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Abstract 

 The Yang-Baxter equation is one that has been widely used and studied in areas 

such as statistical mechanics, braid groups, knot theory, and quantum mechanics. While 

many sets of solutions have been found for this equation, it is still an open problem. In 

this project, I solve the Yang-Baxter matrix equation that is similar in format to the Yang-

Baxter equation. I try to solve the corresponding Yang-Baxter matrix equation, 𝐴𝑋𝐴 =

𝑋𝐴𝑋, where X is an unknown 𝑛𝑥𝑛 matrix, and 𝐴 = [
0 𝐼
𝐼 0

] or [
0 −𝐼
−𝐼 0

], by using the 

Jordan canonical form to find infinitely many solutions.  
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Chapter 1: Introduction 

The parameter free Yang-Baxter equation is a nonlinear matrix equation 

discovered independently by both Yang in 1967, and Baxter in 1972. The solutions of 

this equation, dubbed the Yang-Baxter equation, are extensive and have led to discoveries 

and research in many fields. These areas include statistical mechanics, braid groups, knot 

theory, and quantum mechanics (Ding & Rhee 2012). While the set of solutions for this 

equation has been heavily researched, it is still an open problem as not all solutions have 

been found (Nichita, 2015). However, the list of areas for which this equation is 

applicable is continuing to grow.  

One area that has not been studied much using the Yang-Baxter equation is in 

matrix theory. Even with recent research, it is difficult to find all nontrivial solutions of 

the matrix equation (Ding & Rhee 2014). The matrix equation AXA=XAX is what we 

will refer to as the Yang-Baxter matrix equation because it is so similar to the original 

Yang-Baxter equation. A and X both represent square matrices of the same size. The 

goal is to determine for a given square matrix A, which square matrices, X, will solve 

this equation.  

As stated earlier, finding trivial solutions of this equation is not a difficult task. 

Two trivial solutions of this equation are X=0 and X=A. These both solve the equation 

easily. The more difficult task is finding nontrivial solutions of the equation. Since 

finding all matrices X that solve the equation is such an extensive task, I will only be 

finding a few specific solutions to the equation for some class of known matrix A. For 

my project, I was given a matrix A and had to find the matrix X for which the 
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equation holds true. I used linear algebra methods, and more specifically, eigenvalues 

and eigenvectors, and the resulting Jordan form, to complete the project.  
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Chapter 2: Literature Review 

 

The Yang-Baxter equation is a parameter free equation that was discovered 

in the late 1900s and has been proven to have many applications in both 

mathematics and physics (Ding & Rhee, 2014). In 1967, while trying to solve the 

difficult task of finding the eigenfunctions of a fermion gas problem, Yang 

discovered an essential matrix identity: ABA=BAB. Five years later in 1972, Baxter 

discovered the same equation through his research in physics. As more and more 

people began to research this new identity, the equation was eventually dubbed the 

Yang-Baxter equation (Zhang, 1993).  

 Several years after the initial discoveries of the equation, the Yang-Baxter 

equation began to be extensively studied in physics and mathematics. New 

developments and applications of the equation have continued to arise, which has 

led many to believe that this equation is actually fundamental in many aspects 

(Zhang, 1993).  

 This equation has been shown to have applications in numerous areas. These 

areas include braid groups, knot theory, statistical mechanics, quantum mechanics 

and many more (Chen, 2012), and these topics have been studied heavily in relation 

to the Yang-Baxter equation.  

 The equation is interesting to those who study quantum mechanics because 

of its unifying features. This property has allowed the equation to be used in the 

production and research of quantum computers (Nichita, 2015). In addition, the 

Yang-Baxter equation is very closely related to braid groups. Finding unitary braid 
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group representations can aid in constructing quantum computers. Braid groups 

and the Yang-Baxter equation can make processing quantum information a much 

easier task (Chen, 2012).  

 While many solutions to this equation have been found, it still remains an 

open problem. Part of the reason for its openness is that the equation is extremely 

difficult to solve. For example, if the equation is in vector space V, then the Yang-

Baxter equation has 𝑑6 cubic equations and 𝑑4 unknowns, where d is the dimension 

of vector space V. Because of this, the number of equations and unknowns increases 

exponentially as the vector space increases (Chen, 2012).  

