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ABSTRACT 

APPLIED BAYESIAN NETWORKS 

by Steven David Spansel 

May 2011 

A Bayesian Network is a stochastic graphical model that can be used to maintain and 

propagate conditional probability tables among its nodes. Here, we use a Bayesian Network 

to model results from a numerical riverine model. We develop an discretization optimization 

algorithm that improves efficiency and concurrently increases the overall accuracy of the 

resulting network. We measure accuracy using a new prediction accuracy criteria that 

includes an a posteriori soft correction. Furthermore, we show that this accuracy quickly 

asymptotes and begins to show diminishing returns on large data sets. 
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Chapter 1 

INTRODUCTION 

In this thesis, we construct a Bayesian Network for a riverine model. In Chapter 2, we review 

Bayesian Networks. We also discuss the fact that continuous variables must be discretized 

[6] before they can be input into our Bayesian Network software toolkit. Furthermore, we 

include a discussion about the algorithms that Bayesian Network software toolkits use to 

propagate probabilities. 

In Chapter 3, we present existing research relevant to our riverine model. We first discuss 

a soft discretization method suggested by Ebert-Uphoff [4] . We then cover existing research 

on probability propagation and the junction tree algorithm. 

In Chapter 4, we construct our Bayesian Network for the riverine model. First, we 

describe the river location to be modeled. Next, we describe the Bayesian Network we 

created to represent this riverine model. We then explain the metric we developed to measure 

the accuracy of the network. After this, we describe the method we developed to find an 

accurate and efficient discretization scheme for our Bayesian riverine network. Finally, we 

show that it is not necessary to use all available model data to train the network - similar 

accuracy levels can be attained using modest amounts of input data. 

Finally, in Chapter 5, we discuss some ways that our Bayesian network model could be 

improved in the future. First, we develop a heuristic-based iterative learning algorithm that 

intelligently chooses data cases with which to train the Bayesian network model. We then 

discuss Ebert-Uphoff's soft discretization scheme [4], which may lead to a more accurate 

Bayesian network model. Finally, we suggest ways that our bin prediction accuracy method 

could be improved. 



Chapter 2 

BAYESIAN NETWORKS 

2.1 Definition 

2 

A Bayesian Network is a software tool that encapsulates causal relationships for a system 

with a finite number of variables. Graphically, a Bayesian Network is represented as a 

Directed Acyclic Graph (DAG). In this DAG, each node represents a random variable with 

two or more possible values. Each arc represents a causal relationship between the two 

variables it connects. Relationships are only maintained between conditionally dependent 

variables - an arc only exists for a given relationship if knowledge of that relationship 

introduces new knowledge about the behavior of the variables involved. For efficiency, an 

arc is omitted when it does not alter the results, even if a non-zero covariance relationship 

exists between the nodes connected by the arc. 

Consider, as an example, an idealized weather system (depicted in Figure 2.1) where 

lightning only exists when there is rain , and thunder only exists when there is lightning. 

Using transitivity, we can conclude that there is no thunder without rain. However, we 

do not need the information about rain. While rain is a causative factor in lightning, only 

the presence of lightning is needed to enable a probability that thunder will also occur. 

Although there is clearly dependence between thunder and rain, there is no conditional 

dependence [ 15] . Thus, no arc is needed between the rain and thunder nodes. The arc from 

rain to lightning and the subsequent arc from lightning to thunder transitively carries that 

implication implicitly. 

Two variables, A and B, are conditionally independent, given C, if any of the equations 

in Figure 2.2 hold true [23]. 



3 

( Rain )1-----t..,._( Lightning )...__-..-~( Thunder ) 

Figure 2.1: Simple weather Bayesian Network. While a non-zero covariance relationship 
exists between Rain and Thunder, no arc is present, because the same relationship can be 
derived transitively, passing through the Lightning node. 

P(A ,BIC) = P(AIC)P(BIC) 
P(AIB,C) = P(AIC) 

P(BIA,C) = P(BIC) 

Figure 2.2: Conditional Probability Equations. Variables A and B are condionally indepen
dent if any of these hold true. 

In our idealized weather example, the third equation in Figure 2.2 holds true, as shown 

in Figure 2.3. Thus, we have shown that thunder and rain are conditionally independent 

- knowledge of whether it is raining introduces no new knowledge about the probability 

of thunder. In these transitive situations, the arc is not necessary and is omitted from the 

Bayesian network model for efficiency reasons. 

In the Bayesian network model depicted in Figure 2.1 , the nodes are discrete and binary 

(i.e., it is either raining or it is not). Generally, a given variable represented by a node 

in a Bayesian Network may either be discrete or continuous. For the Bayesian Network 

toolkit that we use, however, all continuous variables must first be discretized. This is done 

P(T hunder iRain , Lightning) = P(T hunderiLightning) 

Figure 2.3: Conditional Probability Equation, Applied. The probability of Thunder, given 
the existence of Rain and Lightning, is equal to the probability of Thunder, given only the 
existence of Lightning. Thus, we learn no new information about the probability of Thunder 
from the existence of Rain - Thunder and Rain are conditionally independent. 
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by dividing the full range of a continuous variable into n adjacent (but not necessarilly 

equally-sized) sub-ranges known as bins. The set of bins for a given discretized continuous 

variable must cover the full range of the continuous variable, with no overlap; they form 

partitions. This discretization scheme is known as hard discretization, and is the scheme 

used in commonly available Bayesian Network software packages. This is contrasted with 

soft discretization [4] , which relaxes the rigidity of the partitions formed by bin boundaries. 

(For more information, see sections 3.1 and 5.2). 

