The University of Southern Mississippi

The Aquila Digital Community

Faculty Publications

2012

Campus Biomass: It's a Good Thing!

Sherry S. Herron University of Southern Mississippi, sherry.herron@usm.edu

Shelia A. Brown University of Southern Mississippi, shelia.brown@usm.edu

Follow this and additional works at: https://aquila.usm.edu/fac_pubs

Part of the Science and Mathematics Education Commons

Recommended Citation

Herron, S. S., Brown, S. A. (2012). Campus Biomass: It's a Good Thing!. *Mississippi Science Teachers Association, 2012*. Available at: https://aquila.usm.edu/fac_pubs/14864

This Conference Proceeding is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact aquilastaff@usm.edu.

CAMPUS BIOMASS: IT'S A GOOD THING! 2012 MSTA

Sherry S. Herron and Shelia A. Brown

University of Southern Mississippi

Sherry Herron

Global Learning and Observations to Benefit the Environment

- Began on Earth Day 1995
- Currently, there are
 - -112 participating countries
 - -58,000 GLOBE-trained teachers
 - -> 25,000 schools
 - -> 1.5 million students
 - -> 23 million measurements

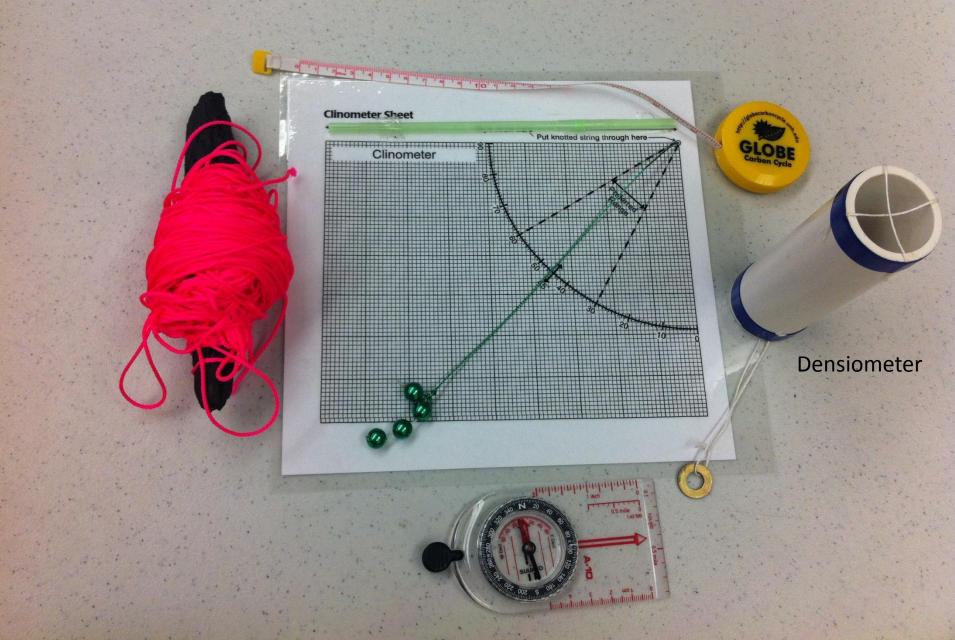
Tupelo Middle School

Calculating tree height, tree circumference, canopy cover, and ground cover on the campus.

Kate Wheeler and George Patterson measure and record the size of a sycamore outside of the school. Below, Shelia Brown assists Tupelo Middle School students, from left, Wyatt Herring, Marcus Lewis, Lucas Hartigan and Jason Garrett with their recording of scientific data. (C. Todd Sherman)

Tupelo Middle School students measure trees, collect water samples by Chris Kieffer/NEMS Daily Journal Nems360.Com

TUPELO – Science proved to be more work than Tupelo Middle School eighth-grader Kimya Jamasbi expected.


After spending a class period measuring the trees on the school's athletic field, Kimya said she was surprised to be ducking under branches and getting poked by limbs. "It was a good experience," she said, "but I didn't like climbing through the trees."

Kimya was among about 300 students participating in a hands-on activity Wednesday with science educators from the University of Southern Mississippi. The students, from Holly Bailey's seventh-grade science class and Judy Harden's eighth-grade science class, peered at the trees through a tube-shaped instrument called a densiometer; used measuring tape to determine circumferences of trunks; and carried clipboards to record data.

