Range Extensions and Review of the Caprellid Amphipods (Crustacea: Amphipoda: Caprellidae) from the Shallow, Coastal Waters from the Suwanee River, Florida, to Port Aransas, Texas, with an Illustrated Key

John M. Foster
University of Southern Mississippi, john.foster@usm.edu

Brent P. Thoma
Gulf Coast Research Laboratory

Richard W. Heard
University of Southern Mississippi, richard.heard@usm.edu

Follow this and additional works at: https://aquila.usm.edu/gcr

Part of the [Marine Biology Commons](https://aquila.usm.edu)

Recommended Citation

Retrieved from https://aquila.usm.edu/gcr/vol16/iss2/4
DOI: https://doi.org/10.18785/gcr.1602.04

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.
RANGE EXTENSIONS AND REVIEW OF THE CAPRELLID AMPHIPODS (CRUSTACEA: AMPHIPODA: CAPRELLIDAE) FROM THE SHALLOW, COASTAL WATERS FROM THE SUWANNEE RIVER, FLORIDA, TO PORT ARANSAS, TEXAS, WITH AN ILLUSTRATED KEY

John M. Foster, Brent P. Thoma, and Richard W. Heard
The University of Southern Mississippi, Gulf Coast Research Laboratory, P.O. Box 7000, Ocean Springs, Mississippi 39566-7000. e-mail: beachbugs@comcast.net (JMF) brent.thoma@usm.edu (BPT) richard.heard@usm.edu (RWH)

ABSTRACT Eight species of the amphipod family Caprellidae sensu Myers and Lowry, 2003 are currently known to occur in the shallow, near shore waters of the northern Gulf of Mexico (GOM), from the Suwannee River, Florida, to Port Aransas, Texas, and to depths of 10 m. They include: Phtisica marina, Hemiaegina minuta, Paracaprella pusilla, Paracaprella tenuis, Deutella incerta, Caprella equilibra, Caprella penantis, and Caprella scura. Another species, Caprella andreae, is also suspected to occur in this region due to its close association with sea turtles, which nest on the sand beaches of the northern GOM. The occurrence of these 9 species in the northern GOM is discussed; known distributions, new records, synonymies, diagnoses, and remarks on life history and ecology are also presented. In addition, new northern GOM records for 7 of these species are provided along with a simplified identification key.

INTRODUCTION

There are published records for 8 species of caprellid amphipods from the shallow, coastal waters of the northern Gulf of Mexico (see Pearse 1908, 1912; Hedgpeth 1950, 1953; Menzel 1956; Steinberg and Dougherty 1957; Pequegnat 1966; McCain 1968; Foster et al. 2004). This report presents additional records and an updated key to the shallow water amphipods of the family Caprellidae sensu Myers and Lowry, 2003, currently known from the northern Gulf of Mexico (GOM) limited by the Suwannee River (Florida) in the east, by Port Aransas (Texas) in the west, and by a depth of 10 m.

Steinberg and Dougherty (1957) reviewed the early literature for the caprellid amphipods known from the Gulf of Mexico. In 1968, McCain provided a comprehensive taxonomic study of the northwestern Atlantic caprellids. Laubitz (1993) revised the suborder Caprellidea sensu Leach, 1814, to accommodate 3 additional families: the Phtisicidae Vassilenko, 1968, Caprellinoididae Laubitz, 1993, and Pariambidae Laubitz, 1993. The higher taxonomy of the Caprellidea was also reviewed, and 8 families within the suborder were recognized: Paracercopidae Vassilenko, 1972, Phtisicidae; Caprellinoididae; Cyamidae White, 1847, Caprogam-maridae Kudrjaschov and Vassilenko, 1966, Caprellidae Leach, 1814, Pariambidae; and Protellidae McCain, 1970. Myers and Lowry (2003) reviewed the classification of the Corophiidea Leach, 1814, and placed the infraorder Caprellida within the suborder Corophiidea. In addition, they expanded the superfamily Caprelloidea to include Caprellidae, Caprogam-maridae, Cyamidae, Dulichiidae Dana, 1849, and Podoceridae Leach, 1814. This study focuses on the family Caprellidae sensu Myers and Lowry, 2003. Only the subfamilies Caprellinae and Phtisicinae are represented in the shallow, near shore waters of the northern GOM.