 The Yang-Baxter equation has been studied heavily in many areas, but one 

area where it has previously been overlooked is in matrix theory. More recently, 

however, there have been significant developments in this area. In the matrix 

equation ABA=BAB, researchers have tried to find square matrices A and B that 

make the equation true. However, this task has proven to be extremely difficult. 

While solving the linear equation AX=XA is relatively easy, solving quadratic 

AXA=XAX is much more difficult because it is nonlinear (Ding & Rhee, 2012). There 

is no one method to find all solutions. However, many different methods have been 

used to find some solutions of the Yang-Baxter matrix equation (Ding & Rhee, 2012). 

 To find the matrices that solve this equation, it is assumed that one matrix, A, 

is given and the other matrix, X, is to be found. The two trivial solutions of this 

equation are X=0 and X=A. To find the nontrivial solutions, several different 

methods were used. The first method used was the Brouwer fixed point theorem to 

find solutions when 𝐴−1 is a stochastic matrix. Using this theorem, two nontrivial 
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solutions of the Yang-Baxter matrix equation were found (Ding & Rhee, 2012).  

Later, more solutions to the Yang-Baxter matrix equation were found using spectral 

projectors, but only a general spectral solution was found (Ding & Rhee, 2014). 

Additionally, more specific solutions were found by putting matrix A in its Jordan 

canonical form. Using this tactic, several specific solutions were found to commute 

with A (Ding, Zhang, & Rhee 2013). This allowed for some commuting solutions to 

be found, but the task of finding all commuting solutions still remains open (Ding, 

Zhang, & Rhee, 2015). 

 While all of these different methods and theorems have proven helpful in 

finding some of the solutions to the Yang-Baxter matrix equation, all solutions to the 

equation have not been found. Research continues to be done in order to try and 

find all solutions to the equation.  

 For my project, I will be specifically studying the Yang-Baxter matrix 

equation. The purpose of my project is to potentially find several more nontrivial 

solutions to the equation AXA=XAX. I will complete this project using linear algebra 

methods such as eigenvalues, eigenvectors, and Jordan structures. 
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Chapter 3: Materials and Methods 

 In order to try to find nontrivial solutions to the Yang-Baxter matrix 

equation, I used methods from linear algebra. There are two main ways I tried to 

solve the equation AXA=XAX. First, I use eigenvalues and eigenvectors to try to solve 

the equation. I also be used Jordan structures to simplify and try to solve the matrix 

equation.  

 Eigenvalues and eigenvectors work together to turn matrix equations into 

the much simpler equation of the product of a scalar and a vector. If  given an n x n 

matrix “A” such as the one in the equation AXA=XAX, the eigenvector of A is a 

nonzero vector such that 𝐴𝑥 = 𝜆𝑥. In this equation, 𝜆 is called the eigenvalue. It is 

the scalar value corresponding to the eigenvector x. If we are able to find an 

eigenvector x and eigenvalue whose product gives a matrix Ax, then that is a much 

simpler way to study properties of an n x n matrix. By finding eigenvalues and 

eigenvectors that represent X or A in the AXA=XAX equation, it will be much easier 

to find solutions. In this method, either the eigenvector or the eigenvalue will need 

to be found first. Once this has been determined, the other part (either eigenvalue or 

eigenvector) can also be found.  

 The second method will involve the use of Jordan structures and matrix 

similarity to find solutions of AXA=XAX. If we have matrices A and P with 𝐴 = [
0 1
1 0

] 

and 𝑃 =  [
𝑎 𝑏
𝑐 𝑑

]  where a, b, c, and d are real entries, I want to find the matrix P such 

that 𝑃−1𝐴𝑃 =  [
∗ 0
0 ∗

]  . In other words, I want a matrix P such that we get the 

diagonal matrix out of the previous equation. To begin using this method, I would 
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first need to find 𝑃−1. From linear algebra methods, we know that the inverse of a 

matrix is the product of the reciprocal of the determinant and the companion 

matrix. For example, in the earlier matrix P, the determinant would be ad-bc. So 𝑃−1 

would be 

1

(𝑎𝑑 − 𝑏𝑐)
∗  [

𝑑 −𝑏
−𝑐 𝑎

] 

