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Abstract

The purpose of this project is to enhance color images through denoising and sharpening,

two important branches of image processing, by mathematically modeling the images.

Modifications are made to two existing nonlinear diffusion image processing models to

adapt them to color images. This is done by treating the red, green, and blue (RGB) channels

of color images independently, contrary to the conventional idea that the channels should not

be treated independently. A new numerical method is needed to solve our models for high

resolution images since current methods are impractical. To produce an efficient method,

the solution is represented as a linear combination of sines and cosines for easier numerical

treatment and then computed by a combination of Krylov subspace spectral (KSS) methods

and exponential propagation iterative (EPI) methods. Numerical experiments demonstrate

that the proposed approach for image processing is effective for denoising and sharpening.

Key Words: nonlinear diffusion, denoising, sharpening, Krylov subspace spectral methods,

exponential propagation iterative methods, Gaussian quadrature, Lanczos iteration
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Chapter 1

Introduction

The purpose of this project is to enhance color images through denoising and sharpening,

two important branches of image processing, by mathematically modeling the images.

Denoising is the reduction of noise, which can be defined as small oscillations in color

intensity appearing as "fuzziness." Sudden changes in color intensity that clearly show

boundaries are edges, and sharpening is the process to make edges more apparent. The

enhancement of an image results in a more visually appealing image that is easier to

understand. For example, depicted on the left of Figure 1.1 is a noisy image of Downtown

Los Angeles, and depicted on the right is the same image after denoising.

Figure 1.1: Denoising of an image of Downtown Los Angeles [14].

Image processing has applications in various fields such as medical imaging, the produc-

tion of images of the internal body through technology like X-rays, ultrasonography, and

magnetic resonance imaging (MRI). Noise and blur are prominent in these images, so image

processing is required to aid diagnosis and treatment. Image processing is also heavily used

in law enforcement. Noisy, blurry image frames from surveillance videos can be enhanced
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to gain information including facial recognition and license plate numbers in the effort to

solve crime. With its wide range of applications, image processing is an important area in

which advancements must be made.

This project will present improvements made to existing image processing models and

their solution methods. It is hypothesized that treating the red, green, and blue (RGB)

channels of color images independently, though untraditional, is a viable technique to

denoise and sharpen. Furthermore, by applying new efficient computer-based methods

to mathematical models designed in this project, image processing is hypothesized to be

effective and scalable to higher resolution.
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Chapter 2

Literature Review

Among the models for image processing, total variation and nonlinear diffusion are the most

widely used. Total variation (TV) image processing [23] reduces the total variation within

noisy images since they have a higher amount of variation due to the accumulation of small

oscillations that occur with noise. Nonlinear diffusion image processing models an image’s

pixel values, ranging from 0 for no color to 255 for total color saturation, as a temperature

profile undergoing diffusion. The heat equation, a partial differential equation (PDE) with

varying thermal conductivity, is used to change the temperature over time. Diffusion forward

in time results in a smoothing out effect and, thus, denoising. Diffusion backward in time

has the opposite effect and yields sharpening. Both models can be used for grayscale and

color images [6, 19], but this project will specifically work with color images. Moreover,

this project will focus on nonlinear diffusion since it has the ability to be more effective and

faster than TV and to utilize the vast existing knowledge on solving PDEs, equations that

relate functions of two or more variables to their partial derivatives [10].

The Perona-Malik equation [22] was the first, and still is the most well-known, nonlinear

diffusion image processing model. It introduced simultaneous forward and backward

diffusion. However, the Perona-Malik equation has some shortcomings, as its approach

for backward diffusion can lead to abrupt variations in color, which in turn produces

excessive sharpening and a "cartoonish" effect. The cartoonish effect can be described as

how pictures in a cartoon or coloring book can jump from one color to another without

a smooth change. The Perona-Malik equation is also ill-posed, or theoretically unsound,

meaning the behavior of its solutions (the enhanced images) is not well-understood due
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to the lack of supporting theory. Another issue with being ill-posed is that solutions are

more difficult to compute because they are highly sensitive to errors in data. The backward

diffusion in the Perona-Malik equation can cause small changes, or errors, in data (the input

images) to become amplified. Since its development, modifications have been made to the

Perona-Malik equation to create improved models. Most of these are well-posed, but the

efforts to control its backward diffusion have not been entirely successful. Attempts to

regularize the Perona-Malik equation have resulted in unwanted blurring, which is especially

adverse for color images [2, 5, 7, 9, 20].

Whereas the previously mentioned methods have changes in how to solve the Perona-

Malik equation, Guidotti, Kim, and Lambers’ methods have modifications to the actual

equation. Their efforts to overcome the shortcomings of the Perona-Malik equation have led

to well-posed models [14, 15] that prevent blurring through approaches to regularization

that are easier to manage. To date, these models have only been applied to grayscale

images, but the advancements in the models suggest that they can be easily adapted to color

images by treating their red, green, and blue (RGB) channels as separate grayscale images.

This approach is contrary to the conventional idea that the channels should not be treated

separately [24]. However, putting the channels together results in more complicated models

and much less efficient solution methods, making this type of image processing impossible

in real time.

Numerical methods (computer-based methods) are used to solve PDE-based image

processing models. A new method is needed since current methods have certain components

that are out-of-date and inefficient, especially for high resolution images. As an alternative,

this project will look at improved numerical methods that have been used for other equations.

Exponential propagation iterative (EPI) methods [24] have shown to be efficient in solving

nonlinear PDEs, which this project will work with. However, EPI methods are not scalable
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and become slow at high resolution. Krylov subspace spectral (KSS) methods [21] are

scalable, but they have mostly been used for linear PDEs. EPI and KSS methods will be

further analyzed and adapted to enhance high resolution images.

It is hypothesized that combining EPI and KSS methods will produce a new numerical

method that efficiently solves the image processing models developed in this project that

treat the red, green, and blue channels of color images separately. This proposed approach

to denoising and sharpening will be effective and scalable to higher resolution.
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Chapter 3

Methodology

To design a new color image processing model, models created by Guidotti, Kim, and

Lambers that modify the Perona-Malik equation will be further adapted. It is hypothesized

that the red, green, and blue (RGB) channels of color images can be treated separately. To

solve the new models, a numerical method will also be designed that represents the solution

as a linear combination of sines and cosines and treats these different frequency components

individually. It is hypothesized that this approach obtains the solution efficiently.

The starting point for a new model is the Perona-Malik equation [21] (introduced in

Chapter 2)
∂u
∂ t

= ∇ ·
(

1
1+ k2|∇u|2

∇u
)
, (3.1)

which is a partial differential equation (PDE), where u is the input image as a function of

(x,y) and t, where t is time. The spatial domain of u, which is composed of the (x,y) values,

corresponds to the set of pixel locations, and the values of u are pixel values. All the pixel

values make up the image. The equation contains the gradient of u, which is the rate of

change of the image’s colors with respect to the spatial directions, and k is a parameter for

what is classified as small or large change. The solution of the PDE, a new function for u, is

the output, or enhanced image. Here, u is a grayscale image.