An artificial key to the caprellid amphipods known from the northern GOM is provided along with an annotated listing of the species with a brief synopsis of distribution data, diagnoses, synonymies, new records, and ecological information. Synonymies given are since McCain’s 1968 monograph. Table 1 presents a systematic list of the 9 species known or suspected to occur in the shallow, near shore waters of the northern GOM. Figure 1 provides a generalized caprellid body plan for use with the key.

ARTIFICIAL KEY TO THE FAMILY CAPRELLIDAE (CRUSTACEA: AMPHIPODA) KNOWN FROM THE COASTAL WATERS OF THE NORTHERN GULF OF MEXICO

1. Pereopods 3 and 4 well-developed, attenuated, with 6 articles (Figure 2a,e) Phtisica marina

Pereopods 3 and 4 absent, reduced, or vestigial, when present having no more than 2 articles (Figures 3a,c; 4a,e,h; 5a,d; 6a,g; 7a,d; 8a,d; 9a,d; 10a,d) 2

2. Pereonites hexagonal in dorsal view; pereopods 3 and 4 minute, composed of 1 article (Figure 3a,c) Hemiaegina minuta

Pereonites not hexagonal in dorsal view; pereopods 3 and 4 absent or minute, consisting of 2 articles (Figures 4a,e,h; 5a,d; 6a,g; 7a,d; 8a,d; 9a,d; 10a,d) 3
3. Antenna 2 with sparse, short, setae ventrally; pereopods 3 and 4 minute, composed of 2 articles (Figures 4a,e,h; 5a,d; 6a,g). .. 4

Antenna 2 with dense row of long setae ventrally; pereopods 3 and 4 absent (Figures 7a,d; 8a,d; 9a,d; 10a,d)(Caprella) .. 6

4. Pereopod 5 inserted near middle of pereonite 5 (Figure 4a,e,h); dorsal pair of spines present on cephalon (head) and second thoracic somite (Figure 4a,e). .. Deutella incerta

Pereopod 5 inserted in posterior 1/4 of pereonite 5; cephalon and second thoracic somite without dorsal spines (Figures 5a,d; 6a,g). .. 5

5. Basis of male gnathopod 2 with proximal knob on posterior margin (Figure 5a), that of female relatively short (Figure 5d); mandibular palp vestigial, represented by single seta (Figure 5e); anterolateral margin of pereonite 2 with large triangular projection in males, similar in females, projection smaller (Figure 5a,d) .. Paracaprella pusilla

Basis of male gnathopod 2 lacking proximal knob on posterior margin (Figure 6a), that of female relatively long (Figure 6g); mandibular palp minute, composed of 2 small segments (Figure 6e,f); anterolateral margin of pereonite 2 with small triangular projection in males (Figure 6a), absent in females (Figure 6g). Paracaprella tenuis

6. Cephalon lacking anterodorsally directed spine or process; ventral spine between insertions of gnathopod 2 in both sexes (Figure 7a,d) Caprella equilibra

Cephalon with anterodorsally directed process or projection, blunt or sharp; no ventral spine between insertions of gnathopod 2 (Figures 8a,d; 9a,d; 10a,d) 7

7. Cephalon with sharp, acutely tipped, anterodorsally directed spine (Figure 8a,d); body of adult male attenuated; male with gnathopod 2 inserted in posterior 1/5 of pereonite 2 (Figure 8a) Caprella scaura

Cephalon with blunt anterodorsally directed process; body of males, like females, compressed, not attenuated (Figures 9a,d; 10a,d); male with gnathopod 2 inserted in middle of pereonite 2 (Figures 9a; 10a) 8

8. Pereopods 5–7 with palm of propodus convex (Figure 9c) Caprella andreae Pereopods 5–7 with palm of propodus concave (Figure 10e). Caprella penantis

