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ABSTRACT 

TRI-STATE BOOLEAN SATISFIABILITY WITH COMMIT: 

AN EFFICIENT PARTIAL SOLUTION WITH HYPERLOGIC 

by Kevin Michael Byrd 

May 2011 

We present two implementation enhancements for the Boolean satisfiability 

problem and one visualization technique. The first is an expansion to a tri-nary logic 

system with a commit phase. The three states are (1) true, (2) false, and (3) don't care. 

We abstracted the operations of AND and OR to this hyperlogic system in a novel way. 

The commit phase works on one variable at a time and transitions values from temporary 

to permanent whenever possible. We viewed tri-state logic as a hyperspace above the 

binary (Boolean) logic. The second improvement is algorithmic. We modified the 

semantics of the classic 3 Conjunctive Normal Form Problem in order to develop a 

polynomial time algorithm for a simplified normal form - avoiding the need to examine 

all combinatoric limitations. In particular, we abandoned 3 CNF and used an 

unstructured left to right associativity. We do not claim that this new semantic is 

comprehensive. We do claim that it is simpler. Lastly, we introduced a node analogy to 

help us understand the algorithm itself. 
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CHAPTER I 

INTRODUCTION 

Problem Statement 

Boolean logic is a binary logic system consisting of two states for every variable

true and false [Boolean Logic, 2010]. Its operations are well known [Hans Reichenbach, 

194 7]. One of the fundamental open questions in Computer Science is whether P is equal 

to NP [Deolalikar, 2010]. The answer to this question can be coded in terms of the 

Boolean Satisfiability Problem. In this thesis we expand the problem to a Tri-nary 

Satisfiability Problem. For the tri-state logic we use herein, we have three states -true, 

false, and don't care (T/F/D). We cover these in Chapter III. 

Following [Linz, 2006, pg 346], "A ... Boolean constant or variable is one that 

can take on exactly two values, true or false, ... Boolean operators are used to combine 

Boolean constants and variables into Boolean expressions." Typically a Boolean Algebra 

includes at least the binary operation of AND and the unary operator NOT. It is also 

customary to work with the binary operator OR. For our purposes, then, a Tri-nary 

Algebra has three states and many more possible operations. In this work we consider 

only operations that form a hyperspace over Boolean Algebra. This topic is addressed 

further in Chapter II. 

In Chapter III, we discuss the partial satisfiability algorithm which may lead to a 

solution. We lay out a way to follow the program's logic algorithmically as well. In 

Chapter IV, we analyze the results and their significance. We conclude in Chapter V. The 

code is given in the Appendixes. 



CHAPTER II 

REVIEW OF RELATED MATERIAL 

Satisfiability 

A Boolean formula is said to be satisfiable if the variables in the formula can be 
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set in a way that makes the formula evaluate to True. A Boolean formula is said to be 

unsatisfiable if no such assignment is possible; for every combination of variables the 

formula evaluates to False. The term "satisfiability" is abbreviated to "SAT" and is used 

as a descriptor for formulas such as 3-SAT or 2-SAT; wherein, each clause in those 

particular formulas contain exactly 3 or 2 variables, respectively. [Boolean Satisfiability 

Problem, 2010]. 

To consider the SAT problem, we also need to introduce conjunctive normal form 

(CNF) and disjunctive normal form (DNF). The AND operator comprises conjunctives 

while the OR operator comprises disjunctives. Hence an expression of the form 

a! v a2 v a3 v ... v an 

is in CNF, where each ai term is a disjunctive clause such as 

ai = dl v d2 v ... v dm. 

Negations can be restricted to the disjunctive expression without loss of generality. 

It is straightforward to write a program to test whether a combination of variables 

exists that make the expression evaluate to True. However, the brute force, "easy," 

program will take exponential time to execute- on average. This is easy to see. For n 

Boolean variables, there are 2n possible combinations that may need to be tested. 

If we arrive at a combination that evaluates to True before we have tested all 

combinations, we may short circuit the execution and report that the expression is 

satisfiable. However, for unsatisfiable expressions, the entire suite of combinations must 
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be checked. If we had a computer that could implement a fully non-deterministic 

solution to this problem, then each path through that very broad graph would require only 

order n time. These two options form the fundamental open question in the discipline of 

Computer Science and a full solution to problem SAT is considered the holy grail of that 

discipline. 

Tri-State Logic 

In this thesis we examine a solution that lies in between these two extremes. Our 

approach does not always produce a conclusive answer. Indeed, occasionally, we get a 

False result. However, on average, it covers more than one path through the very broad 

non-deterministic graph by allowing us to combine some of the pathways using the third 

state in our tri-state logic system. For example, consider the very simple expression 

All possible combinations would require us to check 16 possible combinations (16 paths, 

all of which can be checked in parallel in a NDFSA). 
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Table 1 

The 16 Possible Combinations of 'e = a1 v az v a3 v a/ 

a1 a2 a3 ~ 

T T T T 

T T T F 

T T F T 

T T F F 

T F T T 

T F T F 

T F F T 

T F F F 

F T T T 

F T T F 

F T F T 

F T F F 

F F T T 

F F T F 

F F F T 

F F F F 

However, this problem can be compressed by the addition of a third "I don't care" 

logic state. In tri-nary logic we may consider Table 2. 



