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Abstract

Finance is a rapidly growing area in our banking world today. With this ever-increasing

development come more complex derivative products than simple buy-and-sell trades.

Financial derivatives such as futures and options have been developed stemming from the

traditional stock, bond, currency, and commodity markets. Consequently, the need for more

sophisticated mathematical modeling is also rising.

The Black-Scholes equation is a partial differential equation that determines the price

of a financial option under the Black-Scholes model. The idea behind the equation is that

there is a perfect and risk-free way for one to hedge the options by buying and selling the

underlying asset in just the right way. This hedge implies that there is a unique and right

price for the option, as returned by the Black-Scholes formula. Traditionally, the Black-

Scholes equation is solved by first being reduced to a simple heat diffusion equation through

exponentially scaling and changing the variables. This conversion ensures a simpler, faster,

and more practical numerical scheme. However, there are several drawbacks with this

method. Accuracy is often compromised and could be very unevenly distributed across

the domain due to the variables being exponentially scaled. Transformation is also very

limited and inflexible. For my research project, my adviser and I have proposed to solve

the Black-Scholes equation directly using finite-difference schemes. By doing so, we can

ensure robustness and accuracy. Error analysis of these two approaches was conducted. An

assessment of the accuracy, efficiency, and robustness of each method is reported.

Key Words: Black-Scholes Equation, finite-difference methods, local truncation error
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Chapter 1

Introduction

Since the creation of the first stock exchange in 1604, various kinds of financial markets

and derivative products have been developed and evolved. The most prominent ones are the

stock markets, bond markets, currency markets, commodity markets, and the futures and

options markets. This project focuses on the futures and options markets, which are derived

from the traditional stock markets. Stocks, also known as equities or shares, are sold by

companies to investors to raise money. The investors, or shareholders, then own part of the

company and take part of its profit as dividends of so much per share. The stock represents

the financial potential of the company and reflects the value of future dividends predicted by

investors. This value is quantified by the price at which the stock is bought and sold. As

markets expand and become more intricate, more evolved products than simple buy and

sell have been developed. These are known as financial derivatives, and they offer investors

more diverse ways and opportunities to venture. The futures and options markets trade one

of the most common derivatives.

The simplest financial product in the futures and options market is the European call

option. It is a contract between the writer, who draws up the contract, and the holder, who

purchases the contract. It gives the holder the right to purchase a prescribed asset (the

underlying asset) at a prescribed amount (exercise price) at a prescribed time in the future

(expiry date). For the holder, this contract is not an obligation, so he may choose to not

exercise it on the expiry day. However, the writer of the contract is obligated to sell if

the holder chooses to purchase the asset. The holder of a call option would then want the

asset price to rise. The value of this contract, which is paid at the time of opening, will

be dependent on the financial potential of the prescribed asset and the prospective loss

the writer will experience from selling the asset at the exercise price [1]. The European

put option is similar except that it has the opposite payoff properties. Instead of the right
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to purchase, the holder has the right to sell the asset at a prescribed amount on a specific

date. The holder would then want the asset price to decrease as much as possible. A more

complicated option that is traded commonly is the American option. This option allows the

trade to be exercised at any time before the expiry. The modeling for the American option is,

therefore, more interesting because it can be interpreted as a free boundary problem, which

is a partial differential equation in an unknown domain. Not only is the option pricing a

concern, but also the best time for it to be exercised. Two main concerns arise from the

options market. First, how much the holder would be willing to pay for this right, and

second, how can the writer reduce the risk accompanied by his obligation.

Dealing with options gives rise to the gearing effect where changes in the asset price

are exaggerated. This can be seen in the following example. On 1 Jan 2019, one share of

company X is valued at $130, and a call option for one share of company X is drafted that

gives the holder the option to buy this share at $130 exactly one year later on 1 Jan 2020.

Let us suppose that only two possible events will occur on the expiry date.

1. The price of the asset rises to $150.

In this scenario, the holder of the option can purchase the share at $130 and immedi-

ately sell it for $150 elsewhere, making an instant $20 profit.

$150−$130 = $20

2. The price of the asset falls to $110.

In this scenario, the holder would simply not exercise his rights because it would be

illogical to purchase the share at $130 when it can be bought at $110 elsewhere.

Assuming that these two scenarios have equal probabilities of taking place, then, the expected

profit to be made by the holder is

1
2
×$20+

1
2
×$0 = $10

Thus, it seems reasonable to price this option of having a $10 value. Let us suppose that the

holder, as expected, paid $10 for this option, and that the first scenario takes place. Then,

the holder has made a net profit computed as follows:
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profit on exercise = $20
cost of option =−$10

net profit = $10

The net profit of $10 gives the holder an 100% profit. On the other hand, if the second

scenario takes place, the holder would also experience an 100% loss in a similar fashion. If,

instead, the holder chooses to purchase the share directly for $130 on 1 Jan 2019, then, the

drop of $20 in asset price would only cause him to lose about 15% of the initial investment.

In reality, valuing an option is not as simple as this, and many other variables such as

interests and volatility have to be taken into account, but this straightforward example shows

how the gain and loss of the investment can be exaggerated by dealing with options. It is

then of vital concern to us to model the option prices as accurately as possible because we

are dealing with a more rewarding but much riskier financial product. This thesis aims to

investigate the shortcomings of existing methods for modeling option values and proposes a

different approach for obtaining more accurate results.
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Chapter 2

Literature Review

2.1. The Black-Scholes Model

One of the primary concepts in the theory of financial derivative pricing and hedging is

arbitrage. This can be understood in layman’s terms as "there is no free lunch." In financial

terms, arbitrage is the concept that the opportunities to make an instantaneous risk-free

profit cannot exist for a length of time significant enough before prices move to stop them

[2]. Almost all finance theory assumes the existence of risk-free investments that give a

guaranteed return. Good examples of such investments include government bonds and

deposits in a reliable bank. The greatest risk-free return that one can make on a portfolio of

assets is the same as the interest earned if the same amount of money were deposited in a

bank. The keyword here is risk-free. By investing in equities, one can probably make more

profit than depositing in the bank, but this cannot be certain. A greater return must come

with greater risk.