Pereopods 5–7 with palm of propodus concave (Figure 10e) Caprella penantis

TABLE 1

<table>
<thead>
<tr>
<th>Order Amphipoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suborder Corophiidea</td>
</tr>
<tr>
<td>Infraorder Caprellida</td>
</tr>
<tr>
<td>Family Caprellidae Leach, 1814</td>
</tr>
<tr>
<td>Subfamily Caprellinae Leach, 1814</td>
</tr>
<tr>
<td>Genus Caprella Lamarck, 1801</td>
</tr>
<tr>
<td>Caprella equilibra Say, 1818</td>
</tr>
<tr>
<td>Caprella scaura Templeton, 1836</td>
</tr>
<tr>
<td>Caprella andreae Mayer, 1890</td>
</tr>
<tr>
<td>Caprella penantis Leach, 1814</td>
</tr>
<tr>
<td>Genus Deutella Mayer, 1890 [=Luconacia Mayer, 1903]</td>
</tr>
<tr>
<td>Deutella (= Luconacia) incerta (Mayer, 1903)</td>
</tr>
<tr>
<td>Genus Hemiaegina Mayer, 1903</td>
</tr>
<tr>
<td>Hemiaegina minuta Mayer, 1890</td>
</tr>
<tr>
<td>Genus Paracaprella Mayer, 1890</td>
</tr>
<tr>
<td>Paracaprella pusilla Mayer, 1890</td>
</tr>
<tr>
<td>Paracaprella tenuis Mayer, 1903</td>
</tr>
<tr>
<td>Subfamily Phtisicinae Vassilenko, 1968</td>
</tr>
<tr>
<td>Genus Phtisica Slabber, 1769</td>
</tr>
<tr>
<td>Phtisica marina Slabber, 1769</td>
</tr>
</tbody>
</table>

Phtisica marina Slabber, 1769

(Figure 2a–g)

Diagnosis. Mandible with 3-segmented palp; carpus of gnathopod 2 shorter than merus, with greatest width proximally; abdomen of male with 2 pairs of biarticulate appendages and 1 pair of pyriform appendages, females with 2 pairs of biarticulate appendages and 1 pair of lobes; pereopods 3 and 4, 6-segmented; pereopod 5, 5-segmented; pereopod 6, 6-segmented.

Known distribution. Northeastern Atlantic; British Isles; Norway; Mediterranean Sea; Black Sea; West Africa; South Africa; Brazil; Gulf of Mexico; Caribbean.
Known Gulf of Mexico records. McCain (1968) reports this species along the east coast of the GOM from Tortugas northward to Panama City, Florida.

New records. No new GOM records.

Remarks. Habitat consists of various algae, hydroids, seagrasses, sponges, and bryozoans (ectoprocts). Wirtz (1998) also recorded *P. marina* as an associate of the holothurian *Holothuria tubulosa* in the Azores. McCain (1968) reported *P. marina* as a component of the planktonic community in the Western Atlantic Ocean.

Specimens assignable to this species have been collected by Texas A&M University on the continental slope of the GOM at depths of 200–300 m (Foster, pers. obs.).

Hemiaegina minuta Mayer, 1890
(Figure 3a–f)

Diagnosis. Peduncle of antenna 1 not inflated in males, flagellum of antenna 2 biarticulate, swimming setae absent; mandible without palp; outer lobe of maxilliped larger than inner lobe; pereonites with hexagonal shape in dorsal view; propodus of gnathopod 1 with large proximal knob covered with setae; pereopods 3 and 4 1-segmented, pereopod 5 6-segmented; abdomen of male and female with a pair of biarticulate appendages.

Known distribution. Cosmopolitan (Japan, Indonesia, Australia, Hawaii, South Africa, Caribbean Sea) (McCain 1968).

Known Gulf of Mexico records. Port Aransas, Texas; off Pensacola, Tortugas at Loggerhead Key, Florida (McCain 1968).

New records. 2 adult males, 1 adult female, St. Joseph Bay, Florida, 29 May 2000, less than 1.0 m depth, *Sargassum* wash, coll. J.M. Foster, id. by J.M. Foster, GCRL 2065.

Remarks. Monotypic genus. Remarkable due to the hexagonal outline of the pereonites. McCain (1968) reports this species taken in plankton samples associated with *Sargassum*.

