Endohelminth parasites of some midwater and benthopelagic stomiiform fishes from the northern Gulf of Mexico

Michael J. Andres
University of Southern Mississippi, michael.andres@usm.edu

Mark S. Peterson
University of Southern Mississippi, mark.peterson@usm.edu

Robin M. Overstreet
University of Southern Mississippi, robin.overstreet@usm.edu

Follow this and additional works at: https://aquila.usm.edu/gcr

Part of the Biodiversity Commons, Genetics Commons, Marine Biology Commons, and the Parasitology Commons

Recommended Citation

Retrieved from https://aquila.usm.edu/gcr/vol27/iss1/2

DOI: https://doi.org/10.18785/gcr.2701.02

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact aquilastaff@usm.edu.
TABLE OF CONTENTS

SAND BOTTOM MICROALGAL PRODUCTION AND BENTHIC NUTRIENT FLUXES ON THE NORTHEASTERN GULF OF MEXICO NEARSHORE SHELF
Jeffrey G. Allison, M. E. Wagner, M. McClintock, A. K. J. Box, and R. A. Smolen
1—8

WHAT IS KNOWN ABOUT SPECIES RICHNESS AND DISTRIBUTION ON THE OUTER—SHELF SOUTH TEXAS BANKS?
Harriet L. Nash, Sharon J. Furriness, and John W. Tannock, Jr.
9—18

ASSESSMENT OF SEAGRASS FLORAL COMMUNITY STRUCTURE FROM TWO CARIBBEAN MARINE PROTECTED AREAS
Paul A. X. Balona and Anthony J. Suleski
19—27

SPATIAL AND SIZE DISTRIBUTION OF RED DRUM CAUGHT AND RELEASED IN TAMPA BAY, FLORIDA, AND FACTORS ASSOCIATED WITH POST—RELEASE HOOKING MORTALITY
Kerry D. Pelletier, Brett L. Wicker, Julie L. Vecchio, and Theodore S. Warner
29—41

CHARACTERIZATION OF Ichthyoplankton in the northeastern Gulf of Mexico from Seamap Plankton surveys, 1982—1999
Joanne Lyczkowski—Shultz, David S. Hanisko, Kenneth J. Sulak, Madgeeta Konczewski, and Pamela J. Bond
43—98

Short Communications

DEPURATION OF MACONDA (MC—252) OIL FOUND IN HETEROTROPHIC SCLERACTINIAN CORALS (Tubastrea coccinea and Tubastrea micranthus) ON OFFSHORE OIL/GAS PLATFORMS IN THE GULF
99—103

EFFECTS OF CLOSURE OF THE MISSISSIPPI RIVER GULF OUTLET ON SALTWATER INTRUSION AND BOTTOM WATER HYPOXIA IN LAKE PONCHTCHARTRAIN
Michael A. Poirier
105—109

DISTRIBUTION AND LENGTH FREQUENCY OF INVASIVE LIONFISH (Pterois sp.) IN THE NORTHERN GULF OF MEXICO
111—115

NOTES ON THE BIOLOGY OF INVASIVE LIONFISH (Pterois sp.) FROM THE NORTHCENTRAL GULF OF MEXICO
William Stein III, Nancy J. Brown—Peterson, James S. Frank, and Martin T. O’Connell
117—120

RECORD BODY SIZE FOR THE RED LIONFISH, Pterois volitans (Scorpaeniformes), IN THE SOUTHERN GULF OF MEXICO
Alfonso Aguilar—Perera, Leidy Perera—Chan, and Luis Quijano—Puerto
121—123

EFFECTS OF BLACK MANGROVE (Avicennia germinans) EXPANSION ON SALTMARSH (Spartina alterniflora) BENTHIC COMMUNITIES OF THE SOUTH TEXAS COAST
Suzanne L. Laue, Kimberly McClain, and Elizabeth M. Robinson
125—129

TIME—ACTIVITY BUDGETS OF STOPLIGHT PARROT FISH (Scaridae: Sparisoma viride) IN BELIZE: CLEANING INVITATION AND DIURNAL PATTERNS
Weats A. Dott and Gary R. Gatlin
131—135