They will log that information throughout the year and record it in an online database that allows scientists to use the results throughout the world.

"Hopefully they will gain an awareness of how science works and what scientists do," said Sherry Herron, professor and director of the Center for Science and Mathematics Education at USM.

Herron joined Shelia Brown at the school Wednesday to give the students a lesson on collecting data. Brown is an educator/ biologist at Gulf Coast Research Laboratory Marine Education Center in Ocean Springs, part of USM. 10/27/2012 Sherry Herron

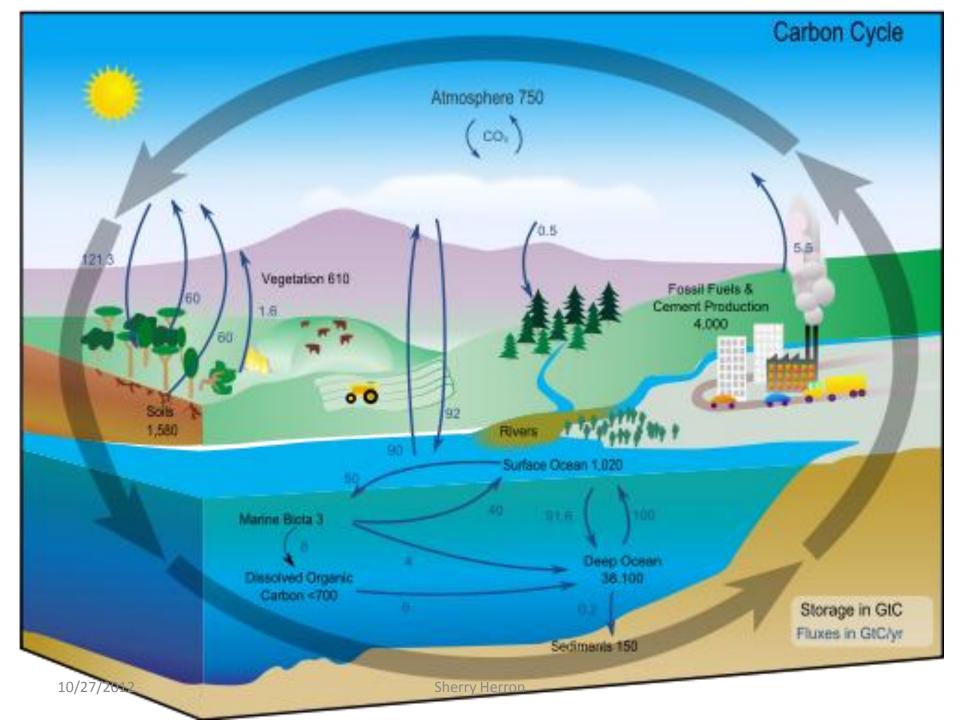
N.R. Burger Middle School

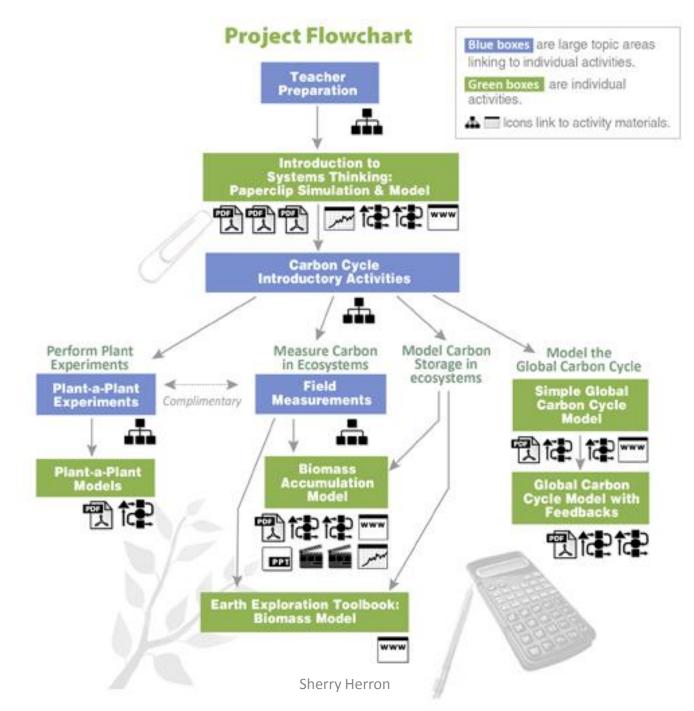
Calculating tree height and circumference on the campus.