The first existing modification that will be looked at is the equation developed by Guidotti

and Lambers [14]
∂u
∂ t

= ∇ ·
(

1
1+ k2|∇1−εu|2

∇u
)
, (3.2)
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where 0 < ε < 1
2 is a parameter. Perona-Malik is slightly changed to make u a periodic func-

tion by imposing periodic boundary conditions on the PDE. Periodic boundary conditions

are used because taking derivatives of the basis functions (sines and cosines) still results in

sines and cosines. Therefore, the new equation is easier to solve. However, using periodic

boundary conditions has a drawback. Periodic functions wrap around, so what happens at

one boundary of the image can affect the opposite boundary. To deal with this undesired

effect, a buffer is added around the image by reflecting the content of the image across the

boundary. As a result, only the content inside the buffer is affected by the periodic boundary

conditions but not the rest of the image.

When |∇u| is small, the model denoises because of forward diffusion, and when |∇u| is

large, the model sharpens because of backward diffusion. Thus, this equation is a forward-

backward diffusion model like Perona-Malik. The application of 1− ε to the gradient,

which consists of first partial derivatives, limits the gradient’s growth by taking the partial

derivatives of order 1− ε . This lowers the order of the partial derivatives, and the lower the

order of the partial derivative, the less amplification there is due to differentiation. Limiting

the growth of the gradient, in turn, regularizes backward diffusion. It was discussed in

Chapter 2 that regularization of Perona-Malik’s backward diffusion is needed to combat its

over-sharpening. With Perona-Malik, once the gradient is large enough, backward diffusion

and, thus, sharpening occurs, which continues no matter how large the gradient gets.

In order to adapt (3.2) to color images, it is changed to

∂ui

∂ t
= ∇ ·

(
1

1+ k2|∇1−εui|2
∇ui

)
, (3.3)

where ũi,0(x,y) is the noisy or blurry image inputted, which is option 1 for a new model

and will be referred to as Model 1. Whereas u was a grayscale image in (3.1) and (3.2),

(3.3) contains ui, where i = R,G,B, to represent a function for each RGB channel of a color
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image. Therefore, (3.3) needs to be solved three times, once for each channel. These three

solutions will then be put together to get an enhanced color image.

The second equation that will be adapted, developed by Guidotti, Kim, and Lambers, is

[15]
∂u
∂ t

= ∇ ·
[(

1
1+ k2|∇u|2

+δ |∇u|p−2
)

∇u
]
, (3.4)

where δ > 0 and 1≤ p < 2 are parameters. This equation changes Perona-Malik by adding a

new term to tone down the gradient and, thus, regularize Perona-Malik’s backward diffusion.

The extra term also ensures easier numerical treatment for the PDE. When |∇u| is small,

the model denoises; when |∇u| is moderate, the model sharpens; and when |∇u| is large,

the model denoises to prevent discontinuities in the solution, which are harder to handle

numerically. Unlike (3.1) and (3.2), this equation is a forward-backward-forward diffusion

model. The model works best when p∼ 1. Moreover, if δ is chosen to be large, the model

denoises. If δ is chosen to be small, the model sharpens [15]. Parameters are used in both

modifications to determine how the model works – when to denoise and sharpen. Again,

this equation is changed so that it can be applied to color images. The adapted equation is

∂ui

∂ t
= ∇ ·

[(
1

1+ k2|∇ui|2
+δ |∇ui|p−2

)
∇ui

]
, i = R,G,B, (3.5)

which is option 2 for a new model and will be called Model 2.

When solving the PDE-based models in this project, numerical methods are needed

because it is not possible to use analytical methods. Since the PDEs in this project are

nonlinear, a numerical method that can work with the nonlinearity is called for. Nonlinear

PDEs are more difficult to solve compared to linear PDEs, but solution methods for linear

PDEs can be examined to determine solution methods for nonlinear PDEs. This is because

nonlinear PDEs can be approximated by linear PDEs [3], which leads to methods for solving

nonlinear PDEs with the same accuracy that is possible for linear PDEs.
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The solutions of PDEs have to be represented in a way that can be computed numerically.

For linear initial value problems, the general form for a linear, homogeneous PDE that is

first-order in time can be written as
∂u
∂ t

= Lu, (3.6)

where L is a differential operator. The initial condition is u(x,y,0) = u0(x,y), where u0(x,y)

is the initial data. Therefore, u(x,y, t) = eLtu0(x,y) is the solution, but approximating eLt

can be a challenge. It is a computationally expensive task when L, a differential operator,

is acting on a function u0(x,y) that has high-frequency components. The definition of eLt

can be considered as a Taylor series, ∑
∞
j=0

(Lt) j

j! . Applying L j to u0(x,y) leads to large

terms in the Taylor expansion of the solution due to the amplification of high-frequency

components by differentiation. These large terms cause the Taylor series to converge more

slowly, increasing the computational expense. Therefore, it is impractical to evaluate eLt

numerically.

Spatial discretization is used to change (3.6) to a system of ordinary differential equations

(ODEs). They depend on one variable, making them easier to solve than PDEs [4]. Spatial

discretization eliminates the spatial variables x,y so that the system of ODEs only depends

on t. This is achieved by expressing the function u in (3.6) as a vector and expressing the

differential operator L in (3.6) as a matrix A. Thus, (3.6) becomes

~u ′(t) = A~u(t). (3.7)

The initial condition is~u(0) = ~u0, which yields~u(t) = eAt~u0 as the solution. If time-stepping

is applied to compute the solution, then it gives ~un+1(t) ≈ eA∆t~un, where ∆t = tn+1− tn.

Therefore, tn = n∆t for each n. Time-stepping starts solving a model at t = 0 and then takes

small steps in time by ∆t to get the solution [16]. For image processing, each time-step

changes the image. Therefore, time-stepping is carried out until the image does not change
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anymore because it has been enhanced as much as it can be. Though taking small time-steps

improves accuracy, the trade-off is that it takes longer. Evaluating the solution this way is

impractical because it would take too long to compute the exponential function eA∆t [18].

Another way that the solution can be represented is as a linear combination of sines and

cosines, known as a Fourier series. This means that (3.7) can be represented as

~u(t) =
∞

∑
ω1,ω2=0

aω1,ω2(t)cos(ω1~x+ω2~y)+bω1,ω2(t)sin(ω1~x+ω2~y), (3.8)

where aω1,ω2 and bω1,ω2 are unknown Fourier series coefficients. This form is particularly

suitable for the solution of PDEs because it is easy to take the derivative of sine and cosine.

This simplicity allows for more efficient numerical solution [16]. The goal is to solve

for these coefficients by approximating eA∆t with a polynomial approximation. Existing

time-stepping methods solve for the coefficients using the same polynomial to approximate

eA∆t [18]. These numerical methods must use high-degree polynomials for high resolution

functions, which takes more time.

