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Abstract 

 

Although organic electronic materials are flexible, cheap to fabricate, and 

molecularly tunable, their performance has generally been less efficient than that of their 

inorganic counterparts. Chemical doping has been attempted as a method to increase the 

efficiency of organic materials. During this process, an organic material, typically a 

conjugated polymer, is exposed to an oxidant/reductant, called a dopant. Electron transfer 

between host polymer and dopant molecules increases the charge carrier density in the 

doped host material, making it a more efficient conductor. The effects of doping using 

2,3,5,6-tetrafluoro-tetracyanoquinodimethane (F4TCNQ) on low molecular weight 

poly(3-hexylthiophene-2,5-diyl) (LMW P3HT) in varying ratios of a decane/toluene 

solvent was investigated. Increasing the fraction of decane, a nonpolar bad solvent that 

does not facilitate charge transfer, forces the P3HT to aggregate very quickly. A 

comparison is made between the UV-vis spectra of samples prepared with decane and 

those of samples prepared in pure toluene. By comparing the chemical doping behavior 

between aggregated and non-aggregated forms of P3HT, the influences of P3HT 

aggregation on their chemical doping kinetics are elucidated. The experimental results 

obtained support the hypothesis that P3HT must undergo its aggregation step before a 

doping product can be formed. 
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Chapter 1: Introduction 

Technology is advancing faster than ever before. In the past twenty years, the 

world has stopped viewing the Internet as being this vast new place. Today, most people 

carry a supercomputer in their pockets. Because of this, researchers are questioning why 

we use the same materials for our electronics that have been the norm for decades. 

Currently there are numerous attempts to explore the possibility of using organic, or 

carbon-based, electronics. This introduces opportunities to create cheaper and more 

flexible alternatives to the more common inorganic counterparts for a variety of 

applications, including solar cells, transistors, and display devices. 

The conductivity of organic electronic materials thus far has been lower than the 

inorganic versions, but researchers are trying to find a way to address that issue by using 

a method called chemical doping. This method consists of the organic electronic material, 

typically a conjugated polymer, being “doped,” or exposed, to an oxidative or reductive 

chemical compound called a dopant. Electron transfer between the host polymer and 

dopant molecules increases the charge carrier density in the doped host material, making 

it a more efficient conductor. Studying the effects of doping and how it changes the 

polymer can give great insight to the doping process and mechanisms. This can be done 

by performing a kinetic study, a study of the rates of the reactions, of the processes being 

studied.  

This thesis focuses on how a dopant reacts with a specific species of polymer in 

different solvents. I determine how the dopant 2,3,5,6-Tetrafluoro-7,7,8,8-

tetracyanoquinodimethane (F4TCNQ) reacts with Poly(3-hexylthiophene-2,5-diyl) 

(P3HT). This research used physical chemistry experimentation to produce a study of the 
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polymer species reacting to the chosen dopant to elucidate the effect of polymer packing 

on its doping reaction kinetics. 
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Chapter 2: Literature Review 

Researchers have been studying conductive polymers for years. Recently, the 

understanding of the electrochemistry involved in the charging of conductive polymers 

(CPs) has come a long way1. Experimentation has revealed that some hypotheses put 

forth in old literature are highly unlikely, like the hypothesis that a chain propagation 

mechanism was at play1. There has even been evidence that CPs act like molecular 

systems. Although it happens rarely, evidence also supports the existence of bipolarons, a 

part of a macromolecular chain with two positive charges, which are predicted by the 

band model, a diagram used to predict the behavior of electrons within a system.1 

Because of this new knowledge, researchers are closer than ever to being able to create 

efficient organic electronic materials.  