Sherwood Forest Middle Magnet School Walking a block to do GLOBE Land Cover and Hydrology

Hancock North Elementary

Calculating tree height, tree circumference, canopy cover, and ground cover on campus.


http://globecarboncycle.unh.edu/



Investigating the Carbon Cycle in Terrestrial Ecosystems

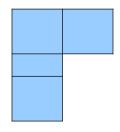
Goals

- Increase environmental awareness in students.
- Increase students' appreciation for and importance of the trees in their own neighborhoods and at school.
- Increase students' abilities to engage in scientific studies.
- Increase students' understanding of how climate change data is collected.

Diameter at Breast Height (DBH)

Excel Spreadsheet with automatic calculations

Tab 1: Instructions Tab 2: Plot Size


Plot Size

In order to compare your data to data collected by others, our calculation of biomass per plot will be converted to biomass per square meter. This conversion requires some information that you will enter here about your plot size. **Enter data into either 1 or 2 below in meters**:

1. If your plot is rectangular, enter the LENGTH of a SHORT and LONG side

- 2. If your plot is circular, enter the plot RADIUS
- 3. If you have an odd sized plot (for instance you've sampled your entire schoolyard, calculate the entire area in m², and add it here)

Calculated plot size in m²

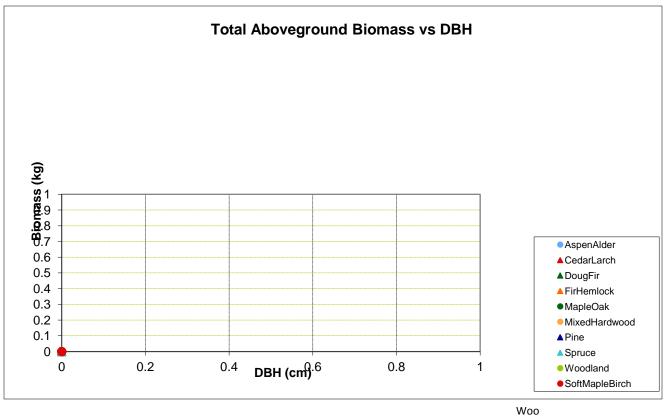
Tab 3. Field Data Entry

School Name:		Site:	
Date/Time:			
	Year	Month	Day

		Collection Year #:
Tree #	Species Group	Circumference/ CBH (cm)

Tab 4: Tree Biomass & Carbon Storage Calculations

Biomass & Carbon Storage Calculations


Note: Do not edit this sheet. The information on this sheet in the blue sections will automatically be imported from other sheets in this file. To add/change/delete trees, make all of your changes to the FieldDataEntry worksheet. Biomass and carbon storage values for each tree are calculated in the white block, and summarized in the yellow table (read column and row headers to identify cell contents).

If you would like to sort the data (i.e. by species group, by circumference, etc.) to help you answer questions or create new graphs, go to the FieldDataEntry worksheet to use the Data: SORT function.

Table summarizing the tree data below							
	Total Aboveground						
Plot Biomass (g/plot)	0						
Plot Carbon Storage (g C/plot)	0						
Biomass (g/m2)	0						
Carbon (g C/m2)	0						

Data im	ported from Field	DataEntry tab		Calculate	d Tree Values		Coefficients imported from Species Group Allomentry tab		
Tree #	Species Group	Circumference/ CBH (cm)	Diameter/DBH (cm)	Total Aboveground Biomass(kg)	Total Aboveground Biomass (g)	Abovegroun dCarbon Storage (g C)	Coeffici	ents for nd Biomass	
#	Group	Circ	Dia	TotAboveBio	TotAboveBio-g	Carbon	B0	B1	
0	0	0.0	0.00	#N/A	#N/A	#N/A	#N/A	#N/A	
0	0	0.0	0.00	#N/A	#N/A	#N/A	#N/A	#N/A	
0	0	0.0	0.00	#N/A	#N/A	#N/A	#N/A	#N/A	
0	0	0.0	0.00	#N/A	#N/A	#N/A	#N/A	#N/A	
0	0	0.0	0.00	#N/A	#N/A	#N/A	#N/A	#N/A	
0	0	0.0	0.00	#N/A	#N/A	#N/A	#N/A	#N/A	