To check that this is indeed the inverse of matrix P, we could multiply 𝑃−1 ∗ 𝑃, and  

would get [
1 0
0 1

] which is the identity matrix. Finally, the complete product would 

be,  

𝑃−1𝐴𝑃 =  
1

(𝑎𝑑 − 𝑏𝑐)
∗ [

𝑑 −𝑏
−𝑐 𝑎

] ∗ [
0 1
1 0

] ∗ [
𝑎 𝑏
𝑐 𝑑

] 

If this method works, I should end up with a matrix [
𝜆1 0
0 𝜆2

] . Since the eigenvalues 

of a diagonal matrix fall on the diagonal, 𝜆1 and 𝜆2 would be our eigenvalues. Doing 

this computation and finding that simple matrix would again make solving the Yang-

Baxter matrix equation much easier to do. 

              In general, the simplest form of a given square matrix may not be diagonal as 

the above example shows. However, in linear algebra we know that any square 

matrix is similar to its Jordan canonical form that is a block diagonal matrix 

consisting of the Jordan blocks of various size. A Jordan block is an upper triangular 

matrix of all diagonal entries 𝜆, all super-diagonal entries 1, and all other entries 0. 

For example, the 2 x 2 matrix [
𝜆 1
0 𝜆

] is a Jordan block. After simplifying the given 

matrix A to its Jordan form, I can solve the simplified Yang-Baxter matrix equation. 

That is the strategy to solve this quadratic matrix equation. 
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 While these are only two of many different techniques used in linear algebra, 

these two will prove to be most essential and helpful during this process. Hopefully, 

through proper use and manipulation of each of these techniques, further nontrivial 

solutions of the Yang-Baxter like matrix equation can be found.  
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Chapter 4: Solutions and Description of Processes 

 As stated earlier, if A is an 𝑛𝑥𝑛 matrix, a real number  is called an eigenvalue 

of matrix A if Ax = x for some nonzero column x in 𝑅𝑛. The condition Ax = x can be 

rewritten as (I – A)x = 0 where I is an 𝑛𝑥𝑛 identity matrix. To find the eigenvalues 

of a specific matrix, we take the determinant of (I – A). To begin with a simple 

example, we use the 2x2 matrix A = [
0 1

−1 0
]. This means that the identity matrix we 

will use for this example will be I = [
1 0
0 1

]. Substituting matrices A and I into the 

above equation, we get  

det ([
 0
0 

] − [
0 1

−1 0
])=0 

 

det ([
 −1
1 

]) = 2—(−1) = 

 

 2 + 1 = 0 

 


2 = −1 

 =  i. 

 In this same manner, we can find the eigenvalues for the matrix B=[
0 1
1 0

]. 

Again, the identity matrix will be the 2x2 matrix [
1 0
0 1

]. Substituting B and I into the 

equation used previously, we get  

det([
 0
0 

] − [
0 1
1 0

])=0 
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det([
 −1

−1 
])=2 − 1 = 0 

 


2 − 1 = 0 


2 = 1 

 = 1. 

Using this method, we have been able to easily find the eigenvalues for two simple 

2x2 matrices, A and B. However, for this project our matrices will not be just 2x2 

matrices. Instead we are looking at mxm block matrices that would be similar to A 

and B. For example, the 2x2 block identity matrix would look like 

[
[
0 0
0 0

] [
1 0
0 1

]

[
−1 0
0 −1

] [
0 0
0 0

]
],  

and the equation (I – A) in block matrices would look like 

[
[
 0
0 

] [
0 0
0 0

]

[
0 0
0 0

] [
 0
0 

]
] − [

[
0 0
0 0

] [
1 0
0 1

]

[
−1 0
0 −1

] [
0 0
0 0

]
]. 

Finally, we would need to find the determinant of the above matrix,  

det([
[
 0
0 

] [
−1 0
0 −1

]

[
1 0
0 1

] [
 0
0 

]
]). 

This is just an example because in reality, we will need to use mxm block matrices to 

try to solve this problem.  

 We will let A be the block matrix [
0 𝐼𝑚
𝐼𝑚 0

]. We already found the eigenvectors 

of the 2x2 version of A=[
0 1
1 0

] to be 1 and -1. Since the block matrix of 
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A is of the same components, the eigenvalues will be the same. However, for the block 

matrix, we will have m sets of 1 and m sets of -1 for our eigenvalues. This gives us  

 = 11, 12, 13, … , 1𝑚, −11, −12, −13, … , −1𝑚. 

