥ 5.0 mg/L) (A) and target gene expression under hypoxic conditions (2.0 mg/L) 

(B).  Gene expression data was normalized to 18s rRNA. 
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Figure 15. Cyprinodon variegatus post-hatch relative gene expression of cyp1a1, epo, 

and arnt1 in response to HEWAF exposure under low salinity (10 ppt) conditions in 

combination with different oxic regimes.   

Target gene response under normoxic conditions (≥ 5.0 mg/L) (A) and target gene expression under hypoxic conditions (2.0 mg/L) 

(B).  Gene expression data was normalized to 18s rRNA. 

Figure 16. Cyprinodon variegatus post-hatch relative gene expression of cyp1a1, epo, 

and arnt1 in response to HEWAF exposure under high salinity (30 ppt) conditions in 

combination with different oxic regimes.   

Target gene response under normoxic conditions (≥ 5.0 mg/L) (A) and target gene expression under hypoxic conditions (2.0 mg/L) 

(B).  Gene expression data was normalized to 18s rRNA. 
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Figure 17. Cyprinodon variegatus post-larval relative gene expression of cyp1a1, epo, 

and arnt1 in response to HEWAF exposure under low salinity (10 ppt) conditions in 

combination with different oxic regimes.   

Target gene response under normoxic conditions (≥ 5.0 mg/L) (A) and target gene expression under hypoxic conditions (2.0 mg/L) 

(B).  Gene expression data was normalized to 18s rRNA. 

Figure 18. Cyprinodon variegatus post-larval relative gene expression of cyp1a1, epo, 

and arnt1 in response to HEWAF exposure under high salinity (30 ppt) conditions in 

combination with different oxic regimes.   

Target gene response under normoxic conditions (≥ 5.0 mg/L) (A) and target gene expression under hypoxic conditions (2.0 mg/L) 

(B).  Gene expression data was normalized to 18s rRNA. 
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Discussion 

 No combination of exposure conditions resulted in the cross-talk due to 

competitive inhibition between the AhR and HIF-1α signaling pathways in early life 

development of sheepshead minnow based on the observed relative gene expression of 

cyp1a1 and epo.  These finding contrast the previous research that suggest that the cross-

talk is due to receptor affinity to the Arnt protein and competitive inhibition (Gassmann 

et al., 1997; Gradin et al., 1996; Prasch et al., 2004; Vorrink and Domann, 2014).  

Dasgupta et al. (2016) reported that hypoxic stress paired with oil exposure inhibited 

cyp1a1 expression and increased observed DNA damage.  The study used ethoxy 

resorufin O-deethylase assay (EROD) to measure the in vivo cyp1a1 activity in larval 

sheepshead minnows.  The decreased cyp1a1 activity was suggested to be a result of 

competitive binding at the AhR to Arnt (Dasgupta et al., 2016). 

The down-regulation of both cyp1a1 and epo expression was only observed in the 

experimental regime which included oil, hypoxia, and high salinity exposure conditions.  

The observed decreased mRNA expression of both genes indicates synergistic effects 

occurring between variable environmental conditions and PAH exposure.  This 

synergism resulted in suppression of both the AhR and HIF-1α signaling pathways.  

Similar observation of decreased expression of AhR and HIF-1α target genes have been 

documented in mammals and fish in the presence of PAH and hypoxia (Chan et al., 1999; 

Fleming et al., 2009; Schults et al., 2010).  Fleming et al. (2009) investigated 

benzo[a]pyrene (BaP) combined with hypoxic stress in Fundulus heteroclitus fish cells: 

cells exposed to both stressors resulted in a decrease in HIF-1α receptors and a decrease 

in AhR pathway activity (Fleming et al., 2009).  Mutual repression of the AhR and HIF-
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1a pathways was observed in human liver cells exposed to the AhR antagonist TCDD 

with chemically induced hypoxia (Nie et al., 2001).  TCDD reduced reporter gene 

activity while hypoxia reduced cyp1a1 activity in liver cells: this mutual repression was 

hypothesized to be related to DNA binding changes (Nie et al., 2001).  Vorrink et al 

(2014) also concluded that the observed attenuated response of AhR to PCB 126 

following exposure to hypoxic conditions may also be a result of conformational changes 

in receptor binding ability to the Arnt protein (Vorrink et al., 2014).  The depression of 

cyp1a1 and epo mRNA expression in the current study provides further evidence to 

support the occurrence of reciprocal cross-talk between the AhR and HIF-1α signaling 

pathways in C. variegatus.  

No pathway inhibition was observed in the embryonic and post-hatch 

developmental stages under any experimental condition.  The cyp1a1 and epo relative 

gene expression for those developmental stages was up-regulation, indicating that both 

pathways were active simultaneously.  Target gene expression analysis from the post-

larval developmental stage resulted in similar up-regulation in the embryonic and post-

hatch exposures under normoxic-low salinity conditions, indicating no pathway 

inhibition.  However, under hypoxic-high salinity conditions post-larval specimens 

revealed cyp1a1 and epo expression down-regulation relative to controls.  These data 

suggest that post-larval SHM are most sensitive to synergistic effects of PAHs and 

environmental conditions.  These conclusions are supported by data from previous 

studies of embryonic SHM exposure to pyrene and hypoxia (Hendon et al., 2008).  The 

results from Hendon et al. 2008 provided no evidence for cross-talk to occur between the 

AhR and HIF-1α pathway by inhibition of vegf expression during embryonic 
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development.  Brewton et al. (2013) also showed evidence of an age-dependent response 

to PAH exposure by measuring cyp1a1 expression in early life stages of spotted seatrout.  

The study indicated that the greatest decrease in cyp1a1 activity and total length was 

observed in the juvenile life stage (Brewton et al., 2013). 