FIRST RECORD OF A NURSE SHARK, Ginglymostoma cirratum, WITHIN THE MISSISSIPPI SOUND
Jill M. Hendon, Eric R. Hoffmayer, and William B. Driggers III
137—139

REVIEWS
141

INSTRUCTION TO AUTHORS
142—143

© 2013 The University of Southern Mississippi, Gulf Coast Research Laboratory.
Printed in the United States of America
ISSN: 1528—0470
All rights reserved. No part of this publication covered by the copyright hereon may be reproduced or copied in any form or by any means without written permission from the publisher.
ENDOHELMINTH PARASITES OF SOME MIDWATER AND BENTHOPELAGIC STOMIIFORM FISHES FROM THE NORTHERN GULF OF MEXICO

Michael J. Andres*, Mark S. Peterson, and Robin M. Overstreet
The University of Southern Mississippi, Department of Coastal Sciences, 703 East Beach Drive, Ocean Springs, MS 39564; *Corresponding author, email: michael.andres@usm.edu

ABSTRACT: Mesopelagic fishes represent significant ecological links between mesozooplankton and the larger pelagic squids, fishes, and marine mammals. As such, these fishes also play an important role as intermediate or paratenic hosts for parasites that require a crustacean intermediate host and mature in marine mammals or pelagic fishes. We examined a total of 208 individuals representing 5 species of Sternoptychidae and 88 individuals representing 2 species of Phosichthyidae from 20 locations in the northern Gulf of Mexico (nGOM). Six of the 7 species we examined are mesopelagic and one species was benthocepelic. We found the larval stages of Anisakis brevispiculata, Anisakis typica, Hysterothylacium fortalezae (all Nematoda: Ascaridoidea); Bolbosoma sp. (Acanthocephala: Polymorphidae); and Tetrathyridiidae (Cestoda) plus an immature specimen of Brachyphyllum sp. (Digenea). Molecular sequencing was used to identify the ascariidoids and Bolbosoma sp. and to confirm the identification of 3 host sternoptychid species. The mesopelagic fishes hosted Anisakis brevispiculata (that matures in pygmy and dwarf sperm whales) and Hysterothylacium fortalezae (that matures in pelagic fishes, primarily mackerels), whereas the benthoceplagic species was parasitized by Anisakis typica (that matures in dolphins). We suggest this pattern of infection indicates a pelagic life-cycle for Anisakis brevispiculata and Hysterothylacium fortalezae and a demersal life-cycle for Anisakis typica. Our study represents the first published sequences from the nGOM for the fishes Argyropelecus aculeatus, Maurouliscus weitzmani, and Polyipnus clarus and the first molecular identification of larval ascariidoids from mesopelagic fishes in the nGOM.

KEYWORDS: Anisakis, Hysterothylacium, marine mammals, Phosichthyidae, Sternoptychidae

INTRODUCTION
Mesopelagic fishes represent significant ecological links between mesozooplankton and the larger pelagic squids, fishes, and marine mammals (e.g., Pauly et al. 1998, Choy et al. 2013, Young et al. 2015). Members of the orders Stomiiformes and Myctophiformes account for the vast majority of such fishes (Bernal et al. 2015). Most parasitological studies of midwater fishes have revealed larval or juvenile stages of helminths that mature in large pelagic fishes and marine mammals rather than adult helminths (e.g., Noble and Collard 1970, Gartner and Zwerner 1989, Mateu et al. 2015). Typically, larval or juvenile stages of trematodes (that mature in fishes), cestodes (that mature in elasmobranchs), acanthocephalans (that mature in fishes and marine mammals), and nematodes, especially ascariidoids, have been reported (e.g., Noble and Collard 1970, Gartner and Zwerner 1989, Klimpel et al. 2006, 2010, Mateu et al. 2015).

