
The University of Southern Mississippi The University of Southern Mississippi

The Aquila Digital Community The Aquila Digital Community

Master's Theses

Spring 5-2011

Tri-State Boolean Satisfiability with Commit: An Efficient Partial Tri-State Boolean Satisfiability with Commit: An Efficient Partial

Solution Using Hyperlogic Solution Using Hyperlogic

Kevin Michael Byrd
University of Southern Mississippi

Follow this and additional works at: https://aquila.usm.edu/masters_theses

Recommended Citation Recommended Citation
Byrd, Kevin Michael, "Tri-State Boolean Satisfiability with Commit: An Efficient Partial Solution Using
Hyperlogic" (2011). Master's Theses. 421.
https://aquila.usm.edu/masters_theses/421

This Masters Thesis is brought to you for free and open access by The Aquila Digital Community. It has been
accepted for inclusion in Master's Theses by an authorized administrator of The Aquila Digital Community. For
more information, please contact aquilastaff@usm.edu.

https://aquila.usm.edu/
https://aquila.usm.edu/masters_theses
https://aquila.usm.edu/masters_theses?utm_source=aquila.usm.edu%2Fmasters_theses%2F421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/masters_theses/421?utm_source=aquila.usm.edu%2Fmasters_theses%2F421&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aquilastaff@usm.edu

The University of Southern Mississippi

TRI-STATE BOOLEAN SATISFIABILITY WITH COtvfMIT:

AN EFFICIENT PARTIAL SOLUTION USfNG HYPERLOGIC

by

Kevin Michael Byrd

A Thesis
Submitted to the Graduate School

of The University of Southern Mississippi
in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Approved:

May 20 11

ABSTRACT

TRI-STATE BOOLEAN SATISFIABILITY WITH COMMIT:

AN EFFICIENT PARTIAL SOLUTION WITH HYPERLOGIC

by Kevin Michael Byrd

May 2011

We present two implementation enhancements for the Boolean satisfiability

problem and one visualization technique. The first is an expansion to a tri-nary logic

system with a commit phase. The three states are (1) true, (2) false, and (3) don't care.

We abstracted the operations of AND and OR to this hyperlogic system in a novel way.

The commit phase works on one variable at a time and transitions values from temporary

to permanent whenever possible. We viewed tri-state logic as a hyperspace above the

binary (Boolean) logic. The second improvement is algorithmic. We modified the

semantics of the classic 3 Conjunctive Normal Form Problem in order to develop a

polynomial time algorithm for a simplified normal form - avoiding the need to examine

all combinatoric limitations. In particular, we abandoned 3 CNF and used an

unstructured left to right associativity. We do not claim that this new semantic is

comprehensive. We do claim that it is simpler. Lastly, we introduced a node analogy to

help us understand the algorithm itself.

11

TABLE OF CONTENTS

ABSTRACTii

LIST OF TABLESiv

CHAPTER

I. INTRODUCTION l

Problem Statement

II. REVIEW OF RELATED MATERIAL. 2

Satisfiability
Tri-State Logic

III. TRI-STATE LOGIC WITH COMMIT ?

Building Our Tri-State Logic With Commit
Simplified Semantics
Visualization
Input Processing

IV. ANALYSIS OF DATA IS

Analysis

V. SUMMARY l6

Future Work

APPENDIXES 17

BIBLIOGRAPHY 54

iii

LIST OF TABLES
Table

1. The 16 Possible Combinations of 'e = a1 v a2 v a3 v (4'4

2. The Possible Combinations of 'e = a1 v a2 v a3 v '4' Using Tri-nary Logic 5

3. Optimistic OR (OOR) with Assumptions Shown in Bold 7

4. Pessimistic OR (POR) with Assumptions Shown in Bold 8

5. Irresolute OR (lOR) with Assumptions Shown in Bold 8

6. Optimistic AND (OAND) with Assumptions Shown in Bold 9

7. Pessimistic AND (PAND) with Assumptions Shown in Bold 9

8. Variable Values as the Algorithm Traverses the Nodes Left to Right of the Input
'AvBvC"D"BvD' l2

9. Variable Values as the Algorithm Traverses the Nodes Left to Right of the Input
'AvBvC"D"NOT A' l3

l V

CHAPTER I

INTRODUCTION

Problem Statement

Boolean logic is a binary logic system consisting of two states for every variable

true and false [Boolean Logic, 2010]. Its operations are well known [Hans Reichenbach,

194 7]. One of the fundamental open questions in Computer Science is whether P is equal

to NP [Deolalikar, 2010]. The answer to this question can be coded in terms of the

Boolean Satisfiability Problem. In this thesis we expand the problem to a Tri-nary

Satisfiability Problem. For the tri-state logic we use herein, we have three states -true,

false, and don't care (T/F/D). We cover these in Chapter III.

Following [Linz, 2006, pg 346], "A ... Boolean constant or variable is one that

can take on exactly two values, true or false, ... Boolean operators are used to combine

Boolean constants and variables into Boolean expressions." Typically a Boolean Algebra

includes at least the binary operation of AND and the unary operator NOT. It is also

customary to work with the binary operator OR. For our purposes, then, a Tri-nary

Algebra has three states and many more possible operations. In this work we consider

only operations that form a hyperspace over Boolean Algebra. This topic is addressed

further in Chapter II.

In Chapter III, we discuss the partial satisfiability algorithm which may lead to a

solution. We lay out a way to follow the program's logic algorithmically as well. In

Chapter IV, we analyze the results and their significance. We conclude in Chapter V. The

code is given in the Appendixes.