It is not uncommon that the usage of a new polymer will increase the efficiency of 

an organic electronic device, such as an organic solar cell. In fact, in an experiment 

conducted by Baran et al., the D-A-D (donor-acceptor-donator) type polymer poly (2-

dodecyl-4 ,7-bis (4-hexiltiofen-2-yl)-2H-benzo[d] [1,2,3] triazole), referred to as PHTBT, 

was found to increase the open circuit voltage of a solar cell up to 0.85 V when it was 

used as the donor material.2 Sometimes the polymer is used in a semiconductor/insulator 

blend due to both higher performance and environmental stability. However, synthesis 

and purification of a new polymer compound is typically expensive and time-consuming, 

which calls for an easier way to improve CP’s properties. Doping could potentially 

enhance the performance of such mixtures or add new functions. For example, using a 

dye doping method, some conjugated polymer nanoparticle tags can be easily 

characterized with optical techniques3. Most polymers, however, undergo chemical 



   
 

4 
 

doping with chemical dopant molecules to enhance their conductivity. Conductivity, the 

capability of a material to transport an electric current, is an important factor to consider 

for a semiconductor polymer. A polymer blend, in its undoped state, performs quite 

poorly, having limited mobility4. When a dopant is introduced, the charge transfer 

reaction produces an extra host molecule ion that can function as a charge carrier, which 

improves these characteristics drastically.4 

Doping is not the only thing that determines the properties of a polymer-based 

device. One must also take the packing of the polymer into consideration. Packing is the 

spatial arrangement of polymer molecules. In an experiment by Dudenko et al., the 

packing of a π-conjugated polymer such as P3HT was studied by multi-technique 

crystallography.5 This method is comprised of several different analytical methods, 

including x-ray diffraction and solid-state nuclear magnetic resonance (NMR). Packing, 

of course, is different for different kinds of polymers, and the packing orientation can 

even change between various specific polymers within a certain variety. For example, in 

diketo pyrrolo-pyrrole (DPP) based polymer semiconductors, the preferred orientation 

changes from edge-on to face-on as the side chain attachment density increases.6 Side 

chain attachment density correlates to the amount of space between side chains of a 

polymer. As the density increases, space between the side chains decreases. The most 

efficient way for a polymer blend to be packed would seem to be in a cofacial 

arrangement. This conformation, at least in the case of a F4TCNQ and Poly[2,5-bis(3-

tetradecylthiophen-2-yl) thieno[3,2-b] thiophene] (PBTTT-C14) blend, creates an 

electron transfer efficiency of nearly 100% in the solid state. This would suggest that the 

locations of molecular acceptors should be correlated instead of dispersed randomly.7 
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One of the major downfalls of polymer-based electronic materials, specifically 

solar cells, is the fact that their efficiency is directly linked to the nanoscale morphology 

of the thin active layer. When the layer absorbs light, an electron-hole pair, also called a 

Coulombically bound exciton, is formed. Particles in a lower dielectric medium (a 

medium with a high insulation ability), like a polymer matrix, have a higher binding 

energy. This means that the electron-hole pair will not stay in the excited state for as 

long, and the excitation diffusion length in low dielectric media is shortened, limiting 

efficiency of the eventual solar cell.8 High agglomeration can also negatively affect the 

properties of some polymer nanocomposites. A lot of clustering can cause loss of volume 

and blocks percolation networks, or random pathways, from forming within the 

composite.9 

This thesis describes research using the dopant F4TCNQ. This is a common p-

dopant in work on organic electronic materials, and is found to be effective at increasing 

device performance in carbon nanotube field-effect transistors (CNFETs) by improving 

transconductance.10 The polymer used in this research, P3HT, is one of the most widely 

used conjugated polymers for organic electronic materials because of its high charge 

carrier mobility. It is possible for P3HT to undergo a crystalline phase involving 

F4TCNQ being brought into structured regions when the dopant concentration is higher 

than a critical point, which increases carrier density in thin films.11 Literature about 

F4TCNQ and P3HT shows that the two compounds work well together11, possibly due to 

their integer charge transfer during doping.  

The exact mechanisms of doping of P3HT by F4TCNQ are not well understood. 

This thesis investigates the doping mechanism of P3HT with F4TCNQ with specific 

Packed 

P3HT 
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attention to the effects of the polymer packing on the doping mechanism. There are three 

possible mechanisms by which chemical doping could occur for this system, shown in 

Figures 1-3. In the first mechanism, the P3HT will charge transfer with F4TCNQ, and the 

resulting P3HT polaron will aggregate. In the second mechanism, both charge transfer 

and aggregation occur simultaneously. In the third and final possible mechanism, the 

packing step occurs before the charge transfer can take place. In this thesis, by 

experimentally examining the doping reaction of P3HT with F4TCNQ, their doping 

reaction mechanism will be elucidated. 