Importantly, once a given variable's values have been discretized, it is no longer possible 

to determine what the individual value was - that information has been lost. For instance, 

a value of 3.1 is no longer 3.1. It is simply "something in bin 2, which covers everything 

from 3 to 5." Thus, 9nce discretized, there is no way to distinguish between a value of 

3.1 and a value of 4.9. Loss of accuracy at this discretization step translates to loss of 

Bayesian network model accuracy. Soft discretization [4] attempts to reduce the impact of 

this discretization error. In this thesis, we develop additional "soft" methodologies in the 

same spirit. 

2.2 Example: Monty Hall Problem 

The Monty Hall problem is a classic probability puzzle. It resembles older probability 

puzzles such as Bertrand's Box Paradox [2] and the Three Prisoners Problem [7]. The most 

well-known version of the problem, and its solution, was posed by Marilyn vos Savant- a 

high IQ columnist- in 1990 [21 ]. However, her version contained some ambiguities and 

hjdden assumptions. A mathematically explicit version of the problem was posed in 2008 
I 

by Krauss & Wang [12]: 

Suppose you're on a game show and you're given the choice of three doors. 

Behind one door is a car; behind the others, goats. The car and the goats were 

placed randomly behind the doors before the show. The rules of the game show 



are as follows: Mter you have chosen a door, the door remains closed for the 

time being. The game show host, Monty Hall, who knows what is behind the 

doors, now has to open one of the two remaining doors, and the door he opens 

must have a goat behind it. If both remaining doors have goats behind them, he 

chooses one randomly. After Monty Hall opens a door with a goat, he will ask 

you to decide whether you want to stay with your first choice or to switch to the 

last remaining door. Imagine that you chose Door 1 and the host opens Door 3, 

which has a goat. He then asks you "Do you want to switch to Door Number 

2?" Is it to your advantage to change your choice? 

5 

The intuitive answer to this question is that it does not matter whether the player switches 

their choice of doors. In fact, after vos Savant published that the correct answer is that it is 

to the player's advantage to switch, she received thousands of letters in response. Of these 

letters, 92% of letters from the general public, and 65% of letters from universities, claimed 

that her solution was wrong [21 ]. It has since been proven, in many different ways, however, 

that the correct answer is indeed that it is to the player's advantage to switch. Here, we 

simultaneously use this puzzle to demonstrate an example Bayesian Network, and use that 

Bayesian network model to show that the correct answer to the puzzle is that it is to the 

player's advantage to switch. 

This "Monty Hall" network contains 3 nodes: the door initially chosen by the player, 

the door shown by Monty Hall , and the door containing the prize. Note that the three nodes 
., 

may not represent three different doors; they may only represent two. This is because the 

door chosen by the player may be the same door as the one containing the prize; these two 

decisions are independent of one another. Monty, however, is guaranteed to open neither of 

these doors. Each node represents a variable that can take on 3 possible values: 1, 2, and 3, 

representing the 3 doors. Initially (in the absence of any findings), each node has an equal 

probability distribution. The full Bayesian network model structure is shown in Figure 2.4, 

and the Conditional Probability Tables are shown in tables 2.1, 2.2, & 2.3. 



Player In itial Choice 

Door 1 33.3 
Door 2 33.3 
Door 3 33.3 

2 ± 0.82 

Door 1 
Door2 
Door 3 

Door Monty Opens 

Door 1 33.3 
Door 2 33.3 
Door 3 33.3 

2 ± 0.82 

Prize Door 

33.3 
33.3 
33.3 

2 ± 0.82 

6 

Figure 2.4: "Monty Hall" Bayesian network. In the absence of any findings, the probabi lities 
of all values is 113 for all nodes. 

When we enter information (findings) about the state of the puzzle, the node probability 

tables change accordingly. For instance, when the user selects door 1, the probability of 

Monty opening that door drops to 0%. The probabilities for the prize door node remain 

unchanged, however, since the player's choice does not affect which door contains the prize. 

Figure 2.5 depicts a situation in which the user has selected door 1, and the prize is behind 

door 2. Clearly, Monty will not open the door the user has selected. Since he knows that the 

prize is behind door 2, he also will not open that door. Thus, there is a 100% chance that 

Monty will open door 3. 

We now know which door the player chose (door 1), and which door Monty Hall opened 

(door 3), but not which door the prize is behind. When we enter these findings, the network 

propagates them and calculates a new probability table for the prize node (Figure 2.6). This 

new probability table shows that there is a 66.7% chance the prize is behind door 1, and only 

a 33.3% chance the prize is behind the player's door (door 1). Clearly, it is to the player's 

advantage to switch. 

.. 



Table 2. 1: Player Door CPT. Shows the 
probability (113) of the player choosing 
each door. 

Player Door Probability 
1 2 3 
33.3 33.3 33.3 

7 

Table 2.2: Prize Door CPT. Shows the 
probability (1/3) of the prize being behind 
each door. 

Prize Door Probability 
1 2 3 
33.3 33.3 33.3 

Table 2.3: Monty Door CPT. Shows the probability of Monty opening each door, given 
which door the player chose and which door the prize is behind. 

Monty Door Probability 
Player Door Prize Door 1 2 3 

1 1 0 50 50 
1 2 0 0 100 
1 3 0 100 0 
2 1 0 0 100 
2 2 50 0 50 
2 3 100 0 0 
3 1 0 100 0 
3 2 100 0 0 
3 3 50 50 0 
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Player Initial Choice Prize Door 
' • Door 1 100 Door 1 0 j ' I 
I I I 

Door2 0 I I I Door2 100 I I I 

Door 3 0 
I I • Door 3 0 • I I 
I I I I • • 

1 2 

~ / 
Door Monty Opens 

I -. 
Door 1 0 I I • • I • 
Door 2 0 I I • 

I I . 
Door 3 100 • . 