 

Using these eigenvalues, we now need to use the equation Av=v to find which 

vectors, v, this equation will hold true for. We begin by letting v = [
𝑥𝑚

𝑦𝑚
], where 𝑥𝑚 

and 𝑦𝑚 are  m-dimensional column vectors. Plugging in our block matrix for A, 

vector v, and our first eigenvalue 1, we get 

[
0 𝐼𝑚
𝐼𝑚 0

] [
𝑋𝑚

𝑌𝑚
] = 1 [

𝑋𝑚

𝑌𝑚
] 

 

[
 𝐼𝑚𝑌𝑚

𝐼𝑚𝑋𝑚
]= [

𝑋𝑚

𝑌𝑚
] 

 

𝐼𝑚𝑌𝑚 = 𝑋𝑚 

𝑌𝑚 = 𝑋𝑚 

and 

𝐼𝑚𝑋𝑚 = 𝑌 

𝑋𝑚 = 𝑌𝑚 

so  𝑋𝑚 = 𝑌𝑚. 

 This means that both  𝑋𝑚 and 𝑌𝑚 are the same vector. This gives us vectors
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𝑉1 =

[
 
 
 
 
 
 
 

1
0
⋮

0𝑚

1
0
⋮

0𝑚]
 
 
 
 
 
 
 

, 𝑉2 =

[
 
 
 
 
 
 
 
 
 

0
1
0
⋮

0𝑚

0
1
0
⋮

0𝑚]
 
 
 
 
 
 
 
 
 

, … 𝑉𝑚 = 

[
 
 
 
 
 
 
 

0
⋮
0

1𝑚

0
⋮
0

1𝑚]
 
 
 
 
 
 
 

. 

 

Doing the same thing with our second eigenvalue, -1, we get 

 

[
0 𝐼𝑚
𝐼𝑚 0

] [
𝑋𝑚

𝑌𝑚
] = −1 [

𝑋𝑚

𝑌𝑚
] 

 

𝐼𝑚𝑌𝑚 = −𝑋𝑚 

𝑌𝑚 = −𝑋𝑚 

and  

𝐼𝑚𝑋𝑚 = −𝑌𝑚 

𝑋𝑚 = −𝑌𝑚.  

This gives us vectors 

𝑉1 =

[
 
 
 
 
 
 
 
−1
0
⋮

0𝑚

1
0
⋮

0𝑚]
 
 
 
 
 
 
 

, 𝑉2 =

[
 
 
 
 
 
 
 
 
 

0
−1
0
⋮

0𝑚

0
1
0
⋮

0𝑚]
 
 
 
 
 
 
 
 
 

, … 𝑉𝑚 = 

[
 
 
 
 
 
 
 

0
⋮
0

−1𝑚

0
⋮
0

1𝑚 ]
 
 
 
 
 
 
 

. 
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We have now found our eigenvectors when our eigenvalues are either 1 or -1.  

 Next, we will let A be the block matrix [
0 𝐼𝑚

−𝐼𝑚 0
] . We already found the 

eigenvectors of the 2x2 version of A=[
0 1

−1 0
] to be i and -i. Since the block matrix of 

A is of the same components, the eigenvalues will be the same. However, for the block 

matrix, we will have m sets of i and m sets of -i for our eigenvalues. This gives us  

 = 𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑚, −𝑖1, −𝑖2, −𝑖3, … , −𝑖𝑚. 

 

We will use the equation 𝐴𝑣 =  v to find the eigenvectors for which this equation 

holds true. Using our block matrix for A, and the vector [
𝑋𝑚

𝑌𝑚
] for v, we can find the 

eigenvector when our eigenvalue first is i. Plugging these into our equation, we get 

 

[
0 𝐼𝑚

−𝐼𝑚 0
] [

𝑋𝑚

𝑌𝑚
] = 𝑖 [

𝑋𝑚

𝑌𝑚
] 

𝐼𝑚𝑌𝑚 = 𝑖𝑋𝑚 

−𝐼𝑚𝑋𝑚 = 𝑖𝑌𝑚 

𝑌𝑚 = 𝑖𝑋𝑚 

−𝑋𝑚 = 𝑖𝑌𝑚 

This gives us vectors
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𝑉1 =

[
 
 
 
 
 
 
 
−𝑖
0
⋮

0𝑚

1
0
⋮

0𝑚]
 
 
 
 
 
 
 

,  𝑉2 =

[
 
 
 
 
 
 
 
 
 

0
−𝑖
0
⋮

0𝑚

0
1
0
⋮

0𝑚]
 
 
 
 
 
 
 
 
 

,  …  𝑉𝑚 =

[
 
 
 
 
 
 
 

0
⋮
0

−𝑖𝑚
0
⋮
0

1𝑚 ]
 
 
 
 
 
 
 

. 