Expression patterns of arnt1 in response to oil exposure under hypoxic-high 

salinity conditions indicated that arnt1 is the driving mechanism behind the suppression 

of cyp1a1 and epo expression during post-larval development in C. variegatus.  The 

shared binding partner, arnt1, is required for activation of both AhR and HIF-1α 

pathways (Gassmann et al., 1997; Tomita et al., 2000).  Gassmann et al. (2009) and 

Tomita et al. (2000) used arnt1 deficient cells in mice to determine the importance of 

Arnt1 in xenobiotic and hypoxic stress response.  The arnt1 deficient cells were unable to 

induce expression of HIF-1α target genes.  Likewise, arnt1 deficient mice were unable to 

induce expression of AhR target genes (Gassmann et al., 1997; Tomita et al., 2000).  The 

role of arnt1 in the AhR and HIF-1α pathways has led researchers to hypothesize that 

cross-talk between the two pathways is limited by arnt1 expression and receptor affinity 

(Gradin et al., 1996; Pollenz et al., 1999; Prasch et al., 2004).  Under hypoxic-high 

salinity conditions, the mRNA expression of arnt1 was down-regulated in the highest 

HEWAF treatments.  Since arnt1 is a required binding partner for both AhR and HIF-1α 

receptors, decreased gene expression directly impacts the expression of cyp1a1 and epo.  

Fleming et al. (2009) concluded that the observed suppression of AhR mediated 

enzymatic activity in topminnow hepatocarinoma cells in the presence of hypoxia was 

reversed by the over-expression of arnt (Fleming et al., 2009).  The results from this 

research support the finding that arnt regulation results in cross-talk between the AhR 
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and HIF-1α pathways.  The data presented here also indicates that the expression of arnt 

is not constitutively expressed as previously thought, but is influenced by external abiotic 

factors (Pollenz et al., 1999). 

  



 

66 

CHAPTER IV COMPARATIVE GENOMIC RESPONSE OF CYPRINODON 

VARIEGATUS TO OIL AND HYPOXIA. 

Introduction 

 The Deepwater Horizon (DWH) oil spill is largest marine oil spill in U.S. history 

which released approximately 5 million barrels of crude oil over the course of 3 months 

into the  northern Gulf of Mexico (nGoM) during the late spring of 2010 (Beyer et al., 

2016).  The oil spill occurred after the DWH oil platform exploded about 60 km off the 

coast of Louisiana (Beyer et al., 2016).  The mass release of oil into the nGoM impacted 

more than 2100 km of estuary and nursery habitat for many important commercial and 

recreational fisheries during their peak spawning seasons (Pasparakis et al., 2016).  The 

amount of oil released, the duration of the spill, and habitats impacted has potential to 

cause serious lethal and sublethal effects on exposed species related to reproduction 

impairment and abnormal development in contaminated waters.  The majority of past 

adult and developmental oil toxicity experiments have investigated mortality rates, 

developmental toxicity, and molecular oil detoxification pathways.  The focus of much 

ecotoxicological research investigating oil contamination lethality and developmental 

effects has been focused on phenotypic and morphological responses to oil, but still 

uncertain are the molecular processes responsible for the effects observed after exposure 

to oil (Pasparakis et al., 2016; Whitehead et al., 2012). 

Global transcriptomics allows researchers to evaluate whole organismal responses 

to toxicants and environmental stressors.  Classical ways to assess the effects of oil on 

marine organisms relied on morphological evaluations and gene targeting.  There are a 

large number of papers have documented the developmental effects associated with oil 
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exposure, salinity, and hypoxia, but little is known about the molecular processes 

responsible for the observed effects (Pasparakis et al., 2016).  Molecular studies targeting 

specific genes involved in key developmental processes and defense pathways have been 

the primary way to link molecular and phenotypic response to oil and environmental 

conditions, but is limited in scope (Schirmer et al., 2010; Xu et al., 2017).  The use of 

next generation tools such as RNA sequencing allows researchers to identify chemical 

expression profiles and  molecular modes of action to link them to physiological 

functions and responses (Schirmer et al., 2010).  RNA sequencing technology is mostly 

used for transcriptome characterization and differential gene expression analysis, but it 

has also been used to improving genome annotation, discover novel transcripts and single 

nucleotide polymorphisms, and to investigate post-transcription modification (Ekblom 

and Galindo, 2010).   

 Whitehead et al. (2012) investigated differences in genome expression profiles of 

F. grandis in response to oil contamination from the 2010 DWH oil spill.  The study 

concluded that the differences observed in the genome profiles after oil contamination 

resulted in decreased physiological functions involving osmoregulation, respiration, and 

excretion, which persisted for 2 months post oiling (Whitehead et al., 2012).  Another 

study used RNA sequencing to investigate molecular pathways negatively impacted by 

oil exposure in the early life stages of mahi-mahi (Xu et al., 2016).  That study revealed 

that oil toxicity not only resulted in the activation of the cytochrome P450 signaling 

pathway, but also impacted the E1E2 signaling, steroid biosynthesis, and ribosome 

biogenesis pathways (Xu et al., 2016).  Other studies have used NGS technology to 

investigate pathways involved in physiological stress response to adverse environmental 
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conditions.  A study by Xia et al. (2013) investigated high salinity and starvation in 

combination with pathogen infection in Lates calcarifer, the Asian seabass.  The results 

indicated that 200 pathways were affected under all treatment conditions, resulting in 

decreased activity of multiple metabolic, hormone, and growth pathways (Xia et al., 

2013).  Atlantic salmon were used to investigate transcriptional responses to temperature 

and low oxygen stress which reported that cholesterol and protein ubiquitination were 

among the most significantly affected pathways (Olsvik et al., 2013).  Data collected 

using NGS technology is enabling scientists to better understand the molecular processes 

involved in physiological changes and response to external stimuli and toxicants which is 

necessary in understanding ecosystem health and resilience. 

 The first objective of this study was to investigate age-specific differences in 

Cyprinodon variegatus transcriptome response to exposure to oil, hypoxia, and the 

combination of both during early life stages in C. variegatus.  The second objective was 

to compare the transcriptional response of C. variegatus larvae (96 hph) to oil and 

hypoxic stress.  Combined, these aims compare different toxicological pathways involved 

in response to individual and combined conditions, to provide a better understanding of 

molecular processes involved in oil metabolism and hypoxic defense. 

Methods 

Animals and DHW oil exposure. 

 Post-larval C. variegatus were hatched from embryos collected from the adult C. 

variegatus brood stock at The University of Southern Mississippi’s Gulf Coast Research 

Laboratory.  Embryos were collected using benthic mesh and PVC breeding nets during a 

12 h breeding period.  Collected embryos were rolled to remove external cilia to prevent 
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clumping and subjected to a fresh water rinse to prevent spreading of marine pathogens.  