3 _ 0 

Figure 2.5: "Monty Hall" Bayesian Network. Same as Figure 2.4, but the player has chosen 
door 1, and the prize is behind door 2. 

Player Initial Choice 

Door 1 100 
Door 2 0 
Door 3 0 

1 

---- Door 1 
Door2 
Door3 

Door Monty Opens 

Door 1 0 
Door 2 0 
Door 3 100 ----

3 

Prize Door 

1.67 ± 0.47 

Figure 2.6: "Monty Hall" Bayesian Network. Same as Figure 2.4, but the player has chosen 
door 1, and Monty has opened door 3. Shows the calculated probability of the prize being 
behind each of the three doors. 
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2.3 Automatic Probability Propagation 

Bayesian Networks propagate new probability tables for nodes via Bayesian inference, 

which is based on Bayes' Theorem. In its simplest form, Bayes' Theorem is given in Figure 

2.7. However, for a case where a node representing variable A has n bins, A1 ,A2, ... ,A11 , the 

general form of Bayes' Theorem can be used to find the probability of some A ;, given new 

evidence E [1]. This general form is given in Figure 2.8. A third, "chained" version of the 

theorem can be used to find the probability that some event C has occured, given that events 

A and B have occured [17]. This version, shown in Figure 2.9, is used (in Figure 2. 10) to 

show the given solution to the Monty Hall problem to be true. 

P(
D lOb . ) P(ObservationsiForecast )* P(Forecast ) 
r orecast servatwns = ( ) 

P Observations 

Figure 2. 7: Bayes' Theorem: Simple Version. 

P(AdE ) = P(E IAi)P(Ai) 
P(E IA1 ) * P(AI ) + P(E IA2) * P(A2) + ... + P(E IAn ) * P(An ) 
Figure 2.8: Bayes' Theorem: General Version. 

(I )
_ P(CjB) * P(A IC,B) 

p C A ,B - P(A IB) 

Figure 2.9: Bayes' Theorem: Chained Version. 
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(p
. 

21 
) P(Prize21Playerl) *P(Monty31Prize2,Playerl ) 

P nze Monty3 , Player] = ( 
31 1 

) 
P Monty P ayerl 

( . I ) 0.33 * 1.0 P Pnze2 Monty3, Playerl = ----
0.5 

P (Prize21Monty3, Playerl ) = 0.67 

Figure 2.10: Bayes' Theorem, Applied to "Monty Hall" Problem. Shows the probability 
of the prize being behind door 2, given that the player has chosen door 1 and Monty has 
opened door 3. "Piayerl" is the probability of the player choosing door 1. "Prize2" is the 
probability of the prize being behind door 2. "Monty3" is the probability of Monty opening 
door 3. 

Bayesian inference is the use of Bayes' Theorem to infer knowledge about the state of 

nodes for which we have no direct knowledge, by propagating knowledge about other nodes 

in the network. In the Monty Hall example, for instance, the Network inferred, based on the 

knowledge that the player had chosen door 1 and Monty had opened door 3, that there was a 

66.7% chance that the prize was behind door 2. 

When findings are entered into the Bayesian Network, the findings must be propagated 

across the network. For one simple query, as shown in Figure 2.1 0, this can easily be done 

using Bayes ' Theorem. In a multi-connected network, though, O(n) calculations would 

need to be performed, and each costs O(n), bringing the total computation complexity cost 

to O(n2) [20]. To speed up this process, Bayesian Network software packages use join 

tree algorithms [13] to decompose the graph represented by the Bayesian Network into a 

join tree. After this, a propagation algorithm is executed on the join tree. There are many 

established algorithms [16] for performing this propagation. The specific details of the 

algorithm used by any specific- excluding open source- implementation is proprietary 

information. 

The first step in the join tree algorithm is to moralize the graph [14], shown in Figure 

2.11. First, arcs are added between any nodes with a common child (for instance, node 

A is a common child of nodes B and C). Then, all arrows are changed to nondirectional 



I I 

connection lines, changing the graph from a directed graph into a more general undirected 

graph. It is called moralizing the graph because parents of nodes are joined together. 

' ' ' ' 

/ 
/ , 

' ' ' ' 

' ' 

" " 

' 

" 

' ' 

, 
/ 

' ' 

, 
/ 

' ' ' 

(a) Initial Graph. (b) Initial Graph, Moralized (Including Direction 
Removal). 

Figure 2.11 : To moralize a graph: First, connect any pairs of nodes with a common child 
(for example, A is a common child of B and C). Then, change all arrows into nondirectional 
connection li nes. 

After the graph is morali zed, it must be made chordal as shown in Figure 2. 12. In this 

step, each cycle consisting of at least four nodes must have chords - arcs - added so that 

there is no cycle of greater than three nodes. In Figure 2. 12, there is a four node cycle 

consisting of nodes C, B, G, and H . We add an arc from B to E , changing the four node 

cycle into two three node cycles (C, B, E and B, G, E). This is also known as triangulating 

the graph. 

Once the graph has been moralized and made chordal, it is then decomposed into a join 

tree, also sometimes known as junction trees or clique trees. A join tree is a representation 

of the original graph with the original graph's nodes grouped into clusters, each of which 

represents some subtree of the original graph. The resultant join tree must exhibit the 

junction tree property , which is stated [10] as: 
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(a) Moralized Graph. (b) Moralized Graph, Made Chordal. 

Figure 2.12: To make a graph chordal, add arcs so that there is no cycle of greater than three 
nodes. Here, there is a four node cycle consisting of nodes C, B, G, and H. We add an arc 
from B toE, changing the four node cycle into two three node cycles (C, B, E and B, G, E). 

