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Abstract 

A degradable, antimicrobial polymer network with acetal crosslink junctions 

derived from p-anisaldehyde (pA), a common constituent found in star anise extract, is 

reported. The p-anisaldehyde was converted into a bis-functional acetal alkene monomer, 

which serves as a pro-antimicrobial form of the active aldehyde and a building block for 

materials referred to as pro-antimicrobial polymer networks via degradable acetals 

(PANDAs). Subsequently, the bis-functional acetal alkene monomer was 

photopolymerized with a multifunctional thiol to yield a thiol-ene network. PANDAs 

exhibit surface erosion behavior and yield sustained release of pA over 38 days when 

exposed to neutral or biologically relevant conditions. The pA released from PANDAs was 

shown to be effective against bacterial pathogens, including Escherichia coli, 

Staphylococcus aureus, Salmonella enterica serovar Typhi, and Pseudomonas aeruginosa. 

The result from this thesis points to promising routes for the design of completely 

degradable antimicrobial systems exhibiting sustained-release profiles with potential 

applications in pharmaceuticals, cosmetics, food packaging, and agriculture industries. 

Keywords: thiol-ene, pro-antimicrobial, sustained-release, essential oils 
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Chapter I: Introduction 

 
Antimicrobial resistance is an escalating crisis that threatens the sustainability of 

public health and agricultural ecosystems – a crisis that serves as the source of 700,000 

deaths around the world on an annual basis.1 As antibiotic effectiveness declines 

precipitously, a growing awareness of natural, plant-derived antimicrobial constituents has 

proliferated. Essential oils (EOs) are plant extracts that contain antimicrobial terpenes, 

aldehydes, and terpenoids.  EOs have emerged as an effective alternative to antibiotics in 

fighting pathogenic microorganisms.2-3 However, EOs exhibit low water solubility, high 

volatility, and are often chemically unstable; these challenges make practical applications 

of EOs difficult. Many strategies have been reported for encapsulation of EOs within films 

and colloidal systems;4-5 however, deficiencies in these strategies are often observed, 

including low EO loading, poor EO encapsulation efficiencies, requirements for organic 

processing solvents, and uncontrolled release profiles.6  

The work described in this thesis project involves the synthesis of new acetal 

containing monomers derived from intrinsically antimicrobial benzaldehydes, such as p-

chlorobenzaldehyde, which have been previously studied by members of the Patton 

research group.7 This project, however, focuses specifically on the synthesis and 

incorporation of p-anisaldehyde acetal monomer within a pro-antimicrobial thiol-ene 

network. Pro-antimicrobial networks, in this case, refer to polymeric networks that undergo 

degradation in neutral or mild acidic conditions and release active antimicrobial aldehydes. 

Photopolymerization kinetics, degradation and release kinetics, and the antimicrobial 

efficacy of both the monomer and corresponding networks were investigated.  
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Chapter II: Literature Review 

2.1 Antibiotic Resistance 

From the discovery of penicillin in 1928, to some of the most advanced medical 

discoveries of the 20th century, our society has heavily relied on the development of new 

antimicrobial compounds to remedy infections. However, pathogenic microbes are 

continually evolving, rendering the medicines used to treat infections caused by these 

pathogens ineffective. Over the last few years, the number of antibiotic discoveries has 

declined and simultaneously there has been an over-prescription of existing antibiotics. 