Table 2 

The Possible Combinations of 'e = a1 v a2 v a3 v a/ Using Tri-nary Logic 

T 

D 

D 

D 

This is our first simplification. 

D 

T 

D 

D 

D 

D 

T 

D 

D 

D 

D 

T 
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Our second simplification is a short-circuit operation. Variables are "born" in the 

D state. Only when we conclude that a variable must beT or F to enforce satisfiability do 

we commit a D to a T or F. So, for example, if we have 

then all variables must evaluate to True. 

Suppose we have a singleton. Then that singleton must be True. Here we commit 

that singleton to a True value. Should it appear later in the expression in another 

singleton that is negated, we are forced to exit the computation and conclude the 

expression is unsatisfiable. This short circuit allows us to save execution time. There are 

additional patterns that can be short-circuited as well. 

We also introduce the idea of betting which value is more likely to occur. 

Towards this end we introduce a variety of tri-state operations that can be incorporated in 

the algorithm that "predict" a final state for a variable. Consider, for example, the 

pessimistic OR operation defined below. Here we are essentially predicting that, when a 



variable is committed to its underlying T or F state, it will be False. We have no direct 

justifications for these assumptions. However, the mathematics in our hyperspace 

requires that we extend the OR, AND, and NOT operations fully and doing this requires 

and/or allows these types of operations. We utilize them, herein, because they add the 

possibility of further shortening our computational run time. 

6 



CHAPTER III 

TRI-STATE LOGIC WITH COMMIT 

Building Our Tri-State Logic with Commit 

7 

In this chapter we describe the tri-state logic with commit that we used to 

compute satisfiability to our simplified problem. Our tri-state logic approach is similar to 

the approach used in [Kullman, 2007] and [Frisch, Peugnieze]. 

In the tri-state logic used here, stateD is semantically like being both True and 

False in the sense that we don't care what its truth value is. 

In Table 3, we defined an Optimistic OR operator. Here, we assumed that from 

any OR operation that included aD State, the D would eventually become True. Table 4 

presents the Pessimistic OR operation; where, from any D state, we refused to assume 

that one of those states would eventually become True. Note that the projection of both 

operations onto binary logic is idempotent- we are working in a hyperspace. 

Table 3 

Optimistic OR (OOR) with Assumptions Shown in Bold 

Optimistic OR 

F 

T 

D 

F 

F 

T 

T 

T 

T 

T 

T 

D 

T 

T 

T 



Table 4 

Pessimistic OR (POR) with Assumptions Shown in Bold 

Pessimistic OR 

F 

T 

D 

F 

F 

T 

F 

T 

T 

T 

T 

D 

F 

T 

F 
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Other hyper-OR definitions are possible. The above tables, for example, do not 

carry the D state forward. Our Irresolute OR (lOR) is an operation that does carry the D 

state forward. This is defined in Table 5. 

Table 5 

Irresolute OR (/OR) with Assumptions Shown in Bold 

Irresolute OR 

F 

T 

D 

F 

F 

T 

F 

T 

T 

T 

T 

D 

F 

T 

D 

For the work here, we utilized an optimistic OR, where the table can be reduced to 

the two combinations that we would encounter during our simplified Boolean 

Satisfiability problem: 

Not F (ie. Tor D) 

F 

v 

v 

Not F (ie. Tor D) -> T -

F -> F. 



We can also extend the binary AND to tri-state logic in many ways. Tables 6 and 

7 define an Optimistic AND (OAND) and a Pessimistic AND (PAND). 

Table 6 

Optimistic AND ( OAND) with Assumptions Shown in Bold 

Optimistic AND 

F 

T 

D 

Table 7 

F 

F 

F 

F 

T 

F 

T 

T 

D 

F 

T 

T 

Pessimistic AND ( PAND) with Assumptions Shown in Bold 

Pessimistic AND 

F 

T 

D 

F 

F 

F 

F 

T 

F 

T 

F 

D 

F 

F 

F 

We can also extend the NOT operation to tri-state logic. Here we have an 

idempotent third state, although other selections are possible. 

NOT T=F, 

NOT F=T, 

NOT D=D. 

9 

A NOT operation becomes a no-op for the D state. Another possibility would be 

to switch from pessimistic to optimistic (or vice-versa) when encountering a NOT D. For 



example, let DT and DF represent an optimistic and a pessimistic view of stateD, 

respectively. Then !DT = DF, and !DF = DT. 

Simplified Semantics 

In this section of Chapter III we define the semantics of our simplified 

satisfiability problem examined in this paper. Computation proceeds from left to right. 

The input for the software program we developed is consumed left to right. Also, each 

prefix is linked to its immediate right adjacent neighbor. For example, a series of input 

OR's, A VB V C, processed from left to right, is equivalent to (A VB) " (B V C). A 

series of input AND's such as A" B " C is equivalent to (A" B) " (B "C). 