 

Figure 1 - Possible mechanism for doping 1: Charge transfer occurs before aggregation 

 

Figure 2 - Possible mechanism for doping 2: Charge transfer and aggregation occur simultaneously 

 

Figure 3 - Possible mechanism for doping 3: Aggregation occurs before charge transfer 
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Chapter 3: Methods 

Solution Preparation 

 Three 30 μg/mL solutions of low molecular weight (LMW) P3HT were made in 

an airtight glove box. Reducing exposure to oxygen is important to eliminate the possible 

side reaction induced by the presence of oxygen, which would skew the experimental 

results. One solution was made using pure toluene as a solvent. The other two used 

differing ratios of decane in toluene, one 25% and the other 45%. Decane was chosen due 

to its properties as a bad solvent for P3HT, meaning its presence in the solution causes 

the polymer to aggregate very quickly since LMW P3HT is completely solubilized in 

toluene. It was also chosen due to its nonpolar qualities so it does not promote additional 

charge transfer. Each sample was made directly in a custom-made vacuum-safe cuvette 

with a bulb. Once the solution was in the cuvette, 20 μL (5 weight percent) of F4TCNQ 

was added to the bulb, being careful not to mix it with the solution prematurely.  

Spectroscopic Analysis of Solutions 

 After being removed from the glove box, an ultraviolet-visible (UV-vis) spectrum 

was obtained for each P3HT-only solution using a Cary-60 spectrometer. The solutions 

were heated to 100°C for 30 min to make sure all P3HT was fully solubilized, then 

cooled back to room temperature. A UV-vis spectrum showing the aggregation peaks was 

obtained for each sample. The solutions were then immediately mixed with the dopant to 

further record the UV-vis spectra.  

 

25% and 45% Decane Solutions   
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After mixing, the decane solutions were aged over two days to allow the doping 

product to form. Both morphological forms of P3HT are shown in Figure 4. The solutions 

were then heated to 100°C to resolubilize the polymer and then cooled again to room 

temperature. A spectrum was then taken of the doped solution.  

 

Figure 4 - (left) solubilized P3HT; (right) aggregated P3HT 

Pure Toluene Solution 

Because LMW P3HT is fully soluble in toluene, a different method was necessary 

to test for doping. Instead of waiting two days to allow for aggregation, the UV-vis 

spectrophotometer was set to continually take spectra of the toluene solution over the 

course of three days. 
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Chapter 4: Results and Discussion 

Spectroscopic Data for Decane Solutions 

 When interpreting UV-vis spectra for a doping reaction, it is important to identify 

the main doping peaks. The peak for the solubilized form of P3HT, s-P3HT, is around 

450 nm. The aggregation peaks for the aggregated products, the nanowire form of P3HT 

(nw-P3HT) appear around 610 nm and 560 nm. The peaks designating the doping 

product, or the result of the charge transfer reaction between polymer and dopant, appear 

between 750 and 850 nm. These are clearly visible in Figure 5. 

 

Figure 5 - UV-vis spectrum of 25% decane solution: fully solubilized sample shown in blue, freshly aggregated sample 

in black, and the fully doped sample in red. 

 It is clear from the spectra of the aggregated sample that as the nw-P3HT peak 

rises, the s-P3HT peak becomes smaller. This shows the balance that exists between the 

different morphological forms of P3HT, as illustrated in the first step of Figure 3. It can 
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also be seen that a larger amount of nw-P3HT gives rise to a larger amount of doping 

product. The same phenomenon is observed in the spectrum for the 45% decane solution, 

as shown in Figure 6. 

 

Figure 6 - UV-vis spectrum of 45% decane solution: fully solubilized sample shown in red, freshly aggregated sample in 

black, and fully doped sample in blue. 

Pure Toluene 

 The spectra for the decane solutions should be compared to the UV-vis data for 

the solution in pure toluene, shown in Figure 7.  
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Figure 7 - UV-vis spectrum for pure toluene solution: original solubilized sample shown in black, 24 hour spectrum in 

red, 48 hour spectrum in dark blue, and 72 hour spectrum in light blue. 