An alternative option for time-stepping is Krylov subspace spectral (KSS) methods,

which use different low-degree polynomials to solve for the coefficients, where the degree

does not depend on resolution [21]. Therefore, KSS methods take less time, making them

more efficient. In Chapter 4, it will be shown how to obtain the Fourier series coefficients

for nonlinear diffusion image processing using a numerical method designed. In the new

numerical method, KSS methods will be adapted to solve the nonlinear PDEs in this project,

which will be done by combining KSS methods with exponential propagation iterative

(EPI) methods [8]. Then, a computer program that will include this method will be written

using MATLAB, a computer programming language. This program will solve the image

processing models of this project by inputting a clean image, adding noise or blur to the

image, and outputting an enhanced image.
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Chapter 4

KSS Methods for Nonlinear Diffusion

A new numerical method is needed to efficiently solve our partial differential equation

(PDE)-based image processing models. It was discussed in Chapter 3 that an appropriate

way to represent the solution is as a linear combination of sines and cosines, or a Fourier

series. While some numerical methods treat the different frequency components the same

way, Krylov subspace spectral (KSS) methods treat them individually. This enables all the

frequency components, low and high, to be computed as accurately as possible, which is

necessary since they are needed to represent image details such as edges. In this chapter,

KSS methods will be further analyzed and adapted to increase efficiency and to enhance

high resolution images by solving for frequency-dependent Gaussian quadrature nodes. KSS

methods will also be combined with exponential propagation iterative (EPI) methods to deal

with the nonlinearity of our models.

To give some background on KSS methods (for linear PDEs, as they will be adapted to

nonlinear PDEs later), we consider the parabolic PDE

∂u
∂ t

= ∇ · (g(x,y)∇u) (4.1)

on the domain [0,2π]2 with periodic boundary conditions in both x and y. This is the form

of the image processing models designed in Chapter 3, except for linearization. The initial

condition is u(x,y,0) = u0(x,y), where u0(x,y) is the input data. The solution at time tn is a

Fourier series

u(x,y, tn) =
1

2π

∞

∑
ω1,ω2=−∞

ei(ω1x+ω2y)û(ω1,ω2, tn), (4.2)
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where the basis function {ei(ω1x+ω2y),ω ∈ Z2} is chosen because of the periodic boundary

conditions of (4.1) and û(ω1,ω2, tn) represents unknown Fourier coefficients. We let Lu =

(g(x,y)∇u) for the purpose of shorter notation and compute the Fourier coefficients of the

solution u(x,y, tn+1) as follows:

û(ω1,ω2, tn+1) =

〈
1

2π
ei(ω1x+ω2y),eL∆tu(x,y, tn)

〉
, (4.3)

where
〈

1
2π

ei(ω1x+ω2y),eL∆tu(x,y, tn)
〉

is the standard inner product on [0,2π]2 and eL∆t is

the solution operator of the PDE.

Spatial discretization is applied to (4.3) on an N×M grid to get the bilinear form

~uH
ϕ(A)~v, (4.4)

where ~u = 1
2π

ei(ω1x+ω2y) and ~v = u(x,y, tn) are MN-vectors; A = LMN , where LMN is a

spectral discretization of L; and ϕ(λ ) = eλ∆t .

Using the eigenvalues and eigenvectors of the matrix A [11], we can represent (4.3) as a

Reimann-Stieltjes integral

~uH
ϕ(A)~v =

∫ b

a
ϕ(λ )dα(λ ), (4.5)

where α(λ ) is defined as in [8]. As a result, Gaussian quadrature rules can be used to obtain

an approximation. The Lanczos algorithm is applied to A, a discretization of a differential

operator, with initial vectors~u and~v to get the nodes and weights [11].

Computing (4.5) efficiently is difficult since ϕ(A) is exponential. We can approximate

(4.5) as ∫ b

a
ϕ(λ )dα(λ )≈

∫ b

a
p(λ )dα(λ ), (4.6)

where p(λ ) is an interpolating polynomial. We can then rewrite (4.6) as

∫ b

a
p(λ )dα(λ ) =~uH p(A)~v, (4.7)
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which is easier to compute since p(A) is a polynomial function. The next step is to obtain in-

terpolation points, which are the same as Gaussian quadrature nodes, for (4.6) for maximum

accuracy, efficiency, and scalability.

When ~u =~v, the weights are guaranteed to be positive, so we can use the Lanczos

algorithm, which will be explained later, to get nodes. The inputs are A and~u. The output is

a symmetric-tridiagonal matrix T, and the nodes are eigenvalues of T [13]. If~u 6=~v, there

could be a negative weight. Therefore, we choose a different approach since the quadrature

rule would not apply for a negative weight [1]. Alternatively, we can find the approximation

of the 2×2 matrix integral [
~u ~v

]H
ϕ(A)

[
~u ~v

]
(4.8)

by using the block Lanczos algorithm [12]. The inputs are A and
[
~u ~v

]
, and the output is a

symmetric block-tridiagonal matrix T, where the nodes are the eigenvalues.

In the block KSS method, we define

R0(~ω) =
[
ê~ω ~un] (4.9)

with ~ω(ω1,ω1), where ê~ω is a discretization of 1
2π

ei(ω1x+ω2y) and~un is the computed solution

at time tn. We get R0(~ω) = X1(~ω)B0(~ω) from the Q R factorization of (4.9), which is needed

to make the blocks orthogonal. Block Lanczos iteration is applied to the discretized operator

A with X1(~ω) as the initial block. This gives a symmetric block-tridiagonal matrix

TK(~ω) =


M1 BH

1
B1 M2 BH

2
. . . . . . . . .

BK−1 MK

 , (4.10)

where each entry is a 2×2 matrix that is a function of ~ω . We can then express each Fourier

coefficient of the solution at time tn+1 as

[
ûn+1]

~ω
=
[
BH

0 EH
12e−TK(~ω)∆tE12B0

]
12
, E12 =

[
~e1 ~e2

]
. (4.11)
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The block KSS method is O(∆t2K−1)-order accurate [17].

Now we discuss block Lanczos iteration in more depth. We consider the block (4.9),

where ω1 = −N/2+ 1, ...,N/2 and ω2 = −M/2+ 1, ...,M/2. Block Lanczos iteration is

used to compute the symmetric block-tridiagonal matrix

T3(~ω) =

 M1 BH
1 0

B1 M2 BH
2

0 B2 M3

 , (4.12)

where K = 3 as an example. We can the show the structure of (4.12) as the matrix

T3(~ω) =



× × × 0 0 0
× × × × 0 0

× × × × × 0
0 × × × × ×

0 0 × × × ×
0 0 0 × × ×


, (4.13)

where the ×’s indicate nonzero entries of matrices M j and B j. As ||~ω|| → ∞, the matrix

becomes

T3(~ω)≈



× 0 × 0 0 0
0 × 0 × 0 0

× 0 × 0 × 0
0 × 0 × 0 ×

0 0 × 0 × 0
0 0 0 × 0 ×


, (4.14)

where the ×’s are insensitive to frequency and the ×’s are heavily dependent on frequency

as can be seen in [21]. It is observed that some of the ×’s from (4.13) become zero. This is

because each entry is a Fourier coefficient of some function, and Fourier coefficients go to 0

as ||~ω|| → ∞. Thus, each entry (T3(~ω))i j, where i+ j is odd, gets negligibly small.