Consider the following expression: 

(A VB)" (B "C)" (C V D)" (D" E). 

Now consider each parenthesized 2-tuple in our conjunctive and normalized 

formula as a unique node. This allows us to view the above expression as 

(Nodel)" (Node2)" (Node3)" (Node4). 

10 

(FYI. Our program would encode this expression in the input form A VB " C V D " E.) 

Our program would then formulate the following pairs: 

Node 1:= Varl =A Ops = Optimistic OR (OOR) Var2 = B 

Node 2:= Varl = B Ops =Optimistic AND (OAND) Var2 = C 

Node 3:= Varl = C Ops =Optimistic OR (OOR) Var2 = D 

Node4:= Varl = D Ops = Optimistic AND (OAND) Var2 =E. 

For our initial condition, all variables would begin in state D, the "don't care" 

state. Our algorithm would then proceed from left to right, stopping at each node to 

check if we could modify any of the variable's states. The 2-tuples are checked to 
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determine if one or both variables require a commitment to a particular state (once a 

variable is committed, it can never be changed) or if nothing requires attention. If we run 

into a node where the 2-tuple can not be made True, the algorithm halts its progress, 

explains where the expression possibly becomes unsatisfiable and exits. If the algorithm 

is able to step from node 1 to node n, then the expression is said to be possibly satisfiable. 

Visualization 

In this section we describe our binary "running satisfaction" visualization tool 

which we refer to as a ladder representation. Our illustration views our passage through 

the expression as successively larger prefix satisfiability expressions. 

Consider the input string 

A v B v c 1\ D 1\ B v D 

which is equivalent to the Boolean expression 

(A VB)" (B V C)" (C" D)" (D" B)" (B V D). 

The semantics of this expression, broken down into our 2-tuple nodes, is 

Nodel:= A v B, 

Node2:= B v C, 

Node3:= c 1\ D, 

Node4:= D 1\ B, 

NodeS:= B v D. 

Where, again, the Optimistic AND (OAND) and Optimistic OR (OOR) are used. 

Begin by assigning all variables the D state value. Our algorithm would produce 

the following values as it traversed from node to node, working left to right. 
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Table 8 

Variable Values as the Algorithm Traverses the Nodes From Left to Right of the Input 

'AvBvC''D"BvD' 

Linear Looping A B c D 
After Node= 1 D(T) D(T) D D 
After Node= 2 D(T) D(T) D(T) D 
After Node = 3 D(T) D(T) T* T* 
After Node = 4 D(T) T* T* T* 
After Node= 5 D(T) T* T* T* 

* indicates that the value for that variable has been committed 

D(T) indicates that the value for that variable is state D and is Optimistic 

The final answer obtained is: 

A= Don't Care state (Optimistic= True), 

B =True, 

C =True, 

D =True. 

where B, C, and D have been committed to a specific value and A is still in our tri-nary 

state of "don't care I doesn't matter." 

Now consider a second expression that contains a NOT operator: 

A v B v c 1\ D 1\ NOTA 

which is equivalent to the Boolean expression 

(A VB) " (B V C)" (C " D)" (D " NOT A). 

This has a ladder representation of: 

Nodel:= A v B 

Node2:= B v c 

Node3:= c 1\ D 

Node4:= D 1\ NOTA 
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Table 9 shows how the above expression will be processed. 

Table 9 

Variable Values as the Algorithm Traverses the Nodes Left to Right of the Input 

'AvBvC"D"NOT A' 

Linear Looping A B c D 
After Node= 1 D(T) D(T) D D 
After Node= 2 D(T) D(T) D(T) D 
After Node = 3 D(T) D(T) T* T* 
After Node = 4 F* D(T) T* T* 

* means the value for that variable has been committed 

D(T) means the value for that variable is state D and is Optimistic 

The final answer obtained is 

A= False, 

B =Don't Care state (Optimistic= True), 

C =True, 

D =True, 

where A, C, and D have been committed to a specific value and B is still in our tri-nary 

state of "don't care I doesn't matter." 

Input Processing 

If the given expression is not initially linked (it does not have the linked form for 

all adjacent tuples), we must modify the expression before we can encode it as input for 

our algorithm. 

For example, a nicely linked expression that would not need to be converted 

might be (A VB) " (B " C). A not nicely linked expression might be (A V B) " (C " D). 

Expressions like (A V B) " (C " D) must be re-written using an artificial variable 

which we call E. E begins with a committed True value. When pre-processing is 



complete, our encoded input file represents the 2CNF/SAT problem with the following 

linked structure: 

(A v B) A (B v E) A (E v C) A (C A D). 

We can map any 2CNF/SAT formula into our input encoding. 

14 

We can take any arbitrary 2CNF I 2CF expression and rewrite the expression into 

our algorithm's needed encoded input by adding these 'linking' variables that are initially 

committed the value True. 



CHAPTER IV 

ANALYSIS OF DATA 

Analysis 

We have taken the Boolean Logic of True and False and have added a third state 

D. We call it the "I don't care" or "It doesn't matter" state. We now have tri-state logic 

with { T, F, D} . We are not the only researchers utilizing tri-state logic for this problem 

[Fey et al., 2006], but there is not extensive literature on the subject. For example, we 

looked for previously defined operators to fit this application but found only those 

currently used in electronics. The definitions given here are our own. 

