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Table A-8. Continued.
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Date Stn. NH, NO, NO; PO, SiOs
IB 3.05 0.12 0.87 0.74 44
TS 4.51 0.23 6.98 0.70 37
MR 2.09 0.07 0.31 0.30 5
MB 5.46 0.16 4.46 0.76 21
EB 6.23 0.11 0.77 1.29 60
SsC 4.69 0.23 6.17 0.77 37
Mar-08 Bogalusa 0.97 0.18 13.16 1.20 97
WB 1.71 0.16 8.67 0.98 47
HC 1.83 0.11 2.63 0.22 21
Predicted 1.29 0.15 9.25 0.84 69
159 3.14 0.18 6.40 0.74 25
IB 1.72 0.10 3.83 1.05 34
TS 2.96 0.18 9.46 0.83 34
MR 0.86 0.07 0.39 0.16 6
MB 2.34 0.14 6.94 0.73 30
EB 0.70 0.10 1.31 0.84 12
SsC 2.31 0.15 6.42 0.76 19
Apr-08 Bogalusa 0.55 0.10 - 0.73 101
WB 248 0.15 0.44 1.08 110
HC 4.07 0.15 4.12 0.63 111
Predicted 3.21 0.14 3.09 0.66 109
159 10.34 0.82 9.20 2.26 102
IB 1.62 0.13 1.97 1.56 131
TS 8.00 0.92 13.36 1.74 62
MR 7.35 0.82 12.17 1.69 64
MB 7.98 0.83 12.18 1.86 66
EB 7.19 0.70 10.38 1.60 81
SSC 7.19 0.65 9.72 1.42 116
Jun-08 Bogalusa 0.51 0.02 0.22 0.77 129
WB 11.17 0.44 3.65 1.59 113
HC 7.38 0.15 5.39 0.97 23
Predicted 6.53 0.43 8.67 1.82 63
159 0.86 0.47 9.14 1.94 69
IB 12.48 0.03 0.83 0.60 202
TS 6.67 0.54 8.83 1.80 130
MR 5.12 0.48 7.56 1.45 131
MB 5.66 0.55 7.64 1.69 126
EB 425 0.51 7.87 1.53 134
SSC 3.70 0.51 7.21 1.38 133
Sep-08 Bogalusa 0.59 0.32 16.94 1.42 128
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Date Stn. NH, NO, NO; PO, Si0,
WB 5.19 0.21 223 1.81 157
HC 4.20 0.05 1.79 0.69 12

Predicted 3.11 0.13 6.35 091 47
159 3.44 0.11 237 0.69 17
IB 5.81 0.11 1.26 1.31 103
TS 4.57 0.07 2.19 0.87 27
MR 3.89 0.15 2.47 0.77 17
MB 4.15 0.13 2.49 0.83 20
EB 4.06 0.01 2.50 0.79 25

SSC 3.99 0.03 3.36 0.79 23

-: Below detection limit
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CHAPTER IV
DISSOLVED AND COLLOIDAL TRACE ELEMENTS IN THE MISSISSIPPI RIVER
DELTA OUTFLOW
AFTER HURRICANES KATRINA AND RITA
Introduction

The Mississippi River plays an important role as a major fluvial source of dissolved
and particulate materials for the northern Gulf of Mexico (GOM). Thus, various workers
have studied trace element behavior in the outflow region of this river (e.g., Hanor and
Chan, 1977, Shiller and Boyle, 1991; Mallini, 1992; Shiller, 1993a; Mao, 1994,
Swarzenski and McKee, 1998; Shiller and Mao, 1999; Powell and Wilson-Finelli, 2003).
One notable aspect of this region is the seasonal hypoxia on the adjacent Louisiana Shelf
which typically occurs from spring through late summer in response to stratification and
nutrient input from the Mississippi River (e.g., Rabalais and Turner, 2006). Also of note
is that this region is periodically disturbed by tropical weather systems including major
hurricanes. Such storms have the potential to stir up the stratified water column of the
Louisiana Shelf and thus can serve as a mechanism for the abrupt termination of the
seasonal bottom water hypoxia. Additionally, strong tropical systems can cause the
resuspension of shelf bottom sediments (e.g., Walsh et al., 2006) which could result in
the injection of trace elements into the water column (e.g., Cantwell et al, 2008).