The life-cycle of marine ascariidoids involves a crustacean first intermediate host and a vertebrate final host. Typically, members of the Raphidascarididae mature in teleosts, whereas those of Anisakidae mature in marine mammals. The crustacean first intermediate host is generally a copepod, but euphausiids serve as important intermediate hosts for species of Anisakis (see Smith and Wooten 1978). Larval ascariidoids commonly infect fishes and invertebrates that serve as paratenic, or transfer hosts (hosts that are not required for the development of the parasite). The use of these paratenic hosts acts as an adaptation to overcome the challenges of reaching appropriate final hosts in oceanic environments (Marcogliese 1995), and has led to the utility of ascariidoids as biological tags for fishes (Mattuici et al. 2008) and trophic interactions (Palm and Klimpel 2008). The use of paratenic hosts also has public health implications for certain fisheries products because of the zoonotic (can be passed from animal to human) potential of some ascariidoids, especially those that mature in marine mammals (species of Anisakis and Pseudoterranova; see Sakanari and McKerrow 1989, but also some that mature in fishes (Overstreet and Meyer 1981, Overstreet 2012).

Despite the potential human health risk associated with some ascariidoids, the Gulf of Mexico (GOM) is poorly characterized with respect to the intermediate and paratenic host use patterns of those nematodes. Kuhn et al. (2011) modeled the geographic range of 9 species of Anisakis but did not include data for the GOM presumably because species of Anisakis were reported under junior synonyms, incomplete larval names, misidentifications, or they lacked molecular data (e.g., Gunter and Overstreet 1974). Cavallero et al. (2011) surveyed stranded cetacean hosts from the eastern GOM (eGOM), southeastern U.S. Atlantic coast, and Caribbean Sea and reported the presence of 7 species of Anisakis, Pseudoterranova ceticola, and larvae of Contracaecum multipapilla tum (exclusively from inshore populations of the common bottlenose dolphin, Tursiops truncatus). However, the highly migratory nature of most marine cetaceans and the varied geographic stranding localities examined by Cavallero et al. (2011) do not provide a clear picture of the richness of Anisakis species in the northern GOM (nGOM).

The purpose of this study was to document larval ascariidoids as well as other endohelminths in stomiiform fishes
that were incidentally caught in bottom trawl surveys along the nGOM outer continental shelf and continental slope. We examined 5 mesopelagic species (the Atlantic Sliver Hatchetfish, Argyropelecus aculeatus; the Silvery Hatchetfish, Argyropelecus sladeni; the Atlantic Pearlside, Maurolicus weitzmani; the Slope Hatchetfish, Polyipnus clarus (all Sternoptychidae); and the Stareye Lightfish, Pollichthys mauli (Phosichthyidae)) and one benthopelagic species (the Ren dezvous Fish, Polymetme corythaecola (Phosichthyidae)) for helminths. Morphological identification of larval ascaridoids to species level is generally problematic (e.g., Zhu et al. 1998, Mattiucci and Nascetti 2006, Mattiucci et al. 2014); therefore, we molecularly genotyped the 28S and internal transcribed spacer region (ITS; = ITS1, 5.8S, and ITS2) ribosomal DNA (rDNA) regions to confirm identifications. Materials and Methods Sample collection Representative stomiiform fishes were collected from the nGOM by bottom trawl as a part of the NOAA—Fisheries Southeast Small Pelagic Survey in 2011–2012. Trawls were towed for 30 min and depths (m) at the end of trawl were recorded. Following capture of fishes, we identified and froze them at —20°C while on ship. We examined 208 individuals representing 2 species of Phosichthyidae and 5 species of Sternoptychidae and froze them at —20°C while on ship. We examined 208 individuals representing 5 species of Sternoptychidae and 88 individuals representing 2 species of Phosichthyidae from 20 locations (Figure 1A). In the laboratory, hosts were defrosted at 1–3°C, identifications confirmed using the keys developed by McEachran and Fechhelm (1998), and examined for helminths under a stereomicroscope. Candling was conducted by putting fillets between two glass slides and examining them by stereomicroscope; however, no larvae were found in the musculature of any of the fishes examined, and the process was discontinued. Parasite specimens were fixed in 70% ethanol for morphological and molecular analyses. Nematodes were cleared in 95 parts 70% ethanol + 5 parts glycerol for morphological examination. A single acanthocephalan and a single digenean were stained, cleared, and mounted according to the procedures in Andres and Overstreet (2013). Voucher specimens were deposited in the Gulf Coast Research Laboratory Museum (GCRLM), Ocean Springs, Mississippi (see Table 1 for accession numbers).