If both the rows and columns are reordered so that odd numbered and even numbered
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rows and columns are grouped together, we get the matrix

T3(~ω)≈



× × 0 0 0 0
× × × 0 0 0
0 × × 0 0 0

0 0 0 × × 0
0 0 0 × × ×
0 0 0 0 × ×


. (4.15)

We can see that all the ×’s are together in the upper left 3× 3 block and all the ×’s are

together in the lower right 3×3 block. This shows that the eigenvalue problem decouples.

Essentially, one block Lanczos iteration becomes two "non-block" Lanczos, or simply

Lanczos, iterations. The ×’s are frequency-independent nodes, which we can find by

applying Lanczos iteration to the matrix A with initial vector~un. Since~un does not depend

on ~ω , the frequency-independent nodes only need to be computed once and are then shared

by all frequencies, which saves time. The ×’s are frequency-dependent nodes. By applying

Lanczos iteration analytically to the differential operator L with initial vector ê~ω , we obtain

formulas for the nodes in terms of the coefficients of L.

The Lanczos algorithm is given as follows:

r0 = u, x0 = 0

for k = 1,2, ...,K

βk−1 = ||rk−1||

xk = rk−1/βk−1

vk = Lxk

αk = 〈xk,vk〉

rk = vk−αkxk−βk−1xk−1

end
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The output is

Tk(~ω) =


α1 β1
β1 α2 β2

β2
. . . . . .
. . . . . . βK−1

βK−1 αK

 . (4.16)

We can apply the Lanczos algorithm to a case in which the initial vector is u =

ei(ω1x+ω2y), ~ω ∈ Z2 and the differential operator is Lu = ∇ · (g∇u), where g = 1
1+k2||∇u||2 is

a function of (x,y). Two iterations will be carried out to get formulas for the frequency-

dependent nodes α1, β1, and α2.

Substituting u = ei(ω1x+ω2y) we have

r0 = u (4.17)

= ei(ω1x+ω2y),

and

x0 = 0 (4.18)

is given.

Now we start the first iteration with k = 1. To obtain β0, we substitute r0 with ei(ω1x+ω2y)

and evaluate its norm:

β0 = ||r0|| (4.19)

=
∣∣∣∣∣∣ei(ω1x+ω2y)

∣∣∣∣∣∣
=

√〈
ei(ω1x+ω2y), ei(ω1x+ω2y)

〉
=

√∫ 2π

0

∫ 2π

0
ei(ω1x+ω2y)ei(ω1x+ω2y)dxdy

=

√∫ 2π

0

∫ 2π

0
e−i(ω1x+ω2y)ei(ω1x+ω2y)dxdy

=
√

2π2

= 2π.
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Substitution of r0 and β0 gives us x1:

x1 = r0/β0 (4.20)

=
1

2π
ei(ω1x+ω2y).

v1 is found by applying the differential operator L to 1
2π

ei(ω1x+ω2y) after substituting it

for x1:

v1 = Lx1 (4.21)

= L
(

1
2π

ei(ω1x+ω2y)
)

= ∇ ·
(

g∇
1

2π
ei(ω1x+ω2y)

)
=

∂

∂x

[
g

∂

∂x

(
1

2π
ei(ω1x+ω2y)

)]
+

∂

∂y

[
g

∂

∂y

(
1

2π
ei(ω1x+ω2y)

)]
=

∂

∂x

(
g

1
2π

ei(ω1x+ω2y)iω1

)
+

∂

∂y

(
g

1
2π

ei(ω1x+ω2y)iω2

)
= g

(
1

2π
ei(ω1x+ω2y)(iω1)

2
)
+gx

(
1

2π
ei(ω1x+ω2y)iω1

)
+g
(

1
2π

ei(ω1x+ω2y)(iω2)
2
)
+gy

(
1

2π
ei(ω1x+ω2y)iω2

)
.

After grouping, we get

v1 =
1

2π
ei(ω1x+ω2y) [g(iω1)

2 +gxiω1 +g(iω2)
2 +gyiω2

]
=

1
2π

ei(ω1x+ω2y) [−g
(
ω

2
1 +ω

2
2
)
+ i(ω1gx +ω2gy)

]
.

α1 is the inner product of x1 and v1. We plug in x1 =
1

2π
ei(ω1x+ω2y) and

v1 =
1

2π
ei(ω1x+ω2y) [−g

(
ω2

1 +ω2
2
)
+ i(ω1gx +ω2gy)

]
and evaluate

α1 = 〈x1,v1〉 (4.22)

=

〈
1

2π
ei(ω1x+ω2y),

1
2π

ei(ω1x+ω2y) [−g
(
ω

2
1 +ω

2
2
)
+ i(ω1gx +ω2gy)

]〉
=

∫ 2π

0

∫ 2π

0

1
2π

ei(ω1x+ω2y) 1
2π

ei(ω1x+ω2y) [−g
(
ω

2
1 +ω

2
2
)
+ i(ω1gx +ω2gy)

]
dxdy



18

α1 =
∫ 2π

0

∫ 2π

0

1
2π

e−i(ω1x+ω2y) 1
2π

ei(ω1x+ω2y) [−g
(
ω

2
1 +ω

2
2
)
+ i(ω1gx +ω2gy)

]
dxdy

=
∫ 2π

0

∫ 2π

0

(
1

2π

)2 [
−g
(
ω

2
1 +ω

2
2
)
+ i(ω1gx +ω2gy)

]
dxdy

= −
(
ω

2
1 +ω

2
2
)( 1

2π

)2 ∫ 2π

0

∫ 2π

0
gdxdy+

(
1

2π

)2

iω1

∫ 2π

0

∫ 2π

0
gx dxdy

+

(
1

2π

)2

iω2

∫ 2π

0

∫ 2π

0
gy dxdy.

Let us denote the average of a function f (x,y) on the interval [a,b] by

avgx,y∈[0,2π]2( f (x,y)) =
1

(b−a)2

∫ b

a

∫ b

a
f (x,y)dxdy = f (x,y).

We use this and the evaluation that
( 1

2π

)2
iω1

∫ 2π

0
∫ 2π

0 gx dxdy = 0

and
( 1

2π

)2
iω2

∫ 2π

0
∫ 2π

0 gy dxdy = 0 because of 2π periodicity to get

α1 = −
(
ω

2
1 +ω

2
2
)( 1

2π

)2

2πg

= −g
(
ω

2
1 +ω

2
2
)
.

Substitution for v1, α1, x1, β0, and x0 gives us the following for r1:

r1 = v1−α1x1−β0x0 (4.23)

=
1

2π
ei(ω1x+ω2y) [−g

(
ω

2
1 +ω

2
2
)
+ i(ω1gx +ω2gy)

]
−
[
−g
(
ω

2
1 +ω

2
2
)]

×
[

1
2π

ei(ω1x+ω2y)
]
−2π(0).