From 2000-2010 there has been a 40% increase of antibiotics globally in hospitals.1 This 

overuse partially stems from the fact that many areas have access to over the counter and 

without prescription antibiotics; further, there has been an increase in counterfeit and sub-

standard antibiotics on the market in various regions.1  

 Patients infected by drug resistant strains of bacteria suffer from a higher death rate, 

and a larger hospital bill. Methicillin-resistant strains of bacteria refer to any bacteria 

resistant to both penicillin and cephalosporin drug classes. In Europe, greater than 10% of 

staphylococcus aureus infections stem from methicillin-resistant staphylococcus aureus 

(MRSA).1 Similarly, foodborne illnesses are also a problem. Around 30% of the population 

in industrialized countries will contract a food borne illness each year, some of which are 

caused by antibiotic resistant strains of bacteria; two million people died from a diarrheal 

disease in the year 2000.2 Poorer communities suffer from drug resistant tuberculosis (TB), 

of which 480,000 new cases  of resistant TB were reported in 2013; malaria, and Human 

Immunodeficiency Virus (HIV)  that eventually causes the disease AIDS, also affect a large 

number of these populations.1 Immunosuppressed patients, such as those infected with 
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HIV, or people who have recently undergone organ or bone marrow transplants, are more 

likely to contract bacterial infections.8 Pathogen transmission is an issue, especially with 

bacteria, as they share genetic information, creating new drug resistant forms of 

themselves. International travel allows these pathogens to travel worldwide, thus creating 

a global crises. Studies by O’Neil have projected that, if left untreated, by 2050, 10 million 

people would die globally due to drug resistance.1 Further, 10 trillion USD will be spent 

yearly to tackle infections arising from these “superbugs”. Undoubtedly, these untreatable 

infections will result in global suffering if actions are not implemented to effectively 

mitigate the spread of antibiotic-resistant pathogens.1 

2.2 Essential Oils as Antimicrobials 

As our strongest antibiotics lose efficacy, scientists have turned to nature as an 

alternative source for antimicrobial compounds. Essential oils (EOs), or extracts derived 

from plants, have been used throughout history to combat a variety of infections.  The 

desired effect of these EOs is directly related to the functional groups present within the 

constituents of the oil. Different functionalities such as alcohols, aldehydes, esters, ketones 

and phenols present in the constituents linalool (flowers), citronellal (citrus), carvone 

(spearmint/dill), and carvacrol (oregano), respectively, give rise to various antimicrobial 

effects.9 Current research has shown that EOs also exhibit antiviral, antimycotic, 

antitoxigenic, antiparasitic, and insecticidal properties.2 The antimicrobial properties of 

EOs can be attributed to a variety of mechanisms. For example, the hydrophobic nature of 

EOs enables them to partition within the lipids of the bacterial cell membrane rendering 

the membrane more permeable.2 The increased permeation leads to leakage of the contents 

from the cell, resulting in cell death. Phenolic EOs such as carvacrol are thought to disrupt 
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the proton motive force, electron flow, and active transport, and cause coagulation of the 

cell contents, leading to cell death.2 

Inouye and coworkers effectively demonstrated the capability of aldehyde- 

containing constituents to kill various strains of bacteria. Their study focused on comparing 

the effectiveness of different functionalities against gram-positive and gram-negative 

bacteria. Phenolics, terpenes, aldehydes, terpene ketones, and esters were examined. The 

aldehyde-containing constituents used were citral, octanal, and nonanal (all found in 

citrus), cinnamaldehyde (cinnamon), and perillaldehyde (perilla herb). Their results 

showed that constituents containing aldehydes or phenols are the most active against 

bacteria, and all others were significantly weaker.10 

 Potential applications include food packaging in which bacteria such as Salmonella, 

E. coli, and L. monocytogenes are an issue. EOs have been incorporated directly into foods 

or food packaging materials to increase the shelf life of products that are prone to spoilage. 