Deutella (= Luconacia) incerta (Mayer, 1903)
(Figure 4a–j)

Diagnosis. Cephalon and pereonite 2 having dorsal surface with anteriorly projecting spines; anterolateral margin of pereonite 2 with anterolateral spine or projection; mandibular palp 3-segmented; propodus of gnathopod 1 triangular, grasping margins of dactylus and propodus serrate; gnathopod 2 having propodus with proximal grasping spine and well developed tooth at mid-margin.
creating an excavate posterior margin; pereopod 5 inserted near midlength of pereonite 5, pereopod 5 six-segmented.

Synonymies. McCain 1968: 68–72, Figures 33–35; Pequegnat and Pequegnat 1968: 24, 33–34, 66; McCain and Steinberg 1970: 53; Gosner 1971: 508–510; Laubitz 1972: 61; Caine 1974: 81–96, Figures 4, 7, 10, 13, 16, 19, 23, 24, 28, 29, 33, 34, 36; Lewis and Stoner, 1983: 298, 301; Johnson 1986: 381, Figure 125; Sterrer 1986: 379, 381; Gable and Lazo-Wasem 1987: 635–636, Figure 4; Camp et al. 1998: 132; Ortiz et al. 2002: Figure 29; Guerra García 2003a: 1062–1065, Figure 3.

Known distribution. Atlantic coast of United States; Caribbean Sea; GOM.

Known Gulf of Mexico records. Mobile Bay, Alabama; Port Isabel, Texas; Horn Island, Mississippi; and Cedar Key, Florida (McCain 1968).

Remarks. Widespread in western Atlantic, occurring on seagrass, hydroids, sponges, alcyonarians, and ascidians.

Figure 2. *Pholis marina* Slabber, 1769, a–d, male, e–g, female; a, lateral view; b, maxilliped; c, gnathopod 2; d, gnathopod 1; e, lateral view; f, gnathopod 2; g, gnathopod 1.(a–d, from McCain 1968: Figure 46; e–g, from McCain 1968: Figure 47).
Paracaprella pusilla Mayer, 1890
(Figure 5a–f)

Diagnosis. Males with large triangular projection on anteroventral margin of pereonite 2; mandible without palp except for simple seta; basis of gnathopod 2 short and expanded with proximal knob on posterior margin, propodus with shallow rounded notch at midlength; pereopod 5 inserted near posterior part of pereonite 5.

Synonymies. McCain 1968: 82–86, Figures 32a–b, 41–42; Griffiths 1974b: 257; Camp et al. 1998: 132; Serejo 1998: 381; Guerra-García and Thiel 2001: 880, Figure 8; Ortiz et al. 2002: Figure 37; Escobar-Briones and Winfield 2003: 38.

Known distribution. Cosmopolitan. (East and South Africa; Hawaii; Japan; China; South America; Western Atlantic; Caribbean Sea) (McCain 1968).

Known Gulf of Mexico records. Sarasota Bay, St. Andrew Bay, Florida; Grand Isle, Louisiana; Port Isabel, Texas (McCain 1968).

New records. Adult female, Alabama/Mississippi Rapid Assessment Team (AMRAT) Station # M-098, navigational buoy, Horn Island pass, Mississippi Sound, Mississippi, 30 August 2004, collected at 1.0 m depth, scraping, coll. P. Felts and D. Landi, id. by S.E. LeCroy, GCRL 2255; 2 adult females, 3 adult males, 4 juveniles, AMRAT Station # M-099, navigational buoy, Horn Island pass, Mississippi Sound, Mississippi, 30 August 2004, collected at 6.0 m depth, scraping, coll. P. Felts and D. Landi, id. by S.E. LeCroy, GCRL 2256; 2 adult females, 1 adult male, 1 subadult male, AMRAT Station # M-103, navigational buoy #38, Horn Island pass, Mississippi Sound, Mississippi, 30 August 2004, collected at 10.0 m depth, scraping, coll. D. Hataway and K. Berry, id. by S.E. LeCroy, GCRL 2257; 1 adult male, AMRAT Station # M-196, navigational buoy, Dog Keys pass, Mississippi Sound, Mississippi, 31 August 2004, collected at 9.5 m depth, scraping, coll. P. Felts and D. Landi, id. by S.E. LeCroy, GCRL 2258.