CHAPTER II

REVIEW OF RELATED MATERIAL

Satisfiability

A Boolean formula is said to be satisfiable if the variables in the formula can be

2

set in a way that makes the formula evaluate to True. A Boolean formula is said to be

unsatisfiable if no such assignment is possible; for every combination of variables the

formula evaluates to False. The term "satisfiability" is abbreviated to "SAT" and is used

as a descriptor for formulas such as 3-SAT or 2-SAT; wherein, each clause in those

particular formulas contain exactly 3 or 2 variables, respectively. [Boolean Satisfiability

Problem, 2010].

To consider the SAT problem, we also need to introduce conjunctive normal form

(CNF) and disjunctive normal form (DNF). The AND operator comprises conjunctives

while the OR operator comprises disjunctives. Hence an expression of the form

a! v a2 v a3 v ... v an

is in CNF, where each ai term is a disjunctive clause such as

ai = dl v d2 v ... v dm.

Negations can be restricted to the disjunctive expression without loss of generality.

It is straightforward to write a program to test whether a combination of variables

exists that make the expression evaluate to True. However, the brute force, "easy,"

program will take exponential time to execute- on average. This is easy to see. For n

Boolean variables, there are 2n possible combinations that may need to be tested.

If we arrive at a combination that evaluates to True before we have tested all

combinations, we may short circuit the execution and report that the expression is

satisfiable. However, for unsatisfiable expressions, the entire suite of combinations must

3

be checked. If we had a computer that could implement a fully non-deterministic

solution to this problem, then each path through that very broad graph would require only

order n time. These two options form the fundamental open question in the discipline of

Computer Science and a full solution to problem SAT is considered the holy grail of that

discipline.

Tri-State Logic

In this thesis we examine a solution that lies in between these two extremes. Our

approach does not always produce a conclusive answer. Indeed, occasionally, we get a

False result. However, on average, it covers more than one path through the very broad

non-deterministic graph by allowing us to combine some of the pathways using the third

state in our tri-state logic system. For example, consider the very simple expression

All possible combinations would require us to check 16 possible combinations (16 paths,

all of which can be checked in parallel in a NDFSA).

4

Table 1

The 16 Possible Combinations of 'e = a1 v az v a3 v a/

a1 a2 a3 ~

T T T T

T T T F

T T F T

T T F F

T F T T

T F T F

T F F T

T F F F

F T T T

F T T F

F T F T

F T F F

F F T T

F F T F

F F F T

F F F F

However, this problem can be compressed by the addition of a third "I don't care"

logic state. In tri-nary logic we may consider Table 2.

Table 2

The Possible Combinations of 'e = a1 v a2 v a3 v a/ Using Tri-nary Logic

T

D

D

D

This is our first simplification.

D

T

D

D

D

D

T

D

D

D

D

T

5

Our second simplification is a short-circuit operation. Variables are "born" in the

D state. Only when we conclude that a variable must beT or F to enforce satisfiability do

we commit a D to a T or F. So, for example, if we have

then all variables must evaluate to True.

Suppose we have a singleton. Then that singleton must be True. Here we commit

that singleton to a True value. Should it appear later in the expression in another

singleton that is negated, we are forced to exit the computation and conclude the

expression is unsatisfiable. This short circuit allows us to save execution time. There are

additional patterns that can be short-circuited as well.

We also introduce the idea of betting which value is more likely to occur.

Towards this end we introduce a variety of tri-state operations that can be incorporated in

the algorithm that "predict" a final state for a variable. Consider, for example, the

pessimistic OR operation defined below. Here we are essentially predicting that, when a

variable is committed to its underlying T or F state, it will be False. We have no direct

justifications for these assumptions. However, the mathematics in our hyperspace

requires that we extend the OR, AND, and NOT operations fully and doing this requires

and/or allows these types of operations. We utilize them, herein, because they add the

possibility of further shortening our computational run time.

6

CHAPTER III

TRI-STATE LOGIC WITH COMMIT

Building Our Tri-State Logic with Commit

7

In this chapter we describe the tri-state logic with commit that we used to

compute satisfiability to our simplified problem. Our tri-state logic approach is similar to

the approach used in [Kullman, 2007] and [Frisch, Peugnieze].

In the tri-state logic used here, stateD is semantically like being both True and

False in the sense that we don't care what its truth value is.

In Table 3, we defined an Optimistic OR operator. Here, we assumed that from

any OR operation that included aD State, the D would eventually become True. Table 4

presents the Pessimistic OR operation; where, from any D state, we refused to assume

that one of those states would eventually become True. Note that the projection of both

operations onto binary logic is idempotent- we are working in a hyperspace.

Table 3

Optimistic OR (OOR) with Assumptions Shown in Bold

Optimistic OR

F

T

D

F

F

T

T

T

T

T

T

D

T

T

T

Table 4

Pessimistic OR (POR) with Assumptions Shown in Bold

Pessimistic OR

F

T

D

F

F

T

F

T

T

T

T

D

F

T

F

8

Other hyper-OR definitions are possible. The above tables, for example, do not

carry the D state forward. Our Irresolute OR (lOR) is an operation that does carry the D

state forward. This is defined in Table 5.

Table 5

Irresolute OR (/OR) with Assumptions Shown in Bold

Irresolute OR

F

T

D

F

F

T

F

T

T

T

T

D

F

T

D

For the work here, we utilized an optimistic OR, where the table can be reduced to

the two combinations that we would encounter during our simplified Boolean

Satisfiability problem:

Not F (ie. Tor D)

F

v

v

Not F (ie. Tor D) -> T -

F -> F.

We can also extend the binary AND to tri-state logic in many ways. Tables 6 and

7 define an Optimistic AND (OAND) and a Pessimistic AND (PAND).

Table 6

Optimistic AND (OAND) with Assumptions Shown in Bold

Optimistic AND

F

T

D

Table 7

F

F

F

F

T

F

T

T

D

F

T

T

Pessimistic AND (PAND) with Assumptions Shown in Bold

Pessimistic AND

F

T

D

F

F

F

F

T

F

T

F

D

F

F

F

We can also extend the NOT operation to tri-state logic. Here we have an

idempotent third state, although other selections are possible.