Tab 5: Graphs

V	V	0

Asp	enAl	Ced	arLar			FirHemlo Maple			leOa	a MixedHa				SoftMapl				dlan	
de	er	C	h	Dοι	ıgFir	С	k	I	k	rdw	ood	Pi	ne	eBi	rch	Spr	uce	d	
	TotE	3	TotB	3	TotE	3	TotB		TotB		TotB		TotB		TotB		TotB		TotB
DBH	io	DBH	io	DBH	io	DBH	io	DBH	io	DBH	io	DBH	io	DBH	io	DBH	io	DBH	io
FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						
FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE						

Tab 6: Allometric Equations (convert tree DBH to biomass)

Т

Allomentric Equations (convert tree DBH to biomass)

1. The allometric equations for total aboveground biomass are given for 10 species groups, where individual species are classed into the 10 groups in Appendix A of Jenkins et al. 2003. See the Species Groups Tab if your species has not yet been assigned to a group.

2. The allometric equations are of the form: biomass = Exp(B₀+ B₁ In dbh), where In = log base e (or 2.718282), and dbh is in cm.

3. EXTENSION: A second set of equations determines the ratio of tree "components" - foliage, bark, stem and roots, to the total aboveground biomass. These equations are in the form $ratio = Exp(B_0 + (B_1/dbh))$. To see a breakdown of biomass by components, view the Biomass Components and Biomass Summary Tabs.

4. These equations are built into the spreadsheet and will automatically calculate biomass in the *TreeBiomass&CarbonStorage* as well as the *BiomassComponents* Tabs.

5. To see the how this works view the *EquationExamples* tab for more details.

	Coefficients for Aboveg Biomass		efficients for Foliage		cients for Stem W	/ood Coeffi	cients for Stem Barl	c Coeffic	cients for Coarse Ro	pots
SpeciesGroup	B0 B1	в0	B1	B0	B1	B0	B1	В0	B1	
AspenAlder	-2.2094	2.3867	-4.0813	5.8816	-0.3065	-5.4240	-2.0129	-1.6805	-1.6911	0.816
CedarLarch	-2.0336	2.2592	-2.9584	4.4766	-0.3737	-1.8055	-2.0980	-1.1432	-1.5619	0.6614
DougFir	-2.2304	2.4435	-2.9584	4.4766	-0.3737	-1.8055	-2.0980	-1.1432	-1.5619	0.6614
FirHemlock	-2.5384	2.4814	-2.9584	4.4766	-0.3737	-1.8055	-2.0980	-1.1432	-1.5619	0.6614
MapleOak	-2.0127	2.4342	-4.0813	5.8816	-0.3065	-5.4240	-2.0129	-1.6805	-1.6911	0.816
MixedHardwood	-2.4800	2.4835	-4.0813	5.8816	-0.3065	-5.4240	-2.0129	-1.6805	-1.6911	0.816
Pine	-2.5356	2.4349	-2.9584	4.4766	-0.3737	-1.8055	-2.0980	-1.1432	-1.5619	0.6614
SoftMapleBirch	-1.9123	2.3651	-4.0813	5.8816	-0.3065	-5.4240	-2.0129	-1.6805	-1.6911	0.816
Spruce	-2.0773	2.3323	-2.9584	4.4766	-0.3737	-1.8055	-2.0980	-1.1432	-1.5619	0.6614
Woodland	-0.7152	1.7029	-4.0813	5.8816	-0.3065	-5.4240	-2.0129	-1.6805	-1.6911	0.816
LowWoodDensitySpecies	-2.5356	2.4349	-2.9584	4.4766	-0.3737	-1.8055	-2.0980	-1.1432	-1.5619	0.6614
MediumWoodDensitySpecie	-2.4800	2.4835	-4.0813	5.8816	-0.3065	-5.4240	-2.0129	-1.6805	-1.6911	0.816
HighWoodDensitySpecies	-2.0127	2.4342	-4.0813	5.8816	-0.3065	-5.4240	-2.0129	-1.6805	-1.6911	0.816
* noto: wo have calculated w	woodland compon	ont fraction	s as in hardw	and						

* note: we have calculated woodland component fractions as in hardwood.