Remarks. Found in mangrove habitats, seagrass, on hydroids and ascidians. Martin and Bortone (1997) recovered this species from artificial reefs at the mouth of Choctawhatchee Bay, Florida.
Paracaprella tenuis Mayer, 1903
(Figure 6a–h)

Diagnosis. Males with small triangular projection on anterolateral margin of pereonite 2; mandible with minute 0-3 segmented palp, including terminal seta; basis of gnathopod not expanded and without a proximal knob on posterior margin, palm of propodus with a large angular notch at midlength.

Known distribution. Western Atlantic Ocean (Gulf of St. Lawrence; Maine; Massachusetts; Chesapeake Bay; New Jersey; Sapelo Island, Georgia)(McCain 1968); Japan (Takeuchi 1999).

Known Gulf of Mexico records. Alligator Harbor, Tampa Bay, and Pensacola Bay, Florida; Galveston Bay, Port Isabel, and Corpus Christi Bay, Texas (Menzel 1956; Steinberg and Dougherty 1957; McCain 1968).

New records. Adult female, St. Joseph Bay, Florida, 5 May 1990, less than 1.0 m depth, algae wash, coll. S.E. LeCroy, id. by S.E. LeCroy, GCRL 2064; 3 males, 6 females, St. Andrew Bay, Florida, Long Point, 2 January 2003, less than 1.0 m depth, kick net over Thalassia, coll. J.M. Foster, id. by J.M. Foster, GCRL 2072.

Remarks. Found with red and brown algae attached to hard substrates, seagrasses, sponges, hydroids, actinarians, and bryozoans (ectoprocts). Caine (1998) observed a mutualistic relationship between P. tenuis and the hydroid Bougainvillia rugosa. Paracaprella tenuis was observed defending the hydroid’s tentacles from predation by the nudibranch Tenellia pallida. Paracaprella tenuis apparently uses the hydroid as a substratum to which it clings and grazes on diatoms. Caine’s observations documented for the first time a mutualistic relationship between a caprellid amphipod and a hydrozoan.

Caprella equilibra Say, 1818
(Figure 7a–g)

Diagnosis. Cephalon smooth, without dorsal process; mandible without palp; peduncle of antenna 1 not inflated in males; basis of gnathopod 2 less than one-half the length of pereonite 2; pereopod 2 usually with spine between the insertions of gnathopods 2; pereonites elongated in large males; pereopods 3 and 4 absent, pereopods 5–7 without grasping spines.

Figure 6. *Paracaprella tenuis* Mayer, 1903, a–f, male, g–h, female; a, lateral view; b, gnathopod 2; c, gnathopod 1; d, pereopod 7; e, right mandible; f, left mandible; g, lateral view; h, gnathopod 2. (a–f, from McCain 1968: Figure 43; g–h, from McCain 1968: Figure 44).

Figure 7. *Caprella equilibra* Say, 1818, a–c, male, d–g, female; a, lateral view; b, pereopod 5; c, gnathopod 1; d, lateral view; e, gnathopod 1; f, gnathopod 2; g, pereopod 6; (a–c, from McCain 1968: Figure 12; d–g, from McCain 1968: Figure 13).
303; Utinomi 1973: 33; Griffiths 1974a: 205; Griffiths 1974b: 255; Griffiths 1975: 175; Cavedini 1982: 500; Arimoto 1976: 195–205, Figures 106–108; Arimota and Kikuchi 1977: 93, Figure 9D; Caine 1986: 20; Johnson 1986: 381, Figure 125; Sterrer 1986: 379, 381; Cockman and Albone 1987: 163; Lazo-Wasem and Gable 1987: 335–336 (as Caprella bermudia); Gable and Lazo-Wasem 1987: 637; Rupert and Fox 1988: 239, 351, 403; Krapp-Schickel 1993: 782–783, Figure 533; Lee and Lee 1993: 358; Aoki and Asakura 1995: 192; Laubitz 1995: 93; Camp et al. 1998: 132; Serejo 1998: 380; Guerra-García and Thiel 2001: 878–879, Figure 6; Ortiz et al. 2002: Figure 21; Escobar-Briones and Winfield 2003: 38; Guerra-García 2003b: 181, Figure 4; Guerra-García and Takeuchi 2004: 1013, Figure 34.