NOT T=F,

NOT F=T,

NOT D=D.

9

A NOT operation becomes a no-op for the D state. Another possibility would be

to switch from pessimistic to optimistic (or vice-versa) when encountering a NOT D. For

example, let DT and DF represent an optimistic and a pessimistic view of stateD,

respectively. Then !DT = DF, and !DF = DT.

Simplified Semantics

In this section of Chapter III we define the semantics of our simplified

satisfiability problem examined in this paper. Computation proceeds from left to right.

The input for the software program we developed is consumed left to right. Also, each

prefix is linked to its immediate right adjacent neighbor. For example, a series of input

OR's, A VB V C, processed from left to right, is equivalent to (A VB) " (B V C). A

series of input AND's such as A" B " C is equivalent to (A" B) " (B "C).

Consider the following expression:

(A VB)" (B "C)" (C V D)" (D" E).

Now consider each parenthesized 2-tuple in our conjunctive and normalized

formula as a unique node. This allows us to view the above expression as

(Nodel)" (Node2)" (Node3)" (Node4).

10

(FYI. Our program would encode this expression in the input form A VB " C V D " E.)

Our program would then formulate the following pairs:

Node 1:= Varl =A Ops = Optimistic OR (OOR) Var2 = B

Node 2:= Varl = B Ops =Optimistic AND (OAND) Var2 = C

Node 3:= Varl = C Ops =Optimistic OR (OOR) Var2 = D

Node4:= Varl = D Ops = Optimistic AND (OAND) Var2 =E.

For our initial condition, all variables would begin in state D, the "don't care"

state. Our algorithm would then proceed from left to right, stopping at each node to

check if we could modify any of the variable's states. The 2-tuples are checked to

II

determine if one or both variables require a commitment to a particular state (once a

variable is committed, it can never be changed) or if nothing requires attention. If we run

into a node where the 2-tuple can not be made True, the algorithm halts its progress,

explains where the expression possibly becomes unsatisfiable and exits. If the algorithm

is able to step from node 1 to node n, then the expression is said to be possibly satisfiable.

Visualization

In this section we describe our binary "running satisfaction" visualization tool

which we refer to as a ladder representation. Our illustration views our passage through

the expression as successively larger prefix satisfiability expressions.

Consider the input string

A v B v c 1\ D 1\ B v D

which is equivalent to the Boolean expression

(A VB)" (B V C)" (C" D)" (D" B)" (B V D).

The semantics of this expression, broken down into our 2-tuple nodes, is

Nodel:= A v B,

Node2:= B v C,

Node3:= c 1\ D,

Node4:= D 1\ B,

NodeS:= B v D.

Where, again, the Optimistic AND (OAND) and Optimistic OR (OOR) are used.

Begin by assigning all variables the D state value. Our algorithm would produce

the following values as it traversed from node to node, working left to right.

12

Table 8

Variable Values as the Algorithm Traverses the Nodes From Left to Right of the Input

'AvBvC''D"BvD'

Linear Looping A B c D
After Node= 1 D(T) D(T) D D
After Node= 2 D(T) D(T) D(T) D
After Node = 3 D(T) D(T) T* T*
After Node = 4 D(T) T* T* T*
After Node= 5 D(T) T* T* T*

* indicates that the value for that variable has been committed

D(T) indicates that the value for that variable is state D and is Optimistic

The final answer obtained is:

A= Don't Care state (Optimistic= True),

B =True,

C =True,

D =True.

where B, C, and D have been committed to a specific value and A is still in our tri-nary

state of "don't care I doesn't matter."

Now consider a second expression that contains a NOT operator:

A v B v c 1\ D 1\ NOTA

which is equivalent to the Boolean expression

(A VB) " (B V C)" (C " D)" (D " NOT A).

This has a ladder representation of:

Nodel:= A v B

Node2:= B v c

Node3:= c 1\ D

Node4:= D 1\ NOTA

13

Table 9 shows how the above expression will be processed.

Table 9

Variable Values as the Algorithm Traverses the Nodes Left to Right of the Input

'AvBvC"D"NOT A'

Linear Looping A B c D
After Node= 1 D(T) D(T) D D
After Node= 2 D(T) D(T) D(T) D
After Node = 3 D(T) D(T) T* T*
After Node = 4 F* D(T) T* T*

* means the value for that variable has been committed

D(T) means the value for that variable is state D and is Optimistic

The final answer obtained is

A= False,

B =Don't Care state (Optimistic= True),

C =True,

D =True,

where A, C, and D have been committed to a specific value and B is still in our tri-nary

state of "don't care I doesn't matter."

Input Processing

If the given expression is not initially linked (it does not have the linked form for

all adjacent tuples), we must modify the expression before we can encode it as input for

our algorithm.

For example, a nicely linked expression that would not need to be converted

might be (A VB) " (B " C). A not nicely linked expression might be (A V B) " (C " D).

Expressions like (A V B) " (C " D) must be re-written using an artificial variable

which we call E. E begins with a committed True value. When pre-processing is

complete, our encoded input file represents the 2CNF/SAT problem with the following

linked structure:

(A v B) A (B v E) A (E v C) A (C A D).

We can map any 2CNF/SAT formula into our input encoding.

14

We can take any arbitrary 2CNF I 2CF expression and rewrite the expression into

our algorithm's needed encoded input by adding these 'linking' variables that are initially

committed the value True.

CHAPTER IV

ANALYSIS OF DATA

Analysis

We have taken the Boolean Logic of True and False and have added a third state

D. We call it the "I don't care" or "It doesn't matter" state. We now have tri-state logic

with { T, F, D} . We are not the only researchers utilizing tri-state logic for this problem

[Fey et al., 2006], but there is not extensive literature on the subject. For example, we

looked for previously defined operators to fit this application but found only those

currently used in electronics. The definitions given here are our own.