Processed embryos were transferred to a 4 L aerated holding tank.  Hatched larval were 

removed and transferred to another 4-L aerated holding tank and grown out to 96 hph.  

GoMRI source oil collected from the head of the Macondo well head was used to prepare 

a 1 g/L HEWAF following the methods described in chapter II.  Two 48 h HEWAF 

exposures were conducted using 96 hph C. variegatus larvae under normoxic conditions 

(≥ 5.0 mg/L) and hypoxic conditions (2.0 mg/L) exposed to four dilutions of HEWAFs 

(6.25%, 12.5%, 50%, 100%).  Exposures were conducted in 150 mL Pyrex crystalizing 

dishes with four replicates per treatment conditions (n=20), with 20 larvae per test 

chamber.  Larvae were randomly collected from each test chamber and pooled for the 48 

h whole body tissue samples.  Larvae samples were immediately placed in 750 mL of 

RNAlater and stored in an -80°C until RNA isolation.   

Water chemistry analysis 

The concentration of tPAH29 in all test chambers was calculated using 

MS/MS/GC from stock solution, and fluorescence readings were taken from the 

individual test chambers as described in the methods section of Chapter II.  The known 

oil concentrations values were used in a linear regression model described in more detail 

in the methods section of Chapter II.  

RNA-isolation, cDNA library construction, and sequencing. 

 Total RNA was isolated from 48 h whole body tissue samples using Qiagen’s 

RNeasy Mini Kit following the same protocol described in Chapter II’s RNA Isolation 

methods (Qiagen, Valencia, CA).  Total RNA was diluted into 30 µL samples and 

concentrations per microliter were measured using a Nano Drop 2000 Spectrophotometer 
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(ThermoScientific, Waltham, MA).  Two nanograms of total RNA per sample were sent 

to Purdue Genomic Core Facility in West Layfette, Indiana for cDNA library prep and 

sequencing.  Triplicate total RNA samples from the control and 12.5% HEWAF 

treatment from the normoxic-high salinity and hypoxic- high salinity exposures were sent 

for sequencing.  Total RNA samples were overnight express shipped from USM’s Gulf 

Coast Research Laboratory to the Purdue Genomic Core Facility on dry ice.  Multiple 

cDNA libraries were constructed at the PGCF from the total RNA samples using a 

Library Construction RNA polyA+ Kit.  Illumina HiSeq 2500 was used to sequence 

paired-end 2 X 100 bp sequencing reads (Illumina, San Diego, CA) (Figure 19).  

Reference guided assembly and annotation of sheepshead minnow transcriptome using 

CLC genomics. 

 Adaptor trimmed and quality clipped raw sequencing reads were used for 

reference guided transcriptome assembly using CLC Genomic Workbench software 

(Aarhus, Denmark).  Paired-end reads for each sample were imported into CLC 

Genomics Workbench and failed reads and reads that had low quality scores were 

removed.  The paired-end reads were merged together and quality control reports were 

generated for the merged read sequences.  Merged reads were then mapped to the 

Cyprinodon variegatus reference genome (NCBI accession number GCF_000732505.1) 

to assemble the transcriptome for the samples.  Gene expression calculations were 

generated from assembled sample transcripts using the gene tracks from the reference 

genome of C. variegatus for all 25,075 mapped genes.  A combined quality control report 

was run on the assembled sample transcripts.  A principle component analysis (PCA) plot 

was generated from the sample transcripts to determine correlations between samples.  
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Differentially expressed genes were calculated for four different exposure comparisons 

(Figure 19).   

Gene ontology and Ingenuity Pathway Analysis. 

 Gene ontology analysis was performed on the four differential gene expression 

comparisons using Homo sapiens annotation tracks.  H. sapiens annotation tracks were 

used to map the gene ontology of the C. variegatus differentially expressed genes (DEGs) 

to obtain gene symbols for the human gene orthologs, which is required to do further 

pathway analysis using Ingenuity Pathway Analysis (IPA) (Ingenuity Systems Inc., 

Redwood City, CA, USA).  Human gene orthologs were used to evaluate pathway 

enrichment for two reasons, the first that the program used for the analysis only 

recognizes mammalian genes, and second, to get a more robust data analysis because 

human pathways are studied more than fish pathways and better annotated.  The three C. 

variegatus treatment comparison DEG lists with the human ortholog gene symbols were 

uploaded to IPA and used for Core and Comparison analysis.  The three treatment RNA-

Seq comparisons that were used for pathway analysis were hypoxic control vs normoxic 

control, normoxic oil vs normoxic control, hypoxic oil vs hypoxic control, and hypoxic 

oil vs normoxic control.  The three comparisons were used to investigate different modes 

of action that hypoxia and oil had individually on developing larvae, and to determine 

how the modes of actions changed with exposed to both toxicants simultaneously.  IPA- 

Core analysis was used to investigate the individual effects associated with the different 

exposures on the developing C. variegatus larvae’s canonical pathways and the 

toxicological functions and associated perturbations of affected pathways.  IPA- 

Comparison analysis was used to compare differences in the C. variegatus larvae 
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molecular responses to hypoxic stress, PAH stress, and the combination of both stressors.  

IPA – Core analysis settings were ingenuity knowledge based reference set, both direct 

and indirect relationships were identified, and included significantly DEG with false 

discovery rate (FDR) < 0.1 (Benjamini-Hochberg correlation).  IPA uses two statistics, 

the Fisher’s exact test to represent statistically significant, non-random association with 

p-values ≤ 0.05, and z-scores to predict activity or inhibition of molecules and pathways 

based on data in the sample data sets and other peer-reviewed literature in the ingenuity 

based reference set (Figure 19).  

Figure 19. Bioinformatic Pipeline for RNA sequencing, transcriptome assembly, and 

Pathway analysis for Cyprinodon variegatus. 
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Results 

Reference guided assembly of Cyprinodon variegatus transcriptome and annotation. 