One important requirement within the food packaging industry is that the concentration of 

EO must be high enough to exert antimicrobial effects while not altering the flavor of the 

food.2 

2.3 Encapsulating Essential Oils  

  Polymer nanoparticles have been utilized in pharmaceutical, biomedical, and 

cosmetic industries. These particles have gained attention due to their ability to protect 

bioactive compounds, such as EOs or other drugs, from sources that initiate degradation: 

light, heat and oxygen. Nanoparticles also act as a carrier, delivering active drugs to their 

targets; this allows for better bioavailability of hydrophobic drugs. Similarly, they can 

result in a prolonged release within the therapeutic window. Many methods for 
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encapsulating EOs within polymeric particles have been reported, such as 

nanoprecipitation, coacervation, spray drying, rapid expansion of supercritical solutions, 

and most commonly, encapsulation within solid lipid nanoparticles.6 While these strategies 

have their benefits, many of them suffer from multiple issues such as poor encapsulation 

efficiencies or substandard release profiles. For example, when thymol, carvacrol and 

cholesterol were encapsulated within multilamellar vesicles and dried of solvent, a 4.16% 

encapsulation efficiency was observed.4 Recently, Gomes et al. encapsulated both eugenol 

and trans-cinnamaldehyde within degradable poly(lactic-co-glycolic acid) (PLGA) matrix 

particles, and observed an initial burst release followed by a slower rate of release of the 

antimicrobial EOs.11 Organic solvents were used during the encapsulation process which 

is non-ideal as residual solvent could remain after the particles are formed. Keawchaoon 

and coworkers encapsulated carvacrol within chitosan nanoparticles and found that the 

release of carvacrol plateaued within 30 days, releasing 23% in phosphate buffer saline at 

pH = 7.12-13 The poor release profile suggests that further improvements in encapsulation 

efficiency and controlled release kinetics of EOs from matrices are desired.  

 Acetal functionalized polymer networks have been utilized by multiple research 

groups, as acetals readily degrade at biological pH.14 Linear polyacetals, such as those 

synthesized by Heller et al. degrade into non-toxic products and that these polymers show 

no preferential accumulation in the major organs.15 The Fréchet group demonstrated the 

ability to produce protein-loaded microparticles using acetals as cross-linkers.16 

Benzaldehyde acetal was chosen as the cross-linker to control the degradation rate of the 

polymer by changing the para position on the molecule. In their specific study, it was 

shown that p-methoxy substituted benzaldehyde had a half-life of 24 hours at pH 7.4.14  
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Recently, we published a paper describing the use of p-chlorobenzaldehyde derived 

pro-antimicrobial networks.7 Real-time Fourier transform infrared spectroscopy revealed 

that thiol-ene networks achieved over 95% conversion between thiol and alkene 

functionalities. Kinetic release studies, such as the one described in this thesis, showed 

gradual release of p-chlorobenzaldehyde over 120 hours (>70% released). The 

antimicrobial activity of the pro-antimicrobial network was shown to be effective for both 

gram-positive (Bacillus subtilis and S. aureus) and gram-negative (E. coli, P. aeruginosa 

and Burkholderia cenocepacia) bacteria with killing efficiency over 99.5% within 24 

hours. These acetal-based thiol-ene networks represent a new approach to afford high 

loading and a controlled release of antimicrobial agent from crosslinked polymeric 

networks. 

2.4 Research Overview 

Building on our previous efforts employing p-chlorobenzaldehyde as the active 

building block for pro-antimicrobial networks via degradable acetals (PANDAs), the work 

in this thesis shifts focus away from oil derived compounds for network building blocks 

towards bio-based aldehydes found in nature to offer a fully degradable antimicrobial 

system based on essential oils.  Herein, we employed p-anisaldehyde (pA), an extract from 

star anise (Pimpinella anisum) seeds, to fabricate a new class of antimicrobial PANDAs 

using thiol-ene photopolymerization. The networks that are derived from p-anisaldehyde 

completely degrade when exposed to humid or acidic environments, and upon degradation 

release the active form of the EO into the surrounding environment. We demonstrate that 

incorporation and subsequent release of pA from a PANDA exhibits potent antimicrobial 
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activity against a variety of clinically relevant pathogens. The contents of this thesis were 

published as a 2018 peer-reviewed journal article in Acta Biomaterialia.17        

Chapter III: Materials and Methods 

 
3.1 Materials 

 