15

We point out that after testing, a subset of input expressions was found that has

the potential to yield a False Positive result. These expressions were of the form (A VB)

"···" (-A" X)" ... "(-B "X) where variable X can be any variable that is not A or B.

(This expression is not satisfiable; however, our algorithm claimed it is satisfiable).

Clearly, because the algorithm did not have a backtracking utility, expressions of

the above form were not able to be evaluated correctly. However, we believe that future

work may alleviate these subsets of problems by pre-modifying the expression into a

valid form before running our SAT program.

Also, another subset of input expressions was found that could yield a False

Positive result. These expressions were of the form (A VB)" ... "(-A V-B) where the

expression is in 2 Conjunctive Normal Form. (This expression is not satisfiable;

however, our algorithm claimed it is satisfiable). Again, future work may be able to

modify these expressions a-priori to alleviate this issue.

CHAPTERV

SUMMARY

Future Work

For future work we would like to examine other subsets of the 3CNF/SAT

equations. For example, if we have the expression (3vl)" (lv-2)" (-2v4)" (4vl), we

may be able to convert this to (1)" (-2v3v4)" (-2v4).

16

We noticed that when we encoded expressions in reverse order many of the False

Positives were caught by the algorithm; however, it introduced a new subset of False

Positives that were a mirror of the original expression's False Positives. For future work

we would like to study the subsets of expressions satisfied by left to right and right to left

processing to discover the structure of the expressions not addressable with only one

pass, but addressable with left to right and right to left processing.

Third we would like to examine the orderings for our 2CNF to study when it is

possible to compensate for backtracking with a better ordering. For example, (A VB)"

(NOT B "C)" (NOT A" D) would give a False Positive result and thus would be

beneficial to have backtracking; however, reordering the two-tuples as (NOT A" D) "

(NOT B "C)" (A VB) would give the correct result of unsatisfiable and would not

require backtracking.

For the present, however, we have presented a polynomial time algorithm that

solves some SAT problems, and leaves you with additional information (the D state)

whenever possible.

APPENDIX A

MYPROGRAM.CPP (CONTAINS MAIN)

/**

Author:

Purpose:

Usage:

Kevin Byrd

To attempt to build a data structttre that runs in

Polynomial time and can determine

whether a Boolean formula is satisfiable.

argvfO"I = myProgram.exe

argv[1] = file you wish to open

=defaults to equation.txt

argv[2] = user choice if PrintSpindle()

and PrintTable() functions are

called

= default is 0 (or True)

**/

include <iostream>

#include <iornanip>

#include <fstrearn>

#inc! ude <set>

#include <algorithm>

#include "spindle.h"

using namespace std;

17

int main(int argc, char* argv[])

char *filename;

int choice = 0;

if(argc >= 2)

filename= argv[l];

else

filename = "equation.txt";

if(argc == 3)

choice= atoi(argv[2]);

ifstream inFile(filename);

if(!inFile)

cout << "ERROR - cannot open my Equation. txt for read." << endl;

cout << "Program will now terminate." << endl;

retum(O);

//Begin reading in data from file

//We assume the file is in the CORRECT format

18

int pointl , point2, total;

char ops;

inFile >> total;

inFile >> pointl;

inFile >> ops;

inFile >> point2;

spindle *mySpin =new spindle(pointl , ops, point2, total);

while(! inFile.eof())

inFile >> pointl ;

inFile >> ops;

inFile >> point2;

mySpin->lnsert(pointl , ops, point2);

inFile.close();

//Once tl1e spindles are loaded into the spoke, we spin it

III used spindles, spoke. and spinning to remind myself

//of how cloth threads were made back in the day and in a

//sense my algorithm takes the data and attempts to spin it

19

//into a hopefully satisfiable outcome

mySpin->Begin();

mySpin->PrintSpindle(choice);

mySpin->PrintTrTable(choice);

return(tme);

20

#include <iostream>

#include <iomanip>

#include <fst:rcam>

#include "spindlc.h"

using namespace std;

APPENDIXB

SPINDLE.CPP

spindle::spindle(int pl , char op, int p2, int total)

struct pNode *newNode =new pNode;

if(pl < 0)

else

newNode->pointl = pl * -1 ;

newNode->pl_isNot = true;

newNode->pointl = pl ;

newNode->pl_isNot = false;

if(p2 < 0)

2 1

else

newNode->point2 = p2 * -1 ;

newNode->p2_isNot = true;

newNode->point2 = p2;

newNode->p2_isNot = false;

newNode->andOr = op;

newNode->next = NULL;

newNode->previous = NULL;

head= newNode;

truth_ Table= new point[total+ 1] ;

totalNumOflndexes = total;

truth_Table[p1].value = false;

truth_ Table[p 1] .is_both = false;

truth_ Table[p 1] .is_set = false;

truth_Table[p2].value = false;

truth_ Table[p2] .is_both = false;

22

truth_ Table[p2] .is_set = false;

isSAT = true;

int spindle:: Insert(int p1, char op, int p2)

struct pNode *new Node= new pNode;

if(p1 < 0)

else

newNode->point1 = p1 * -1;

newNode->p1_isNot =true;

newNode->point1 = p1 ;

newNode->p1_isNot = false;

if(p2 < 0)

newNode->point2 = p2 * -1;

newNode->p2_isNot = true;

23

else

newNode->point2 = p2;

newNode->p2_isNot = false;

newNode->andOr = op;

newNode->next = NULL;

struct pNode *current= head;

if(current != NULL)

while(current->next !=NULL)

current= current->next;

current->next = newNode;

newNode->previous =current;

truth_ Table[new Node->point 1]. value = false;

truth_Table[newNode->pointl].is_both =false;

truth_Table[newNode->pointl] .is_set = false;

truth_Table[newNode->point2].value = false;