Tab 8: Species Groups

Species Group name

used in

Field Data Entry work sheet	Species Group name from Jenkins paper	Species Group Code					
	aspen/alder/cottonwood/w	<i>i</i> i					
AspenAlder	llow	аа					
CedarLarch	cedar/larch	cl					
DougFir	Douglas-fir	df					
FirHemlock	true fir/hemlock	tf					
MapleOak	maple/oak/hickory/beech	mo					
MixedHardwood	mixed hardwood	mh					
Pine	pine	pi					
SoftMapleBirch	soft maple/birch	mb					
Spruce	spruce	sp					
Woodland	woodland	wo					
LowWoodDensitySp	ecies						
MediumWoodDensitySpecies							
HighWoodDensitySp	pecies						
- , ,							

PineArizona pinePinusarizonicaPineAustrian pinePinusnigraPineBishop pinePinusmuricataPineBorder pinyonPinusdiscolorPineBristlecone pinePinusaristataPineCalifornia foothill pinePinussabinianaPineChihuahuan pinePinusleiophylla	
PineBishop pinePinusmuricataPineBorder pinyonPinusdiscolorPineBristlecone pinePinusaristataPineCalifornia foothill pinePinussabiniana	
PineBorder pinyonPinusdiscolorPineBristlecone pinePinusaristataPineCalifornia foothill pinePinussabiniana	
Pine Bristlecone pine Pinus aristata Pine California foothill pine Pinus sabiniana	
Pine California foothill pine Pinus sabiniana	
Pine Chihuahuan pine Pinus leiophylla	
Pine Coulter pine Pinus coulteri	
Pine Eastern white pine Pinus strobus	
Pine Foxtail pine Pinus balfouriana	
Pine Jack pine Pinus banksiana	
Pine Jeffrey pine Pinus jeffreyi	
Pine Knobcone pine Pinus attenuata	
Pine Limber pine Pinus flexilis	
Pine Loblolly pine Pinus taeda	
Pine Lodgepole pine Pinus contorta	
Pine Longleaf pine Pinus palustris	
Pine Monterey pine Pinus radiata	
Pine Pinyon pine Pinus edulis	
Pine Pitch pine Pinus rigida	
Pine Pond pine Pinus serotina	
Pine Ponderosa pine Pinus ponderosa	
Pine Red pine Pinus resinosa	
Pine Sand pine Pinus clausa	
Pine Scotch pine Pinus sylvestris	
Pine Shortleaf pine Pinus echinata	
Pine Singleleaf pinyon Pinus monophylla	
Pine Slash pine Pinus elliottii	
Pine Southwestern white pine Pinus strobiformis	
Pine Spruce pine Pinus glabra	
Pine Sugar pine Pinus lambertiana	
Pine Table Mountain pine Pinus pungens	
Pine Virginia pine Pinus virginiana	
Pine Western white pine Pinus monticola	
Pine Whitebark pine Pinus albicaulis	

Sherry Herron

Tab 9: Biomass Components

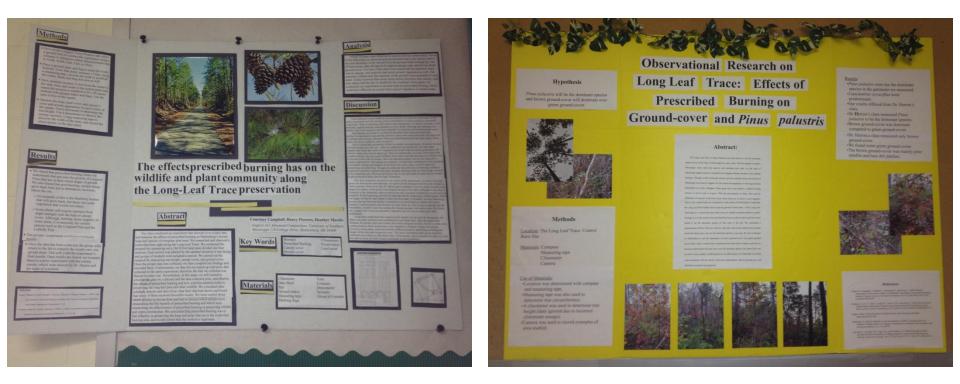
EXTENSION: Biomass Components

Note: Do not edit this sheet. The information on this sheet in the blue sections will **automatically** be imported from other sheets in this file. To add/change/delete trees, make all of your changes to the FieldDataEntry worksheet. Biomass values for each tree are calculated in the white center block, and summarized in the yellow table (read column and row headers to identify cell contents).