Now, we go through the same method with our second eigenvalue, -i.  

[
0 𝐼𝑚

−𝐼𝑚 0
] [

𝑋𝑚

𝑌𝑚
] = −𝑖 [

𝑋𝑚

𝑌𝑚
] 

[
𝐼𝑚𝑌𝑚

−𝐼𝑚𝑋𝑚
] = [

−𝑖𝑋𝑚

−𝑖𝑌𝑚
] 

𝐼𝑚𝑌𝑚 = −𝑖𝑋𝑚 

−𝐼𝑚𝑋𝑚 = −𝑖𝑌𝑚 

so 

𝑌𝑚 = −𝑖𝑋𝑚 

and  

𝑋𝑚 = 𝑖𝑌𝑚. 

Using this, we get eigenvectors 

𝑉1 =

[
 
 
 
 
 
 
 

𝑖
0
⋮

0𝑚

1
0
⋮

0𝑚]
 
 
 
 
 
 
 

,  𝑉2 =

[
 
 
 
 
 
 
 
 
 

0
𝑖
0
⋮

0𝑚

0
1
0
⋮

0𝑚]
 
 
 
 
 
 
 
 
 

,  …  𝑉𝑚 =

[
 
 
 
 
 
 
 

0
⋮
0
𝑖𝑚
0
⋮
0

1𝑚]
 
 
 
 
 
 
 

.
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We have now found our vectors for our four different eigenvalues that we could 

possibly have. However, because finding a solution to our equation at this point 

would still be difficult, we are going to limit our matrices to block diagonal matrices 

only. Therefore, we need to find a block matrix D that is similar to our matrix A. We 

know that A will be similar to D if there exists a nonsingular matrix U such that  

  𝐷 =  𝑈−1𝐴𝑈.  

To do this, we will look at two equations for the two different eigenvalues, 1 and -1.  

𝐴[𝑣1 𝑣2 … 𝑣𝑚]= [𝑣1 𝑣2 … 𝑣𝑚][

1
1

⋱
1

] 

and 

𝐴[𝑢1 𝑢2 … 𝑢𝑚]= [𝑢1 𝑢2 … 𝑢𝑚][

−1
−1

⋱
−1

]. 

Combining the two, we get 

𝐴[𝑣1 𝑣2 … 𝑣𝑚  𝑢1 𝑢2 … 𝑢𝑚]= 

[𝑣1 𝑣2 … 𝑣𝑚  𝑢1 𝑢2 … 𝑢𝑚]

[
 
 
 
 
 
1

⋱
1

−1
⋱

−1]
 
 
 
 
 

. 

We know that the above block matrix, which would be D, is nonsingular because its 

determinant is (−1)𝑚. Solving the above equation for A, we get that 𝐴 = 𝑈𝐷𝑈−1 

which tells us that A is similar to D. We have now found a diagonal matrix, D, that is 

similar to A and can attempt to solve the equation DYD=YDY for some unknown Y.  
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 We need to solve the equation DYD=YDY using our known diagonal matrix 

for D. Plugging in our block matrix for D and our unknown matrix for Y, we get 

[
𝐼 0
0 −𝐼

] [
𝑌11 𝑌12

𝑌21 𝑌22
] [

𝐼 0
0 −𝐼

] = [
𝑌11 𝑌12

𝑌21 𝑌22
] [

𝐼 0
0 −𝐼

] [
𝑌11 𝑌12

𝑌21 𝑌22
]. 