24

truth_Table[newNode->point2].is_both = false;

truth_Table[newNode->point2].is_set = false;

return(true);

int spindle: :Begin()

struct pNode *current = head;

if(current !=NULL)

char currentOps = current->andOr;

int p1 = current->point1 ;

int p2 = current->point2;

//If point1 is a NOT

if(current->p1_isNot)

truth_Table[p1] .value =false;

truth_ Table[p 1] .is_both = true;

truth_ Table[p 1] .is_set = fal se;

//If point!

else

25

truth_Table[pl] .value =true;

truth_Table[pl].is_both =true;

truth_ Table[p 1] .is_set = false;

mySolution = new set<int>;

mySolution->insert(current->pointl);

//We now check the initial condition of our pNode chain

//Our initial condition is an OR statement

if(currentOps == '*')

//If point2 is a NOT

if(current->p2_isNot)

if(! truth_ Table[p2] .is_set)

truth_ Table[p2]. value = false;

truth_ Table[p2] .is_both = true;

truth_Table[p2].is_set =false;

26

//If point2

else

if(! truth_ Tab le[p2]. is_set)

truth_Table[p2] .value = true;

truth_ Table[p2] .is_both = true;

truth_ Table[p2].is_set = false;

if(truth_Table[pl].value ==true && current->pl _isNot &&

truth_Table[p2].value == true && current->p2_isNot)

cout << endl << "******************" << endl;

cout << "No solution can be found- An OR statement

fail . " << endl;

cout << "(";

if(current->pl_isNot)

cout << "-";

cout << pl << " " << currentOps << " ";

if(current->p2_isNot)

cout << "-'';

cout << p2;

cout << ")" << endl;

cout << "******************" << endl << endl;

27

28

isSAT = fal se;

return(O);

else if(truth_Table[pl] .value ==false && !current->pl_isNot &&
truth_Table[p2].value ==false && !current->p2_isNot)

cout << endl << "******************" << endl;

cout << "No so lution can be found - An OR statement
fails." << endl;

cout << "(";

if(current->pl_isNot)

cout << "- ";

cout << pl << " " << currentOps << " ";

if(current->p2_isNot)

cout << "- ";

cout << p2;

cout << ")" << endl;

cout << "******************" << endl << endl;

isSAT = false;

retum(O);

else

mySolution->insert(p2);

==true)

//Our initial condition is an AND statement

else if(currentOps == '&')

//If point2 is a NOT

if(current->p2_isNot)

29

//If point2 has been used before and is_set and value is uue

if(truth_Table[p2].is_set == true && truth_Table[p2] .value

cout << endl << "******************" << endl;

cout <<"No solut ion can be found- A point became

both true and false." << endl;

cout << "(";

if(current->p l_isNot)

cout << "-";

cout << pl <<" " << currentOps << " ";

if(current->p2_isNot)

cout << "-";

cout << p2;

cout << ")" << endl;

cout << "******************" << endl << endl ;

isSAT = false;

return(O);

==true)

//If point2 can adapt to the AND statement

else

//If point2

else

truth_Table[p2].value = false;

truth_Table[p2].is_both = false;

truth_Table[p2].is_set = tme;

30

//If point2 is set in stone as false but it is not negative

if(truth_Table[p2].value == false && truth_Table[p2].is_set

cout << endl << "********~'*********" << endl ;

cout << "No solution can be found- A point became

both true and false." << endl;

cout << "(";

if(current->p l_isNot)

cout << "-";

cout << pl << " " << currentOps << " ";

if(current->p2_isN ot)

cout << "-";

cout << p2;

cout << ")" << endl;

endl ;

else

cout << "******************" << endl << endl;

isS AT = false;

retum(O);

truth_Table[p2].value = tiue;

truth_Table[p2].is_both = false;

uuth_Table[p2].is_set = true;

//If point1 is false and pos itive

if(truth_Table[pl].value == false && !current->pl_isNot)

cout << endl << "******************" << endl;

cout << "No solution can be found - An AND fails." <<

cout << "(";

if(current->p l_isNot)

cout << ~~- ~~ ;

cout << pl << II II << currentOps << II II ;

if(current->p2_isNot)

cout << "- ~~;

31

endl;

cout << p2;

cout << ")" << endl;

cout << "******************" << endl << endl;

isSAT = false;

return(O);

//If pointl is true and negative

else if(truth_Table[pl].value ==true && current->pl_isNot)

cout << endl << "******************" << endl;

cout << "No solution can be found- An AND fails." <<

cout << "(";

if(current->p l_ isNot)

cout << "-";

cout << pl <<" " << currentOps << " ";

if(current->p2_isN ot)

cout << "-";

cout << p2;

cout << ")" << endl;

cout << "******************" << endl << endl ;

isSAT = false;

retum(O);

32

//Else we may have a solid AND statement!!

else

if(truth_Table[pl].is_both ==true)

truth_Table[pl].is_both =false;

truth_Table[pl].is_set = tme;

mySolution->insert(p2);

//If we have more spindles to cascade - we continue

if(current->next !=NULL)

Continue(current->next) ;

return(true);

int spindle: :Continue(struct pNode *current)

char currentOps = current->andOr;

33

int pl = current->pointl;

int p2 = current->point2;

//If our operation is an OR statement

if(currentOps == '*')

//If point2 is a NOT

if(current ->p2_isNot)

//If our point2 value is not set in stone

if(!truth_Table[p2].is_set)

//Ifpoint2

else

truth_Table[p2].value =false;

truth_Table[p2].is_both =true;

truth_Table[p2].is_set =false;

