Gulf and Caribbean Research

Volume 30 | Issue 1

2019

Resuscitation of Microalgae from Mississippi River Plume Sediments

Chase C. Chaplin
Auburn University,aic0005@tigermail.auburn.edu

Marnie Tabor
Athens State University, marnietabor@gmail.com

Israel A. Marquez
University of South Alabama, imarquez@disl.org

Kanchan Maiti
Louisiana State University, kmaiti@lsu.edu

See next page for additional authors

Follow this and additional works at: https://aquila.usm.edu/gcr

Part of the Biogeochemistry Commons, and the Oceanography Commons

Recommended Citation
DOI: https://doi.org/10.18785/gcr.3001.15

This Short Communication is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.
Resuscitation of Microalgae from Mississippi River Plume Sediments

Authors
Chase C. Chaplin, Auburn University; Marnie Tabor, Athens State University; Israel A. Marquez, University of South Alabama; Kanchan Maiti, Louisiana State University; and Jeffrey W. Krause, Dauphin Island Sea Lab

This short communication is available in Gulf and Caribbean Research: https://aquila.usm.edu/gcr/vol30/iss1/15
TABLE OF CONTENTS

SANDBOTTOM MICROALGAL PRODUCTION AND BENTHIC NUTRIENT FLUXES ON THE NORTHEASTERN GULF OF MEXICO NEARSHORE SHELF
Jeffrey G. Allman, M. E. Wagner, M. McAllister, A. K. J. Box, and R. A. Snyder
1–8

WHAT IS KNOWN ABOUT SPECIES RICHNESS AND DISTRIBUTION ON THE OUTER—SHELF SOUTH TEXAS BANKS?
Harriet L. Nick, Sharon J. Fustin, and John W. Tunnell, Jr.
9–18

ASSESSMENT OF SEAGRASS FLORAL COMMUNITY STRUCTURE FROM TWO CARIBBEAN MARINE PROTECTED AREAS
Paul A. X. Bolam and Anthony J. Salaski
19–27

SPATIAL AND SIZE DISTRIBUTION OF RED DRUM CAUGHT AND RELEASED IN TAMPA BAY, FLORIDA, AND FACTORS ASSOCIATED WITH POST—RELEASE HOOKING MORTALITY
Kerry E. Roblero, Brett L. Wims, Julia L. Veitch, and Theodore S. Satter
29–41

CHARACTERIZATION OF ICHTHYOPLANKTON IN THE NORTHEASTERN GULF OF MEXICO FROM SEAMAP PLANKTON SURVEYS, 1982—1999
Joanne Lyczkowski-Shultz, David S. Hanske, Kenneth J. Salata, Madgrreta Konieszn, and Pamela J. Bond
43–98

Short Communications

DEPURATION OF MACONDA (MC—252) OIL FOUND IN HETEROTROPHIC SCLERACTINIAN CORALS (TUBASTREA COCCINEA AND TUBASTREA MICRANTHUS) ON OFFSHORE OIL/GAS PLATFORMS IN THE GULF
Steele K. Kolbas, Scott Porter, Paul W. Sammarco, and Edwin W. Calk, Jr.
99–103

EFFECTS OF CLOSURE OF THE MISSISSIPPI RIVER GULF OUTLET ON SALTWATER INTRUSION AND BOTTOM WATER HYPOXIA IN LAKE PONTCHARTRAIN
Michael A. Parent
105–109

DISTRIBUTION AND LENGTH FREQUENCY OF INVASIVE LIONFISH (PTEROIS SP.) IN THE NORTHERN GULF OF MEXICO
111–115

NOTES ON THE BIOLOGY OF INVASIVE LIONFISH (PTEROIS SP.) FROM THE NORTHCENTRAL GULF OF MEXICO
William Stein III, Nancy J. Brown-Peterson, James S. Franks, and Martin T. O’Connell
117–120

RECORD BODY SIZE FOR THE RED LIONFISH, PTEROIS VOLITANS (SCORPAENIFORMES), IN THE SOUTHERN GULF OF MEXICO
Alfonso Aguilar—Perera, Leidy Perera—Chan, and Luis Quijano—Puerto
121–123

EFFECTS OF BLACK MANGROVE (AVICENNIA GERMINANS) EXPANSION ON SALTMARSH (SPARTEANA ALTERNIFLORA) BENTHIC COMMUNITIES OF THE SOUTH TEXAS COAST
Jordan L. McDonald, Kenneth J. Sulak, Joanne Lyczkowski—Shultz, David S. Hanske, and Kenneth J. Salata
125–129