Three RNA sequencing libraries were constructed, one for each developmental 

stage.  The libraries consisted of 12 samples, with three samples from the control and 

12.5% HEWAF treatments under both normoxic and hypoxic conditions.  The total 

Illumina HiSeq2500 reads generated from the embryonic RNA sequencing library for all 

12 samples was 482,529,914, with an average read count of 40,210,826.  The total 

number of Illumina HiSeq2500 reads generated from the post-hatch RNA sequencing 

library for all 12 samples was 807,350,208 with an average read count of 67,279,184 

(Table 10).  The total number of Illumina HiSeq2500 reads generated from the post-larval 

RNA sequencing library for all 12 samples was 491,533,802 with an average read count 

of 40,961,150 (Table 10).  Since the post-larval developmental stage was the only stage 

used for pathway analysis, only the quality reports of this life stage are reported below.  

The reads from all three RNAseq libraries were mapped to the C. variegatus reference 

genome with high mapping success.  The mean mapping success for the normoxic post-

larval sample reads to the reference genome was 81.43% and the hypoxic samples has a 

mean mapping success of 82.35% using CLC genomics read mapping tools.  More than 

90% of the reads mapped to the reference genome mapped to genes in both the normoxic 

and hypoxic samples (Table 11). 
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 Embryonic and post-hatch sequence reads and reference guided transcript 

mapping.  

Samples are separated by oxic regime, normoxic (top) and hypoxic (bottom).  All samples were mapped to using Qiagen’s CLC 

genomics workbench software following the refence genome guided approach.  The reference genome was Cyprinodon variegatus. 
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 Post-larval sequence reads and refence guided transcript mapping analysis.  

Samples are separated by oxic regime, normoxic (top) and hypoxic (bottom).  

Total reads refers to the total number of nucleotide sequences obtained from Illumina HiSeq.  % mapped pairs refers to the percentage 

of paired end reads that were aligned to the reference genome and the % fragments mapped to genes indicates the percentage of reads 

mapped to genomic coding portions of the transcript.  All samples were mapped to using Qiagen’s CLC genomics workbench 

software following the refence genome guided approach.  The reference genome was Cyprinodon variegatus.  

  

Principle component analysis (PCA) was used to exam interrelations between oil, 

hypoxia, and life stage.  Gene expression tracks from all three RNAseq libraries were 

used for the PCA (Figure 20).  The first PCA plot included the gene expression tracks 

from all three life stages.  This multivariance analysis revealed that age was the strongest 

component driving the genomic response to oil and hypoxic exposure, which is evident 

from the discrete clustering of gene tracks into three clusters, embryonic, post-hatch, and 

post larval (Figure 20).  Oxygen regime also influenced gene track clustering across all 

developmental stages (Figure 21, 22, and 23).  The embryonic gene track clustering 
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distinctly clustered into normoxic and hypoxic clusters, but showed no prevalent 

clustering patterns in response to oil exposure (Figure 21).  The results indicated that the 

embryos are more sensitive to environmental conditions than PAHs, which may be a 

result of protection from the chorion.  The post-hatch principle analysis reported the 

clearest cohort clustering patterns by oil and oxic treatment for all three life stages 

analyzed (Figure 22).  The post-larval results from the PCA showed similar clustering 

patterns as observed in the post-hatch samples, but oxic regime had less of an effect on 

cluster organization than oil treatment (Figure 23).  The post-larval normoxic gene track 

samples were all very similar and distinct from the other sample tracks while all three 

hypoxic samples were loosely bunched together.  
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Figure 20. Principal Component Analysis (PCA) of gene expression tracks across all life stages.   

Gene expression tracks from all life stages were used to compare clustering patterns across all three life stages.  Clustering patterns clearly indicate that age of exposed fish is the top driver of 

SHM response to oil and hypoxic exposures.  The legend located in the bottom left corner of the figure.  Figure generated using Qiagen’ CLC Genomics Workbench software.  
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Figure 21. Embryonic Principal Component Analysis (PCA) using gene expression tracks.   

The embryonic samples gene expression tracks significantly cluster together based on oil treatment and oxic regime.  The legend located in the bottom left corner of the figure.  
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Figure 22. Post-hatch Principal Component Analysis (PCA) using gene expression tracks.   

The post-hatch samples gene expression tracks significantly cluster together based on oil treatment and oxic regime.  The legend located in the bottom left corner of the figure. 
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Figure 23. Post-larval Principal Component Analysis (PCA) using gene expression tracks.   

The post-larval samples gene expression tracks significantly cluster together based on oil treatment and oxic regime.  The legend located in the bottom left corner of the figure. 
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Differentially expressed genes analysis 

Total counts were the expression values used to generate the differential 

expressed gene (DEG) list from the C. variegatus transcriptome.  Differential gene 

expression and pathways analysis were performed on the sample transcriptomes 

generated from the assembled mapped reads that passed quality control cut-offs.  

Heatmaps were generated using CLC genomic RNA Seq tool to visualize DEGs between 

the oiled and control samples for all twelve sample transcripts with an absolute fold 

change > 1.5 and a FDR < 0.05.  Sample clustering patterns were similar to the PCA 

patterns. 

A heat map including all developmental stage DEGs resulted in clear clustering 

patterns by age (Figure 24).  These data are consistent with patterns in the PCA analysis, 

the cluster patterns suggest different responses to oil and hypoxic expose are dependent 

on life stage.  Individual heat maps were used to analyses significant DEG patterns in 

each life stage which had a minimum absolute fold change of 1.5 and a FDR ≤ 0.05.  

Differentially expressed genes in the embryonic RNAseq samples resulted in two distinct 

groups, normoxic and hypoxic samples and then two sub clusters, oil and control 

treatments (Figure 25).  The heart map also indicated that normoxic samples had a greater 

gene expression induction than the hypoxic group, indicated by the number of red genes 

(genes with greater than 1.5 absolute fold change).  The post-hatch and post-larval 

heatmaps also have the same clustering patterns as the embryonic samples, separated by 

oxic regime and then by oil treatment (Figure 26 and 27).  The post-hatch RNAseq 

samples show a slightly higher induction of gene expression in response to hypoxic stress 

when compared to the normoxic samples (Figure 26).  The post-larval samples appear to 
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have a similar response to both oxic regimes based on levels of gene expression induction 

(Figure 27).  