//If our point2 value is not set in stone

if(!truth_ Table[p2] .is_set)

truth_ Table[p2] . value = true;

truth_Table[p2].is_both = tiue;

34

truth_ Table[p2] .is_set = false;

//Check for valid OR statement

//If both points are tme but both are negative

if(truth_Table[pl].value == true && current->pl_isNot &&

truth_Table[p2].value == tme && current->p2_isNot)

cout << endl << "******************" << endl;

cout << "No solution can be found - An OR statement fails.'' <<

endl;

cout << "(";

if(current->p l_isNot)

cout << "-";

cout << pl << " " << currentOps << " ";

if(current->p2_isNot)

cout << "- ";

cout << p2;

cout << ")" << endl;

cout << "******************" << endl << encll ;

isSAT = false;

retum(O);

//If both points are false and positive

35

else if(truth_Table[pl].value == false && !current->pl_isNot &&
truth_Table[p2].value ==false && !current->p2_isNot)

cout << endl << "'~*****************" << endl;

cout << "No solution can be found - An OR statement fails." <<
end I;

cout << "(";

if(current->p l _isNot)

cout << "-";

cout << pl << " " << currentOps << " ";

if(current->p2_isNot)

cout << "-";

cout << p2;

cout << ")" << endl;

cout << "******************" << endl << endl;

isSAT = false;

return(O);

//Else we may have a true OR statement

else

mySolution->insert(p2);

//Else our operation is an AND statement

else if(currentOps == '&')

36

true)

fails." << endl;

if(current->p2_isN ot)

//If point2 is set in stone and is true

if(truth_Table[p2].is_set ==true && truth_Table[p2].value ==

cout << endl << "******************" << endl;

cout << "No solution can be found - An AND statement

cout << "(";

if(current->p l_isNot)

cout << "- ";

cout << pl <<" "<< currentOps <<" ";

if(current->p2_isN ot)

cout << "-";

cout << p2;

cout << ")" << endl;

cout << "******************" << endl << endl;

isSAT = false;

retum(O);

//Else point2 can adapt to the AND statement

else

37

else

false)

fail s. II << endl;

if(truth_Table[p2].is_set == false)

truth_Table[p2].value =false;

truth_Table[p2].is_both =false;

truth_ Table[p2] .is_set = true;

//If point2 is set in stone and is false

if(truth_ Table[p2] .is_set == true && truth_ Table[p2]. value ==

cout << endl << "****************** ~~ << endl;

cout << "No solution can be found - An AND statement

cout << 11

(

11

;

if(current->p l_isNot)

cout << ~~-";

cout << pl << " II << currentOps << " ";

if(current->p2_isNot)

cout << "-";

cout << p2;

cout << ")" << endl;

cout << "******************" << endl << endl;

38

isSAT = false;

return(O);

//Else point2 can adapt to the AND statement

else

if(! truth_ Tab le[p2]. is_set)

truth_Table[p2].value =true;

truth_Table[p2].is_both =false;

truth_ Table[p2] .is_set = true;

//Check for valid AND statement

//If point I is false and pos it ive

if(truth_Table[pl].value ==false && !current->pl_isNot)

cout << endl << "******************" << endl;

cout << "No solution can be found - An AND statement

fails." << endl;

cout << "(";

if(current->p l_isNot)

39

cout << "-";

cout << pl << " II << currentOps << " ";

if(current->p2_isNot)

cout << "- ";

cout << p2;

cout << ")" << endl;

cout << "******************" << endl << endl;

isSAT = false;

return(O);

//If pointl is t1·ue and negative

else if(truth_Table[pl].value ==true && current->pl_isNot &&
truth_ Table[p 1] .is_both == false)

cout << endl << ~~******************" << endl;

cout << "No solution can be found- An AND statement
fai ls. II << endl;

cout << "(";

if(current->p l_isNot)

cout << ~~ - " ;

cout << pl << "II << currentOps << II ";

if(current->p2_isNot)

cout << ~~-" ;

cout << p2;

cout << 11
)

11 <<end!;

40

cout << "******************'' << endl << endl;

isS AT = false;

return(O);

//Else we may have a solid AND statement! !

else

if(truth_Table[pl].is_both ==true)

if(current->p l _isN ot)

else

truth_Table[p1].value =false;

truth_Table[p1].is_both = false;

truth_ Table[p 1] .is_set = true;

truth_Table[p1].value = true;

truth_Table[p1].is_both =false;

truth_ Table[p 1] .is_set = true;

mySolution->insert(p2);

41

//If we have more spindles to cascade- we continue

if(current->next !=NULL)

Continue(current->next);

/**

CURRENTLY NOT .N'EEDED

//Else we have reached the end- we check the satisfyability

//else

II CheckSolution();

***/

retum(l);

int spindle::TraceBack(pNode *current)

if(current->previous !=NULL)

current= current->previous;

if(current->andOr == '*')

if(truth_Table[current->pointl].value =true && !current->pl_ isNot)

42

43

cout << "TraceBack Complete- Found valid Or Statement at: "

<< current->point1 << " with " << current->point2 << endl;

if(truth_ Table[current->point 1] .is_set == false)

truth_Table[current->pointl].is_set = true;

if(truth_Table[current->point1].is_both == true)

truth_ Table[current->pointl] .is_both = false;

return(l);

else if(truth_Table[current->point1].value = false && current->p1_isNot)

cout << "TraceBack Complete - Found valid Or Statement at: II

<< current->pointl << " with II << current->point2 << endl;

if(truth_ Table[current->point 1]. is_set == false)

truth_Table[current->point1].is_set =true;

if(truth_ Table[current->point1].is_both == true)

truth_ Table[current->pointl] .is_both = false;

return(l);

else if(truth_Table[current->point2].value = true && !current->p2_isNot)

cout << "TraceBack Complete - Found valid Or Statement at: II

<< current->pointl << " with " << current->point2 << endl;

if(truth_ Table[current->point2] .is_set == false)

truth_ Table[current->point2] .is_set = true;

if(truth_ Table[current->point2] .is_both == true)

else

truth_Table[current->point2].is_both =false;

retum(l);