For each pair U, V of [clusters] with intersectionS, all [clusters] on the path 

between U and V contain S. 

There are many ways to decompose a graph into a join tree- the results are not unique. It is 

not hard to find a satisfactory join tree, but it is NP-Complete [ 1 0] to find an optimal join 

tree [10]. An example of a moralized, chordal graph decomposed into a join tree is given in 

Figure 2.13. 

After the graph is decomposed into a join tree, a belief propagation algorithm is run 

on the join tree. There are many different belief propagation algorithms [16]. The specific 

algorithm used by a particular Bayesian Network implementation to perform this belief 

propagation is proprietary, and is what separates the fast implementations from the slow 

implementations. Regardless of the implementation, most Bayesian Network software 

packages take advantage of the speed increases from decomposing the graph into a junction 

tree. 
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(a) Chordal Graph. (b) Chordal Graph, Decomposed into a Join Tree. 

Figure 2.13: Decomposing a Chordal Graph into a Join Tree. 

2.4 Implementation 

Researchers do not need to create Bayesian Network software toolkits in order to be able to 

use Bayesian network models. Many general use, pre-built implementations are available 

from a variety of sources. There are many software development firms that produce high 

quality implementations. These are commercial products, but most also have a free (but 

limited) version. In addition, several university computer science I mathematics departments 

maintain free (with license limitations), open-source implementations. 

There are two primary characteristics that separate these implementations. The first is the 

method of use. Many implementations are only available for certain operating systems (i.e. 

Microsoft Windows). Some implementations can only be used via a graphical user interface 

(GUI). Such implementations cannot be automated by incorporating them into a computer 

program. Still other implementations are not wide enough in their scope. For instance, there 

are some that focus exclusively on using Bayesian Networks to perform sensitivity analysis. 

The second distinguishing characteristic among Bayesian Network software packages is 
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their implementation of the junction tree algorithm. In order to be deemed correct, any 

junction tree algorithm must arrive at the correct answer for any computation it is asked to 

perform. However, some implementations of thi s algorithm perform these calculations much 

more efficiently than other implementations. This is one of the main areas of competition 

between competing commercial Bayesian Network software implementations. For a list of 

some available packages, see Appendix 2 of AgenaRisk's Knowledge Transfer Report on 

Bayesian Network technology [5] . 

We utilize the Netica Bayesian Network software package, produced by Norsys [3]. We 

use this package for several reasons. First, it is available for all major platforms (Microsoft 

Windows, Macintosh OS X, Linux, and Sun Solaris). Also, it can be utilized both via 

a GUI and via Application Programming Interfaces (APis) available for many different 

programming languages, including Java, C, C++, .net, and others. Furthermore, it has earned 

a reputation as being a fast and stable implementation. It has earned this reputation through 

its performance in other scientific research projects [8] [18] [19]. Finally, we use it because 

other researchers involved in riverine and oceanographic research projects also use this 

product [8] [18] [19] , allowing easy collaboration. 

We use Netica in two forms: as a Java API and as a Windows GUI. Versions of 

this software can be downloaded from http://www.norsys.com/netica-j.html and http: 

//www.norsys.com/download.html , respectively. Once downloaded , no installation of the 

software is necessary. The software is downloaded as zip file packages, and they only need 

to be "unzipped" before they can be used. The versions that can be freely downloaded 

are limited in size - the number of nodes that can be contained by a network is limited. 

Furthermore, there are legal restrictions on the use of the software. These can be viewed 

online at http://www.norsys.com/netica-j.html . 
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Chapter 3 

RELEVANT RESEARCH 

3.1 Soft Discretization 

Commonly available Bayesian Network software packages utilize hard discretization of 

continuous variables [4]. In hard discretization, each data point belongs to one and only one 

bin. For instance, if bin 2 of variable X covers the range from 1 to 20, then any data point 

that falls into that range is assigned to that bin, and any information about how near it is to 

the edge of the bin is lost. Ebert-Uphoff [4] proposes a probability-based soft discretization 

solution to this problem. Soft discretization is a weighted scheme in which a value does 

not necessarily belong to one and only one bin -- fractional assignments are allowed. For 

instance, the value 18 might be given a large weight in bin 2, and a smaller weight in bin 3. 

In this way, information about the value of the data point is retained stochastically. 

3.2 Junction Tree Algorithm and Probability Propagation 

The use of the junction tree algorithm for efficient probabi lity propagation in multi-connected 

networks was first described by Lauritzen & Spiegelhalter [13]. There are now, however, 

many different algorithms for this purpose, as described by Neapolitan [16]. All of these 

algorithms begin by moralizing the network, making it chordal, and decomposing it into a 

junction tree. After that, the algorithms vary as to how they actually perform the propagation 

of probabilities throughout the network. See, for example, Jensen & Jensen [10], Weisstein 

[22], and McGlohon [14] to gain a better understanding of this process. 
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Chapter 4 

APPLIED BAYESIAN NETWORKS 

4.1 Data Location & SOBEK Model 

The United States Geological Survey (USGS) maintains data collection stations at multiple 

sites along the Kootenai River, located in northern Idaho. To train our Bayesian network 

model, we utilize output from a numerical model constructed to replicate the river flow 

properties at the "Tribal Hatchery" site, located approximately 150 miles upstream from the 

mouth of the river. 

A typical river model might require several years to construct, and decades to calibrate. 