TIME—ACTIVITY BUDGETS OF STOPLIGHT PARROTFISH (SCARIDAE: SPARISOMA VIRIDE) IN BELIZE: CLEANING INVITATION AND DIURNAL PATTERNS
Wesley A. Dent and Gary R. Gatto
131–135

FIRST RECORD OF A NURSE SHARK, Ginglymostoma Cirratum, WITHIN THE MISSISSIPPI SOUNI
Jill M. Hendon, Eric R. Hoffmeyer, and William B. Driggers III
137–139

REVIEWS
141

INSTRUCTION TO AUTHORS
142–143
RESUSCITATION OF MICROALGAE FROM MISSISSIPPI RIVER PLUME SEDIMENTS

Chase C. Chaplin1,2, Marnie Tabor1, Israel A. Marquez1,4, Kanchan Maiti5 and Jeffrey W. Krause2,4*
1Auburn University, College of Agriculture, 107 Comer Hall, Auburn, AL, 36849, USA; 2Dauphin Island Sea Lab, University Programs, 101 Bienville Boulevard, Dauphin Island, AL 36528, USA; 3Athens State University, College of Arts and Sciences, 300 N. Beaty Street, Athens, AL, 35611, USA; 4University of South Alabama, Department of Marine Sciences, Life Sciences Building Room 25, Mobile, AL, 36688, USA; 5Louisiana State University, Department of Oceanography and Coastal Sciences, 93 South Quad Drive, Suite 1002, Baton Rouge, LA, 70803, USA; *Corresponding author, email: jkrause@disl.edu

KEY WORDS: primary production, spores, resting cysts, diatoms

INTRODUCTION

It is widely known that many pelagic and benthic microalgaee (microscopic single—cell primary producers) can persist during periods of poor light or cold by forming spores, cysts, or low—energy vegetative cells (Garrison 1981, Kremp and Anderson 2000). In shallow coastal systems, senescent microalgae which are buried in the sediments can be reintroduced into the water column due to the passage of powerful storms which can completely mix the water column and suspend sediment (Dzwonkowski et al. 2017, Zang et al. 2018). Individual microalgal cells ranging from 5 – 50 µm sink 0.2 – 2.0 m/d (Smayda 1971). Thus, in a 20 m water column, a resuspension event could keep a microalgal cell in the pelagic environment up to 10 d prior to sinking to the benthos.

The physical transport of sedimentary microalgal material into the water column could also alter the diversity of the phytoplankton community if microalgae resuscitate and persist, and therefore potentially modify the carbon flow. In a subtropical lake system, sediment microalgae have been shown to resuscitate after reintroduction into surface waters (i.e. euphotic zone conditions) on the scale of 7 – 28 d (Waters et al. 2005). These authors noted that sediments up to 120 cm in depth had microalgae which were able to resuscitate; material from the deeper depths would have been buried for several decades (Waters et al. 2005). Thus, senescent sedimentary microalgae have the potential to decouple regional phytoplankton dynamics by introducing material (e.g., organic matter) which may have been physiologically inactive for periods corresponding to 100s or 1000s of microalgal generations.

Microalgae buried in sediments may represent a pool of organic material which is resistant to diagenetic transformation after burial. Among microalgae, diatoms are responsible for a significant quantity of organic matter burial (e.g., Parsons and Dortch 2002, Rabalais et al. 2004). However, their silica shell may also be used as substrate for precipitation of secondary clays, i.e. reverse weathering (Presti and Michalopoulos 2008, Rahman et al. 2017). This process is an important sedimentary sink for many elements (e.g., Fe, Al, K, Mg, Si) and produces CO₂.

We examined the resuscitation of sediment microalgal from 2 sites in the northern Gulf of Mexico (GOM), a subtropical region prone to extreme weather. Northern GOM tropical storms have been observed to erode up to 13 cm of seabed sediment into the water column (Zang et al. 2018); such events provide the physical forcing necessary to resuspend sedimentary microalgae. Using field sediments, we conducted a mesocosm—based sediment bioassay experiment. Our objectives were to test whether sedimentary microalgae could be resuscitated in a marine environment and if so, to quantify the temporal evolution of such a resuscitation and the physical characteristics of the rejuvenated microalgae (e.g., diatoms).

MATERIALS AND METHODS

Sediment was collected using a multicorer during the Coastal Louisiana Silicon Cycling (CLASIC) cruise, 4 – 13 May 2017, aboard the R/V Pelican. Two deployments were conducted at bottom depths of ~30 m (6 May, MC4) and ~50 m (10 May, MC5) on the Louisiana Shelf (Figure 1A). Both sites were ~32 – 35 km west of the Mississippi River mouth and its plume, (Figure 1A); these are also locations of seasonal bottom—water hypoxia (Rabalais et al. 2004). Upon recovery, the multicorer tubes were extruded and sectioned at 1 – 4 cm intervals, depending on depth. Each section was placed into plastic bags which were immediately sealed. These sediments were stored at 4°C in the dark and transported to Dauphin Island Sea Lab (AL, USA) at the same temperature. Sediments were stored in this manner for approximately 3 weeks prior to the experiment.