Ecological parasitology terms follow those defined by Bush et al. (1997): prevalence as the percentage of fish infected and mean intensity of infection as the mean number of parasites per infected fish. The 95% confidence interval for prevalence was calculated using the Clopper—Pearson exact CI (exactci) package found in the PropCIs library of R v. 2.15.2 (R Core Team, 2012).

Molecular analyses Genomic DNA was extracted from a middle portion of 36 individual ascaridoids, a section of the posterior portion from the acanthocephalan, and a piece of muscle from a single individual of each sternoptychid species (with the exception of Argyropelecus sladeni; n = 4) using Qiagen DNAeasy tissue kit (Qiagen, Inc., Valencia, CA, USA) following the instructions provided. For ascaridoids, DNA fragments of ca. 1,020 base pairs (bp) long for the 28S ribosomal DNA (rDNA) gene and 800 bp long comprising the ITS rDNA gene were amplified from the extracted DNA by polymerase chain reaction (PCR) following the procedures of Nadler et al. (2000) and Zhu et al. (1998), respectively. For the acanthocephalan, a 668 bp partial portion of the mitochondrial cytochrome c oxidase 1 (cox1) was amplified following Garcia—Varela and Nadler (2006) and for sternoptychids, ca. 640 bp partial portion of the cox1 was amplified following Ward et al. (2005). See Table 2 for the list of primers used and their corresponding references. The resulting PCR products were excised from PCR gel using QIAquick Gel Extraction Kit (Qiagen, Inc., Valencia,
CA, USA) following kit instructions. They then were cycle-sequenced using ABI BigDye™ chemistry (Applied Biosystems, Inc., Carlsbad, CA, USA), ethanol-precipitated, and processed on an ABI 3130 Genetic Analyzer™. Sequences used for pairwise comparison were aligned using MAFFT version 6.611b (Katoh et al. 2005) with 1,000 cycles of iterative refinement and the genafpair algorithm.

FIGURE 1. Sampling localities in the northern Gulf of Mexico. A. Localities of sternoptychids (triangles), phosichthyids (squares), or both (circles) from 2011 (filled symbols) and (2012) (open symbols). B. Locations from which Anisakis brevispiculata were collected. C. Locations from which Anisakis typica (diamonds) and Hysterothylacium fortalezae (stars) were collected. D. Locations from which tetraphyllideans (pentagons), Bolbosoma sp. (+), and Brachyphallus sp. (white “X” overlaid a pentagon) were collected. Bathymetric contour lines represent 50 m, 100 m, 200 m, 300 m, 500 m, and 1,000 m.
Of the 5 midwater species collected, *Polyipnus clarus* was the most common (n = 156 from 11 stations) followed by the phosichthyid *Pollichthys mauli* (n = 35 from 3 stations) where - as 53 individuals of the benthopelagic *Polymetme corythaeola* were collected from 4 stations. Individuals of *Argyropelecus aculeatus* and *Polymetme corythaeola* were collected from the deepest depths as well as the largest depth range (see Table 3). Individuals of both phosichthyid species tended to be longer and heavier than the sternoptychid species (Table 3).

The *cox1* sequence of *Argyropelecus aculeatus* and *Maurolicus weitzmani* was identical to that of the unpublished sequence of *Argyropelecus aculeatus* (KF929623) collected from the slope water off Cape Hatteras and the sequence of *Maurolicus weitzmani* (KJ190037) from the Mid-Atlantic Bight (Davis et al. 2014), respectively. The *cox1* sequence of the latter 2 species were 84% similar, suggesting that the acanthocephalan we collected was a species of *Bolbosoma* (Polyomorphidae). Morphologically, the proboscis of our specimen was not everted; however, it did possess a funnel–shaped bulb in the foretrunk.