For this reason, we utilize a set of results from an existing, validated numerical riverine 

model of the Tribal Hatchery site. This model data was generated by the SOBEK model suite, 

produced by Delft Hydraulics [9]. This powerful software tool simulates one dimensional 

integral processes in a water drainage system - river, canal, etc [ 11]. The model was 

configured specifically for the Tribal Hatchery site mentioned above, and was run over a 

range of expected conditions. This produced a table of 87,840 cases, each consisting of 

a value for Discharge, Velocity, Width, and Depth. In this thesis, we simulate having set 

up and run the model ourselves by selecting cases from this pre-run result set. In the "real 

world", a researcher would set up and run the model for their specific circumstances. In thi s 

case, we used this data because it was readily available, saving the long effort of setting up 

and running the model ourselves. 
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4.2 Bayesian Network Representation 

One of the earliest studies of river dynamics was based on a study of the Po river made 

by the Italian engineer Guglielmini in the seventeenth century. These early studies used 

a transport equation with simply related variables, as shown in Figure 4.1. Such simple 

equations assume idealized flow. For example, it assumes conservation of water. Yet water 

may be absorbed by dry ground when a river's depth increases and a dry river bank is first 

wetted. 

Q = V *A 
Figure 4.1: Conservation of Water Equation: A is the cross-sectional area (height times 
width), V is the velocity of the water, and Q is the discharge. 

The presence of small inlets or outlets can also affect our assumption of conservation 

of water, as can evaporation on a warm day. The simplified equation (see Figure 4.1) also 

assumes a constant velocity in the vertical dimension. However, water rarely flows with 

constant velocity from surface to the bottom, and in fact many rivers have a bottom boundary 

layer that may have significant boundary layer dynamics under high velocity conditions. For 

example, in 1876, James Buchanan Eads began construction of jetties for the South Pass 

of the Mississippi River to concentrate the flow, increase the velocity, and take advantage 

of this significantly modified bottom boundary layer to scour out the bottom of the river, 

successfully opening the South Pass of the Mississippi River to Ship traffic on a consistent 

basis for the first time. 

In addition, the viscosity of the water in a river system can change with addition of 

material via solution and suspension, as well as changes in temperature. Velocity can vary 

as a river's hydraulic gradient changes as well as when it encounters nickpoints. In addition, 

a river's competence to remove material may add suspended particulate matter in the water 

column, which alters the volume and density of the water as well. Further, river velocity 
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varies through pools and riffles and between the thalweg and bankwash. Hence, the equation 

in Figure 4.1 can sometimes be off by an order of magnitude, so that, while the equation 

captures river transport from a modeling standpoint, it is an insufficiently accurate model 

for our purposes. 

Unfortunately, our current state-of-the-science numerical models are not sufficiently 

robust to model the full Navier-Stokes equations (conservation of mass, momentum, and 

energy) in a fixed, temporally invariant channel either. Hence, even more complex River 

Models that include the dynamics discussed above are currently beyond our deterministic 

modeling capabilities. Data, however, includes all of the relevant dynamics implicitly. 

For these reasons we construct our river estimator using a Bayesian network (shown in 

Figure 4.2) in which all four of our variables (Width, Depth, Discharge, Velocity) are fully 

connected. This provides for all interactions between the collected data to be represented 

stochastically rather than with more simple, but deterministic, equations. It is important 

to note that, though the arcs in the network are shown as unidirectional arrows, the arrows 

should be thought of as bidirectional. This is because the algorithms used to propagate 

probabilities through a Bayesian Network perform this propagation in both directions along 

arcs. So a change in a "child" node will get propagated to a "parent" node in the same way 

that a change in a "parent" node will get propagated to a "child" node. 

There is insufficient understanding, however, about the amount of data required to train a 

Bayesian network model. For this reason, we used the more dense output from the SOBEK 

numerical model, which was based on the original data. The learning algorithm for our 

network utilizes this simulated data. 

The SOBEK variables, while discrete, are not discrete enough - they are discretized on 

such a fine scale that the values must be re-discretized to a coarser granularity. In section 4.4, 

we develop an algorithm for choosing an accurate discretization scheme for our network. 

After discretizing the network, we next created Conditional Probability Tables for all nodes. 

This step, commonly known as training the network, was done using Netica's built-in 
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algorithm for learning Conditional Probability Tables (CPTs). Netica creates these CPTs by 

taking in an input file of many cases, and computing the CPTs based on the di scretization 

that was previously applied to the network. For this training step, we used the full case 

file containing all 87,840 cases of SOBEK model output. The resultant CPTs are depicted 

in Figure 4.2. In this figure, the Iikelyhood of each variable being in a specific bin (in the 

absence of any findings) is indicated by the percentage associated with the specified bin. 

Width Depth 

7 180:>9to 21 6614 184 2.61534 to 4.11056 2.88 
21.6614 to 36.0304 2 86 4.1 1056 to 5.48677 10.4 
36.0304 to 50.9605 9 38 5.48677 to 6.85737 14.7 
50.9605 to 66.5653 13.1 6.85737 to 8.41953 19.7 
66.5653 to 83.21 18 14.7 .... 