Keep in Mind: "We hypothesize that C allocation strategies may differ among individuals belonging to the same species (or species groups). The proportion of biomass in foliage, for example, might be different for an open-grown tree versus a tree growing in a dense stand, and the proportion of biomass in the stem might change with variables such as wind exposure or water availability". (Jenkins et al. 2003, pages 24-25)

Table summarizing the tree data below									
	Total								
	Aboveground	Foliage	Stem	Branch	Roots				
Plot Biomass (kg/plot)	a	a	C	a	o				
Biomass (g/m2)	a	o	c	a	0				
Carbon (g C/m2)	Q	o	C	C	0				

Data imported fromCalculated Biomass Values ByAllometricFieldDataEntry tabCompartmentS								-					n coe roup			•		l from
Tree Tag #	Species Group	Circumference (cm)	Diameter (cm)	Total Aboveground Biomass(kg)	Foliage Biomass (kg)	Stem Biomass (kg)	Branch Biomass (kg)		Coefficients f Aboveground		Coefficier Foliage Fi		Coefficien Stem Woo		Coefficier Stem Barl		Coefficie Roots	nts for Coarse
Тад	Group	Circ	Dia	TotAboveBio	FolBio	StemBio	BranchBio	RootBio	B0	B1	в0	B1	в0	B1	в0	B1	в0	B1
0	0	0	0.00	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
0	0	0	0.00	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
0	0	0	0.00	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A


Results from Long Leaf Preserve

		Circumference/
Tree #	Species Group	CBH (cm)
1	Pinus palustris	132.91
2	Pinus palustris	138.92
3	Pinus palustris	148.84
4	Pinus palustris	159.83
5	Pinus palustris	76.93
6	Pinus palustris	159.83
7	Pinus palustris	171.76
8	Pinus palustris	127.8
9	Pinus palustris	86.98
10	Pinus palustris	70.97
11	Pinus palustris	113.04

Table summarizing the tree data				
	Total			
	Aboveground			
Plot Biomass (g/plot)	7,842,711			
Plot Carbon Storage (g C/plot)	3,921,356			
Biomass (g/m2)	8,714			
Carbon (g C/m2)	4,357			
<u> </u>				

Table summarizing the tree data					
	Total				
	Aboveground	Foliage	Stem	Branch	Roots
Plot Biomass (kg/plot)	7843	451	6118	1274	1670
Biomass (g/m2)	8714	501	6798	1415	1855
Carbon (g C/m2)	4357	250	3399	708	928