However, for this project, we only want to look at commuting matrices, so we will 

only look at cases where DY=YD. We define the individual terms in the block matrix 

Y to be 

𝑌11 =

[
 
 
 
𝑥1

𝑥2

⋱
𝑥𝑚]

 
 
 
,   

𝑌12 =

[
 
 
 
𝑦1

𝑦2

⋱
𝑦𝑚]

 
 
 

, 

𝑌21 =

[
 
 
 
𝑧1

z2

⋱
z𝑚]

 
 
 
,  

𝑌22 =

[
 
 
 
𝑤1

𝑤2

⋱
𝑤𝑚]

 
 
 
 

 

So DY=YD is 

[
𝐼 0
0 −𝐼

] [
𝑌11 𝑌12

𝑌21 𝑌22
] = [

𝑌11 𝑌12

𝑌21 𝑌22
] [

𝐼 0
0 −𝐼

]. 

 

Solving for Y, we get
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[
𝑌11 𝑌12

−𝑌21 −𝑌22
] = [

𝑌11 −𝑌12

𝑌21 −𝑌22
]. 

So, 𝑌11 = 𝑌11 

𝑌12 = −𝑌12, 2𝑌12 = 0, so 𝑌12 = 0 

𝑌21 = 0 

and 

−𝑌22 = −𝑌22.  

Therefore we get  

𝑌 = [
𝑌11 0
0 𝑌22

] 

and we get  

𝑌11
2 = 𝑌11 

0= 0 

         0 = 0 

𝑌22
2 = −𝑌22.  

Because 𝑌11
2 = 𝑌11 and 𝑌22

2 = −𝑌22,  we know that 𝑌11 is a projection matrix and  

𝑌22 is a scewed projection matrix. Now we let   𝑌11 and 𝑌22 be 2x2 matrices.  

If we let  

𝑌11 = [
𝑎 𝑏
𝑐 𝑑

] 

and  

𝑌22 = [
𝑒 𝑓
𝑔 ℎ

], 
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then we can solve for the equations 𝑌11
2 = 𝑌11 and 𝑌22

2 = −𝑌22. Doing this, we find 

that for 𝑌11,  

𝑎 = 𝑎2 + 𝑏𝑐 

𝑏 = 𝑎𝑏 + 𝑏𝑑 

𝑐 = 𝑎𝑐 + 𝑐𝑑 

and  

𝑑 = 𝑑2 + 𝑏𝑐.  

For 𝑌22 we find that  

−𝑒 = 𝑒2 + 𝑓𝑔 

𝑓 = −𝑒𝑓 − 𝑓ℎ 

𝑔 = −𝑒𝑔 − 𝑔ℎ 

−ℎ = ℎ2 + 𝑓𝑔.  

Now, using what we know from quadratics, we can solve these equations to find our 

variables.  

 Using quadratics to solve for a, b, c, and d, we get four cases: 

Case 1: 𝑎 =
1+√1−4𝑏𝑐

2
, 𝑏 =

1

4𝑐
,  𝑐 =

1

4𝑏
,  𝑑 =

1+√1−4𝑏𝑐

2
. 

Case 2: 𝑎 =
1+√1−4𝑏𝑐

2
, 𝑏 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝑐 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝑑 =

1−√1−4𝑏𝑐

2
. 

Case 3: 𝑎 =
1−√1−4𝑏𝑐

2
, 𝑏 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝑐 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝑑 =

1+√1−4𝑏𝑐

2
. 

Case 4: 𝑎 =
1−√1−4𝑏𝑐

2
, 𝑏 =

1

4𝑐
,   𝑐 =

1

4𝑏
,   𝑑 =

1−√1−4𝑏𝑐

2
. 

We can use the same method to solve for e, f, g, and h. Doing this we again get four 
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cases similar to the ones above.  

Case 1: 𝑒 =
1+√1−4𝑓𝑔

2
, 𝑓 =

1

4𝑔
,  𝑔 =

1

4𝑓
,    ℎ =

1+√1−4𝑓𝑔

2
. 

Case 2: 𝑒 =
1+√1−4𝑓𝑔

2
, 𝑓 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝑔 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦, ℎ =

1−√1−4𝑓𝑔

2
. 

Case 3: 𝑒 =
1−√1−4𝑓𝑔

2
, 𝑓 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝑔 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦, ℎ =

1+√1−4𝑓𝑔

2
. 

Case 4: 𝑒 =
1−√1−4𝑓𝑔

2
, 𝑓 =

1

4𝑔
,  𝑔 =

1

4𝑓
, ℎ =

1−√1−4𝑓𝑔

2
. 