8.41953 to 10.1645 23.7 
83.2H8 to 101 .579 23.2 10 1645 to 12.2664 16 .0 
101 .579 to 128.328 16.5 12 2664 to 15.6804 8 .56 
128 328 to 187.102 13.5 15 6804 to 22.1648 4.05 
187 102 to 285.922 3213 8 .97 X 3 <I 285.922 to 462.511 1.64 

99.5 .t 58 

Velocity 

0 01 18796to 0181698 5.62 
Discharge () 181698 to 0 268677 8.83 

0 268677 to 0 346286 16 .0 1 1. 7935 to 182.056 29.8 0 .346286 to 0 421896 14.3 
182.056 to 227.074 18.8 0 .42 189610 0.514709 7.76 227.074 to 292.509 2.5 1 0 514709 10 0.625378 6.13 
292.509 to 372.129 5.42 0 625378 to 0. 739565 5.46 
372 129 to 487.238 4 62 0 739565 to 0.848467 5.82 487 238 to 615.424 5.29 0 84EI41)7 to 0 957904 60$ 
615 4~4 to 761.406 887 0 957904 \Q i 06843 5.65 761 406 to 970.95 5 01 1 06843 to 1.18505 4.80 970.95 !() 1292.71 11.8 1 18505 to 1.32248 4 .53 
1292.71 to 1614.9 7.98 1.32248 to 1.49202 3.73 

494 ± 450 1.49202 to 1. 7255 2.27 
1 7255 to 2.01966 2.36 
2 01966 (O 2 6401A 0.66 

0 656 t 0.45 

Figure 4.2: Bayesian network representing SOBEK model variables (Width, Depth, Dis
charge, Velocity). The number of bins and bin boundary placement for each variable was 
selected using the discretization algorithm described in Section 4.4. 
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4.3 Performance Metric: Bin Prediction Accuracy 

The purpose of the Bayesian Network is to be able to estimate values for all unknown 

variables, given findings for known variables. To test the network, we give the network 

values for the other 3 variables (but not for the variable being tested) for all 87,840 cases. 

We then compare the bin which the network estimates the value to be in (for each case) with 

the bin the value was actually in. We use a modified Bin Prediction Accuracy metric as our 

performance criteria - the percentage of times the network accurately chooses the correct 

bin. 

The matrix from which BPA is calculated is shown in Figure 4.3. In this figure, the 

horizontal axis represents the actual bins that the values fall into. The vertical axis represents 

the bins the network predicted the values to fall into. So, the goal is for this figure to have 

high values along the principal diagonal, indicating that the Bayesian Network predicted 

the correct bin. In a "strict" BPA calculation, only the values along that principal diagonal 

would be counted as correct. However, Ebert-Uphoff [4] discusses the fact that, in a hard 

discretization scheme (such as ours), information is lost as to where in a bin a value falls. 

Thus, for values that fall near the edge of a bin, there is an increased likelihood that the 

Bayesian Network will predict the bin next to the correct bin. Figure 4.3 clearly shows 

that there are many bins with high prediction counts that are next to the actual bins the 

values fall into. If we only counted the actual correct bins, we would under-report the 

skill of our Bayesian network model - we would be counting one-off bin predictions the 

same as when the network's prediction was completely wrong. Thus, we include those 

one-off bin predictions as "correct" in our BPA calculations. This soft correction is an a 

posteriori accommodation, in contrast to, but in the same spirit as, Ebert-Uphoff's a pricri 

soft di scretization [ 4]. 
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Figure 4.3: Bin Prediction Accuracy: Actual Bin vs Predicted Bin. The horizontal axis 
represents the actual bins that the values fall into, and the vertical axis represents the bins 
the network predicted the values to fall into. There is a strong trend along the principal 
diagonal. 
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4.4 Discretization Optimization 

All four nodes in our Bayesian Network must be discretized before they can be used by the 

Bayesian Network. Discretization involves answering two questions: 

• Where should the bin boundaries (" breaks") be placed? 

• How many bins should there be? 

Optimal solutions to these questions are computationally intensive and often not intuitive. In 

Netica (and other Bayesian Network software packages), the default method of answering 

the first question is to use a quantile method to place the breaks such that an even number 

of cases falls into each bin. There is no default answer to the second question; researchers 

generally must explicitly choose the number of bins a priori. In this thesis, we develop an 

algorithm that addresses both of these questions in a way that improves the overall accuracy 

of the resulting network. 

In the quantile method, bin boundaries are placed such that an even number of cases falls 

into each bin. Essentially, it orders the cases, then splits them into evenly spaced groups. 

For instance, if we were using 20 bins, the first 5% would go into bin 1, the next 5% into 

bin 2, etc. 

It seems intuitive that placing bins such that an even number of cases fall into each bin 

would yield high BPA. The problem, however, lies in the fact that the bin boundaries are 

placed at pre-determined places in the Cumulative Distribution Function. So bin boundaries 

can (and often do) get placed in the middle of a dense cluster of cases that would preferably 

be grouped together in one bin because they represent similar dynamics. 

A data clustering approach addresses this bin boundary placement directly. This method 

locates these dense clusters of cases, and places the bin boundaries such that the clusters are 

binned together, forming natural breaks. As evidenced in table 4.1 , the optimal bin count 

combination using this method yields approximately 8% higher Bin Prediction Accuracies 

than the optimal bin count combination using the quantile method. 
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For verification testing, we used a brute-force approach to determine the optimal number 

of bins for each variable. We tested all even numbers between 6 and 20 as bin counts for 

each variable, using both methods (quanti le and data clustering) mentioned above. For each 

bin count combination, we recorded the BPA for each variable. For each bin boundary 

placement method, we choose the bin count combination that yielded the highest mean BPA. 

Table 4. I: Discretization Optimization Results. Overall, using the optimal number of bins 
with the cluster method increased accuracy from 90.1% to 98.1 %, as compared to using the 
"default" (20) number of bins with the quantile method. 