15 

We point out that after testing, a subset of input expressions was found that has 

the potential to yield a False Positive result. These expressions were of the form (A VB) 

"···" (-A" X)" ... "( -B "X) where variable X can be any variable that is not A or B. 

(This expression is not satisfiable; however, our algorithm claimed it is satisfiable). 

Clearly, because the algorithm did not have a backtracking utility, expressions of 

the above form were not able to be evaluated correctly. However, we believe that future 

work may alleviate these subsets of problems by pre-modifying the expression into a 

valid form before running our SAT program. 

Also, another subset of input expressions was found that could yield a False 

Positive result. These expressions were of the form (A VB)" ... "( -A V-B) where the 

expression is in 2 Conjunctive Normal Form. (This expression is not satisfiable; 

however, our algorithm claimed it is satisfiable). Again, future work may be able to 

modify these expressions a-priori to alleviate this issue. 



CHAPTERV 

SUMMARY 

Future Work 

For future work we would like to examine other subsets of the 3CNF/SAT 

equations. For example, if we have the expression (3vl)" (lv-2)" (-2v4)" (4vl), we 

may be able to convert this to (1)" (-2v3v4)" (-2v4). 

16 

We noticed that when we encoded expressions in reverse order many of the False 

Positives were caught by the algorithm; however, it introduced a new subset of False 

Positives that were a mirror of the original expression's False Positives. For future work 

we would like to study the subsets of expressions satisfied by left to right and right to left 

processing to discover the structure of the expressions not addressable with only one 

pass, but addressable with left to right and right to left processing. 

Third we would like to examine the orderings for our 2CNF to study when it is 

possible to compensate for backtracking with a better ordering. For example, (A VB)" 

(NOT B "C)" (NOT A" D) would give a False Positive result and thus would be 

beneficial to have backtracking; however, reordering the two-tuples as (NOT A" D) " 

(NOT B "C)" (A VB) would give the correct result of unsatisfiable and would not 

require backtracking. 

For the present, however, we have presented a polynomial time algorithm that 

solves some SAT problems, and leaves you with additional information (the D state) 

whenever possible. 



APPENDIX A 

MYPROGRAM.CPP (CONTAINS MAIN) 

/******************************************************** 

Author: 

Purpose: 

Usage: 

Kevin Byrd 

To attempt to build a data structttre that runs in 

Polynomial time and can determine 

whether a Boolean formula is satisfiable. 

argvfO"I = myProgram.exe 

argv[ 1] = file you wish to open 

=defaults to equation.txt 

argv[2] = user choice if PrintSpindle() 

and PrintTable() functions are 

called 

= default is 0 (or True) 

********************************************************/ 

# include <iostream> 

#include <iornanip> 

#include <fstrearn> 

#inc! ude <set> 

#include <algorithm> 

#include "spindle.h" 

using namespace std; 

17 



int main(int argc, char* argv[]) 

char *filename; 

int choice = 0; 

if(argc >= 2) 

filename= argv[l]; 

else 

filename = "equation.txt"; 

if( argc == 3) 

choice= atoi(argv[2]); 

ifstream inFile(filename); 

if(!inFile) 

cout << "ERROR - cannot open my Equation. txt for read." << endl; 

cout << "Program will now terminate." << endl; 

retum(O); 

//Begin reading in data from file 

//We assume the file is in the CORRECT format 

18 



int pointl , point2, total; 

char ops; 

inFile >> total; 

inFile >> pointl; 

inFile >> ops; 

inFile >> point2; 

spindle *mySpin =new spindle(pointl , ops, point2, total); 

while(! inFile.eof()) 

inFile >> pointl ; 

inFile >> ops; 

inFile >> point2; 

mySpin->lnsert(pointl , ops, point2); 

inFile.close(); 

//Once tl1e spindles are loaded into the spoke, we spin it 

III used spindles, spoke. and spinning to remind myself 

//of how cloth threads were made back in the day and in a 

//sense my algorithm takes the data and attempts to spin it 

19 



//into a hopefully satisfiable outcome 

mySpin->Begin(); 

mySpin->PrintSpindle(choice); 

mySpin->PrintTrTable( choice); 

return(tme); 

20 



#include <iostream> 

#include <iomanip> 

#include <fst:rcam> 

#include "spindlc.h" 

using namespace std; 

APPENDIXB 

SPINDLE.CPP 

spindle::spindle(int pl , char op, int p2, int total) 

struct pNode *newNode =new pNode; 

if(pl < 0) 

else 

newNode->pointl = pl * -1 ; 

newNode->pl_isNot = true; 

newNode->pointl = pl ; 

newNode->pl_isNot = false; 

if(p2 < 0) 