 It is apparent from the spectrum that there was no aggregation and no doping in 

the pure toluene solution. LMW P3HT dissolves easily in toluene and remains in 

solubilized form at room temperature for days. The addition of the F4TCNQ dopant leads 

to the shoulder peak at approximately 390 nm. For a more complete picture, this 

spectrum can be compared to the spectrum for high molecular weight (HMW) P3HT, 

shown in Figure 8. HMW P3HT can easily aggregate in toluene, and similar to the results 

in Figure 5 and Figure 6, the emergence of aggregate peaks is accompanied by the 

formation of doping products. 
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Figure 8 - UV-vis spectrum of HMW P3HT in pure toluene14: original solubilized sample shown in black, 3 hour 

spectrum in red, 6 hour spectrum in blue, 12 hour spectrum in pink, and 24 hour spectrum in green. 

Based on the data obtained, one can see a clear correlation between the presence 

of aggregation peaks and the presence of doping peaks. In pure toluene, LMW P3HT 

does not aggregate, and there are no doping products formed even after 5 wt% F4TCNQ 

dopant was added for 72 h. This indicates that fully solubilized P3HT likely does not 

undergo charge transfer with F4TCNQ, which is contradictory to the mechanism 1 

proposed in Figure 1 and the mechanism 2 proposed in Figure 2. In the two decane-

toluene solutions, a large amount of nw-P3HT was formed, and a significant amount of 

doping product was also formed. Similarly, when the spectrum for LMW P3HT in pure 

toluene is compared with the spectrum of HMW P3HT in pure toluene, it is observed that 

when the polymer can aggregate, a doping product forms. Over the course of 24 hours, 

significant doping product is observed in the HMW sample, while the LMW displays no 

doping product after 72 hours without aggregation. 
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 This correlation gives evidence to support the hypothesis that in the doping 

reaction between P3HT and F4TCNQ, the aggregation step must occur before the charge 

transfer step, as in mechanism 3 proposed in Figure 3. If the charge transfer step occurred 

before or at the same time as the packing step, doping product peaks would appear 

regardless of the ability of the polymer to aggregate. This suggests that the missing 

aggregation step for the LMW sample in pure toluene results in a significant barrier to the 

doping process. 
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Chapter 5: Conclusions 

Our results demonstrate that the mechanism shown in Figure 3 of this thesis is, in 

fact, the most likely mechanism for the doping of P3HT using F4TCNQ. Further research 

could be done to test LMW P3HT in toluene at a temperature that allows aggregation to 

occur to see if doping is possible once that aggregation barrier is lifted. The kinetic effect 

of F4TCNQ on pre-formed nw-P3HT as opposed to letting the sample aggregate with the 

dopant already mixed in could also be investigated. These studies would give even more 

insight into the mechanism and the direct kinetic effect of the polymer’s packing on the 

doping process, which could lead to better kinetic control of chemical doping processes 

for the fabrication of conjugated polymer-based devices. 

  



   
 

15 
 

Literature Cited 

1. Heinze Jürgen; Frontana-Uribe, B. A.; Ludwigs, S. Electrochemistry of Conducting 

Polymers—Persistent Models and New Concepts. Chemical Reviews. 2010, 110, 

4724–4771. 

2. Baran, D.; Balan, A.; Celebi, S.; Esteban, B. M.; Neugebauer, H.; Sariciftci, N. S.; 

Toppare, L. Processable Multipurpose Conjugated Polymer for Electrochromic 

and Photovoltaic Applications. Chemistry of Materials. 2010, 22, 2978–2987. 

3. Tian, Z.; Yu, J.; Wu, C.; Szymanski, C.; Mcneill, J. Amplified Energy Transfer in 

Conjugated Polymer Nanoparticle Tags and Sensors. Nanoscale. 2010, 2, 1999. 

4. Lu, G.; Blakesley, J.; Himmelberger, S.; Pingel, P.; Frisch, J.; Lieberwirth, I.; 

Salzmann, I.; Oehzelt, M.; Pietro, R. D.; Salleo, A.; Koch, N.; Neher, D. 