Figure 24. Cyprinodon variegatus gene expression heat map during embryonic, post-

hatch, and post-larval exposures.   

The total gene counts were generated from the embryonic, post-hatch, and post-larval gene expression tracks of the sample reads.  

Unique clustering of gene expression for each early life stage indicates an age specific molecular response to oil and hypoxic stress in 

C. variegatus.  The columns represent individual sample expressions and the rows represent individual gene expression. 
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Figure 25. Cyprinodon variegatus significantly differentially expressed genes heat map 

for embryonic exposures.   

The total gene counts were generated from the embryonic gene expression tracks of the sample reads. Clustering patterns reveal 

different molecular response used under different oxic regimes in C. variegatus embryos.  The columns represent individual sample 

expressions and the rows represent individual gene expression Heatmap generated using the Euclidean distance with complete linkage 

clusters.  Statistical comparison of all oil and oxic treatments with a minimum absolute fold change of 1.5 and FDR ≤ 0.05. 
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Figure 26. Cyprinodon variegatus significantly differentially expressed genes heat map 

for post-hatch exposures.   

The total gene counts were generated from the embryonic gene expression tracks of the sample reads. Clustering patterns reveal 

different molecular response used under different oxic regimes in C. variegatus.  The columns represent individual sample expressions 

and the rows represent individual gene expression Heatmap generated using the Euclidean distance with complete linkage clusters.  

Statistical comparison of all oil and oxic treatments with a minimum absolute fold change of 1.5 and FDR ≤ 0.05.  
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Figure 27. Cyprinodon variegatus significantly differentially expressed genes heat map 

for post-larval exposures.   

The total gene counts were generated from the embryonic gene expression tracks of the sample reads. Clustering patterns reveal 

different molecular response used under different oxic regimes in C. variegatus.  The columns represent individual sample expressions 

and the rows represent individual gene expression Heatmap generated using the Euclidean distance with complete linkage clusters.  

Statistical comparison of all oil and oxic treatments with a minimum absolute fold change of 1.5 and FDR ≤ 0.05.   
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Three comparisons were used to investigate the differential gene expression of the 

three early life stages of C. variegatus in response to HEWAF exposure under varying 

oxic regimes 1) hypoxic control vs normoxic control, 2) normoxic oil vs normoxic 

control, and 3) hypoxic oil vs normoxic control, with an absolute fold change > 1.5 and a 

false discovery rate (FDR) < 0.1.  The embryonic transcriptomic response to combined 

HEWAF and hypoxic exposure had the lowest measurable response in gene expression 

with a total of 1,074 significantly differentially expressed genes, which comprised of 171 

DEGs after exposure to oil alone, 105 DEGs after exposure to hypoxia alone, and 798 

DEGs after combined exposure to oil and hypoxia (Figure 28B and Figure 31).  The post-

hatch transcriptomic response to combined HEWAF and hypoxic exposure had the 

greatest measurable response in gene expression with a total of 8,250 significantly 

differentially expressed genes, which comprised of 1039 DEGs after exposure to oil 

alone, 3154 DEGs after exposure to hypoxia alone, and 4057 DEGs after combined 

exposure to oil and hypoxia (Figure 29B and Figure 31).  The post-larval transcriptomic 

response to combined HEWAF and hypoxic exposure had a total of 7,091 significantly 

differentially expressed genes, which comprised of 1516 DEGs after exposure to oil 

alone, 2154 DEGs after exposure to hypoxia alone, and 3421 DEGs after combined 

exposure to oil and hypoxia (Figure 30B and Figure 31). 
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Figure 28. Embryonic Volcano plot and Venn diagram of significant DEGs.   

The volcano plot (A) indicates all the genes analyzed in the embryonic RNAseq samples.  The x-axis is the gene fold change (log2) 

and the p-values (log10) are on the y-axis.  The red dotes indicate the significant differentially expressed genes with an absolute fold 

change of ≥1.5 and p-value ≤ 0.05. Venn diagram displays DEG in response to exposure treatments (B).  All treatments normalized to 

the normoxic control treatments with a FDR ≤ 0.05 to identify differential transcriptome profiles. 

Figure 29. Post-hatch Volcano plot and Venn diagram of significant DEGs.   

The volcano plot (A) indicates all the genes analyzed in the post-hatch RNAseq samples.  The x-axis is the gene fold change (log2) 

and the p-values (log10) are on the y-axis.  The red dotes indicate the significant differentially expressed genes with an absolute fold 

change of ≥1.5 and p-value ≤ 0.05. Venn diagram displays DEG in response to exposure treatments (B).  All treatments normalized to 

the normoxic control treatments with a FDR ≤ 0.05 to identify differential transcriptome profiles. 
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Figure 30. Post-larval Volcano plot and Venn diagram of significant DEGs 

The volcano plot (A) indicates all the genes analyzed in the post-larval RNAseq samples.  The x-axis is the gene fold change (log2) 

and the p-values (log10) are on the y-axis.  The red dotes indicate the significant differentially expressed genes with an absolute fold 

change of ≥1.5 and p-value ≤ 0.05. Venn diagram displays DEG in response to exposure treatments (B).  All treatments normalized to 

the normoxic control treatments with a FDR ≤ 0.05 to identify differential transcriptome profiles. 

Figure 31. Venn diagram displaying all the differentially expressed genes in response to 

oil and oxic treatments for all three early life stages of Cyprinodon variegatus.   

The pink circle represents the embryonic DEG (total of 1604), the Blue represents the post-hatch number of DEG (6891), and the 

yellow represents the post-larval DEG (5718).  The size of the circles are proportionate to the number of total DEG and genes 

included in this graph have a FRD ≤ 0.05. 
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Pathway Analysis 

Pathway analysis was only performed on the post-larval samples because of the 

increased mortality and down-regulation of target genes observed in Chapters II and III.  