Known distribution. Nearly cosmopolitan.

Known Gulf of Mexico records. Panama City, Florida; Grand Isle, Louisiana; Galveston, Port Isabel, and Port Aransas, Texas (McCain 1968).

New Records. Juvenile female, West Pass jetties, St. Andrew Bay, Florida, 21 June 1984, 1.0 m depth, Sargassum wash, coll. J.M. Foster, id. by J.M. Foster, GCRL 2067; 28 males, 13 females, floating fish cage near Chevron Rig 999, 29°27.9’N, 88°36.3’W, off coast of Mississippi, 1 February 2003, fouling on mesh and riggings of floating cage, coll. C. Bridger, id. by S.E. LeCroy, GCRL 2068.

Remarks. Caprella equilibra was originally described by Say (1818) from Sullivan’s Island near Charleston, South Carolina, in association with salt marshes. Sconfietti and Luparia (1995) collected this species from wooden pilings near Venice, Italy, in the North Adriatic Sea, where they observed peak breeding activity in April and September with a decrease in the summer and no breeding activity shown in the winter.

Guerra-García and Takeuchi (2002) described the new species, Caprella ceutae Guerra-García and Takeuchi, 2002, which is morphologically similar to C. equilibra from the Mediterranean Sea on the coast of North Africa. Caprella ceutae can be distinguished from C. equilibra based primarily upon the prominent ventral spine between the bases of the second gnathopods of C. equilibra, which is lacking in C. ceutae. In addition, the inferior margin of the third peduncular article of the first antenna is densely setose in C. ceutae but is naked or nearly so in C. equilibra.

Figure 8. Caprella scaura Templeton, 1836, a–c, male, d–f, female; a, lateral view; b, gnathopod 1; c, gnathopod 2; d, lateral view; e, gnathopod 1; f, gnathopod 2. (a–c, from McCain 1968: Figure 17; d–f, from McCain 1968: Figure 18)(Note: In McCain 1968, page 42, Figure 17e represents gnathopod 2, but is incorrectly labeled as gnathopod 1).
Caprella scaura Templeton, 1836
(Figure 8a–f)

Diagnosis. Cephalon with anteriorly directed spine, acutely tipped; mandible without palp; peduncle of antenna 1 not inflated in males; pereonites 1–2 elongate in males; basis of gnathopod 2 approximately the length of pereonite 2; propodus of pereopods 5–7 with proximal grasping spines.

Known distribution. Nearly cosmopolitan.

Known Gulf of Mexico records. St. Andrew Bay, Panama City, Florida. (Foster et al. 2004).

Remarks. This is a large species that is widely distributed in temperate and tropical seas of both hemispheres. The collections published by Foster et al. (2004) represent a range extension from the Caribbean Sea (McCain 1968).
Caprella andreae Mayer, 1890
(Figure 9a–f)

Diagnosis. Cephalon with anteriorly directed triangular projection, blunt, not acutely tipped; peduncle of antenna 1 inflated in males; mandible without palp; pereopods 3 and 4 absent; palm of propodus of pereopods 5–7 convex with medial grasping spines.

Known distribution. Northeastern Atlantic; Mediterranean Sea; Hawaii; Sea of Japan; Atlantic coast of United States; Key West, Florida; Cuba (McCain 1968).

Known Gulf of Mexico records. Key West, Florida (McCain 1968)

New records. No new GOM records.

Remarks. McCain (1968) remarks that C. andreae appears to be ecologically isolated from other members of the genus by its habit of attaching to floating driftwood, buoys, plants, and the algal incrustations on the backs of sea turtles collected off Cuba and Key West, Florida. Caine (1986) reported C. andreae on the carapaces of nesting loggerhead sea turtles in the Florida Atlantic coast. Watling and Maurer (1972) reported C. andreae from incrustations on the back of a loggerhead turtle caught on a fish line south of the Mispillion River in Delaware Bay. Other confirmed co-occurrences of this species with sea turtles were reported by Aoki and Kikuchi (1995).