Parasitological data

The prevalence of helminths was relatively low (Table 4). No individual of *Argyropelecus sladeni* was infected with any helminth. In individual of *Anisakis brevispiculata* sequenced, one 28S genotype and 3 ITS genotypes were found. All differences in those genotypes occurred at position 177 in the ITS2, with 15 individuals having a guanine; 4 individuals having an adenine, and one individual having an ambiguous purine. The most common ITS genotype (KX098557) was identical to the sequence of *Anisakis brevispiculata* AY826719 of Cavallerio et al. (2011). No intraspecific variation occurred in either gene region of the 6 individuals of *Anisakis typica*. The ITS sequences we generated for *Anisakis typica* were identical to EU327688 (Iniguez et al. 2009) and JQ912690 (Mattiucci et al. 2014) for *Anisakis typica*, but they differed from sequence AY826724 by Cavallerio et al. (2011) that had 3 single bp indels in the ITS1 at positions 125, 131, and 161. No intraspecific variation occurred in either gene region of the 11 individuals of *Hysterothylacium fortalezae*. The 28S sequences we generated for *Hysterothylacium fortalezae* differed from the GenBank sequence U94760 (provided by RMO to Nadler and Hudson 1998) by a single bp indel at position 436.

The *cox1* sequence generated from the acanthocephalan was 88% similar to sequence JQ040303 for *Bolbosoma balaenae* (Gregori et al. 2012); 66% similar to sequence JX442190 for *Bolbosoma* sp. (Garcia–Varela et al. 2013); and 65% similar to sequence JX442189 for *Bolbosoma turbinella* (Garcia–Varela et al. 2013). The *cox1* sequences of the latter 2 species were 84% similar, suggesting that the acanthocephalan we collected was a species of *Bolbosoma* (Polyomorphidae). Morphologically, the proboscis of our specimen was not everted; however, it did posses a funnel–shaped bulb in the foretrunk.
exception of *Maurolicus weitzmani*. Anisakis typica was the only helminth found to infect *Polyetemt corythaeola*, and was found to parasitize that host only. *Maurolicus weitzmani* had the highest prevalence of *Hysterothylacium fortalezae* because a single location in the western GOM (wGOM) had 5 infected individuals. The site of infection for individuals of *Anisakis brevispiculata* was in the mesenteric lining associated with the gonads, with the exception of 2 individuals in a single *Polyipinus clarus*, where one individual occurred near the gonads and the other near the liver. Likewise, all individuals of *Anisakis typica* occurred in the mesenteric lining around the gonads, even in the single fish with an intensity of 2. All individuals of *Hysterothylacium fortalezae* were found in the mesenteric lining of the liver. None of the fish examined from the 2011 eGOM locations (east of Mobile Bay, AL; see Figure 1A) were infected with ascaridoids, whereas all of the 2012 sampling locations occurred in the eGOM, and only the southernmost location exhibited uninfected fish. All three ascaridoid species were found across the nGOM (Figure 1B–C). The depth range of fish infected with ascaridoids was 66–468 m for *Anisakis brevispiculata*, 98–468 m for *A. typica*, and 212–419 m for *Hysterothylacium fortalezae*, and all but the shallowest two locations (both of which occurred over the Texas shelf) occurred in > 200 m of depth.

The mean intensity (Table 4) for all helminths, with the exception of larval tetraphyllideans (Cestoda) from *Polyipinus clarus*, was between 1.0–1.2. Tetraphyllideans were not identified past order, but were found in only mesopelagic fishes from the eGOM (Figure 1D) ranging from a depth of 102–419 m. The single specimen of *Bolbosoma* sp. was found in the proximal portion of the intestinal tract of *Maurolicus weitzmani* from the wGOM (Figure 1D) at a depth of 186 m. A single immature (based on possessing adult characters but not being mature) specimen of *Brachyphallus* sp. (Digenea: Hemiuридidea) infected the stomach of *Polyipinus clarus* from the eGOM (Figure 1D) at a depth of 419 m.