44

else if(truth_Table[current->point2].value = false && current->p2_isNot)

else

cout << "TraceBack Complete - Found valid Or Statement at: II

<< current->pointl << " with II << current->point2 << endl;

if(truth_ Table[current->point2].is_set == false)

truth_Table[current->point2].is_set =true;

if(truth_Table[current->point2].is_both ==true)

truth_Table[current->point2].is_both = false;

retum(l);

TraceBack(current);

TraceBack(current);

retum(l) ;

int spindle::TraceForward(pNode *current)

if(current->next !=NULL)

45

current = current->next;

if(current->andOr == '*')

if(truth_Table[current->pointl].value =true && !current->pl_isNot)

cout << IITraceForward Complete- Found valid Or Statement at: II

<< current->pointl << II with II << current->point2 << endl;

if(truth_Table[current->pointl].is_set == false)

truth_Table[current->pointl].is_set =true;

if(truth_Table[current->pointl].is_both ==true)

truth_Table[current->pointl].is_both = false;

return(I);

else if(truth_Table[current->pointl].value =false && current->pl_ isNot)

cout << IITraceForward Complete - Found valid Or Statement at: II

<< current->pointl << II with II << current->point2 << endl;

if(truth_Table[current->pointl].is_set == false)

truth_Table[current->pointl].is_set =true;

if(truth_ Table[current->point 1] .is_both == true)

truth_Table[current->pointl].is_both = false;

retum(l);

else if(truth_Table[current->point2].value = true && !current->p2_isNot)

else

46

cout << "TraceForwarcl Complete - Found valid Or Statement at: "

<< current->pointl << " with " << current->point2 << endl;

if(truth_Table[current->point2].is_set ==false)

truth_Table[current->point2].is_set =true;

if(truth_Table[current->point2].is_both ==true)

truth_Table[current->point2].is_both =false;

return(l);

else if(truth_Table[current->point2].value =false && current->p2_isNot)

else

cout << "TraceForward Complete- Found valid Or Statement at: "

<< current->pointl << " with " << current->point2 << endl;

if(truth_ Table[current ->point2] .is_set == false)

truth_ Table[current->point2].is_set = tme;

if(truth_ Table[current->point2] .is_both == tme)

truth_ Table[current->point2] .is_both = false;

return(l);

TraceForward(current);

TraceForward(current) ;

retum(l);

int spindle::CheckSolution()

//Not implemented yet as 1 may have discovered that my algorithm

//Doesn't even need th is!! Because if there are no kick outs from

/!The Begin() and Continue() functions. then the equation lS BOOLEAN

//SATISFY ABLE.

return(l);

void spindle::PrintSpindle(int choice)

if(choice== 1)

struct pNode *current = head;

if(current ! = NULL)

cout << endl << endl;

while(current->next !=NULL)

47

cout << IIPointl =II;

if(current->p l_isNot)

cout <<II -~~ << setw(2) << current->pointl;

else

cout << setw(4) << current->pointl;

cout << II Ops = II << current->andOr;

cout << II Point2 = ";

if(current->p2_isNot)

cout <<II -~~ << setw(2) << current->point2;

else

cout << setw(4) << current->point2;

cout << endl;

current= current->next;

cout << 11Pointl =II;

if(current->p l_isN ot)

cout <<II -~~<< setw(2) << current->pointl;

else

cout << setw(4) << current->pointl;

cout << II Ops = "<< current->andOr;

cout << II Point2 =II;

if(current->p2_isNot)

cout << " -" << setw(2) << current->point2;

48

else

cout << setw(4) << current->point2;

cout << endl << endl;

void spindle: :PrintTrTable(int choice)

if(choice == 1)

cout << endl << endl;

for(int x = 1; x < totalNumOflndexes + 1; x++)

cout << setw(2) << x << " = ";

if(truth_Table[x].is_both ==true)

cout << "True and False";

else if(truth_Table[x].value == false)

cout << "False";

else if(truth_Table[x].value == true)

cout << "True";

cout << endl;

49

cout << endl;

cout << endl;

if(isS AT)

cout << "It was fOLmd to be Satisfiable";

else

cout << "It was fo Lmd to be unSatisfiable";

cout << endl;

spindle: :-spindle()

50

#ifndef SPINDLE_H

#define SPINDLE_H

#include <set>

#include <algorithm>

using namespace std;

APPENDIXC

SPINDLE.H

1/A point is simple a variable A,B.etc ...

struct point

} ;

bool value;

bool is_both;

bool is_set;

II A pNocle is a spoke in the spindle

//It holds two points and an operation that

//Binds the two points together

struct pNode

int pointl ;

boo! p l_isNot;

51

} ;

char andOr;

int point2;

bool p2_isNot;

stmct pNode *next;

struct pNode *previous;

/!I'he main class that drives the programs goals

/*******************************

Insert() inse11s a spoke/pNode into the spindle

Begin() starts the spinning

Continue() is used to continue spinning

TraceBack() and Forward() are not used

CbeckSolution() is not needed nor used

PrintSpindle() and TrTablc() (Truth Table) are for output

[use a head pointer for my spokes/pNodes

I have a dynamic table of points (variables) that

are index for Big 0(1) speed!!

I keep track of my indexes with totalNumOflndexes

I use mylter because I usc a set of integers saved into a

solution set.

Of note. mySolution isn't necessarily needed at this time.