Additionally, we looked at cases where b, c, f, and g were equal to 0 using the 

same quadratic equations from before.  

When b = 0, we got four possible matrices as solutions.  

 1. [
0 0
0 0

] ,     2. [
0 0
𝑐 1

], 3.[
1 0
𝑐 0

], 4. [
1 0
0 1

]. 

When c = 0, we got 

 1. [
0 0
0 0

] ,     2. [
0 𝑏
0 1

], 3.[
1 𝑏
0 0

], 4. [
1 0
0 1

]. 

When f = 0  we got  

 1. [
0 0
0 0

] ,     2. [
0 0
𝑔 −1

], 3.[
−1 0
𝑔 0

], 4. [
−1 0
0 −1

]. 

Finally, when g = 0 we got  

 1. [
0 0
0 0

] ,     2. [
0 𝑓
0 −1

], 3.[
−1 𝑓
0 0

], 4. [
−1 0
0 −1

].  

These were all additional solutions to our equations.
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Chapter 5: Conclusion 
 

 Using methods from linear algebra, I was able to find many more solutions to 

the Yang-Baxter matrix equation, AXA=XAX. The solutions I found were for 

commuting solutions of a specific diagonal matrix similar to A. The solutions were: 

Case 1: 𝑎 =
1+√1−4𝑏𝑐

2
, 𝑏 =

1

4𝑐
,  𝑐 =

1

4𝑏
,  𝑑 =

1+√1−4𝑏𝑐

2
. 

Case 2: 𝑎 =
1+√1−4𝑏𝑐

2
, 𝑏 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝑐 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝑑 =

1−√1−4𝑏𝑐

2
. 

Case 3: 𝑎 =
1−√1−4𝑏𝑐

2
, 𝑏 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝑐 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝑑 =

1+√1−4𝑏𝑐

2
. 

Case 4: 𝑎 =
1−√1−4𝑏𝑐

2
, 𝑏 =

1

4𝑐
,   𝑐 =

1

4𝑏
,   𝑑 =

1−√1−4𝑏𝑐

2
, when solving for a, b, c, and d. 

The solutions when solving for e, f, g, and h, were  

Case 1: 𝑒 =
1+√1−4𝑓𝑔

2
, 𝑓 =

1

4𝑔
,  𝑔 =

1

4𝑓
,    ℎ =

1+√1−4𝑓𝑔

2
. 

Case 2: 𝑒 =
1+√1−4𝑓𝑔

2
, 𝑓 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝑔 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦, ℎ =

1−√1−4𝑓𝑔

2
. 

Case 3: 𝑒 =
1−√1−4𝑓𝑔

2
, 𝑓 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦,  𝑔 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦, ℎ =

1+√1−4𝑓𝑔

2
. 

Case 4: 𝑒 =
1−√1−4𝑓𝑔

2
, 𝑓 =

1

4𝑔
,  𝑔 =

1

4𝑓
, ℎ =

1−√1−4𝑓𝑔

2
. 

And the last four sets of solutions found were  

When b = 0,  

 1. [
0 0
0 0

] ,     2. [
0 0
𝑐 1

], 3.[
1 0
𝑐 0

], 4. [
1 0
0 1

]. 

When c = 0,  

 1. [
0 0
0 0

] ,     2. [
0 𝑏
0 1

], 3.[
1 𝑏
0 0

], 4. [
1 0
0 1

].
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When f = 0,  

 1. [
0 0
0 0

] ,     2. [
0 0
𝑔 −1

], 3.[
−1 0
𝑔 0

], 4. [
−1 0
0 −1

]. 

When g = 0 ,  

 1. [
0 0
0 0

] ,     2. [
0 𝑓
0 −1

], 3.[
−1 𝑓
0 0

], 4. [
−1 0
0 −1

].  

 

 Through this project, I was able to find many more additional solutions to the 

Yang-Baxter matrix equation, AXA=XAX. In my project, I only looked at diagonal 

commuting matrices, however, so there are many more solutions to be found. While 

this project did add to the number of known solutions to the Yang-Baxter matrix 

equation, it is most definitely still an open problem as all solutions have not yet been 

found since there is no one way to find all solutions. This problem will have to be 

studied further to find more solutions to this difficult matrix equation. 
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