Discussion

We provide the first molecular identification of anisakids and a species of *Bolbosoma* from fish in the nGOM, the first parasitological survey of 4 sternoptychid species and 2 phosichthyid species in the nGOM, and provide the first *cox1* sequences for sternoptychids from the GOM. We found the larval stages of 5 helminth taxa (*Anisakis brevispiculata*, *Anisakis typica*, *Hysterothylacium fortalezae*, *Bolbosoma* sp., and Tetraphyllideae) and an immature species of *Brachyphallus*. The presence of generalist parasite taxa in the hosts that we examined is similar to the findings of previous authors who examined midwater fishes (e.g., Noble and Collard 1970, Gartner and Zwerner 1989, Klimpel et al. 2007, 2008, 2010, Mateu et al. 2015). We found an overall low prevalence and mean intensity of all parasitic taxa across all host species examined. *Polyipinus clarus* had the largest number of recovered helminth taxa (4), but it also had the highest sample size (156). *Argyropelecus sladeni* was not infected with any helminths, but only 6 individuals were examined, and, consequently, we do not include it in the following discussion.

All midwater species were parasitized by *Hysterothylacium fortalezae*, with *Maurolicus weitzmani* having the highest prevalence of infection (20%) for any host–parasite pair. *Hysterothylacium fortalezae* primarily parasitizes pelagic, piscivorous fishes such as species of *Scomberomorus* as well as the Leatherjacket, *Oligopotes aurus*; Deardorff and Overstreet 1980), but those authors also reported adults from the Black Grouper, *Mycteroperca bonaci*. Our finding of *Hysterothylacium fortalezae* parasitizing midwater fishes rather than the benthopelagic *Polyetemt corythaeola* is likely indicative of those fishes acquiring an infection while feeding on epipelagic crustaceans. Deardorff and Overstreet (1981) described larvae that they attributed to *Hysterothylacium fortalezae* from the viscera of coastal and offshore pelagic fishes (3 species of *Anchoa*, 2 species of *Petrilus*, and the Atlantic Catfish, *Trichiurus lepturus*) but also from a penaeid shrimp and the structure—associated Black Sea Bass, *Centroprisritis striata* (as *C. melana*). However, the demersal species they found to be infected with *Hysterothylacium fortalezae* larvae have pelagic life–history stages that could have allowed those species to acquire their infection before settling. Most of the locations Overstreet and Deardorff (1981) sampled occurred in shal-

TABLE 4. Percent prevalence (P) with 95% confidence interval and mean intensity of infection (I; ± SE) for the parasitic taxa of the 4 mesopelagic (M) hosts and one benthopelagic (B) host.

<table>
<thead>
<tr>
<th>Host</th>
<th>Zone</th>
<th>Tetraphyllidea</th>
<th>Anisakis brevispiculata</th>
<th>Anisakis typica</th>
<th>Hysterothylacium fortalezae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>I</td>
<td>P</td>
<td>I</td>
<td>P</td>
</tr>
<tr>
<td>Pollichthys mauli</td>
<td>M</td>
<td>6 (0.7–19.2)</td>
<td>14 (4.8–30.3)</td>
<td>0</td>
<td>3 (0.1–14.9)</td>
</tr>
<tr>
<td>Polyipinus clarus</td>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9 (3.1–20.7)</td>
</tr>
<tr>
<td>Argyropelecus aculeatus</td>
<td>M</td>
<td>0</td>
<td>13 (1.6–38.3)</td>
<td>0</td>
<td>6 (0.2–30.2)</td>
</tr>
<tr>
<td>Maurolicus weitzmani</td>
<td>M</td>
<td>5 (0.1–24.9)</td>
<td>1</td>
<td>0</td>
<td>20 (7.8–38.6)</td>
</tr>
<tr>
<td>Polyipinus clarus</td>
<td>M</td>
<td>2 (0.4–5.2)</td>
<td>7 ± 1.9</td>
<td>8 (4.0–13.1)</td>
<td>0</td>
</tr>
</tbody>
</table>
low water where trophic interactions between demersal and pelagic organisms are more likely to have occurred.