The chemicals p-anisaldehyde (pA), trimethylol propane diallyl ether, 2-hydroxy-

2-methylpropiophenone (Darocur 1173), trimethylsilyl trifluoromethanesulfonate 

(TMSOTf), dichloromethane (DCM), allyloxytrimethylsilane, pyridine, sodium 

bicarbonate, diethyl ether, magnesium sulfate (MgSO4), dextrose, 2,3,5,6-

tetrachloronitrobenzene, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT), hexane, 0.5 M Tris-HCl in H2O, acetonitrile-d3, Aqua Dead Cell Stain™, 

LIVE/DEAD BacLight Bacterial Viability Kit staining kit, BacLight RedoxSensor CTC 

Vitality Kit and ethyl acetate were acquired from Thermo Fisher Scientific. Pentaerythritol 

tetra(3-mercaptopropionate) (PETMP) was provided by Bruno Bock. Difco Agar, yeast 

extract, Bacto Tryptone, Mueller Hinton broth and agar, were from Becton, Dickinson and 

Company. Ham's F-12 and trypsin-EDTA were obtained from GIBCO. Hemin chloride 

(type II), protoporphyrin IX, histidine (free base), proline, 37% formaldehyde in H2O, 

dimethyl sulfoxide (DMSO), fluconazole, fetal bovine serum (FBS), Dulbecco's Modified 

Eagle's Medium (DMEM) and N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid 

(HEPES) was purchased from Sigma Aldrich. All the materials were obtained at the highest 

purity available and used without further purification unless otherwise specified. 

3.2. Characterization Methods. 

 

A Bruker Ascend 600 MHz (TopSpin 3.5) spectrometer was used to record 1H/13C 

NMR spectra with either chloroform-d or acetonitrile-d3. High resolution mass 
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spectroscopy (HRMS) was performed with positive electrospray ionization on a Bruker 12 

Tesla APEX-Qe FTICR-MS with an Apollo II ion source. Dynamic mechanical analysis 

(DMA) was performed using a TA Instruments Q800 dynamic mechanical analyzer in 

tension mode equipped with a gas cooling accessory. Samples were clamped, evaluated at 

a strain of 1 %, and heated from -80 °C to 80 °C at a ramp rate of 3 °C min-1. Kinetic data 

was obtained using real-time FTIR (RT-FTIR) spectroscopy by determining the 

conversions of the thiol and ene functional groups. The RT-FTIR studies were conducted 

using a Nicolet 8700 FTIR spectrometer with a KBr beam splitter and a MCT/A detector 

with a 320–500 nm filtered ultraviolet light source. Each sample was exposed to UV light 

with an intensity of 400 mW cm-2. Series scans were recorded, where spectra were taken 

approximately 2 scans s-1 with a resolution of 4 cm-1. Thiol conversion was monitored via 

integration of the SH peak between 2500-2620 cm-1 while the conversion of the alkene was 

monitored between 3050-3125 cm-1. Optical density (OD) and fluorescence readings were 

performed in a BioTek Synergy 2 programmable microplate reader (BioTek Instruments). 

3.3 Synthesis and Characterization of Monomer 

 

The procedure of Noyori et al..18 was modified to synthesize p-anisaldehyde acetal 

(pAA) monomer (Scheme 1). A 250-mL round bottom flask was flame dried and equipped 

with a stir bar. Trimethylsilyl trifluoromethanesulfonate (TMSOTf, 200 mL) was added to 

the round bottom flask along with 20 mL of dichloromethane (DCM) under a nitrogen 

atmosphere at -84°C. Allyloxytrimethylsilane (37 mL, 208 mmol), p-anisaldehyde (pA), 

12g, 88 mmol), and 25 mL of DCM were mixed together and added dropwise to the round 

bottom; the reaction was stirred for 3 hours, warmed to -30°C and stirred for another hour. 