1
2π

ei(ω1x+ω2y) is then factored out:

r1 =
1

2π
ei(ω1x+ω2y) [−g

(
ω

2
1 +ω

2
2
)
+ i(ω1gx +ω2gy)+g

(
ω

2
1 +ω

2
2
)]
.

Using the notation

f − f = f̃ ,

we obtain

r1 =
1

2π
ei(ω1x+ω2y) [−g̃

(
ω

2
1 +ω

2
2
)
+ i(ω1gx +ω2gy)

]
.
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We continue with the second iteration with k = 2. Using the expression we just found

for r1, we evaluate β1:

β1 = ||r1|| (4.24)

=

∣∣∣∣∣∣∣∣ 1
2π

ei(ω1x+ω2y) [−g̃
(
ω

2
1 +ω

2
2
)
+ i(ω1gx +ω2gy)

]∣∣∣∣∣∣∣∣ .
Squaring both sides allows us to evaluate β1 more conveniently:

β
2
1 =

∣∣∣∣∣∣∣∣ 1
2π

ei(ω1x+ω2y) [−g̃
(
ω

2
1 +ω

2
2
)
+ i(ω1gx +ω2gy)

]∣∣∣∣∣∣∣∣2 . (4.25)

Since we know that the ei(ω1x+ω2y) terms will cancel out, this simplifies

β
2
1 =

∣∣∣∣∣∣∣∣ 1
2π

[
−g̃
(
ω

2
1 +ω

2
2
)
+ i(ω1gx +ω2gy)

]∣∣∣∣∣∣∣∣2
=

∣∣∣∣∣∣∣∣ 1
2π

[
−g̃
(
ω

2
1 +ω

2
2
)]∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣ 1

2π
i(ω1gx +ω2gy)

∣∣∣∣∣∣∣∣2 .
The i terms will cancel out, so we get

β
2
1 =

∣∣∣∣∣∣∣∣ 1
2π

[
−g̃
(
ω

2
1 +ω

2
2
)]∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣ 1

2π
(ω1gx +ω2gy)

∣∣∣∣∣∣∣∣2
=

(
1

2π

)2 (
ω

2
1 +ω

2
2
)2 ||− g̃||2 +

(
1

2π

)2

||ω1gx +ω2gy||2.

We use ||− g̃||2 = ||g̃||2 and rewrite ω1gx +ω2gy as ~ω ·∇g, where ~ω = (ω1,ω2), so that

β
2
1 =

(
1

2π

)2 (
ω

2
1 +ω

2
2
)2 ||g̃||2 +

(
1

2π

)2

||~ω ·∇g||2.

Therefore,

β1 =

√(
1

2π

)2 (
ω2

1 +ω2
2
)2 ||g̃||2 +

(
1

2π

)2

||~ω ·∇g||2.

We can use substitution to find expressions for x2 and v2:

x2 = r1/β1 (4.26)

=
1

2π
ei(ω1x+ω2y) [−g̃

(
ω

2
1 +ω

2
2
)
+ i(ω1gx +ω2gy)

]/
√(

1
2π

)2 (
ω2

1 +ω2
2
)2 ||g̃||2 +

(
1

2π

)2

||~ω ·∇g)||2,
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and

v2 = Lx2 (4.27)

= L

(
1

2π
ei(ω1x+ω2y) [−g̃

(
ω

2
1 +ω

2
2
)
+ i(ω1gx +ω2gy)

]/
√(

1
2π

)2 (
ω2

1 +ω2
2
)2 ||g̃||2 +

(
1

2π

)2

||~ω ·∇g)||2]

)
.

After substitution, we obtain an inner product we can evaluate conveniently for α2:

α2 = 〈x2, v2〉 (4.28)

= 〈x2, Lx2〉

=

〈
r1

β1
, L

r1

β1

〉
=

〈
r1, Lr1

β 2
1

〉
.

We can pull out 1
β 2

1
and apply L to r1:

α2 =
1

β 2
1
〈r1, Lr1〉

=
1

β 2
1
〈r1, ∇ · (g∇r1)〉

=
1

β 2
1
〈r1, (g(r1)x)x +(g(r1)y)y〉.

After integration by parts, this becomes

α2 =
1

β 2
1
[〈r1,(g(r1)x)x〉+ 〈r1,(g(r1)y)y〉]

=
1

β 2
1
[−〈(r1)x, g(r1)x〉−〈(r1)y, g(r1)y〉].

We use the substitution of r1, neglecting i(ω1gx +ω2gy) because of its lower order in ~ω , so
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that we have

α2 ≈
1

β 2
1

[
−

〈(
1

2π
ei(ω1x+ω2y) (−g̃

(
ω

2
1 +ω

2
2
)))

x
,

g
(

1
2π

ei(ω1x+ω2y) (−g̃
(
ω

2
1 +ω

2
2
)))

x

〉
−

〈(
1

2π
ei(ω1x+ω2y) (−g̃

(
ω

2
1 +ω

2
2
)))

y
,

g
(

1
2π

ei(ω1x+ω2y) (−g̃
(
ω

2
1 +ω

2
2
)))

y

〉]

≈ 1
β 2

1

[
−
(

1
2π

(
ω

2
1 +ω

2
2
))2〈(

−g̃ei(ω1x+ω2y)
)

x
, g
(
−g̃ei(ω1x+ω2y)

)
x

〉
−
(

1
2π

(
ω

2
1 +ω

2
2
))2〈(

−g̃ei(ω1x+ω2y)
)

y
, g
(
−g̃ei(ω1x+ω2y)

)
y

〉]

≈ 1
β 2

1

[
−
(

1
2π

(
ω

2
1 +ω

2
2
))2[〈(

g̃ei(ω1x+ω2y)
)

x
, g
(

g̃ei(ω1x+ω2y)
)

x

〉

+

〈(
g̃ei(ω1x+ω2y)

)
y
, g
(

g̃ei(ω1x+ω2y)
)

y

〉]]

≈ 1
β 2

1

[
−
(

1
2π

(
ω

2
1 +ω

2
2
))2 [〈

g̃ei(ω1x+ω2y)iω1 + g̃xei(ω1x+ω2y), g
(

g̃ei(ω1x+ω2y)iω1

+g̃xei(ω1x+ω2y)
)〉

+
〈

g̃ei(ω1x+ω2y)iω2 + g̃yei(ω1x+ω2y), g
(

g̃ei(ω1x+ω2y)iω2

+g̃yei(ω1x+ω2y)
)〉]]

≈ 1
β 2

1

[
−
(

1
2π

(
ω

2
1 +ω

2
2
))2 [〈

g̃ei(ω1x+ω2y)iω1 + g̃xei(ω1x+ω2y), gg̃ei(ω1x+ω2y)iω1

+gg̃xei(ω1x+ω2y)
〉
+
〈

g̃ei(ω1x+ω2y)iω2 + g̃yei(ω1x+ω2y), gg̃ei(ω1x+ω2y)iω2

+gg̃yei(ω1x+ω2y)
〉]]