Anisakis brevispiculata parasitized all midwater fish species with the exception of *Mycteroperca coarctata* and was the most numerous of all examined nematodes. One individual each of *Argopecten australis* and *Polyplax claus* had a co-infection of *Hysterothyla* and *Anisakis brevispiculata*. Pygmy and dwarf sperm whales (*Kogia*) serve as the final hosts for *Anisakis brevispiculata* (Mattucci et al. 2001, Cavallero et al. 2011) and feed primarily on squids and to a lesser degree on mesopelagic fishes (Pauly et al. 1998). However, Mattucci et al. (2001) reported that the demersal *Merluccius merluccius* (Macrouridae) served as a paratenic host in the central—eastern Atlantic Ocean; demersal fishes have been known to feed on midwater fishes, especially along continental slopes and seamounts (Pusch et al. 2004, Gartner et al. 2008), and this is reflected in their parasite fauna (e.g., Klimpel et al. 2008, Palm and Klimpel 2008). Therefore, we believe that *Anisakis brevispiculata* has a pelagic life—cycle in the nGOM but that additional midwater fish (especially molytoids) and squid species from the GOM should be studied to confirm this.

Anisakis typica parasitized *Polymentte corythaeola*, the only benthopelagic species examined. Palm et al. (2008) suggested a pelagic life—cycle for *Anisakis typica* off Indonesia based on their finding of larvae in scombrid and carangid fishes, but our findings suggest a demersal cycle in the nGOM. Cavallero et al. (2011) found that *Anisakis typica* was the dominant anisakid in offshore delphinids that had stranded along the coasts of the GOM, southeastern U.S., and Caribbean Sea. Our finding of *Anisakis typica* in the benthopelagic species only was surprising, considering that the diets of most oceanic delphinids consist of squid and epipelagic and mesopelagic fishes (e.g., Fiedler et al. 1998, Pauly et al. 1998, Davis et al. 2002). Therefore, additional paratenic hosts are likely necessary to transfer *Anisakis typica* to its final hosts. Additional benthopelagic and demersal fishes along the outer continental shelf and slope should be examined to further establish the life—cycle patterns of *Anisakis typica* in the nGOM.

The current underrepresentation of parasitological data for species of *Anisakis* in the nGOM is likely an artifact of the bathymetry of the GOM. The continental shelf is shallow and wide across most of the commercial and recreational fishing grounds, and the majority of ichthyoparasitological examinations in the region for ascaridoids (e.g., Overstreet 1978, Deardorff and Overstreet 1980, 1981) have focused on host species that occur in coastal waters or over the continental shelf. Likely reasons why anisakids are not commonly encountered in fisheries products from the GOM are the lack of surveys using molecular tools, the importance that oceanic euphasiids may play in the life—cycles of species of *Anisakis* (Smith and Wooten 1978), and the diversity of marine mammals associated with the bathymetric features (e.g., salt domes and diapirs) of the nGOM continental slope (Davis et al. 2002).

In the GOM, the only species of *Bolbosoma* reported is *Bolbosoma vasculosum* from Blainville’s beaked whale, *Mesoplodon densirostris* (Salgado—Maldonado and Amin 2009). However, in the Caribbean Sea, *Bolbosoma vasculosum* has been reported from both the pygmy killer whale, *Feresa attenuata*, and the Atlantic spotted dolphin, *Stenella frontalis*; another species, *Bolbosoma capitatum*, has been reported from the short—finned pilot whale, *Globicephala macrocephalus*, and an unidentified species of *Bolbosoma* infected the pygmy sperm whale, *Kogia breviceps* (see Mignucci—Giannoni et al. 1998). Unfortunately, the freezing and subsequent thawing of the single specimen that we attribute to *Bolbosoma* sp. was based on molecular sequencing of the cox1 gene and did not allow for morphological identification to species level. Species of *Bolbosoma* are one of the two acanthocephalan genera known to parasitize marine mammals (Raga et al. 2009). Euphasiids and copepods act as first intermediate hosts (Hoberg et al. 1993, Gregori et al. 2012), and fishes act as paratenic or transport hosts (Raga et al. 2009).