It was quenched with 15 mL of pyridine and then added to 100 mL of sodium bicarbonate 
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solution. The quenched reaction mixture was then extracted 3 times with 100 mL of diethyl 

ether and dried with MgSO4.  The solvent was removed in vacuo and the resulting residue 

was purified via column chromatography using a 9:1 hexanes:ethyl acetate solvent mixture 

in order to remove any residual aldehyde. Purification yielded a clear oil (13.6 g, 65.9 % 

yield). 1H NMR (CDCl3) δ 7.45 (dd), 6.93 (dd), 5.97 (m), 5.62 (s), 5.35 (dd), 5.17 (dd), 

4.07 (d), 3.82 (s). 13C NMR (CDCl3) δ 159.66, 134.16, 130.68, 127.97, 116.67, 113.52, 

100.29, 66.00, and 55.22. HRMS (ESI+) m/z calculated for C14H18O3 [M+Na]+ 

257.114816; Found 257.114817. 

  3.4 Preparation of PANDA Disks 

 Disks were prepared by combining PETMP, pAA (molar ratio of SH:alkene of 1:1), 

and 4 weight % of Darocur 1173 (photoinitiator) in a 20 mL scintillation vial, then mixed 

thoroughly. The mixture, in different µL amounts (changed depending on the experiment 

the films were used for), were pipetted onto a glass slide, and then covered with another 

slide spaced with Teflon spacers. The samples were then cured using an Omnicure S1000-

1B with a 100W mercury lamp (λmax = 365 nm, 320–500 nm filter) at an intensity of 400 

mW cm−2 for 30 seconds on each side. Control disks were prepared in the same way, but 

with trimethylol propane diallyl ether (non-degradable) instead of pAA. 

3.5 Degradation Studies 

 3.5.1 Optical Degradation 

 Surface erosion was monitored via optical microscopy. Both a PANDA film and a 

control film were prepared as stated above and placed in a 1 N HCl aqueous solution. 

Pictures were taken over the course of three hours, with one image per 5 minutes. To graph 
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the degradation over time, the remaining disk area, At, was plotted with respect to the initial 

area A∞. These results were then fitted to the Hopfenberg model.19  

 3.5.2 Analysis of Degradation and Release via NMR 

The release of pA over time was analyzed via NMR spectroscopy. 2,3,5,6-

tetrachloronitrobenzene, used as an internal standard, was dissolved into 500 mL of 

deuterated acetonitrile. 125 mL of 100 mM Tris-HCl buffer, pH 7.4, was then mixed in; 

the resulting solution was added to an NMR tube containing a 5 mL PANDA disk, and 

flame sealed. The proton connected to the aldehyde results in a peak around 10 ppm, and 

this was integrated with respect to the internal standard to determine the concentration of 

pA in solution over a period of 38 days.  

3.6 Antimicrobial Assays 

3.6.1 Zone of Inhibition  

 The antimicrobial activity of PANDA disks was tested against several species of 

bacteria via the zone of inhibition (ZOI) method. The indicator microorganisms included 

Escherichia coli ATCC 43895 (serotype O157:H7), Staphylococcus aureus RN6390, 

Salmonella enterica serovar Typhi ATCC 6539 (Sal. Typhi), and Pseudomonas aeruginosa 

PAO1. The testing was done on Mueller Hinton II agar (MHA) plates that have been 

overlaid with soft agar seeded with individual bacterial strains. The soft agar contained (per 

liter): 10 g of Bacto Tryptone, 6 g of Difco agar, and 8 g of sodium chloride. To create an 

overlay, the indicator organisms were grown overnight at 37 °C in Mueller Hinton II broth 

(MHB). The overnight cultures were diluted 1:5 with fresh MHB, and mixed with molten 

soft agar to achieve a ~108 CFU mL−C density. From this mixture, 4 mL aliquots were 

overlaid onto MHA base plates and allowed to completely solidify. After solidification of 
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the soft agar, 50 mm3 disks were overlaid on the plates and incubated at 37 °C. The zones 

of inhibition (ZOI) were measured after 24 h and reported as the distance from the edge of 

the disk to the edge of the zone. Three replicates were carried out for each disk/bacterial 

strain, with the mean and standard deviation reported (experiment was repeated twice). 