Individual and Comparative RNAseq analysis on the human ortholog DEG lists from all 

four transcriptome sample comparisons were used to investigate the top canonical 

pathways and toxicological function affected by the different stressors during the post-

larval development in C. variegatus.  The pathways most significantly impacted by 

hypoxia include cell cycle control of chromatin replication, while cholesterol 

biosynthesis pathways were most significantly impacted after exposure to oil alone.  Top 

toxicological functions impacted during post-larval developmental included cholesterol 

biosynthesis, cell cycle: G1/S checkpoint regulation, cardiac hypertrophy, and hepatic 

fibrosis (Table 12).  The different treatment comparisons resulted in differences in 

significantly impacted canonical pathways, but similar toxicological outcomes.  
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 The Top canonical pathways and toxicological functions impacted by exposure 

to oil and hypoxia.  

 

Comparative analysis of canonical pathways and toxicological list in Qiagen’s 

IPA show that cholesterol biosynthesis is a target of both hypoxic and oil toxicity during 

the post larval developmental stage in C. variegatus.  The data also indicated that hypoxia 

toxicity also impacts pathway and functions related to DNA repair as an individual 

stressors response and in combination with oil, but is not observed after exposure to oil 

alone (Figure 32).  Gene expression heat maps of genes in the superpathway of 

cholesterol biosynthesis, cell cycle control of chromosomal replication, and role of 

BRCA1 in DNA damage response pathways revealed that all three pathways were 

activated due to complete up-regulation of all genes measured (Figure 33A-C).  The gene 

expression heat maps also depict a differential genomic response occurring in the 

presence of hypoxia. Only 21% of the genes measured in the cell cycle control of 

chromosomal replication pathway were significantly up-regulated after exposure to oil 

alone while 78.5% were up-regulated following exposure to hypoxia and 96% were up-
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regulated after exposure to oil + hypoxia (Figure 33B).  The same differential 

transcriptomic response is also observed in the gene expression heat maps of gene in the 

role of BRCA1 in DNA damage response pathway, were no significant gene regulation 

occurs in the normoxic oil samples, but is observed in both the hypoxic and hypoxic oil 

samples (Figure 33C).  The most significantly affected toxicological functions for all 

three sample comparisons was the cholesterol biosynthesis (Figure 34 A-C).  Oil 

exposure alone impacted cardiac hypertrophy, Liver necrosis, kidney function, and 

oxidative stress (Figure 34A).  Oil exposure combined with hypoxic stress impacted 

hepatic fibrosis, cell cycle: G1/S Checkpoint regulation, cardiac hypertrophy, and AhR 

signaling (Figure 34B).  Hypoxic exposure alone resulted in cell cycle: G1/S checkpoint 

regulation and AhR signaling (Figure 34C).  The IPA tox analysis provided more 

evidence that oil, hypoxia, and the combination of them cause differential toxicity.  The 

data indicates that oil toxicity targets the heart, liver, kidneys, and oxidative stress 

response, while hypoxic toxicity involves increased DNA damage.   
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Figure 32. Comparative heatmap of significant canonical pathways response to exposure 

regimes.   

Heat maps were generated with IPA using Fisher’s exact test with p-value ≤ 0.05.  Data represented in inverse log form, the greater 

the color intensity the greater the significance.



 

 

9
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Figure 33. Comparative gene heatmaps of significantly impacted canonical pathways response to exposure regimes.   

Heat maps are generated with IPA using Fisher’s exact test with a p-value ≤ 0.05.  Data represented in inverse log form, the greater the color intensity the greater the significance and measured 

fold change in log ration form.  Red indicated up regulation, while green indicated down regulation.
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Figure 34. Stacked bar graphs of toxicological function regulation activity in response to 

exposure treatments.   

Green indicated downregulation and red indicated upregulation.  The toxicological functions are arranged in descending significance 

p-values (-log) on the left vertical axis.  All treatments re normalized to the normoxic control samples. Response to oil (A), response 

to hypoxia + oil (B), and response to hypoxia (C).   
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Discussion 

 Comparison of the embryonic, post-hatch, and post-larval transcription profile 

response to the individual and combined stress of oil and hypoxia in C. variegatus 

resulted in separate transcriptional responses driven by age and exposure conditions.  The 

results from the PCA plot comparing all life stages indicated that there was a distinct, 

age-specific clustering of gene expression tracks between all three life stages (Figure 16).  

The PCA clustering data indicated that the most influential factor in the organism’s 

response to different exposure regimes is the age at which it is exposed.  The oil + 

hypoxic exposure conditions evoked the highest differential gene response for all three 

life stages, embryonic (1604 genes), post-hatch (6891 genes), and post-larval (5718 

genes).  Though the post-hatch developmental stage had the most significantly 

differential expressed genes, the post-larval developmental stage was chosen for pathway 

analysis because this life stage had the greatest response to oil and hypoxic exposure 

were comparing the mortality rate and the relative gene expression of cyp1a1, epo, and 

arnt1 as discussed in previous chapters.   

The Ingenuity Pathway Analysis (IPA) comparative study of four post-larval 

exposure regimes resulted in distinct differences between larval response to hypoxic and 

PAH stress.  Cholesterol biosynthesis pathways where the most significantly effected 

pathway observed in the presence of all treatment exposures, while DNA repair were 

significantly affected in treatments with hypoxic stress.   

Cholesterol is a key component of cell membranes which is either de novo 

synthesized primarily in the liver or accumulated through diet (Siperstein, 1984; Xu et al., 

2017).  Many enriched canonical pathways and the most significantly affect toxicological 
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pathways effected by both oil and hypoxic stress were cholesterol biosynthesis.  The up-

regulation of cholesterol biosynthesis pathways observed in our data correspond with 

other transcriptomic responses to PAH stress (Regnault et al., 2014).  Pathway analysis of 

Xenopus tropicalis after exposure to BaP also resulted in enrichment of cholesterol 

synthesis pathways (Regnault et al., 2014).  The study by Olsvik et al (2013) examining 

the transcriptomic response of Atlantic salmon exposed to hypoxic stress indicated that 

cholesterol biosynthesis and protein ubiquitination pathways were significantly enriched.  