Although the presence of C. andreae has not been confirmed in the northern GOM, its occurrence on carapaces of nesting sea turtles throughout the world indicates a likely presence. Collections of epibionts on the carapaces of sea turtles in the northern GOM should be made to clarify the role of sea turtles in the distribution of this cosmopolitan caprellid species.

Caprella penantis Leach, 1814
(Figure 10a–f)

Diagnosis. Cephalon with anteriorly directed triangular projection, blunt, not acutely tipped; mandible without palp; peduncle of antenna 1 not inflated in males; basis of gnathopod 2 shorter than pereonite 2; pereopods 3 and 4 absent, pereopods concave, grasping spines proximal.

Laubitz 1972: 41; Watling and Maurer 1972: 255, 256, 259, 262, 263; Caine 1974: 81–96. Figures 1, 5, 8, 11, 14, 17, 20, 25, 30; Griffiths 1974a: 205; Griffiths 1974b: 256; Griffiths 1974c: 332; Griffiths 1975: 175; Arimoto 1976: 209–220, Figure 113–114; Arimoto and Kikuchi 1977: 93–95, Figure 2E; Arimoto and Hirayama 1979: 51; Cavedini 1982: 508; Wass 1972: 151; Rupert and Fox 1988: 238, 239, Figure 222, 403; Krapp-Schickel 1993: 791–793; Aoki and Asakura 1995: 192; Takeuchi 1995: 202–203, Figure 189; Aoki 1997: 449; Camp et al. 1998: 132; Cházaro-Olvera et al. 2002: 5; Ortiz et al. 2002: Figure 23; Guerra-Garcia and Takeuchi 2002: 692–693, Figure 12; Guerra-Garcia and Takeuchi 2004: 1013, Figure 35.

Known distribution. Nearly cosmopolitan. (Northeast Atlantic, Nova Scotia to Georgia; GOM; Caribbean Sea; California; South Africa; Hawaiian Islands; Sea of Japan; New Zealand; New South Wales, Australia) (McCain 1968).

Known Gulf of Mexico records. Alligator Harbor, Panama City, St. Andrew Bay, and Destin, Florida (McCain 1968).

New records. Ocean Springs, Mississippi (S.E. LeCroy, pers. comm., The University of Southern Mississippi, Gulf Coast Research Laboratory.)

Remarks. Habitat preference is nonspecific, occurring on various algae, seagrasses, sponges, hydroids, tunicates, bryozoans (ectoprocts), and echinoids (Arbacia) (McCain 1968). Bynum (1978) examined the reproductive biology of this species in North Carolina and noted that it apparently breeds year round with a peak in the spring and a lesser peak in late summer or early fall. In 1980, Bynum explored the morphological variation within *C. penantis* and noted 2 trends, one apparently related to the degree of wave action and the second trend based upon seasonal variation between summer and winter. Caine (1983) reported *C. penantis* on the sea whip *Leptogorgia virgulata* in Thalassia testudinum meadows in northwestern Florida. Valério-Berardo and Flynn (2002) noted that *C. penantis* comprised 23.77% of the total amphipod fauna associated with the red algae *Bryocladia trysigera* at a study site in southeastern Brazil. *Caprella penantis* appears to be the most common caprellid found as epibionts on the carapaces of loggerhead sea turtles *Caretta caretta* on the east coast of the United States (Mike Frick, pers. comm., Caretta Research Project, Savannah, Georgia.)

ACKNOWLEDGMENTS

The authors thank J. Shaw, M. Williams, and C. Schloss of the Gunter Library for their assistance in gathering sources. Sara E. LeCroy provided considerable assistance with specimens and tireless counsel, and J.N. Thoma gave assistance and support during the preparation of the manuscript.

LITERATURE CITED

Pequegnat, W.E. and L.H. Pequegnat. 1968. Ecological aspects of marine fouling in the northeastern Gulf of Mexico. Texas A&M University, Department of Oceanography, Reference 68-22T, College Station, TX, USA, 80 p.