3.6.2 Minimum Inhibitory Assay 

 A modified broth macrodilution method was used to determine the minimum size 

of PANDA disks needed to inhibit bacterial growth. Briefly, overnight bacterial cultures 

in MHB were adjusted to ~105 CFU mL-1. PANDA disks of different sizes (5-100 mm3) 

were added to 4 mL of bacterial cultures. The tubes were then incubated at 37 °C and 

shaken at 200 rpm for 24 h. Bacteria suspended in MHB served as a positive control, while 

MHB without bacterial inoculum served as a negative control. The inoculated tubes were 

assessed by measuring optical density at 600 nm after 24 h, where OD < 0.05 was 

considered negative for bacterial growth. Three replicates were carried out for each disk 

size and bacterial strain, with the mean and standard deviation reported (experiment 

repeated twice). 

3.7 Cell Membrane Integrity 

 3.7.1 LIVE/DEAD Staining 

A LIVE/DEAD BacLight Bacterial Viability Kit was used to probe the cell 

membrane integrity of the chosen bacteria. P. aeruginosa was diluted to 105 CFU/mL, and 

4 mL of this suspension was exposed to a 100 mm3 PANDA film. This was then incubated 

at 37°C while shaken at 200 rpm. A 100-mL aliquot was removed at 0 h and 30 h, and 

these aliquots were placed into a Corning 96-well solid black microplate and then mixed 

with 100 mL of LIVE/DEAD staining agent. They were then incubated, in the dark, for 15 
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minutes before the fluorescence was measured with a 528/20 nm excitation filter for the 

SYTO9 indicator, a 620/40 nm filter for the propidium iodide indicator, and 485/20 nm 

excitation filter for both indicators. Confocal imaging was completed by applying 5 mL of 

the stained samples onto microscope slides. The samples were assayed in triplicate and the 

experiment was repeated twice.  

3.7.2 TEM Imaging 

Transmission electron micrographs of the bacterial suspensions prepared as 

described in section 3.6.1 were taken with a Zeiss 900 electron microscope operating at 50 

kV and outfitted with a Model 785 Erlangshen ES1000 WCCD camera (Gatan). Samples 

were applied to 200 mesh copper grids (3.05 mm, 200 lines per inch square mesh, Electron 

Microscopy Sciences) coated with Formvar (5% polyvinyl formal resin). 

 

Chapter IV: Results and Discussion  
4.1 Synthesis and Characterization of Monomer 

Scheme 1A shows the synthetic 

scheme for the preparation of pAA, 

which was produced with a yield of 66% 

after purification. The resulting 

monomer was characterized via 1H 

NMR spectroscopy (Figure 1); peak 

assignments were in good agreement 

with values reported in the literature.18 

To investigate the antimicrobial 

properties of the pAA and pA monomers, 

10 µL of pure pAA and pA were plated on agar and overlaid with Sal. Typhi (Scheme 1A). 

Scheme 1: Synthesis, photopolymerization, and degradation 
scheme. 
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Following an incubation period of 24 h, 

pAA showed no visible zone of inhibition 

indicating the acetal form of the monomer 

is not an active antimicrobial compound. In 

contrast, pA showed a 1 cm zone of 

inhibition.  These results indicate that pAA 

functions as a pro-antimicrobial compound 

exhibiting antimicrobial activity only upon 

hydrolysis back to the benzaldehyde. 