The up-regulation of genes in the cholesterol biosynthesis pathways observed in the 

transcript profiles of the Xenopus tropicalis was linked to hepatocyte apoptosis, 

depigmentation of the liver, and reactive oxygen species (ROS) production (Regnault et 

al., 2014).  The top five enriched canonical pathways of C. variegatus larvae in response 

to oil exposure were all involved in cholesterol biosynthesis, which, interestingly, 

resulted in significantly enriched liver necrosis and oxidative stress toxicological 

pathways, further providing evidence that over regulated cholesterol pathways result in 

liver damage.  Contradictory to our results, IPA analysis revealed the predicted inhibition 

of cholesterol biosynthesis pathway by decreased regulation of transport and metabolism 

in 96 hpf mahi-mahi larvae (Xu et al., 2017).  The inhibition of cholesterol synthesis 

pathways in mahi-mahi larvae was speculated to be a result of AhR induction (Xu et al., 

2017).  Our data does not support the conclusion that the induction of the AhR pathway 

inhibits the synthesis of cholesterol, because the AhR pathways in the hypoxic and 

hypoxia + oil treatments are also significantly enriched toxicological pathways.    

Cell cycle control of chromosomal replication is the most significant pathway 

enriched for both hypoxia and hypoxia + oil transcriptomic responses.  The combined 
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exposure of hypoxia + oil also resulted in the significant up-regulation of two RNA repair 

pathways, “role of BRCA1 in DNA damage response” and “DNA double-strand break 

repair by homologous recombination”.  The significant toxicological functions associated 

with transcriptomic profile expression in response to hypoxia and hypoxia + oil was also 

related of DNA damage.  Hypoxic stress alone appears to have a greater impact of DNA 

damage when comparing the significant toxicological functions.  Three out the top five 

toxicological pathways enriched under hypoxic stress are related to DNA damage, cell 

cycle: G1/S checkpoint regulation, AhR signaling, and p53 signaling, while only two of 

the five toxicological pathways enriched by hypoxia + oil exposure is related to DNA 

damage, cell cycle: G1/S checkpoint regulation and AhR signaling.  A laboratory study 

investigating water accommodated faction exposure on larval Atlantic cod concluded that 

mechanically dispersed oil affected genes responsible for DNA replication, 

recombination, and repair (Olsvik et al., 2012).  In another study investigating the 

genotoxicity of WAFs on gulf killifish, the metabolism of xenobiotics was a significantly 

enriched KEGG pathway and comet assays showed significant DNA strand breakage in 

high WAF treatments relative to the controls (Pilcher et al., 2014).  The cod and gulf 

killifish experiments provide evidence that support oil-induced DNA damage, but 

hypoxia induced DNA damage and AhR signaling induction is still unclear (Olsvik et al., 

2012; Pilcher et al., 2014). 

The objectives of this study were to investigate age-specific differences in 

Cyprinodon variegatus transcriptome response to exposure to oil, hypoxia, and the 

combination of both during early life stages and to compare the transcriptional response 

of C. variegatus to oil and hypoxic stress.  The RNA sequencing data from all three life 
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stages indicated age specific responses to oil and hypoxic stress.  Further analysis of the 

post-larval genomic responses provided evidence that oxygen concentrations primarily 

drove the larval genomic stress response followed by a less significant response to oil 

stress.  Pathways analysis revealed that cholesterol biosynthesis and DNA repair 

pathways were primary targets of oil and hypoxic stress in post-larval C. variegatus.  

These findings provided potential molecular modes of action in response to oil and 

hypoxic stress in developing C. variegatus which can be used to investigate the effects of 

both stressors on targeted pathways and the implications it has on fish health. 
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CHAPTER V – SIGNIFICANCE OF RESEARCH 

The objective of this research was to investigate the impacts of oil exposure in 

combination with varying environmental stressors on larval fish health at both the 

molecular and organismal levels.  This research intended to fill gaps in knowledge in 

developmental toxicity response to multiple stressors using a controlled laboratory 

exposure setting.  Most of the research investigating organismal response to crude oil 

exposure from the DWH oil spill have included experimental designs that only examine 

chemical stressors individually or in complex mixtures (WAFs).  Research that included 

both chemical and environmental stressors usually only included a single environmental 

stressor (either temperature, salinity, or hypoxia), which ignores interaction effects and 

may lead to underestimations of oil toxicities in dynamic estuarine environments.  A field 

study examining the resilience of salt mash ecosystems the summer following the DWH 

oil spill sampled fish from habitats that are prone to decreased oxygen levels, which 

provided some evidence of synergistic effects, but due to countless unknown variables 

associated with field-based studies it is difficult to link the effects back to hypoxic and oil 

stress alone (Garcia et al., 2012).  The current research is the only controlled laboratory 

experiments to use a multiple toxicity approach to examine the developmental and 

transcriptomic response of Cyprinodon variegatus to crude oil simultaneously exposed to 

elevated temperature and varying oxygen and salinity regimes.   

The data collected from this study suggest that age had the greatest effect on both 

phenotypic and transcriptomic response to oil and abiotic stressors.  Multiple 

experimental endpoints including mortality, gene expression, and comparative 

transcriptomic responses, provided evidence that the post-larval developmental stage of 
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C. variegatus to be the most sensitive early life stage to oil exposure.  At the organismal 

levels, the post-larval developmental stage had the highest observed mortality rates when 

compared to the embryonic and post-hatch developmental stage mortality.  The post-

larval C. variegatus was also the only developmental stage to show down-regulation of 

all target genes involved in the activation of the AhR and HIF-1α pathways.  The 

observed suppression of cyp1a1, epo, and arnt1 in larval C. variegatus provided evidence 

that an interactive effect at the cellular level between these two pathways is occurring in 

response to combined oil and environmental stressors.  The cellular inhibition of the two 

defense pathways provides a possible explanation to the increased mortality rates 

observed in the post-larval developmental stage.  Furthermore, the comparative 

transcriptomic response of C. variegatus also provides evidence indicating that free 

feeding C. variegatus larvae are most sensitive to oil exposure under adverse 

environmental conditions.  Principal component analysis of the gene expression tracks for 

all three RNA sequencing libraries showed clear clustering patterns based on early life 

stages.  Taken together, these data suggests that the most sensitive early life stage of 

development for the C. variegatus is the post-larval developmental stage, which is 

supported by other developmental toxicity studies that have also shown age-dependent 

responses to toxicants. 