.
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Now we evaluate the inner product:

α2 ≈
1

β 2
1

[
−
(

1
2π

(
ω

2
1 +ω

2
2
))2(∫ 2π

0

∫ 2π

0

(
g̃ei(ω1x+ω2y)iω1 + g̃xei(ω1x+ω2y)

)
×
(

gg̃ei(ω1x+ω2y)iω1 +gg̃xei(ω1x+ω2y)
)

dxdy

+
∫ 2π

0

∫ 2π

0

(
g̃ei(ω1x+ω2y)iω2 + g̃yei(ω1x+ω2y)

)
×
(

gg̃ei(ω1x+ω2y)iω2 +gg̃yei(ω1x+ω2y)
)

dxdy
)]

≈ 1
β 2

1

[
−
(

1
2π

(
ω

2
1 +ω

2
2
))2(∫ 2π

0

∫ 2π

0

(
g̃e−i(ω1x+ω2y)(−iω1)+ g̃xe−i(ω1x+ω2y)

)
×
(

gg̃ei(ω1x+ω2y)(iω1)+gg̃xei(ω1x+ω2y)
)

dxdy

+
∫ 2π

0

∫ 2π

0

(
g̃e−i(ω1x+ω2y)(−iω2)+ g̃ye−i(ω1x+ω2y)

)
×
(

gg̃ei(ω1x+ω2y)(iω2)+gg̃yei(ω1x+ω2y)
)

dxdy
)]

≈ 1
β 2

1

[
−
(

1
2π

(
ω

2
1 +ω

2
2
))2(∫ 2π

0

∫ 2π

0
gg̃2 +gg̃g̃x(−iω1)+gg̃g̃xiω1 +gg̃2

x dxdy

+
∫ 2π

0

∫ 2π

0
gg̃2 +gg̃g̃y(−iω2)+gg̃g̃yiω2 +gg̃2

y dxdy
)]

≈ 1
β 2

1

[
−
(

1
2π

(
ω

2
1 +ω

2
2
))2(∫ 2π

0

∫ 2π

0
gg̃2 +gg̃2

x dxdy

+
∫ 2π

0

∫ 2π

0
gg̃2 +gg̃2

y dxdy
)]

≈ 1
β 2

1

[
−
(

1
2π

(
ω

2
1 +ω

2
2
))2(

2πgg̃2ω
2
1 +2πgg̃2

x
+2πgg̃2ω

2
2 +2πgg̃2

y

)]
≈ 1

β 2
1

[
−
(
ω

2
1 +ω

2
2
)2
(

gg̃2ω
2
1 +gg̃2

x
+gg̃2ω

2
2 +gg̃2

y

)]
≈ 1

β 2
1

[
−
(
ω

2
1 +ω

2
2
)3

gg̃2 +
(
ω

2
1 +ω

2
2
)2
(

gg̃2
x
+gg̃2

y

)]
≈ 1

β 2
1

[
−
(
ω

2
1 +ω

2
2
)3

gg̃2 +
(
ω

2
1 +ω

2
2
)2

g||∇g||2
]
.
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We can now divide by β 2
1 , neglecting

(
ω2

1 +ω2
2
)2 g||∇g||2 and

( 1
2π

)2 ||~ω ·∇g||2:

α2 ≈
−
(
ω2

1 +ω2
2
)3 gg̃2 +

(
ω2

1 +ω2
2
)2 g||∇g||2( 1

2π

)2 (
ω2

1 +ω2
2
)2 ||g̃||2 +

( 1
2π

)2 ||~ω ·∇g||2

≈
−
(
ω2

1 +ω2
2
)3 gg̃2( 1

2π

)2 (
ω2

1 +ω2
2
)2 ||g̃||2

.

Using inner products, this can be rewritten as

α2 ≈
−
(
ω2

1 +ω2
2
)3
( 1

2π
)2 〈g̃, gg̃〉( 1

2π

)2 (
ω2

1 +ω2
2
)2 〈g̃, g̃〉

.

Let us define the average of a function with respect to some weight function as

f h =
∫ 2π

0

∫ 2π

0
f
(

h
||h||

)2

=
〈h, f h〉
〈h,h〉

.

We use this to give us the final formula for α2:

α2 ≈ −
(
ω

2
1 +ω

2
2
)

g( g̃
||g̃||

)2

≈ −
(
ω

2
1 +ω

2
2
)

gg̃.

After obtaining the formulas for the nodes, the output is

T2(~ω)≈

[
g||~ω||2

( 1
2π

)2√||~ω||4||g̃||2 + ||~ω ·∇g||2( 1
2π

)2√||~ω||4||g̃||2 + ||~ω ·∇g||2 −||~ω||2gg̃

]
,

(4.29)

where ω2
1 +ω2

2 = ||~ω||2. We can get the eigenvalues of this matrix by solving for the roots

of

det(T2(~ω)−λ I). (4.30)

This results in

λ1,2 ≈−
tr(T2(~ω))±

√
tr(T2(~ω))2−4det(T2(~ω))

2
. (4.31)

This is the method we will use to obtain the frequency-dependent nodes that are used to

approximate each Fourier coefficient of the solutions of our PDE-based image processing

models.
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Since KSS methods have been mostly used for linear PDEs, they need to be adapted to

nonlinear PDEs so that we can use them for our image processing models. This will be done

by combining KSS methods with exponential propagation iterative (EPI) methods, which

are efficient in solving nonlinear PDEs. We will use a 3rd-order, 2-stage EPI method [24]

Y1 = ~yn +
1
3

ha11ϕ1

(
1
3

hA
)

F(~yn), (4.32)

~yn+1 = ~yn +hϕ1(hA)F(~yn)+3hb1ϕ2(hA)[F(Y1)−F(~yn)−A(Y1−~yn)],

where a11 = 9/4 and b1 = 32/81, and

R(Y1) = F(Y1)−F(~yn)−A(Y1−~yn),

where An =
dF(~y(tn))

d~y is is the Jacobian of F(~y(t)) and R(~y(t)) is the nonlinear remainder

function. Furthermore,

ϕ1(λ ) =
eλ −1

λ
, ϕ2(λ ) =

eλ −λ −1
λ 2 , ϕ3(λ ) =

eλ (6−λ )− (6+5λ +2λ 2)

λ 3 . (4.33)

To describe how EPI methods work, let us consider a nonlinear autonomous system of

ordinary differential equations (ODEs)

~y ′ = F(~y), ~y(t0) =~y0. (4.34)

The Taylor expansion of F(~y(t)) around~y(tn) yields the ODE

d~y
dt

= F(~y(tn))+An(~y(t)−~y(tn))+R(~y(t)). (4.35)

We can represent the solution of (5.2) as an integral by using an integrating factor e−Ant and

integrating (5.3) over the time interval [tn, tn+1] to get

~y(tn+1) =~y(tn)+
[
eAn∆t− I

]
A−1

n F(~y(tn))+
∫ tn+1

tn
eAn(tn+1−τ)R(~y(τ))dτ. (4.36)

This can be approximated by numerical methods that use the approximation of products of

matrix functions and vectors of the form ϕ(Aτ)~b, where ϕ is a function such as in (4.33), A
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is a matrix such as An, τ is a scaling parameter based on the time step such as ∆t, and~b is a

vector such as F(~yn).