In the laboratory, sediment sections were homogenized, and subsamples taken to determine water weight (range 42 – 82% among all depths). Coastal Alabama seawater was filtered (0.2 µm pore) and amended with nutrients (10 µM nitrate, 1 µM phosphate). Wet sediment, corresponding to 1.5 – 2 g of dry mass after correcting for water weight, was added to 500 mL bottles (triplicates) with the amended filtered seawater; 3 additional bottles with amended filtered seawater but no sediment were used as controls. All bottles were placed in an outdoor mesocosm and submerged below the surface of the water to...
reduce the irradiance by ~50% from that at the surface. The mesocosm was continuously cooled with coastal water, drawn directly from an intake ~200 m from the mesocosm. The experiment ran from 1 – 30 June 2017, with subsamples collected every 2 – 3 d (14 time points total). During each subsampling, 5 mL from each bottle was collected and shade adapted for 30 min prior to analysis of in—vivo fluorescence using a Turner Trilogy fluorometer. Fluorescence is from both chlorophyll within cells and interfering materials (e.g., chlorophyll degradation products). Subsampling was done at the same time of day (morning ~1000 local time) to avoid potential bias due to diurnal effects (e.g. photoacclimation). Reported in—vivo fluorescence values were blank corrected from the control amended filtered seawater treatments without sediment. Once per week, additional 5 mL subsamples were collected, preserved with 0.5 mL of Bouin’s Solution and stored at 4°C in the dark for 10 months (McNair et al. 2018).

Preserved samples were imaged using a VS Series benchtop FlowCam using a 10x objective and 200 µm flow cell in auto-image mode (Fluid Imaging Technologies; Scarborough, ME, USA). While a FlowCam can image particles using a laser trigger setting, and count only those particles which fluoresce, this functionality cannot be used for Bouin’s Solution—preserved samples. Additionally, given the vast amount of detrital and lithogenic material, only particles with distinct morphology were able to be identified routinely (e.g., diatoms) during manual classification of the images. A subset of samples from MC5 were analyzed on days 10 and 16 to quantify diatom abundance and determine whether diatom morphology changed over time using cell length as a proxy.

RESULTS

Physical conditions during the 30 day bioassay experiment were typical for the region and season. The mesocosm facility draws water from coastal Alabama and water temperatures ranged between 25 – 30°C (Figure 1B). During this period, photon flux densities at the nearby (~300 m) Dauphin Island meteorological station (30.2513 °N, −88.0778 °E) reached daily maxima between 1500 – 1900 µE/m²/s (Figure 1C). Given that the depth of the incubation bottles attenuated ~50% of the surface light, the microalgae were unlikely to have seen irradiances this high, which could inhibit photosynthesis. During the experiment, Tropical Storm Cindy made landfall on 22 June far west of the study site; however, this still resulted in reduced irradiance during this experiment due to extended cloud cover. All surface hydrographic and meteorological information are publicly available (arcos.disl.org).

Microalgae resuscitated from all core depths, but there was considerable variability. For MC4, microalgae from the shallowest sediment depth (1 – 2 cm) resuscitated the fastest among all samples, with peak fluorescence 4 d post–resuspension (Figure 2A). Peak fluorescence occurred later among deeper core depths from MC4. Specifically, 10–11 cm samples peaked on day 6, while 18–19 cm and 27–31 cm depths both peaked on...
day 8 (Figure 2A). For MC4, there was a monotonic increase to these peak fluorescence levels followed by a monotonic decline through days 12–14. Beyond 3 weeks, fluorescence values among depths were relatively stable for the duration of the experiment (Figure 2A). As with MC4, microalgae in the shallowest sediments of the MC5 core peaked first; however, this took 8 d, twice as long as MC4 (Figure 2B). Deeper core microalgae in MC5 peaked initially on day 12, followed by a decline among all cores until day 18 (Figure 2B). As with MC4, fluorescence from MC5 microalgae was mostly stable from days 21–30. While these data show varying degrees of resuscitation among depths and cores, the microalgal groups or species which were growing cannot be inferred from these data alone.