Quantile Cluster 
Default Optimal % Increase Default Optimal % Increase 

#of Discharge Bins 20 6 - 20 10 -

#of Velocity Bins 20 8 - 20 16 -

#of Depth Bins 20 6 - 20 8 -

#of Width Bins 20 6 - 20 10 -

Discharge BPA 83.3 96.0 15.3 82.7 99.5 20.4 
Velocity BPA 96.8 91.7 -5.3 98.2 96.0 -2.2 
Depth BPA 88.3 88.2 -0.1 90.0 97.6 8.4 
Width BPA 92.1 92.2 0.1 92.7 99.3 7.1 
Mean BPA 90.1 92.0 2.1 90.9 98.1 7.9 

Discretization optimization leads to increased prediction accuracy- bins matter. But 

our discretization approach also yields another benefit. Because it may lead to the use of 

fewer bins per variable, discretization optimization may yield faster computing times for the 

resulting Bayesian network model, since there are less bins across which the junction tree 

algorithm must propagate probabilities. 

4.5 Diminishing Returns: Use Less Data 

Using all 87,840 cases from the SOBEK model output, the Bayesian Network is able to 

predict a single unknown variable with 98.1 % accuracy, given values for the other three 

variables, as shown in table 4.1. Here, however, we show that the Bayesian Network can 
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reach the same prediction accuracy levels, but using far fewer than the entirety of the 87,840 

cases. In this case, the network achieved nearly the same BPA using only about 2.3% of 

the full case set. This is shown in Figure 4.4, which shows that the network's ability to 

accurately predict which bins a missing variable's values will fall into greatly increases 

as the network is trained with more data, up to about 500 cases. This accuracy increase 

begins to slow, though, for cases 500 through 1 ,000, and begins to asymptote after 0 ( 103 ) 

cases. By randomly selecting an increasing number of cases from the full set, we show 

that the network's ability to accurately predict which bin a variable 's value will fall into 

quickly reaches nearly the same accuracy levels as using all 87,840 cases, and quickly shows 

diminishing returns - to add more data would be of decreasing benefit. 
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Figure 4.4: Bin Prediction Accuracy vs Number of Cases. The network's ability to accurately 
predict which bins a missing variable's values will fall into greatly increases as the network 
is trained with more data, up to about 500 cases. This accuracy increase begins to slow, 
though, for cases 500 through 1 ,000, and begins to asymptote after 0 ( 103) cases. 
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Chapter 5 

FUTURE DEVELOPMENT 

5.1 Iterative Learning Algorithm 

We showed that the network can achieve essentially the same BPA using far fewer than 

the full set of 87,840 cases. Thus, there should be an informed way to intelligently choose 

data points from the full set, outperforming the uninformed random selection method. To 

illustrate this idea, we built an informed selection algorithm. 

The premise for this algorithm is that network nodes that exhibit low BPA do so because 

they do not have enough statistically relevant data to accurately predict the physical phe

nomenon being modeled. This means that the network has not yet been trained with enough 

appropriate information to be able to make predictions accurately. As an example, consider 

a network with four variables, each of which has twenty bins. Suppose that the network is 

trained with cases that only fall within bins 1-5 for all variables. The network is then asked 

to estimate the value of variable 4, given values for variables 1-3 that all fall into bins 15-20. 

Because the network has not been trained on values in those ranges, it has no basis upon 

which to make estimations of the values for the unknown variable. 

Thus, our algorithm's first task is to intelligently identify bins that need more accuracy. 

It then acquires (either by creation or selection, but in this case selection) k new cases 

that provide the supporting data, and trains the network using these cases. It repeats 

these steps iteratively until the network's bin prediction accuracy levels have risen above a 

predetermined threshold. In this way, the network experiences informed, rather than random, 

training, leading to higher BPA using less data. The algorithm is given as follows: 
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Algorithm 5.1 Iterative Learning Algorithm 
Begin 

Load net with a small initial data set, either randomly selected or representing a known 
configuration 
Bin Prediction Accuracy f-- Test Network 
while (Bin Prediction Accuracy< Some Predefined Threshold) do 

Target Bin(s) f--Use heuristic to identify bin(s) to which to add experience 
New Cases f-- Acquire additional cases that fall into those bins 
Train the network to incorporate these cases 
Bin Prediction Accuracy f-- Test Network 

end while 

End 

Clearly, the Iterative Learning Algorithm depends on having a good heuristic to be able 

to intelligently make its selections. We developed 2 heuristics, both based upon steepest 

descent. For both heuristics, we start by testing the network, and recording BPA for all 

bins of all variables. We then make a copy of the network and probe the copy by adding 

n cases that fit into each bin. Then, we test the copy and record the new BPA, and discard 

the copy of the network. For the first heuristic, we add m cases to the bin (from the set 

of bins of all nodes) that showed the greatest improvement when probed. For the second 

heuristic, we add m cases to the bin (from the set of bins of each node) that showed the 

greatest improvement when probed. Results are shown in Figures 5.1 and 5.2. For both 

heuristics, accuracy increases steeply for the first 500 cases. The accuracy increase slows 

significantly for cases 500 through 1,000, and asymptotes after case 1,000. 

Upon first glance, these results appear to be promising- all variables reach at least 90% 

accuracy within 2,000 cases. However, Figures 5.3 & 5.4 show that they do not significantly 

outperform (and in some cases underperform) random selection. In these figures, the dashed 

line represents the skill attained by using random selection as a heuristic. The solid line 

represents the accuracy increase (over random selection) attained by the specified heuristic, 

as a percentage of the skill attained by random selection. In the areas where the solid line 

is above the dashed line, the indicated heuristic is outperforming random selection by the 

percentage indicated by the solid line. In the areas where the solid line is below the dashed 
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Figure 5.1: Bin Prediction Accuracy: Heuristic 1. 
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Figure 5.2: Bin Prediction Accuracy: Heuristic 2. 

line, the indicated heuristic is underperforrning random selection by the percentage indicated 

by the solid line. 