Moderate Doping Leads to High Performance of Semiconductor/Insulator 

Polymer Blend Transistors. Nat Comms. 2013, 4, 1588. 

5. Dudenko, D.; Kiersnowski, A.; Shu, J.; Pisula, W.; Sebastiani, D.; Spiess, H. W.; 

Hansen, M. R. A Strategy for Revealing the Packing in Semicrystalline π-

Conjugated Polymers: Crystal Structure of Bulk Poly-3-Hexyl-Thiophene 

(P3HT). Angew. Chem. Int. Ed. 2012, 51, 11068–11072. 

6. Zhang, X.; Richter, L. J.; Delongchamp, D. M.; Kline, R. J.; Hammond, M. R.; 

Mcculloch, I.; Heeney, M.; Ashraf, R. S.; Smith, J. N.; Anthopoulos, T. D.; 

Schroeder, B.; Geerts, Y. H.; Fischer, D. A.; Toney, M. F. Molecular Packing of 

High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched 

Alkyl Side Chains. J. Am. Chem. Soc. 2011, 133, 15073–15084. 

7. Cochran, J. E.; Junk, M. J. N.; Glaudell, A. M.; Miller, P. L.; Cowart, J. S.; Toney, M. 

F.; Hawker, C. J.; Chmelka, B. F.; Chabinyc, M. L. Molecular Interactions and 

Ordering in Electrically Doped Polymers: Blends of PBTTT and F 4 TCNQ. 

Macromolecules. 2014, 47, 6836–6846. 

8. Kiel, J. W.; Eberle, A. P. R.; Mackay, M. E. Nanoparticle Agglomeration in Polymer-

Based Solar Cells. Phys. Rev. Lett. 2010, 105. 

9. Qiao, R.; Deng, H.; Putz, K. W.; Brinson, L. C. Effect of Particle Agglomeration and 

Interphase on the Glass Transition Temperature of Polymer Nanocomposites. J. 

Polym. Sci. B Polym. Phys. 2011, 49, 740–748. 



   
 

16 
 

10. Nosho, Y.; Ohno, Y.; Kishimoto, S.; Mizutani, T. The Effects of Chemical Doping 

with F 4 TCNQ in Carbon Nanotube Field-Effect Transistors Studied by the 

Transmission-Line-Model Technique. Nanotechnology. 2007, 18, 415202. 

11. Duong, D. T.; Wang, C.; Antono, E.; Toney, M. F.; Salleo, A. The Chemical and 

Structural Origin of Efficient p-Type Doping in P3HT. Organic Electronics. 

2013, 14, 1330–1336 

12. Mai, C.-K.; Schlitz, R. A.; Su, G. M.; Spitzer, D.; Wang, X.; Fronk, S. L.; Cahill, D. 

G.; Chabinyc, M. L.; Bazan, G. C. Side-Chain Effects on the Conductivity, 

Morphology, and Thermoelectric Properties of Self-Doped Narrow-Band-Gap 

Conjugated Polyelectrolytes. J. Am. Chem. Soc. 2014, 136, 13478–13481. 

13. Yang, J.; Li, Y.; Duhm, S.; Tang, J.; Kera, S.; Ueno, N. Molecular Structure-

Dependent Charge Injection and Doping Efficiencies of Organic Semiconductors: 

Impact of Side Chain Substitution. Adv. Mater. Interfaces. 2014, 1. 

14. McFarland, F. M.; Ellis, C. M.; Guo, S. The Aggregation of Poly(3-hexylthiophene) 

into Nanowires: With and without Chemical Doping. J. Phys. Chem. C 2017, 121, 

4740-4746. 

15. McFarland, F. M.; Bonnette, L. R.; Acres, E. A.; Guo, S. The impact of aggregation on 

the p-doping kinetics of poly(3-hexylthiophene). J. Mat. Chem. C. 2017, advance 

article. DOI: 10.1039/C7TC00189D. 

 


	Kinetic Study of Conjugated Polymer Packing and Agglomeration
	Recommended Citation

	tmp.1500387301.pdf.urm3z