Likewise, tetraphyllideans use crustacean and fish intermediate hosts, mature in elasmobranchs, and the larvae are commonly found in marine fishes (e.g., Jensen and Bullard 2009). We attempted to amplify the 28S from the extracted DNA of 3 individual larvae but were unsuccessful. Jensen and Bullard (2009) provided a key to 15 larval types that they identified but our specimens could not clearly be assigned to any of them, most likely because of the freezing and thawing of hosts. The only species of *Brachyphallus* reported from the GOM by Overstreet et al. (2009) is *Brachyphallus parvum* (as *Lecithochirium parvum*). *Brachyphallus parvum* has been reported from 27 teleost species in the GOM, 5 of which are pelagic. The life—cycle of the congener *Brachyphallus crenatus* involves an opisthobranch snail, calanoid copepods, matures in teleosts, and can include chaetognaths and ctenophores as paratenic hosts (Køie 1992); therefore, the finding of an immature species in *Polyplax claus* is not necessarily unexpected.

Few other studies on the parasites of midwater fishes have included stenoptychids or phosichthyids as hosts. Gartner and Zwerner (1989) examined *Argyroplecus aculeatus* and *Sternopyx diaphana* from the western North Atlantic; Klimpel et al. (2004, 2007) examined *Maurolicus muelleri* from the Norwegian Deep and Mid—Atlantic Ridge; and Bray and Gaevskaya (1993) provided a description of a monorchiid (Digenia) from *Polymentte corythaeola* from the eastern mid—Atlantic Ocean. Gartner and Zwerner (1989) found only cestode larvae in the 2 stenoptychids they examined. Klimpel et al. (2004, 2007) found parasite communities similar to ours, but they found 2 digenean species and the ascardoid species *Anisakis simplex* (sensu stricto) and *Hystero—
Our sample sizes were also relatively small for most species examined (only Polypinus clarus and Polymetme corythaeola had n > 50); therefore, we elected to pool parasitological data for species across the nGOM rather than comparing infections by locations. Ross et al. (2010) found a homogenous mesopelagic fish assemblage across the nGOM that would support our consideration. However, based on diet data for some sternoptychid species in the eGOM, the species composition of available prey at lower taxonomic levels spatially varies slightly (e.g., Hopkins and Baird 1985). The stomachs of most of the fishes we examined were either inverted, empty, or contained unrecognizable (digested) prey, and could not be used to reliably compare diets. To generate a more concise picture of the parasite communities of sternoptychids and phosichyids and to generate a better understanding of the life—cycles of such parasites, fishes collected by midwater trawls should be examined.

ACKNOWLEDGEMENTS

We thank the National Marine Fisheries Service Laboratory in Pascagoula, MS, for making sampling possible and continuing a productive collaboration. We are especially grateful to M. Grace, A. Hamilton, M. Hendon, N. Hopkins, W. Ingram, L. Jones, A. Pollack, K. Rademacher, and the crew of the NOAA RV Pisces. From the University of Southern Mississippi, we thank A. Claxton, J.A. Jovonovich, and J. Wright for their assistance with DNA extractions and sequencing reactions, and S. LeCroy for providing museum accession numbers. The material treated here is based on work supported by the National Science Foundation under grant no. 0529684, Ocean and Human Health Initiative grant no. NA08NOS4730322, US Fish and Wildlife Service/Mississippi Department of Marine Resources MSCIAP MS.R.798 Award M10AF20151, and BP Exploration & Production, Inc. (to RMO).

LITERATURE CITED

Mattiucci, S., V. Farina, N. Campbell, K. MacKenzie, P. Ramos,