2 1 



else 

newNode->point2 = p2 * -1 ; 

newNode->p2_isNot = true; 

newNode->point2 = p2; 

newNode->p2_isNot = false; 

newNode->andOr = op; 

newNode->next = NULL; 

newNode->previous = NULL; 

head= newNode; 

truth_ Table= new point[ total+ 1] ; 

totalNumOflndexes = total; 

truth_Table[p1].value = false; 

truth_ Table[p 1] .is_both = false; 

truth_ Table[p 1] .is_set = false; 

truth_Table[p2].value = false; 

truth_ Table[p2] .is_both = false; 

22 



truth_ Table[p2] .is_set = false; 

isSAT = true; 

int spindle:: Insert(int p1, char op, int p2) 

struct pNode *new Node= new pNode; 

if(p1 < 0) 

else 

newNode->point1 = p1 * -1; 

newNode->p1_isNot =true; 

newNode->point1 = p1 ; 

newNode->p1_isNot = false; 

if(p2 < 0) 

newNode->point2 = p2 * -1; 

newNode->p2_isNot = true; 

23 



else 

newNode->point2 = p2; 

newNode->p2_isNot = false; 

newNode->andOr = op; 

newNode->next = NULL; 

struct pNode *current= head; 

if(current != NULL) 

while(current->next !=NULL) 

current= current->next; 

current->next = newNode; 

newNode->previous =current; 

truth_ Table[ new Node->point 1]. value = false; 

truth_Table[newNode->pointl].is_both =false; 

truth_Table[newNode->pointl] .is_set = false; 

truth_Table[newNode->point2].value = false; 

24 



truth_Table[newNode->point2].is_both = false; 

truth_Table[newNode->point2].is_set = false; 

return( true); 

int spindle: :Begin() 

struct pNode *current = head; 

if(current !=NULL) 

char currentOps = current->andOr; 

int p1 = current->point1 ; 

int p2 = current->point2; 

//If point1 is a NOT 

if(current->p1_isNot) 

truth_Table[p1] .value =false; 

truth_ Table[p 1] .is_both = true; 

truth_ Table[p 1] .is_set = fal se; 

//If point! 

else 

25 



truth_Table[pl] .value =true; 

truth_Table[pl].is_both =true; 

truth_ Table[p 1] .is_set = false; 

mySolution = new set<int>; 

mySolution->insert(current->pointl); 

//We now check the initial condition of our pNode chain 

//Our initial condition is an OR statement 

if(currentOps == '*') 

//If point2 is a NOT 

if(current->p2_isNot) 

if(! truth_ Table[p2] .is_set) 

truth_ Table[p2]. value = false; 

truth_ Table[p2] .is_both = true; 

truth_Table[p2].is_set =false; 

26 



//If point2 

else 

if(! truth_ Tab le[p2]. is_set) 

truth_Table[p2] .value = true; 

truth_ Table[p2] .is_both = true; 

truth_ Table[p2].is_set = false; 

if(truth_Table[pl].value ==true && current->pl _isNot && 

truth_Table[p2].value == true && current->p2_isNot) 

cout << endl << "******************" << endl; 

cout << "No solution can be found- An OR statement 

fail . " << endl; 

cout << "("; 

if(current->pl_isNot) 

cout << "-"; 

cout << pl << " " << currentOps << " "; 

if(current->p2_isNot) 

cout << "-''; 

cout << p2; 

cout << ")" << endl; 

cout << "******************" << endl << endl; 
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isSAT = fal se; 

return(O); 

else if(truth_Table[pl] .value ==false && !current->pl_isNot && 
truth_Table[p2].value ==false && !current->p2_isNot) 

cout << endl << "******************" << endl; 

cout << "No so lution can be found - An OR statement 
fails." << endl; 

cout << "("; 

if(current->pl_isNot) 

cout << "- "; 

cout << pl << " " << currentOps << " "; 

if(current->p2_isNot) 

cout << "- "; 

cout << p2; 

cout << ")" << endl; 

cout << "******************" << endl << endl; 

isSAT = false; 

retum(O); 

else 

mySolution->insert(p2); 



==true) 

//Our initial condition is an AND statement 

else if(currentOps == '&') 

//If point2 is a NOT 

if(current->p2_isNot) 

29 

//If point2 has been used before and is_set and value is uue 

if(truth_Table[p2].is_set == true && truth_Table[p2] .value 

cout << endl << "******************" << endl; 

cout <<"No solut ion can be found- A point became 

both true and false." << endl; 

cout << "("; 

if( current->p l_isNot) 

cout << "-"; 

cout << pl <<" " << currentOps << " "; 

if(current->p2_isNot) 

cout << "-"; 

cout << p2; 

cout << ")" << endl; 

cout << "******************" << endl << endl ; 

isSAT = false; 

return(O); 



==true) 

//If point2 can adapt to the AND statement 

else 

//If point2 

else 

truth_Table[p2].value = false; 

truth_Table[p2].is_both = false; 

truth_Table[p2].is_set = tme; 
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//If point2 is set in stone as false but it is not negative 

if(truth_Table[p2].value == false && truth_Table[p2].is_set 

cout << endl << "********~'*********" << endl ; 

cout << "No solution can be found- A point became 

both true and false." << endl; 

cout << "("; 

if( current->p l_isNot) 

cout << "-"; 

cout << pl << " " << currentOps << " "; 

if( current->p2_isN ot) 

cout << "-"; 

cout << p2; 

cout << ")" << endl; 



endl ; 

else 

cout << "******************" << endl << endl; 

isS AT = false; 

retum(O); 

truth_Table[p2].value = tiue; 

truth_Table[p2].is_both = false; 

uuth_Table[p2].is_set = true; 