4.2 Photopolymerization and 

Characterization of Polymer Films 

PANDA films were fabricated via 

radical-mediated step-growth thiol-ene photopolymerization (Scheme 1B) using 

pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) and pAA as monomers.  PETMP 

and pAA were copolymerized using a 1:1 alkene/thiol mole stoichiometry. Upon 

polymerization, the composition of the PANDA films is 47 wt.% pAA, which translates to 

pA loading of 27 wt.%. The photopolymerization kinetics, when conducted under a 

medium pressure UV light (400 mW 

cm−2), were rapid and exhibited nearly 

quantitative conversion (>95%, Fig. 2) of 

both thiol and alkene functional groups in 

less than 60 s. The step-growth 

polymerization mechanism observed for 

Figure 1: NMR spectra of monomer. 

Figure 2: Conversion between thiol and alkene monomers 

Figure 3. Dynamic mechanical analysis of PANDA films. 
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radical-mediated thiol-ene polymerization of PETMP and pAA ensures that each crosslink 

junction contains a hydrolytically cleavable acetal linkage for the release of pA from the 

network (Scheme 1C). Additionally, the resulting PANDAs possess a narrow tan  

(indicative of a homogenous network), a glass transition temperature of -0.5 °C (Fig. 3) 

and are optically transparent – typical 

of thiol-ene materials. 

4.3 Degradation Studies 

 The PANDA degradation and pA 

release kinetics were initially 

characterized using 1H NMR 

spectroscopy.  The kinetic experiment 

was conducted over 38 days at pH 7.4 

by inserting disks in acetonitrile-

d3/buffer solutions in sealed NMR 

tubes. 2,3,5,6-tetrachloronitrobenzene 

( = 7.75 ppm) was employed as an 

internal standard enabling integration 

relative to the benzylic aldehyde proton ( = 9.85 ppm) to determine time-resolved pA 

concentration (Fig. 4A). The release profile of pA obtained from the integrated 1H NMR 

data is shown in Figure 4B. At pH 7.4, an initial burst release was 

not observed; however, a slow release profile was observed 

where 90% pA was released within 38 days. To better quantify 
Equation 1: Hopfenberg Model 

Figure 4. (A) NMR spectra of degradation products (B) 
Release of aldehyde and corresponding fit to Hopfenburg 
model. 

𝑀𝑡

𝑀∞
= 1 −  1 −

𝑘0𝑡

𝐶0𝑎
 
2
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the release data, the release profile 

was fit to the cylindrical Hopfenberg 

model 19 described in Equation 1:  

where, 𝑀𝑡  is the concentration of 

released pA at time t, 𝑀∞  is the 

theoretical maximum of pA released, 

𝑘0 is the erosion rate constant, 𝐶0 is 

the initial concentration of drug in the 

matrix, and a is the initial radius of 

the cylinder. The half-life of the 

PANDA degradation was determined to be 14.9 days from the Hopfenberg model.  To 

investigate the process of erosion for the PANDA disks over time, PANDA disks and non-

degradable control disks (trimethylolpropane diallyl ether and PETMP) were fabricated, 

submerged in a 1N aqueous HCl solution, and imaged using optical microscopy over time. 

The optical images from the accelerated degradation experiment are shown in Figure 5A. 

Within 1 h, significant surface erosion was observed. The low solubility of the p-

anisaldehyde and tetrafunctional alcohol (degradation products) in water results in the solid 

disk degrading to an oil-like residue within 3 h. The area of the degradation front, as 

highlighted by the green arrows in Figure 5A, was used to quantify the degradation process 

under low pH conditions. A plot of the remaining disk area at time t (At) relative to the 

initial area (A) was plotted over time and then fit to the Hopfenberg model, where 𝑀𝑡/𝑀∞ 

were replaced by 𝐴𝑡/𝐴∞. The degradation at pH 0.1 was 380x faster (half-life = 0.04 days) 

– much faster than expected when compared to the degradation at pH 7.4 observed by 

Figure 5. (A) Visual degradation of PANDA films in 1 N HCl (B) 
Plotted degradation fit to Hopfenberg model 
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NMR.  The results from these collective degradation studies are consistent with acid 

sensitive hydrolysis behavior of acetals.15  

4.4 Antimicrobial Assays 

4.4.1 Zone of Inhibition 

The antimicrobial activity of 

both PANDA disks and control disks 

was initially evaluated via a ZOI assay 

using clinically isolated strains: S. 

