2011

Loss of Structural Complexity in Staghorn Coral Rubble Habitats Influences the Density of Damselfish in Dry Tortugas National Park, Florida, USA

Jeffrey M. Grim
Northeastern University

John Eme
University of North Texas

Jennie S. Rohrer
Texas Parks and Wildlife Department

Erin Ferer
Virginia Institute of Marine Science

Allison A. Wilkes
Texas A&M University

et al.

DOI: 10.18785/goms.2902.04
Follow this and additional works at: https://aquila.usm.edu/goms

Recommended Citation

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.
SHORT PAPERS AND NOTES

Gulf of Mexico Science, 2011(2), pp. 113–118
© 2011 by the Marine Environmental Sciences Consortium of Alabama

LOSS OF STRUCTURAL COMPLEXITY IN STAGHORN CORAL RUBBLE HABITATS INFLUENCES THE DENSITY OF DAMSELFISH IN DRY TORTUGAS NATIONAL PARK, FLORIDA, USA.—Damselﬁshes (Family: Pomacentridae) are a group of keystone species that inﬂuence reef ecology and diversity and are considered good indicators of overall reef health (Longley and Hildebrand, 1941; Emery, 1973; Williams, 1980; Hixon and Brostoff, 1983; Aronson and Precht, 1997; Lieske and Meyers, 1999). Many damselfishes are syntopic as well as sympatric, and species can be intensely territoria-l, directly competing for resources with con-familials or other fishes (Allen, 1991). Several species maintain and defend algal gardens, which can indirectly affect both corals and fishes (Birkeland, 1977; Hixon and Brostoff, 1983). As a result, damselfishes play a key role in shaping the ecology of coral reefs worldwide (Williams, 1980; Hixon and Brostoff, 1983; Lieske and Myers, 1999).

Quantification of live coral reef habitat utilization by reef fishes, including damselfishes, reveals that decreased rugosity may influence coral reef ﬁsh diversity and abundance worldwide (e.g., Luckhurst and Luckhurst, 1978; Clark, 1996; Lirman, 1999; Holbrook et al., 2000; Jones et al., 2004; Gratwicke and Speight, 2005). Thus far, reports of damselfish abun-dance within the Gulf of Mexico have generally been limited to the ecology of damselfishes occupying moderately affected or pristine low-energy patch reefs (e.g., Emery, 1973; Wallman et al., 2004; Precht et al., 2010). Previously, we reported that damselfish densities vary signiﬁcantly between live strands of very highly rugose staghorn coral (Acropora cervicornis) and dead, very-low-rugosity A. cervicornis rubble (Wilkes et al., 2008). Although previous work by our group and others has addressed differences in damsel-ﬁsh abundance and diversity between the extreme habitat conditions (live, highly rugose vs low live cover/dead, low-rugosity habitats), the relationship over a continuum of coral rubble rugosity and ﬁsh abundance, however, is not clearly established (e.g., Luckhurst and Luckhurst, 1978; McCormick, 1994; Gratwicke and Speight, 2005).

The loss of three-dimensional structure as dead coral collapses is a striking and ongoing situation in the Dry Tortugas National Park (DTNP), which boasts one of the largest and most pristine reef systems in the continental United States. Coral reefs of DTNP were dominated by large, monotypic strands of A. cervicornis that supported a diversity of ﬁsh typical of the Caribbean (Longley and Hildebrand, 1941). Over the past 40 yrs, however, cold events, storms, and disease outbreaks have essentially eliminated live staghorn coral, A. cervicornis, within DTNP (Davis, 1982; Bohnsack, 1983).