The research also determined that the addition of environmental stressors had a 

significant influence on oil toxicity, independent of age response.  The lowest mortality 

within all developmental stages was constantly observed under normoxic – low salinity 

conditions.  During the embryonic assays the highest cumulative mortality was observed 

under hypoxic-high salinity conditions.  For post-hatch assays, the highest mortality was 
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observed under normoxic- high salinity conditions, and during the post-larval assays the 

highest mortality was observed under hypoxic-high salinity conditions.  Synergistic 

toxicity effects were only observed in the embryonic assays in the presence of hypoxia, 

and in the post-hatch assays in the presence of high salinity.  The mortality response of 

post-larval assays showed the greatest synergistic response to HEWAF exposure under 

hypoxic - high salinity conditions, but also had a similar response in the presence of 

hypoxia and high salinity alone.    

 Suppression of both AhR and HIF-1α pathways during the post-larval 

developmental stage of C. variegatus, provides evidence that cross-talk between the AhR 

and HIF-1α signaling pathways occurs in C. variegatus in a treatment-dependent manner 

and at the Arnt node.  Decreased expression patterns of cyp1a1, epo and arnt1 mRNA 

indicate that both defense pathways were inhibited under hypoxic-high salinity conditions 

in PAH concentrations greater than 226 µg/L, which was directly related to the decreased 

expression of arnt1.  Regulation of Arnt, the shared binding partner of the AhR and 

HIF1-α receptors seems to be influences by hypoxia and oil contamination.  These 

stressors caused down-regulation of the Arnt and therefore inhibited both pathways due 

to total saturation of available Arnt in the nucleus.  Inhibition of the two defense 

pathways decreased the larvae’s ability to combat the deleterious effects associated with 

PAH and hypoxic exposure.  Negative effects resulting from PAH and hypoxia stress 

include a suite of developmental effects that result in increased mortality and lower 

overall fitness which have been observed in multiple fish species in current research 

(Incardona et al., 2004; Landry et al., 2007; Wu et al., 2003).   
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Global transcription analysis of oil, hypoxia, and hypoxia + oil exposures during 

early life stage development of C. variegatus resulted in treatment-specific genotoxicity.  

Age specific gene expression clustering was primarily influenced by oxic treatment and 

secondarily by oil concentration.  The individual life stage heat maps also resulted in oil 

and oxic treatment clustering of statically significant DEGs within life stages.  The 

embryonic life stage had a limited reaction to all exposure conditions examined, while the 

post-hatch life staged showed the largest response to the exposure conditions.  Though 

the post-hatch had the greatest DEGs response to the exposure conditions, the post-larval 

developmental stage was chosen for pathway enrichment analysis due to the high 

mortality rates and suppression of target AhR and HIF-1α pathway genes observed in 

previous chapters.   

 Cholesterol biosynthesis pathways were significantly regulated in all exposure 

comparisons: oil (2.17e-15), hypoxia (1.31E-07), and oil + hypoxia (8.75e-09).  The most 

significantly impacted toxicological pathways observed using IPA- Core analysis for all 

exposure comparisons was also cholesterol biosynthesis, oil (3.72e-15), hypoxia (2.72E-

07), and oil + hypoxia (1.07e-09).  Up-regulation of both canonical pathways and 

toxicological pathways related to cholesterol biosynthesis were observed across all three 

exposure conditions.  Transcriptomic profile analysis of PAH and hypoxic exposure in 

salmon, mahi-mahi, and X. tropicalis have also revealed perturbation of cholesterol 

biosynthesis pathways (Olsvik et al., 2013; Regnault et al., 2014; Xu et al., 2017).   

 Differential transcriptomic effects were observed between C. variegatus larval 

response to oil and hypoxic stress.  Oil exposure alone had the greatest effects on five 

different canonical pathways related to cholesterol which resulted in significant up-
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regulation of liver necrosis (3.65E-05), acute kidney injury (3.68E-04), and oxidative 

stress (6.73E-04).  Hypoxic stress alone and in combination with oil exposure caused 

increased regulation of canonical pathways involved in cell regulation and DNA damage 

repair.  Cell cycle control of chromosomal replication was the most significantly affected 

canonical pathway in response to both hypoxia and oil + hypoxia (1.42E-09 and 3.33E-13 

respectively) (Table 12).  The oil + hypoxia exposure comparison also activated two 

other pathways involved in DNA damage repair, role of BRCA1 in DNA damage 

response and DNA double-strand break repair by homologous recombination.  Even 

though hypoxia in combination with oil affected more canonical pathways involved in 

DNA damage, the same toxicological pathways were activated in response to both 

exposure conditions: the cell cycle: G1/S checkpoint regulation and the AhR signaling 

pathways.  

 Oil production in the Gulf of Mexico makes about a quarter of the 

domestically produced oil in the United States which results in increased PAH 

contamination in marine habitats (Incardona et al., 2005; Sammarco et al., 2013).  The 

physical characteristics of abiotic water parameters in the Gulf of Mexico are also 

negatively influences due to increased nutrient loading from riverine input, which 

contributes to growth of hypoxic regions (Rabalais et al., 2001).  The study of the 

interaction effect between PAHs and environmental parameters is key in developing a 

better understanding of oil toxicity and its implications on ecosystem health and 

resilience.  This research has provided critical laboratory based evidence to further our 

understanding of the impact of oil on developing organisms in estuarine habitats in the 

presence of environmental stressors which is key in elevating the 2010 Deepwater 
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Horizon effect on the Gulf of Mexico because 30% of commercial fishes in the gulf is 

dependent on these estuarine habitats (Mendelssohn et al., 2012).  Results from this study 

indicate that environmental factors influence oil toxicity to exposed organisms.  The 

molecular mechanisms behind the synergistic toxicity observed in the presence of 

hypoxia and high salinity during the embryonic and post-hatch developmental stages 

remain unclear.  Morphological and molecular observations from the current study has 

indicated potential mechanisms of synergistic toxicity effects between oil and 

environmental factors during the post-larval developmental in C. variegatus.  

Suppression of both defense pathways observed only in the post-larval developmental 

stage under hypoxic and high salinity condition in PAH concentrations of 220 – 350 

µg/L.  The suppression observed implies that the cross-talk at the arnt1 node may be 

influenced by external stimuli that restrict expression of arnt1, rather than competitive 

inhibition which is a different molecular process than previously described in the 

literature. 
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