aureus RN6390 and P. aeruginosa 

PAO1, and foodborne pathogens: E. 

coli ATCC 43895 (serotype O157:H7) 

and Sal. Typhi ATCC 6539 (Fig. 6). As expected, control disks without p-anisaldehyde 

showed no antimicrobial activity for any bacteria in the ZOI experiments.  However, ZOIs 

greater than 1 cm were observed for the PANDA disks, where larger ZOI values indicate 

more potent inhibition of the bacteria.  The ZOI assay showed that the order of 

antimicrobial inhibition was Sal. Typhi > S. aureus > E. coli O157:H7 > P. aeruginosa.   

4.4.2 Minimum Inhibition Assay 

To determine the PANDA disk size required to inhibit bacterial growth, a minimum 

inhibitory disk size assay was performed with bacteria in their exponential growth phase 

(105 CFU mL-1 in 4 mL media).  The bacteria were challenged with PANDA disks (0-100 

mm3). Note, larger disk size translates to a higher pA concentration released at a given time 

point. The minimum inhibition assay, as presented in Figure 6, showed that inhibition of 

bacteria increased with an increase in disk size, and 100 mm3 (910 mg/mL pA) disks 

Figure 6. Zone of inhibition for PANDA and control disks. 
Plotted data points represent individual measurements. 

data points represent individual measurements. ( 
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effectively inhibited all strains of 

bacteria tested. An optical density 

reading of <0.05 is considered 

negative for bacterial growth under 

these experimental conditions. E. coli 

O157:H7 and P. aeruginosa required 

the largest disk size, however, Sal. 

Typhi and S. aureus were inhibited by 50 mm3 disks (455 mg/mL pA). The concentration 

of pA released was estimated from the NMR release profile previously described.  

4.5 Cell Membrane Integrity 

To investigate the possible mode of action for pA antimicrobial activity, the cell 

membrane integrity was analyzed for P. 

aeruginosa via a LIVE/DEAD staining – a 

method that was supported by TEM imaging. 

SYTO9 is capable of penetrating healthy cell 

membranes, and results in a green fluorescence; 

while propidium iodide only enters cells with 

damaged cell membranes resulting in red 

fluorescence. Figure 8A shows that at 0h of 

PANDA exposure the P. aeruginosa fluoresced green while after 30 h the sample 

fluoresced red, indicating damaged cell membranes. The disruption of the cell membrane 

was further concluded with the use of TEM imaging where in Figure 8D there is a clear 

disruption of the cell membrane as compared to the healthy bacteria in Figure 8C. 

 

Figure 7. Minimum inhibition assay of different sized PANDA 
disks. 

Figure 8. LIVE/DEAD staining images (A) at 0h 
(B) at 30 h; TEM images (C) at 0h and (D) at 
30h 
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Chapter V: Conclusion  

 In this thesis, we have demonstrated a bactericidal, pro-antimicrobial network that 

is effective against both gram-positive and gram-negative bacteria. By using confocal 

microscopy and TEM imaging, we showed that these antimicrobial polymers mainly kill 

bacteria via membrane disruption. Due to the effectiveness of pA and PANDA networks, 

these types of polymers could potentially be utilized to combat bacteria in the medical field. 

We demonstrated a potent bio-based pro-antimicrobial polymer network that has the 

versatility to treat gram positive and gram negative bacterial pathogens through the 

sustained release of pA over time. Through a combination of confocal microscopy and 

transmission electron microscopy, we showed PANDAs primary mode of action is via 

membrane disruption. The design of the PANDA network combined with the potency of 

pA has the potential to part of the arsenal of defenses against a broad spectrum of pathogens 

and exhibits potential for future in vivo experiments. 
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