//If point1 is false and pos itive 

if(truth_Table[pl].value == false && !current->pl_isNot) 

cout << endl << "******************" << endl; 

cout << "No solution can be found - An AND fails." << 

cout << "("; 

if( current->p l_isNot) 

cout << ~~- ~~ ; 

cout << pl << II II << currentOps << II II ; 

if(current->p2_isNot) 

cout << "- ~~; 
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endl; 

cout << p2; 

cout << ")" << endl; 

cout << "******************" << endl << endl; 

isSAT = false; 

return(O); 

//If pointl is true and negative 

else if(truth_Table[pl].value ==true && current->pl_isNot) 

cout << endl << "******************" << endl; 

cout << "No solution can be found- An AND fails." << 

cout << "("; 

if( current->p l_ isNot) 

cout << "-"; 

cout << pl <<" " << currentOps << " "; 

if( current->p2_isN ot) 

cout << "-"; 

cout << p2; 

cout << ")" << endl; 

cout << "******************" << endl << endl ; 

isSAT = false; 

retum(O); 
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//Else we may have a solid AND statement!! 

else 

if(truth_Table[pl].is_both ==true) 

truth_Table[pl].is_both =false; 

truth_Table[pl].is_set = tme; 

mySolution->insert(p2); 

//If we have more spindles to cascade - we continue 

if(current->next !=NULL) 

Continue( current->next) ; 

return( true); 

int spindle: :Continue(struct pNode *current) 

char currentOps = current->andOr; 
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int pl = current->pointl; 

int p2 = current->point2; 

//If our operation is an OR statement 

if(currentOps == '*') 

//If point2 is a NOT 

if( current ->p2_isNot) 

//If our point2 value is not set in stone 

if(!truth_Table[p2].is_set) 

//Ifpoint2 

else 

truth_Table[p2].value =false; 

truth_Table[p2].is_both =true; 

truth_Table[p2].is_set =false; 

//If our point2 value is not set in stone 

if( !truth_ Table[p2] .is_set) 

truth_ Table[p2] . value = true; 

truth_Table[p2].is_both = tiue; 
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truth_ Table[p2] .is_set = false; 

//Check for valid OR statement 

//If both points are tme but both are negative 

if(truth_Table[pl].value == true && current->pl_isNot && 

truth_Table[p2].value == tme && current->p2_isNot) 

cout << endl << "******************" << endl; 

cout << "No solution can be found - An OR statement fails.'' << 

endl; 

cout << "("; 

if( current->p l_isNot) 

cout << "-"; 

cout << pl << " " << currentOps << " "; 

if( current->p2_isNot) 

cout << "- "; 

cout << p2; 

cout << ")" << endl; 

cout << "******************" << endl << encll ; 

isSAT = false; 

retum(O); 

//If both points are false and positive 
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else if(truth_Table[pl].value == false && !current->pl_isNot && 
truth_Table[p2].value ==false && !current->p2_isNot) 

cout << endl << "'~*****************" << endl; 

cout << "No solution can be found - An OR statement fails." << 
end I; 

cout << "("; 

if( current->p l _isNot) 

cout << "-"; 

cout << pl << " " << currentOps << " "; 

if(current->p2_isNot) 

cout << "-"; 

cout << p2; 

cout << ")" << endl; 

cout << "******************" << endl << endl; 

isSAT = false; 

return(O); 

//Else we may have a true OR statement 

else 

mySolution->insert(p2); 

//Else our operation is an AND statement 

else if(currentOps == '&') 

36 



true) 

fails." << endl; 

if( current->p2_isN ot) 

//If point2 is set in stone and is true 

if(truth_Table[p2].is_set ==true && truth_Table[p2].value == 

cout << endl << "******************" << endl; 

cout << "No solution can be found - An AND statement 

cout << "("; 

if( current->p l_isNot) 

cout << "- "; 

cout << pl <<" "<< currentOps <<" "; 

if( current->p2_isN ot) 

cout << "-"; 

cout << p2; 

cout << ")" << endl; 

cout << "******************" << endl << endl; 

isSAT = false; 

retum(O); 

//Else point2 can adapt to the AND statement 

else 
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else 

false) 

fail s. II << endl; 

if(truth_Table[p2].is_set == false) 

truth_Table[p2].value =false; 

truth_Table[p2].is_both =false; 

truth_ Table[p2] .is_set = true; 

//If point2 is set in stone and is false 

if(truth_ Table[p2] .is_set == true && truth_ Table[p2]. value == 

cout << endl << "****************** ~~ << endl; 

cout << "No solution can be found - An AND statement 

cout << 11

(

11

; 

if( current->p l_isNot) 

cout << ~~-"; 

cout << pl << " II << currentOps << " "; 

if( current->p2_isNot) 

cout << "-"; 

cout << p2; 

cout << ")" << endl; 

cout << "******************" << endl << endl; 
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isSAT = false; 

return(O); 