In the current study, we exploited the lack of live A. cervicornis within DTNP, low cover of macro-algae, similar physical characteristics of DTNP reefs, and the lack of ﬁshing pressure (all factors that are known to inﬂuence the dynamics of reef ﬁshes) to isolate the effects of habitat rugosity on the abundance and diversity of a keystone ﬁsh family Pomacentridae (damselﬁshes). We hypothe-sized that coral rubble habitats within DTNP may contain varying levels of habitat rugosity and that damselfish densities within DTNP would decrease with declines in coral rubble habitat rugosity. Additionally, we hypothesized that not all damselfishes would respond similarly to decreases in habitat rugosity, with the densities of the largest-bodied ﬁshes being affected to a greater extent than smaller-bodied species as habitat rugosity decreases. To test these hypotheses, we utilized a modiﬁed chain-and-tape method to quantify three-dimensional structure of A. cervicornis rubble and estimated the species-speciﬁc density for ﬁve common Caribbean damselfishes on belt transects within DTNP. This study provides novel insight into the utilization of compacted coral rubble habitats by damselﬁshes within DTNP, and may provide useful information for the management of reef habitats, with the goal of maintaining ﬁsh diversity typical of healthy coral reefs.

Materials and methods.—We utilized belt transects to quantify habitat rugosity in three coral rubble habitats located within DTNP from 16–22 May 2005. A modiﬁed chain-and-tape method (Risk, 1972, reviewed by McMormick, 1994) was used to assess the structural complexity (rugosity) at each of the three sites. Site rugosity was estimated as:

\[
(1 - \text{length of a 1-m chain as it followed the substratum contour/the straight-line length of the chain}) \times 100
\]
with relatively flat surfaces (low rugosity) having rugosity values near 0 and topographically complex sites (high rugosity) having rugosity values approaching 100. As we previously reported (Wilkes et al. 2008), site 1 (24°22′18.6″N 82°52′18.1″W) contained the skeletal remains of the last living stand of A. cervicornis in DTNP. Coral rubble at this site was attached to the substratum in its original upright position, and represented high structural complexity. Site 2 (24°22′44.1″N 82°33′18.5″W) contained collapsing A. cervicornis rubble, which retained substantial three-dimensional structure representing intermediate structural complexity. Site 3 (24°22′10.6″N 82°31′22.1″W) was dominated by A. cervicornis rubble, which had almost completely collapsed, representing low structural complexity. With the exception of differences in habitat rugosity, sites were otherwise similar, and the study sites were within 3 km of each other (Fig. 1). The range of rugosities being studied is naturally occurring within DTNP, and therefore could not otherwise be manipulated to avoid spatial segregation of sites. Spatial separation of sites for this reason is not an uncommon occurrence in these types of studies (e.g., Öhman and Rajasuriya, 1998).

Within each of the three study sites, the densities (fish m⁻²) of five damselfishes were estimated during daylight hours using 10 m × 1 m belt transects haphazardly placed at approximately 2 m depth. Transect length was based on the ability to fit an individual transect in an area with the same level of rugosity and water depth while maintaining distances between transects greater than fish territory sizes. Transects were spaced > 5 m apart, and territory sizes for the species counted are normally much less than the distance between any two transects (Allen, 1991). Therefore transects were treated as independent replicates relative to the density of fish vs rubble complexity question.

Two snorkelers swimming shoulder to shoulder swam each 10 m × 1 m belt transect at a rate of 1 m · min⁻¹, with one team per transect at any one time. Two snorkelers swimming in this manner while maintaining the transect line as the midline between them spanned approximately 1 m. This approach was used to standardize the area sampled (1 m total − 0.5 m on either side of the transect) by each team. Each of the four teams of two snorkelers enumerated the five most common damselfishes inhabiting DTNP (Longley and Hildebrand, 1941): beaugregory (Stegastes leucostictus), cocoa (S. variabilis), dusky (S. fuscus), three-spot (S. planifrons), and yellowtail (Microspathodon chrysurus) by counting individuals within 0.5 m of either side of the transect line. Body shape, fin characteristics, and coloration patterns were used to identify damselfish to species level following Smith (2002). Each snorkeling team represented a single transect replicate. A mean count of damselfishes from all four teams was used as a single datum representing each transect. A total of 16 transects were sampled in this manner at sites 1 and 2, and 12 transects were sampled at site 3.