FlowCam image data from MC5 on days 10 and 16 suggest the response in the microalgal community varied among depths. Diatoms were below detection in the shallowest core during both sampling days (Figure 3A). Among the deeper core depths, there were no distinguishable changes in diatom abundance with time. These days represent periods of low in–vivo fluorescence, suggesting a transition phase between the primary and secondary in–vivo fluorescence peaks (Figure 2B). For those diatoms which were observed, the shallower sediment had longer cells, which were typically pennate (opposed to centric) in morphology. Only within the 6–8 cm core treatment were the observed diatoms larger on day 16 than on day 10.

FIGURE 3. Mean (± sd) FlowCam-derived diatom observations for experimental days 10 (black fill) and 16 (gray fill) in core MC5. A. Abundance (# cells/L). B. Length (µm). BD denotes below detection.

DISCUSSION

Microalgae resuscitated upon resuspension. The time lag between the experimental start and a resolvable signal for in–vivo fluorescence was on the order of days, and initial peak fluorescence occurred within ~1–2 weeks among all samples. Such a time lag is likely conservative, as this is primarily driven by detection of the signal using our fluorometer and would also vary based on the initial quantity of cells which were able to resuscitate and their growth rates. If deeper sediments had fewer viable microalgae, this may explain why there was an increasing time lag with depth. Recent methodological advances enable dosing isotopically heavy 13C into the dissolved inorganic carbon pool and examining single–cell assimilation (reviewed by Taylor et al. 2017). Leveraging such methodology in future work may better constrain the time lag between reintroduction of this material and when cellular growth initiates.

In this study, diatoms were confirmed to be among the groups resuscitated. A prior study near our core locations demonstrated that diatom abundances in sediments increased by 3 orders of magnitude from the 1960s to late 1990s (Parsons et al. 2002). Another study from the same core sites reported that diatom and cyanobacteria dominated the microalgal pigments in these sediments (Rabalais et al. 2004). This is consistent with the common observation that both groups can numerically dominate phytoplankton abundances in the water column (e.g., Nelson and Dortch 1996). We posit that these are the two most likely groups to have responded to the resuspension events, and recommend that future experiments examining this process use a more specific analysis (e.g., marker pigments, detailed microscopy) to quantify biomass and net growth rates among taxa, and to determine whether resuscitated species are pelagic or benthic in origin.

The finding that microalgae from all depths resuscitated, albeit at different rates, suggests that cells can persist in a dormant stage for a significant period. Sedimentation rates, derived from the vertical distribution of 210Pb in sediments in the vicinity of MC4 and MC5, infer accumulation between 0.4–0.8 cm/year (Adhikari et al. 2016). Using this range of rates suggests that core material in surface MC4 sediments was buried approximately 1–5 years, whereas deeper sediments could have been buried for 12–78 years. For MC5 the estimated burial age is between 3–20 years. Regional microalgal growth rates are highly variable, ranging from <0.1–3.0/d (Fahnenstiel et al. 1995). However, if we assume a conservative mean growth rate of 0.1/d, equating to a doubling of cells every 7 d, this implies that the deep microalgae in MC4 were buried for 620–4000 generations, while MC5 microalgae persisted for 150–1000 generations.

These data demonstrate that regional microalgae have an exceptional ability to persist in physiologically challenging conditions (e.g., reducing environment, no light) up to 3 orders of magnitude beyond their typical generation time. This also demonstrates that a small fraction of local primary production can be decoupled from the food web over long time scales (e.g., years to decades) and resist alteration by diagenetic processes even after burial. Given the sedimentation times for cell sizes observed in this study (≤2.0 m/d, Smayda 1971), the 5–10 d lag in a resolvable in–vivo fluorescence signals among all core depths suggest these microalgae could resuscitate in the water column prior to sinking back to the benthos if sediment is disturbed.

In conclusion, we demonstrate that marine sediment microalgae, potentially dormant for hundreds to thousands of generations, can resuscitate upon resuspension into the euphotic
zone on time scales less than 2 weeks. While we confirmed the presence of diatoms among the microalgae, we cannot ascertain whether they were the dominant group; it is likely that other microalgal groups (e.g., cyanobacteria, dinoflagellates) were important, or potentially dominant, contributors to the resuscitation signal. These results demonstrate a dormant sedimentary source of primary producers exists in the Mississippi River Plume sediments. The biomass associated with these dormant cells and the factors triggering their resuscitation should be considered in future work.

ACKNOWLEDGEMENTS

We thank the REU program personnel R. Carmichael and A. Knight, the science party and crew of the R/V Pelican, and G. Lockridge and H. King for technical assistance. This work was funded by the National Science Foundation (OCE—1436576 to JWK, OCE—1558957 to JWK and KM) and the NSF Research Experiences for Undergraduates program at Dauphin Island Sea Lab (#1838618).

LITERATURE CITED