//Else point2 can adapt to the AND statement 

else 

if(! truth_ Tab le[p2]. is_set) 

truth_Table[p2].value =true; 

truth_Table[p2].is_both =false; 

truth_ Table[p2] .is_set = true; 

//Check for valid AND statement 

//If point I is false and pos it ive 

if(truth_Table[pl].value ==false && !current->pl_isNot) 

cout << endl << "******************" << endl; 

cout << "No solution can be found - An AND statement 

fails." << endl; 

cout << "("; 

if( current->p l_isNot) 
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cout << "-"; 

cout << pl << " II << currentOps << " "; 

if(current->p2_isNot) 

cout << "- "; 

cout << p2; 

cout << ")" << endl; 

cout << "******************" << endl << endl; 

isSAT = false; 

return(O); 

//If pointl is t1·ue and negative 

else if(truth_Table[pl].value ==true && current->pl_isNot && 
truth_ Table[p 1] .is_both == false) 

cout << endl << ~~******************" << endl; 

cout << "No solution can be found- An AND statement 
fai ls. II << endl; 

cout << "("; 

if( current->p l_isNot) 

cout << ~~ - " ; 

cout << pl << "II << currentOps << II "; 

if( current->p2_isNot) 

cout << ~~-" ; 

cout << p2; 

cout << 11
)

11 <<end!; 
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cout << "******************'' << endl << endl; 

isS AT = false; 

return(O); 

//Else we may have a solid AND statement! ! 

else 

if(truth_Table[pl].is_both ==true) 

if( current->p l _isN ot) 

else 

truth_Table[p1].value =false; 

truth_Table[p1].is_both = false; 

truth_ Table[p 1] .is_set = true; 

truth_Table[p1].value = true; 

truth_Table[p1].is_both =false; 

truth_ Table[p 1] .is_set = true; 

mySolution->insert(p2); 
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//If we have more spindles to cascade- we continue 

if(current->next !=NULL) 

Continue( current->next); 

/************************************************************** 

CURRENTLY NOT .N'EEDED 

//Else we have reached the end- we check the satisfyability 

//else 

II CheckSolution(); 

***************************************************************/ 

retum(l); 

int spindle::TraceBack(pNode *current) 

if(current->previous !=NULL) 

current= current->previous; 

if(current->andOr == '*') 

if(truth_Table[current->pointl].value =true && !current->pl_ isNot) 
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cout << "TraceBack Complete- Found valid Or Statement at: " 

<< current->point1 << " with " << current->point2 << endl; 

if( truth_ Table[ current->point 1] .is_set == false) 

truth_Table[current->pointl].is_set = true; 

if(truth_Table[current->point1].is_both == true) 

truth_ Table[ current->pointl] .is_both = false; 

return(l); 

else if(truth_Table[current->point1].value = false && current->p1_isNot) 

cout << "TraceBack Complete - Found valid Or Statement at: II 

<< current->pointl << " with II << current->point2 << endl; 

if( truth_ Table[ current->point 1]. is_set == false) 

truth_Table[current->point1].is_set =true; 

if( truth_ Table[ current->point1].is_both == true) 

truth_ Table[ current->pointl] .is_both = false; 

return(l); 

else if(truth_Table[current->point2].value = true && !current->p2_isNot) 

cout << "TraceBack Complete - Found valid Or Statement at: II 

<< current->pointl << " with " << current->point2 << endl; 

if( truth_ Table[ current->point2] .is_set == false) 

truth_ Table[ current->point2] .is_set = true; 

if( truth_ Table[ current->point2] .is_both == true) 



else 

truth_Table[current->point2].is_both =false; 

retum(l); 
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else if(truth_Table[current->point2].value = false && current->p2_isNot) 

else 

cout << "TraceBack Complete - Found valid Or Statement at: II 

<< current->pointl << " with II << current->point2 << endl; 

if( truth_ Table[ current->point2].is_set == false) 

truth_Table[current->point2].is_set =true; 

if(truth_Table[current->point2].is_both ==true) 

truth_Table[current->point2].is_both = false; 

retum(l); 

TraceBack( current); 

TraceBack( current); 

retum( l ) ; 

int spindle::TraceForward(pNode *current) 

if(current->next !=NULL) 
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current = current->next; 

if(current->andOr == '*') 

if(truth_Table[current->pointl].value =true && !current->pl_isNot) 

cout << IITraceForward Complete- Found valid Or Statement at: II 

<< current->pointl << II with II << current->point2 << endl; 

if(truth_Table[current->pointl].is_set == false) 

truth_Table[current->pointl].is_set =true; 

if(truth_Table[current->pointl].is_both ==true) 

truth_Table[current->pointl].is_both = false; 

return( I); 

else if(truth_Table[current->pointl].value =false && current->pl_ isNot) 

cout << IITraceForward Complete - Found valid Or Statement at: II 

<< current->pointl << II with II << current->point2 << endl; 

if(truth_Table[current->pointl].is_set == false) 

truth_Table[current->pointl].is_set =true; 

if( truth_ Table[ current->point 1] .is_both == true) 

truth_Table[current->pointl].is_both = false; 

retum(l); 

else if(truth_Table[current->point2].value = true && !current->p2_isNot) 



else 
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cout << "TraceForwarcl Complete - Found valid Or Statement at: " 