One-way analysis of variance (ANOVA) or Kruskal–Wallis tests were used to compare rugosity measures, density of total damselfish, and density of damselfish by species among the three sites. Significant ANOVA or Kruskal–Wallis analyses were followed by Tukey’s or Dunn’s post hoc tests, respectively. Statistical determinations of site rugosity and density of total damselfish were evaluated using α = 0.05, and the density of individual damselfish species were compared at α = 0.01 to control for type I error.

Results.—The relative rugosity of A. cervicornis rubble differs by location within the boundaries of DTNP. The study sites examined in the current work contained three distinct levels of structural rugosity (ANOVA; F₂,₁₂ = 700, P < 0.0001), including high-, medium-, and low-rugosity A. cervicornis rubble (Fig. 2).

The total densities of damselfishes varied among the three study sites (Fig. 3). Total density of damselfishes was approximately 2- and 3.3-times greater on high-rugosity transects than either medium- or low-rugosity transects, respectively (Kruskal–Wallis; H₃ = 34.94, P < 0.001).

Four of the five damselfish species sampled were observed within all levels of rugosity, with greatest densities for most species on high-rugosity transects (Fig. 3). Mean density of S. leucostictus was comparable between high- and low-rugosity transects, which were on average two times greater than on medium-rugosity transects (ANOVA; F₂,₁₁ = 26.95, P < 0.0001; Fig. 3).
Mean density of *S. variabilis* was over five times greater on high-rugosity transects relative to medium- and low-rugosity rubbles (Kruskal–Wallis; $H_3 = 21.05, P < 0.0001$; Fig. 3). Mean density of *S. fuscus* was 7.5-times greater on medium-rugosity transects relative to low-rugosity transects, with high-rugosity transects in between (Kruskal–Wallis; $H_3 = 19.21, P < 0.0001$; Fig. 3). *S. planifrons* showed the largest change in mean density, with an over 20-times increase in high-rugosity transects relative to medium- and low-rugosity rubbles (Kruskal–Wallis; $H_3 = 20.06, P < 0.0001$; Fig. 3). Finally, the mean density of *M. chrysurus* was 4.3-times greater on high-rugosity transects relative to medium-rugosity transects (Kruskal–Wallis; $H_3 = 30.08, P < 0.0001$; Fig. 3). Notably, *M. chrysurus* was absent in the low-rugosity site.

Discussion.—Over the past 40 yrs, live *A. cervicornis* within DTNP has become nonexistent, and consequently coral rubble has become increasingly common. A declining abundance of healthy *A. cervicornis* over its entire range led the National Oceanic and Atmospheric Administration (U.S.A.) to classify the species as threatened under the Endangered Species Act (Hogarth, 2006). Following a previous trip to DTNP in 2004, we reported that only a single patch (65 m2) of live *A. cervicornis* remained in shallow water from the once-extensive (44 ha) staghorn coral formations that surrounded the Dry Tortugas platform (Agassiz, 1883; Wilkes et al., 2008). We now report that this remaining patch of live *A. cervicornis* is dead, and is beginning to lose structural complexity.

Results from the current work support our hypothesis that *A. cervicornis* rubble within DTNP contains varying degrees of rugosity. The collapse of live coral into varying degrees of less structurally complex rubble is a gradual process, with the amount of degradation related to biotic factors (e.g., abundance of corallivores and herbivores), exposure to chronic wave action, destructive storms, human impact, and time from initial death (Huston, 1985; Rasser and Riegl, 2002; Lesser, 2004). Unless balanced by coral growth and recruitment, areas with dead coral generally become less rugose over time, resulting in decreasing structural complexity of available microhabitats. The study sites are generally similar with regard to the abiotic factors discussed above, and as a result, the wide range of habitat rugosities we report for spatially proximate *A. cervicornis* rubbles within DTNP (Fig. 2) is probably explained by differences in time since coral death. Unfortunately, it seems likely that both the loss of structural complexity and damselfish abundance and diversity within DTNP is inevitable as the distance from neighboring reefs leaves little potential for recruitment of either coral or damselfishes (Hughes, 1985; Ayre and Hughes, 2004; Allen, 1991; Cowen et al., 2006).