EPI methods use Krylov projection to compute these products so that

ϕ(Aτ)~b≈ ||~b||2Vmϕ(Hmτ)~e1, (4.37)

where Hm is an upper Hessenberg matrix, which is given by Hm = V H
m AVm, and Vm =[

v1 v2 ... vm
]
, with {v1,v2, ...,vm} an orthonormal basis of the Krylov subspace Km(A,~b)

that can be found using the Arnoldi algorithm [13]. The number of the Krylov vectors

produced, the eigenvalues of A, the magnitude of τ , and ϕ determine how accurate the

approximation of (4.37) is.

Instead of using Krylov projection to compute ϕ(Aτ)~b, we can use the KSS methods

described earlier [8]. This is our combination of KSS and EPI methods. Time-stepping

methods that use Krylov projection solve for the different frequency components of the

solution with the same polynomial or rational function. The function must be high-degree

for high resolution images, but this is computationally expensive. On the other hand, KSS

methods treat the frequency components individually by utilizing a low-degree polynomial.

An interpolating polynomial with frequency-dependent interpolation points such as λ1,2

from (4.31) is used to approximate ϕ for each component. Therefore, components are

solved for with different low-degree polynomials. This is possible because KSS methods

are independent of resolution. The advantages of using KSS methods are a high order of

accuracy and stability to higher resolution.

We can now implement the new numerical method by coding it in MATLAB. It will be

used in the next chapter.
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Chapter 5

Numerical Experiments

Now that we have our image processing models ready to solve with the numerical method

designed, we can perform numerical experiments to enhance color images. Each image is

processed with both models, tuning the parameters of each respective model for the best

results. It was discussed in Chapter 3 that changing the parameters controls when the model

denoises and sharpens.

The first two cases deal with denoising. Given a clean image u0, Gaussian white noise

with µ = 0 and σ2 = 0.01 is added so that we get a noisy image. Then we get noisy

grayscale images for each red, green, and blue (RGB) channel ũi,0 for (3.3) and (3.5).

The enhancement results for the noisy images are now presented. Each model executes

50 time steps to get an enhanced image. In Figure 5.2, we see the results of processing

an image of bell peppers (Figure 5.1) with Model 1 using k = 1× 10−6, ε = 0.1, and

dt = 1×10−7.

Figure 5.1: Clean, complete bell peppers image.
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Figure 5.2: Enhancement of noisy bell peppers image with Model 1. Left Column - Noisy
images, Right Column - Enhanced images corresponding to the images to the left. First
Row - Complete image, Second Row - R channel, Third Row - G channel, Fourth Row -
B channel.
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We also illustrate our results with peak signal-to-noise ratio (PSNR) [14]

PSNR( f0, f1) = 20log10

(
255√

MSE( f0, f1)

)
, (5.1)

which is a measure of the deviation between two images. The PSNR value for a noisy image

measures the deviation between the noisy image and the clean image, while the value for an

enhanced image measures the deviation between the enhanced image and the clean image. A

higher PSNR for an enhanced image indicates less deviation and, thus, more agreement with

the clean image. Therefore, a high increase between the PSNR for a noisy image and the

PSNR for an enhanced image is desired. Table 5.1 contains the PSNR values for denoisng

the bell peppers image with Model 1. Since the Gaussian white noise added to a clean image

is random, five trials are executed, and each PSNR for a noisy image is different.

Trial PSNR (noisy) PSNR (enhanced) PSNR increase
1 32.0219 32.1061 0.0842
2 31.9992 32.0517 0.0525

Channel 1 3 31.9565 32.0254 0.0689
4 31.9100 31.9700 0.0600
5 31.9983 32.0533 0.0550
1 33.6475 33.7650 0.1175
2 33.5408 33.6406 0.0998

Channel 2 3 33.4932 33.5731 0.0799
4 33.4701 33.5687 0.0986
5 33.4649 33.5743 0.1094
1 33.4168 33.4410 0.0242
2 33.2953 33.3154 0.0201

Channel 3 3 33.4224 33.4421 0.0197
4 33.2413 33.2503 0.0090
5 33.4933 33.5183 0.0250

Table 5.1: PSNR values for noisy images, PSNR values for enhanced images, and PSNR
increases for five trials of denoising bell peppers image with Model 1.

The bell peppers image is processed with Model 2 using k = 1× 10−15, p = 1.0003,

and δ = 0.1. Because δ changes over time [14], we let δmax = 1 so that δ increases linearly
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to this value for n1 = 40 time steps and δmin = 0.1 so that δ then decreases linearly to this

value for n1 = 40 time steps. The parameter dt = 1× 10−7 is also used. The results are

shown in Figure 5.3 and Table 5.2

Trial PSNR (noisy) PSNR (enhanced) PSNR increase
1 31.9367 32.0127 0.0760
2 31.9782 32.0323 0.0541

Channel 1 3 32.0265 32.0977 0.0712
4 31.8109 31.8685 0.0576
5 32.1349 32.0665 0.0684
1 33.4721 33.5663 0.0942
2 33.4960 33.5748 0.0788

Channel 2 3 33.4088 33.5046 0.0958
4 33.6565 33.7389 0.0824
5 33.5219 33.6109 0.0890
1 33.2477 33.2337 0.0140
2 33.2998 33.3298 0.0300

Channel 3 3 33.3118 33.3316 0.0198
4 33.2491 33.2734 0.0243
5 33.2473 33.2637 0.0164

Table 5.2: PSNR values for noisy images, PSNR values for enhanced images, and PSNR
increases for five trials of denoising bell peppers image with Model 2.

The second image processed is an image of the Aubrey K. Lucas Administration Building

on the University of Southern Mississippi campus (Figure 5.4). Model 1 uses the parameters

k = 1× 10−8 for the R and G channels and k = 1× 10−5 for the B channel. Different

values are chosen for k because 1× 10−8 turns out to be too small for the B channel, so

the best value for k is found to be 1× 10−5 instead. The other parameters are ε = 0.1

and dt = 1× 10−7. The results are shown in Figure 5.5 and Table 5.3. The parameters

used for Model 2 are k = 0.001, p = 1.0003, δ = 0.1, δmax = 2, δmin = 0.1, n1 = 40, and

dt = 1×10−7. The results are shown in Figure 5.6 and Table 5.4

In these experiments, effective denoising is observed. Model 1 and Model 2 have similar

results for the bell peppers image. However, Model 2 performs much better than Model 1
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Figure 5.3: Enhancement of noisy bell peppers image with Model 2. Left Column - Noisy
images, Right Column - Enhanced images corresponding to the images to the left. First
Row - Complete image, Second Row - R channel, Third Row - G channel, Fourth Row -
B channel.
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Figure 5.4: Clean, complete Administration Building image.