<< current->pointl << " with " << current->point2 << endl; 

if(truth_Table[current->point2].is_set ==false) 

truth_Table[current->point2].is_set =true; 

if(truth_Table[current->point2].is_both ==true) 

truth_Table[current->point2].is_both =false; 

return(l); 

else if(truth_Table[current->point2].value =false && current->p2_isNot) 

else 

cout << "TraceForward Complete- Found valid Or Statement at: " 

<< current->pointl << " with " << current->point2 << endl; 

if( truth_ Table[ current ->point2] .is_set == false) 

truth_ Table[ current->point2].is_set = tme; 

if( truth_ Table[ current->point2] .is_both == tme) 

truth_ Table[ current->point2] .is_both = false; 

return(l); 

TraceForward( current); 

TraceForward( current) ; 



retum(l); 

int spindle::CheckSolution() 

//Not implemented yet as 1 may have discovered that my algorithm 

//Doesn't even need th is!! Because if there are no kick outs from 

/!The Begin() and Continue() functions. then the equation lS BOOLEAN 

//SATISFY ABLE. 

return(l); 

void spindle::PrintSpindle(int choice) 

if( choice== 1) 

struct pNode *current = head; 

if( current ! = NULL) 

cout << endl << endl; 

while(current->next !=NULL) 
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cout << IIPointl =II; 

if( current->p l_isNot) 

cout <<II -~~ << setw(2) << current->pointl; 

else 

cout << setw(4) << current->pointl; 

cout << II Ops = II << current->andOr; 

cout << II Point2 = "; 

if(current->p2_isNot) 

cout <<II -~~ << setw(2) << current->point2; 

else 

cout << setw(4) << current->point2; 

cout << endl; 

current= current->next; 

cout << 11Pointl =II; 

if( current->p l_isN ot) 

cout <<II -~~<< setw(2) << current->pointl; 

else 

cout << setw(4) << current->pointl; 

cout << II Ops = "<< current->andOr; 

cout << II Point2 =II; 

if(current->p2_isNot) 

cout << " -" << setw(2) << current->point2; 
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else 

cout << setw(4) << current->point2; 

cout << endl << endl; 

void spindle: :PrintTrTable(int choice) 

if(choice == 1) 

cout << endl << endl; 

for(int x = 1; x < totalNumOflndexes + 1; x++) 

cout << setw(2) << x << " = "; 

if(truth_Table[x].is_both ==true) 

cout << "True and False"; 

else if(truth_Table[x].value == false) 

cout << "False"; 

else if(truth_Table[x].value == true) 

cout << "True"; 

cout << endl; 
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cout << endl; 

cout << endl; 

if( isS AT) 

cout << "It was fOLmd to be Satisfiable"; 

else 

cout << "It was fo Lmd to be unSatisfiable"; 

cout << endl; 

spindle: :-spindle() 
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#ifndef SPINDLE_H 

#define SPINDLE_H 

#include <set> 

#include <algorithm> 

using namespace std; 

APPENDIXC 

SPINDLE.H 

1/A point is simple a variable A,B.etc ... 

struct point 

} ; 

bool value; 

bool is_both; 

bool is_set; 

II A pNocle is a spoke in the spindle 

//It holds two points and an operation that 

//Binds the two points together 

struct pNode 

int pointl ; 

boo! p l_isNot; 
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} ; 

char andOr; 

int point2; 

bool p2_isNot; 

stmct pNode *next; 

struct pNode *previous; 

/!I'he main class that drives the programs goals 

/******************************* 

Insert() inse11s a spoke/pNode into the spindle 

Begin() starts the spinning 

Continue() is used to continue spinning 

TraceBack() and Forward() are not used 

CbeckSolution() is not needed nor used 

PrintSpindle() and TrTablc() (Truth Table) are for output 

[ use a head pointer for my spokes/pNodes 

I have a dynamic table of points (variables) that 

are index for Big 0(1) speed!! 

I keep track of my indexes with totalNumOflndexes 

I use mylter because I usc a set of integers saved into a 

solution set. 

Of note. mySolution isn't necessarily needed at this time. 

*******************************/ 
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class spindle 

public: 

} ; 

#endif 

spindle(int, char, int, int); 

int Insert(int, char, int); 

int Begin(); 

int Continue(struct pNode *); 

int TraceBack(struct pNode *); 

int TraceForward(struct pNode *); 

int CheckSolution(); 

void PrintSpindle(int); 

void PrintTrTable(int); 

- spindle(); 

struct pNode *head; 

struct point *truth_ Table; 

int totalNumOflndexes; 

bool isSAT; 

set<int> *mySolution; 

set<int>:: iterator mylter; 
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