As hypothesized, decreased rugosity of *A. cervicornis* habitats within DTNP was accompanied by dramatic declines in the total density of damselfishes (Fig. 3). The most likely explanation for this observation is that the three-dimensional structure of *A. cervicornis* provides a refuge from predation, and the differential use of space by fishes, partly on the basis of size of the species and life history stage, can affect species composition (Chabanet et al., 1997; Nemeth, 1998; Holbrook et al. 2002; Almany, 2004; Mateo and Tobias, 2004; Gratwicke and Speight, 2005). Additionally, we have shown that intermediate levels of coral rubble rugosity are accompanied by intermediate declines in damselfish abundance. These data provide some of the first evidence that damselfish communities change gradually as reef habitats are degrading. When densities of individual damselfishes are examined (Fig. 3), it appears that the intermediate changes in total damselfish density discussed above are likely driven by an increased density of *S. fuscus* in medium-rugosity habitats, relative to low-rugosity sites. Furthermore, the magnitude of loss in damselfish density in low-rugosity habitats is likely obscured because densities of *S. leucostictus* in low-rugosity habitats were similar to values from high-rugosity sites (Fig. 3).

Although the densities of damselfishes in total declined with a loss of habitat rugosity within DTNP, as hypothesized, not all species were equally affected. Densities of all damselfishes...
except *S. leucostictus* were markedly reduced in low-rugosity habitats, and the loss of structural complexity had the largest impact on *M. chrysurus*. This species was completely excluded from low-rugosity habitats, which is likely a function of the species’ relatively large body compared with the other damselfishes. Consequently the low-rugosity rubble probably lacked the appropriate amount of space or “holes” to accommodate the larger-bodied adult fish. All other damselfish species investigated are similar in size to one another and therefore the decreasing amount of suitably sized habitat cannot alone explain the differences in density among individual damselfishes.

Biological interactions, possibly including interspecific competition between damselfishes, may play a role in shaping population structure and dynamics as reefs continue to degrade (Jones, 1987, Medeiros et al., 2010). Resident fishes that can effectively utilize low-rugosity coral rubble habitats will likely sustain damselfish populations within DTNP. On the basis of data from previous (Wilkes et al., 2008) and current...
work, we would predict that low-rugosity rubble habitats will be dominated by *S. leucostictus* and to a lesser extent *S. fuscus*. Although other species (i.e., *S. variabilis* and *S. planifrons*) may be recruited from nearby live patch reefs within DTNP (Wallman et al., 2004), the data suggest that these species may not thrive in newly formed low-rugosity habitats.

The results from the current study provide a direct link between structural complexity of rubble habitats and density of reef fishes (damselshelves). Although several factors in addition to structural complexity have been previously linked to reef fish density, including the nearby presence of live coral, benthic macroalgae, depth, fish community, and relative fishing pressure (Bell and Grazin, 1984; Chabanaet al., 1997; Ohman and Rajasuriya, 1998; Jones et al., 2004; Nagelkerken et al., 2005; Medeiros et al. 2010; Precht et al. 2010), these factors are similar between our study sites (J. Grim et al., unpubl.). As a consequence, our study sites allowed us to test directly the effects of structural complexity on damselfish abundance and diversity. It seems likely that the diversity and abundance of the coral reef ecosystems contained within DTNP will progressively decline as the compaction of rubble habitats continues, and that the loss of both coral and damselsfishes may ultimately result in changes to fish recruitment patterns in DTNP and other Caribbean reefs that are progressively degrading (Forrester, 1990; Jones, 1990; Jennings, 2001).

Acknowledgments.—Funding provided by Florida Institute of Oceanography and University of West Florida Department of Biology to WAB. Work was conducted under NPS permit #DRTO-2005-SCI-0004 and UWF ACUC protocol #2005-001. We extend our sincerest gratitude to the National Park Service, DTNP Rangers, and the crew and masters of the RV *Bellows* (Florida Institute of Oceanography).

Literature Cited