More work needs to be done to fi nd a heuristic that can significantly outperform random 
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selection. It is possible that quasi-random number theory might lead us to a better heuristic, 

especially if based on the output of our clustering algorithm. It seems likely that the primary 

reason that the attempted heuristics did not significantly outperform random selection is that 

random selection performed well for our network because the discretization optimization 

benefited both the heuristics and the random selection. In short, an optimal discretization 

may be far more important to the performance of the network than the selection of training 

cases. Additional work is required to resolve these issues. 
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Figure 5.3: Heuristic 1, compared to random selection. Dashed lines represent the accuracy 
achieved by random selection. Solid lines represent the accuracy achieved by heuristic 1 (as 
a percentage of the accuracy achieved by random selection). In the areas where the solid 
line is above the dashed line, heuristic 1 outperforms random selection by the percentage 
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Figure 5.4: Heuristic 2, compared to random selection. Dashed lines represent the accuracy 
achieved by random selection. Solid lines represent the accuracy achieved by heuristic 2 (as 
a percentage of the accuracy achieved by random selection). In the areas where the solid 
line is above the dashed line, heuristic 2 outperforms random selection by the percentage 
indicated by the solid line. In the areas where the solid line is below the dashed line, heuri stic 
2 underperforms random selection by the percentage indicated by the solid line. 
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5.2 Discretization 

As discussed previously, a consequence of di scretizing the SOBEK model data is a loss 

of information. For instance, consider a situation in which bin 3 of variable V contains all 

values in the range 3 to 5. In this situation, the difference between a value of 3. 1 and a value 

of 4.9 has been lost, since both fall into bin 3. This is known as hard discretization. 

It seems likely that the network's BPA would benefit from the use of soft discretization 

[4]. This is a weighted discretization scheme in which it is not necessary to assign all of 

a value's weight to only one bin. For instance, the value of 3.1 might have a large weight 

assigned to bin 3, and a smaller weight assigned to bin 2, indicating that it was near the 

lower bound of bin 3. In this way, we would save some of the information that is now being 

lost due to the hard discretization scheme. However, as Ebert-Uphoff di scusses [4], there 

are currently no Bayesian Network software packages that allow soft discretization. Thus, a 

Bayesian Network software package would have to be modified to allow this. This precludes 

Netica from consideration, since it is a commercial, closed-source application. 

5.3 Bin Prediction Accuracy Calculation 

As mentioned in the section describing BPA, we include both the bins next to and on the 

principal diagonal in Figure 4.3 as correct. It is likely that there is a more optimal way to 

include these bins in our calculations. Perhaps an exponentially decreasing weight would be 

more appropriate. In this scheme, the bins along the principal diagonal would be counted as 

correct with a weight of I . Bins that are one bin away from the principal diagonal would be 

counted, but with a smaller weight, and bins that are two bins away would be counted, but 

with a still smaller weight. More work needs to be done to determine the coefficient weights 

for an exponentially decaying scheme. 
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Chapter 6 

CONCLUSION 

This thesis makes three major contributions to the science of the application of Bayesian Net

works. These contributions are the discretization optimization algori thm, the bin prediction 

accuracy metric, and demonstrating that the accuracy of the network exhibits diminishing 

returns for large data sets. We used a numerical riverine model to demonstrate the value 

of these concepts, but the concepts are not limited to this riverine model; they can also be 

applied to many other numerical models. 

Netica provides a default discretization scheme that uses quantiles, usually using the 

same number of bins for every variable, with an equal number of data samples in each bin. 

Using this scheme (with twenty bins for each of our four variables), the network achieved 

90.1% accuracy. The discreti zation algorithm introduced here yielded a Bayesian network 

model that is both more accurate and more computationally efficient. Our algori thm uses 

data clustering to find natural breaks between groups of clustered data. By changing the 

discretization scheme and using a cluster selection algorithm to select the number of bins 

for each variable, we increased the network's accuracy from 90. 1% to 98. 1 %. 

We also developed a new accuracy metric for a discretized Bayesian network model. 

Our new metric is a modified bin prediction accuracy measurement. It is an improvement 

over a strict bin prediction accuracy metric in that it maintains not only cases in which the 

network predicted the correct bin, but also cases in which the network was only off by one 

bin. In a stricter metric, these cases would be counted equally as wrong as cases for which 

the network predicted a completely wrong bin. This metric is also an improvement over 

the standard hindcasting method of determining a network's accuracy. In hindcasting, the 
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actual value is compared with the mean of the bin predicted by the network. So, for all cases 

in which the value does not fall exactly in the center of the bin, the network is penalized 

as having "error," even though (since it is discretized) it cannot perform any better than 

predicting the correct bin. In short, hindcasting attempts to extract a continuous value from a 

discrete variable. Our metric improves on this by staying discrete, avoiding the net residual 

error incurred by hindcasting. 

Finally, we showed that the network's accuracy exhibits diminishing returns as more 

data is added. This begins a discussion of how to quantify how much data needs to be 

collected from laboratory and field experiments in order to achieve accuracy that is at least 

within some pre-defined threshold. Further, the iterative learning algorithm we developed 

can be used (in conjunction with a numerical model) to determine, a priori, approximately 

how many data points must be collected to achieve a desired accuracy level. This can save 

researchers much valuable time, money, and resources that could otherwise be wasted on 

collecting unnecessary data. 

It is important to note that the value of these contributions is not limited to the application 

of Bayesian Networks in a riverine system. Rather, the concepts are general and are 

applicable to any system in which the data must be discretized before it can be used in 

a Bayesian network model or similarly discrete tool. Thus, they should be of benefit not 

only to geoscienti sts, but also to physicists, engineers, economists, and researchers in any 

discipline to which numerical modeling can be applied. 
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