*******************************/

52

class spindle

public:

} ;

#endif

spindle(int, char, int, int);

int Insert(int, char, int);

int Begin();

int Continue(struct pNode *);

int TraceBack(struct pNode *);

int TraceForward(struct pNode *);

int CheckSolution();

void PrintSpindle(int);

void PrintTrTable(int);

- spindle();

struct pNode *head;

struct point *truth_ Table;

int totalNumOflndexes;

bool isSAT;

set<int> *mySolution;

set<int>:: iterator mylter;

53

BIBLIOGRAPHY

Alekhnovich, Michael; Ben-Sasson, Eli; Razborov, Alexander A.; Wigderson, Avi.

Pseudorandom Generators in Propositional Proof Complexity. Supported by

INTAS grant #96-753. Moscow State University. August 4, 2003.

Deolalikar, Vinay. P <> NP. HP Research Labs, Palo Alto. August 11, 2010.

54

Fey, Goerschwin, Junhao Shi, and Rolf Drechsler, Efficiency of Multi-Valued Encoding

in SAT-based ATPG, 36th International Symposium on Multiple-Valued Logic

(ISMVL), 2006.

Frisch, Alan M.; Peugnieze, Timothy J. Solving Non-Boolean Satisfiability Problems

with Stochastic Local Search. University of York.

<http:/ /www.cse. wustl.edu/- zhang/teaching/cs5 l8/frisch. ps>

Kullmann, Oliver. An algorithmic platform for efficient satisfiability-based problem

solving. Final Report on EPSRC grant GR/S58393/0l. Swansea University.

September 12, 2007.

Linz, Peter. An Introduction to Formal Languages and Automata, 4th Ed., Jones and

Bartlett, Sudbury, MA, 2006.

Reichenbach, Hans. Elements of Symbolic Logic.

New York: The Free Press, 1947.

Wikipedia. "Boolean Logic." Last Modified: Nov 23, 2010.

<http://en. wikipedia.org/wiki/Boolean logic>

Wikipedia. "Boolean Satisfiability Problem." Last Modified: Nov 20, 2010.

<http://en. wikipedia.ore:/wiki/Boolean satisfiabil itv problem>

	Tri-State Boolean Satisfiability with Commit: An Efficient Partial Solution Using Hyperlogic
	Recommended Citation

	Byrd_Kevin_Michael_May2011_002_TitlePage
	Byrd_Kevin_Michael_May2011_003_Pageii
	Byrd_Kevin_Michael_May2011_004_Pageiii
	Byrd_Kevin_Michael_May2011_005_Pageiv
	Byrd_Kevin_Michael_May2011_006_Page1
	Byrd_Kevin_Michael_May2011_007_Page2
	Byrd_Kevin_Michael_May2011_008_Page3
	Byrd_Kevin_Michael_May2011_009_Page4
	Byrd_Kevin_Michael_May2011_010_Page5
	Byrd_Kevin_Michael_May2011_011_Page6
	Byrd_Kevin_Michael_May2011_012_Page7
	Byrd_Kevin_Michael_May2011_013_Page8
	Byrd_Kevin_Michael_May2011_014_Page9
	Byrd_Kevin_Michael_May2011_015_Page10
	Byrd_Kevin_Michael_May2011_016_Page11
	Byrd_Kevin_Michael_May2011_017_Page12
	Byrd_Kevin_Michael_May2011_018_Page13
	Byrd_Kevin_Michael_May2011_019_Page14
	Byrd_Kevin_Michael_May2011_020_Page15
	Byrd_Kevin_Michael_May2011_021_Page16
	Byrd_Kevin_Michael_May2011_022_Page17
	Byrd_Kevin_Michael_May2011_023_Page18
	Byrd_Kevin_Michael_May2011_024_Page19
	Byrd_Kevin_Michael_May2011_025_Page20
	Byrd_Kevin_Michael_May2011_026_Page21
	Byrd_Kevin_Michael_May2011_027_Page22
	Byrd_Kevin_Michael_May2011_028_Page23
	Byrd_Kevin_Michael_May2011_029_Page24
	Byrd_Kevin_Michael_May2011_030_Page25
	Byrd_Kevin_Michael_May2011_031_Page26
	Byrd_Kevin_Michael_May2011_032_Page27
	Byrd_Kevin_Michael_May2011_033_Page28
	Byrd_Kevin_Michael_May2011_034_Page29
	Byrd_Kevin_Michael_May2011_035_Page30
	Byrd_Kevin_Michael_May2011_036_Page31
	Byrd_Kevin_Michael_May2011_037_Page32
	Byrd_Kevin_Michael_May2011_038_Page33
	Byrd_Kevin_Michael_May2011_039_Page34
	Byrd_Kevin_Michael_May2011_040_Page35
	Byrd_Kevin_Michael_May2011_041_Page36
	Byrd_Kevin_Michael_May2011_042_Page37
	Byrd_Kevin_Michael_May2011_043_Page38
	Byrd_Kevin_Michael_May2011_044_Page39
	Byrd_Kevin_Michael_May2011_045_Page40
	Byrd_Kevin_Michael_May2011_046_Page41
	Byrd_Kevin_Michael_May2011_047_Page42
	Byrd_Kevin_Michael_May2011_048_Page43
	Byrd_Kevin_Michael_May2011_049_Page44
	Byrd_Kevin_Michael_May2011_050_Page45
	Byrd_Kevin_Michael_May2011_051_Page46
	Byrd_Kevin_Michael_May2011_052_Page47
	Byrd_Kevin_Michael_May2011_053_Page48
	Byrd_Kevin_Michael_May2011_054_Page49
	Byrd_Kevin_Michael_May2011_055_Page50
	Byrd_Kevin_Michael_May2011_056_Page51
	Byrd_Kevin_Michael_May2011_057_Page52
	Byrd_Kevin_Michael_May2011_058_Page53
	Byrd_Kevin_Michael_May2011_059_Page54