Trial PSNR (noisy) PSNR (enhanced) PSNR increase
1 41.4047 42.1226 0.7179
2 41.2990 42.9671 0.6681

Channel 1 3 41.3980 41.9019 0.5039
4 41.2949 41.9332 0.6383
5 41.3818 42.5085 0.6767
1 41.3021 42.3049 1.0028
2 41.2036 42.3132 1.1096

Channel 2 3 41.3215 42.4603 1.1388
4 42.2426 42.2911 1.0485
5 41.3010 42.2130 0.9120
1 36.4976 36.5386 0.0410
2 36.4180 36.4408 0.0228

Channel 3 3 36.5060 36.5336 0.0276
4 36.4253 36.4516 0.0263
5 36.4707 36.5032 0.0325

Table 5.3: PSNR values for noisy images, PSNR values for enhanced images, and PSNR
increases for five trials of denoising Administration Building image with Model 1.

for the Administration Building image. For both models, there is a smaller effect on the B

channels than on the other channels.

The next case works with sharpening. Blur is added to a clean image with a convolution

with a Gaussian kernel to produce a blurry image. We can then separate the image into

blurry grayscale images for each RGB channel ũi,0 to use for (3.3) and (3.5). The image

processed is a cyan flower (Figure 5.7). Because the cyan color only has pixel values from
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Figure 5.5: Enhancement of noisy Administration Building image with Model 1. Left
Column - Noisy images, Right Column - Enhanced images corresponding to the images to
the left. First Row - Complete image, Second Row - R channel, Third Row - G channel,
Fourth Row - B channel.
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Figure 5.6: Enhancement of noisy Administration Building image with Model 2. Left
Column - Noisy images, Right Column - Enhanced images corresponding to the images to
the left. First Row - Complete image, Second Row - R channel, Third Row - G channel,
Fourth Row - B channel.
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Trial PSNR (noisy) PSNR (enhanced) PSNR increase
1 41.3559 42.5790 1.2231
2 41.3381 42.5283 1.1902

Channel 1 3 41.4198 42.2817 0.8619
4 41.4715 42.4275 0.9560
5 41.4261 42.2383 0.8122
1 41.2355 43.0414 1.8059
2 41.2387 43.0139 1.7752

Channel 2 3 41.2602 42.9655 1.7053
4 41.1410 42.9904 1.8494
5 41.2254 42.8645 1.6391
1 36.506 36.5452 0.0392
2 36.4252 36.4819 0.0567

Channel 3 3 36.4707 36.5212 0.0505
4 36.45241 36.5245 0.0721
5 36.5284 36.6021 0.0737

Table 5.4: PSNR values for noisy images, PSNR values for enhanced images, and PSNR
increases for five trials of denoising Administration Building image with Model 2.

the G and B channels, the R channel is disregarded. As before, 50 time steps are taken

in each model. The parameters with the best results for Model 1 are k = 0.0001, ε = 0.1,

and dt = 1×10−7. PSNR usage for the enhancement of noisy images is adapted for blurry

images. The results are in Figure 5.8 and Table 5.5.

Figure 5.7: Clean, complete cyan flower image.

In order for Model 2 to sharpen, it needs to include how the image was blurred [14].
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Figure 5.8: Enhancement of blurry cyan flower image with Model 1. Top Row - Blurry
images, Bottom Row - Enhanced images corresponding to the above images. First Column
- Complete image, Second Column - G channel, Third Column - B channel.

Channel PSNR (blurry) PSNR (enhanced) PSNR increase
2 29.1259 33.1206 3.9947
3 29.2879 33.7377 4.4498

Table 5.5: PSNR values for blurry images, PSNR values for enhanced images, and PSNR
increases for sharpening cyan flower image with Model 1.

Therefore, an extra term is added to (3.5) to get

∂ui

∂ t
= ∇ ·

[(
1

1+ k2|∇ui|2
+δ |∇ui|p−2

)
∇ui

]
+λK′(ũi,0−Kui), i = R,G,B, (5.2)

where λ is a scaling parameter, K is a blurring operator chosen to be a Gaussian kernel, and

K′ is the adjoint operator. Since Gaussian functions are radially symmetric, K′ = K. The

equation

∂ui

∂ t
= ∇ ·

[(
1

1+ k2|∇ui|2
+δ |∇ui|p−2

)
∇ui

]
+λK′ ∗ (ũi,0−K ∗ui) i = R,G,B (5.3)
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is computed numerically with the blurred image ũi,0 as the input. Model 2 works best with

the parameters k = 0.001, p = 1.03, δ = 1× 10−5 (with no need to change it over time),

n1 = 40 time steps, and λ = 3×106. The results are shown in Figure 5.9 and Table 5.6.

Figure 5.9: Enhancement of blurry cyan flower image with Model 2. Top Row - Blurry
images, Bottom Row - Enhanced images corresponding to the above images. First Column
- Complete image, Second Column - G channel, Third Column - B channel.

Channel PSNR (blurry) PSNR (enhanced) PSNR increase
2 29.1259 33.1190 3.9931
3 29.2879 33.7352 4.4473

Table 5.6: PSNR values for blurry images, PSNR values for enhanced images, and PSNR
increases for sharpening cyan flower image with Model 2.

The experiments show that both models effectively sharpen the blurry cyan flower image.

Furthermore, all of the denoising and sharpening experiments confirm that separating the

RGB channels leads to successful image enhancement.
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Chapter 6

Conclusion

The two nonlinear diffusion image processing models designed in this project successfully

enhanced color images, when treating their red, green, and blue (RGB) channels separately.

This was possible because Krylov subspace spectral (KSS) methods were adapted to nonlin-

ear diffusion to deal with high resolution and nonlinear partial differential equations (PDEs).

By combining them with exponential propagation iterative (EPI) methods, a numerical

method was developed to efficiently solve our models. Numerical experiments resulted in

effective denoising and sharpening, demonstrating the usefulness of the proposed approach

for image processing.

KSS and EPI methods were successfully used for the first time to solve nonlinear PDEs

to high order accuracy, without having to use standard Krylov projection, unlike in [8]. This

bodes well for using the methods to work with other nonlinear PDEs. Moreover, even higher

order versions of the methods could be used for this project’s PDEs to improve efficiency.

Other improvements that could be made in the models include adaptive time stepping and

automatic parameter selection. It may also be attempted to find faster ways to compute the

frequency-dependent Gaussian quadrature nodes.

This project can be expanded by testing the models with different types of noise and blur

in images. Executing more time steps could also be investigated to produce better results.

Furthermore, the models could be compared to other existing models to see how well they

perform and how efficient they are. Implementation in C++ would allow comparison to other

models that use C++. These expansions would provide more insight into the performance of

our models.
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