Previous work in the Mississippi River outflow region has demonstrated the
contrasting behaviors of different trace elements. For instance, dissolved Cu, Ni, Mo, Fe,

and Zn were largely unreactive in the river delta plume at high discharge, whereas Cr, V,

2 This chapter has been submitted to Estuarine, Coastal Shelf Science as Moo-Joon Shim, Peter Swarzenski,
and Alan Shiller.
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and Cd were non-conservative (Shiller and Boyle, 1991). The lack of Fe reactivity was
surprising and probably resulted from the low fluvial dissolved Fe of the alkaline
Mississippi River (Shiller, 1997) combined with organic complexation (Powell and
Wilson-Finelli, 2003). Apparent non-conservative behavior of Cr was suggested to result
from temporal variability of the river endmember concentration; desorption from the
fluvial suspended load was shown to account for the behavior of Cd; and V removal was
suggested to result from biological uptake (Shiller and Boyle, 1991). In contrast, Shiller
and Mao (1999) observed that V depletion in the Mississippi River outflow could be
accounted for by reduction and removal of this element in oxygen-depleted shelf bottom
waters. Hanor and Chan (1977) found that Ba was desorbed from the fluvial suspended
load during mixing of Mississippi plume waters. Mao (1994) also observed evidence of
Ba desorption in plume surface waters and further found that Louisiana Shelf bottom
waters were slightly enriched in Ba apparently due to a flux from the sediments.
Swarzenski and McKee (1998) observed that U has usually been conservative, though
removal has been observed during anomalous river discharge periods. Shiller (1993a)
contrasted trace element behavior in the Mississippi River delta plume with that along the
extended mixing zone of the Louisiana Shelf. Apparent Ni and Cd removal from shelf
 waters was attributed to extensive biological recycling in these waters. Mallini (1992)
reported that surface and bottom water enrichment of dissolved Mn in Louisiana Shelf
waters were related to the combined effects of stratification and hypoxia.

In the summer of 2005, two major hurricanes passed over the Louisiana Shelf within
a month of each other. Hurricane Katrina hit southeastern Louisiana (LA) and Mississippi

(MS) on August 29, 2005 (Van Biersel et al., 2007), and Hurricane Rita struck
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southwestern LA on September 24, 2005 (Yoshida et al., 2010). Not unexpectedly, a
consequence of these storms was the termination of seasonal hypoxia and the
remobilization of the upper layer of shelf sediments (e.g., Swarzenski et al., 2007). Three
weeks after Rita, we participated in a survey trace elements and nutrients of the waters of
the Mississippi Delta outflow, similar to that of Shiller and Boyle (1991). However, in
contrast to that previous study, which occurred at a time of high discharge, the river
discharge in October 2005 was near a seasonal low. Furthermore, this new study allowed
us to utilize newer filtration methods that result in a distinction between dissolved and
colloidal phases (Shiller, 2003).
Methods

Surface water samples were collected at 15 stations in the Mississippi River delta
outflow region (Fig. 4-1) during October 13-17, 2005. Samples with salinity below 20
were collected by dipping an acid-washed polyethylene bottle into the water from the
bow of a small boat during a transect up Southwest Pass of the delta (stations SB1-8).
The other samples (CH stations) were collected aboard the R/V Cape Hatteras in a set of
stations in the Louisiana Bight immediately west of the delta. Bottom water CH samples
were collected using a peristaltic pump having acid-washed clear C-flex tubing in the
pump and Teflon-lined polyethylene tubing elsewhere. Surface grab CH samples were
collected while the ship was moving slowly and by using an acid-washed polyethylene
bottle attached to the end of a long non-metallic pole. All samples were filtered using
acid-washed syringe filters of both 0.45 um and 0.02 pm pore size following Shiller
(2003). This was performed in an enclosed environment aboard ship immediately after

the waters were collected.
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Fig. 4-1. Sample locations.
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The <0.02 um fraction is defined here as the dissolved phase and the colloidal fraction is

defined as the difference between the <0.02 and <0.45 um fractions (Shiller, 2003). For

this work, we only found a significant colloidal fraction for Fe and Zn.

The samples were acidified after the cruise to a pH < 2 using ultra clean HCI

(Seastar Baseline) by adding 70 uL of 6 M HCl to 15 mL of sample. The acidification

was performed in a laminar flow bench as were the sample preparation steps described

below. The acidified samples were kept at room temperature until analysis. Two

methods were used to prepare samples for trace metal analysis by sector-field ICP-MS

(Thermo-Fisher Element 2). One was a simple dilution method and the other was a