Student Posters

Results from Mixed Hardwoods

	a importe IdDataEnt		Calculated Tree Values				Coefficients imported from Species Group Allomentry tab		
		Cinemate	Diamata	Total Abovegr Total Abovegrou				cients	
	6	Circumfe			Abovegroun	ndCarbon		or	
	Species	rence/	-	Biomass(Storage (g	Above	-	
Tree #	Group	CBH (cm)	(cm)	kg)	(g) TotAboveBio	C)	Bior	nass	
#	Group	Circ	Dia	eBio		Carbon	в0	B1	
#	Group	Circ	Dia	еыо	-g	Carbon	БU	DI	
0	Sweet	80.0	28.62	212 67	212 672 56	156 226 70	2 0772	2 2222	
	gum	89.9		312.67	312,673.56	156,336.78			
0	magnolia oak	22.0 125.2	7.00 39.85	9.89 790.09	9,886.60 790,093.21	4,943.30 395,046.60		2.4814 2.4835	
0	oak							2.4835	
0		41.5	13.21	50.90	50,897.97	25,448.98			
	magnolia	40.3 24.5	12.83 7.80	44.40	44,397.97	22,198.99		2.4814 2.4814	
0	hackberry magnolia	24.5	8.59	12.91 16.43	12,913.26	6,456.63 8,217.04		2.4814	
	hackberry		13.81	53.36	16,434.07 53,361.28	26,680.64		2.4814	
0	magnolia	124.5	39.63	729.31	729,310.43	364,655.21		2.4814	
0	magnolia	124.5	4.62	3.51	3,513.81	1,756.90		2.4814	
	hackberry		4.02	89.68	89,680.14	44,840.07		2.4814	
0	Sweet	55.5	17.05	09.00	89,060.14	44,840.07	-2.5564	2.4014	
0	gum	112.1	35.68	523.16	523,157.67	261,578.83	2 0772	2 2222	
0	magnolia	23.0	7.32	11.04	11,039.53	5,519.77		2.4814	
0	live oak	8.0	2.55	0.80	803.32	401.66		2.4814	
0	sweet	0.0	2.55	0.00	005.52	401.00	2.5584	2.4014	
0	gum	33.0	10.50	30.20	30,197.26	15,098.63	-2 0773	2.3323	
	hackberry	56.0	17.83	100.44	100,441.45	50,220.72		2.4814	
0	sassfras	31.0	9.87	20.87	20,874.17	10,437.09		2.4349	
-	white oak	69.0	21.96	168.69	168,688.38	84,344.19		2.3323	
-	hackberry	57.0	18.14	104.95	104,951.12	52,475.56		2.4814	
0	oak	120.0	38.20	711.09	711,090.05	355,545.02		2.4835	
	hackberry	17.0	5.41	5.21	5,214.29	2,607.14		2.4814	
	hackberry	16.0	5.09	4.49	4,486.03	2,243.02		2.4814	
0	magnolia	29.0	9.23	19.62	19,622.47	9,811.23		2.4814	
	sweet					,			
0	gum, /-	12.0	3.82	2.85	2,853.07	1,426.53	-2.0773	2.3323	

Table summarizing the tree data below			
	Total		
	Aboveground		
Plot Biomass (g/plot)	3,816,581		
Plot Carbon Storage (g C/plot)	1,908,291		
Biomass (g/m2)	16,963		
Carbon (g C/m2)	8,481		

Table summarizing the tree data below					
	Total Above				
	ground	Foliage	Stem	Branch	Roots
Plot Biomass					
(kg/plot)	3817	173	2899	745	781
Biomass (g/m2)	16963	770	12882	3310	3469
Carbon (g C/m2)	8481	385	6441	1655	1735

10/2//2012

Serry Herron

QUESTION		MUC CODE	CONCLUSION
Is the site natural?	Yes		Natural (closed forest, woodland, shrubland, dwarf shrub land, herbaceous, herbaceous vegetation, wetland or barren land or open water.)
Is more than 40% of the site covered by the canopy of trees that are at least 5 meters tall?	Yes		Trees (closed forest or woodland)
Are the crowns of the tees greater than 5 meters tall interlocking?	Yes	MUC 0	Closed
Are at least 50% of the trees that reach the canopy evergreen?	No	MUC 02	Deciduous (87% of the site is covered with deciduous trees and 10% with evergreen trees).
Do the deciduous trees lose their leaves because there is a dry season?	Yes	MUC 021	Tropical and Subtropical Drought-Deciduous. (Lowland, Submontane)
Is your site located in a lowland or submontane area?	Yes	MUC 0211	Closed, Mainly Deciduous, Tropical and Subtropical, Drought –Deciduous, Broad Leaved Lowland and Submontane

United Nations Educational, Scientific and Cultural Organization

Modified UNESCO Classification "MUC"

Acknowledgements

- Dr. Shelia Brown
- EPA Gulf of Mexico Alliance
- NOAA B-WET
- Sherwood Middle Academy Magnet – Baton Rouge, LA: Sheila Stagnoli and Misti Segura
- Tupelo Middle: Holly Bailey, Judy Harden, Connie Gusmus
- N.R. Burger Middle: Jessica Johnson
- Hancock North Elementary: Teresa Merwin

- Laila Ali
- Chad Garrick
- Monica Moss-Watkins
- Jennifer Robertson
- My students

BAY WATERSHED EDUCATION

& TRAINING PROGRAM