Another premise of option pricing theory is that asset prices must move randomly

because of the efficient market hypothesis [2]. This hypothesis basically states two things.

First, the past history is fully reflected in the present price, which does not contain any

additional information; second, markets react instantly to any new information about an

asset. Thus, the modeling of asset values is about modeling the arrival of new information

which influences the price. Before understanding asset pricing models, it has to be noted

that absolute change in the asset price is not a valuable quantity: a fluctuation of 2 dollars is

much more notable when the asset price is 10 dollars than when it is 100 dollars. Thus, with

each asset price, instead of the absolute change, a return is associated. A return is defined to

be the shift in the price divided by the original value. Since this is a relative value, it is a

clearer indicator of change.
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To model the return of a change in asset price, a small time interval of dt, during which

the asset price S changes to S+dS is considered (d· is used to denote an infinitesimal change

in any quantity). The most common model for a return, dS
S , is separated into two components.

One is a deterministic and expected return similar to the return on money invested in a

risk-free bank. It is expressed as µdt, where µ is the average rate of growth of the asset

value. In a simplistic model, this rate of growth is assumed to be fixed. In more complicated

models, this rate of growth is variable and can be a function of asset value and time. The

second part of the dS
S model represents the random shift in the asset price in response to

external and unpredictable effects, such as sudden news. It is expressed using a random

sample from a normal distribution with mean zero and adds the term σ dX to the model.

Here, σ is a quantity termed volatility, which measures the standard deviation of the returns,

and dX is a random variable formed from a normal distribution. Combining these two

equations together, a stochastic differential equation that models dS
S is obtained:

dS
S

= σ dX +µ dt. (2.1)

In real life, asset values are priced not continuously but at discrete time intervals. Thus,

there exists a reasonable lower bound for the time-step dt of the model above. However,

when used in practice to price options, this generates an unmanageably large amount of

data. Therefore, it is more practical to set a continuous time limit of dt→ 0 and solve the

resulting differential equation. This model is a nice example of a random walk, which is a

random process that describes a path which consists of a series of random steps. It fits real

time series data very well and is also the starting point for more sophisticated models such

as the Black-Scholes model.

The Black-Scholes model is a mathematical model developed by Fischer Black and

Myron Scholes in the late 1960s. This model received the 1997 Nobel Memorial Prize in

Economic Sciences and led to an upsurge in options trading around the world [3]. It uses

the following basic assumptions:

• Asset prices follow the lognormal random walk dS
S = σ dX +µ dt.
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• Risk-free interest rates and asset volatility are known functions over time.

• There are no transaction costs associated with trading and hedging a portfolio.

• The underlying asset does not pay dividends during the lifetime of the option.

• There are no arbitrage possibilities. All risk-free investments must gain the same

return.

• Trading of the underlying asset can occur continuously.

• Short selling is allowed, and the assets are divisible.

The model’s assumptions have been altered and generalized in many different directions

since its development to suit different pricing needs. There are a plethora of variants of the

model currently used in derivative pricing. However, the original Black-Scholes model still

serves as the foundation of all option pricing models.

This model gives a partial differential equation, known as the Black-Scholes equation,

that calculates the hypothetical value of an option over time. The fundamental notion behind

the equation is that there is a way for one to perfectly hedge the option by buying and selling

the underlying assets to eliminate risk (which makes the dynamically hedged portfolio earn

the risk-free interest rate) [4]. This hedge, in turn, implies only one unique price for the

option. Before introducing the partial differential equation, we first define the variables as

follows:

• V is the value of an option. When a distinction is essential, C and P are used to

denoted the value of a call and put option, respectively.

• t is the time.

• S is the current value of the underlying asset.

• σ is the volatility of the underlying asset.

• E is the exercise price.
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• T is the time of expiry.

• r is the risk-free interest rate.

To the random walk for return (2.1), Itô’s lemma can be applied, which relates a small

change in the function of a random variable to a small change in the variable itself [5]. This

identity gives the differential of a time-dependent function of a random walk and generates

a more sophisticated model.

dV = σS
∂V
∂S

dX +

(
µS

∂V
∂S

+
1
2

σ
2S2 ∂ 2V

∂S2 +
∂V
∂ t

)
dt (2.2)

Now, suppose a portfolio is constructed with an undetermined fixed number −∆ of underly-

ing assets and one option. The value of this portfolio would be

Π =V −∆S. (2.3)

The change in the portfolio value in one time-step would be

dΠ = dV −∆dS. (2.4)

Combining equations (2.1), (2.2), and (2.4) together, we obtain

dΠ = σS
(

∂V
∂S
−∆

)
dX +

(
µS

∂V
∂S

+
1
2

σ
2S2 ∂ 2V

∂S2 +
∂V
∂ t
−µ∆S

)
dt. (2.5)

To eliminate the random component, ∆ is chosen to be

∆ =
∂V
∂S

(2.6)

at the start of the time-step dt. It is a measure of the relationship between the changes in the

option and the changes in the underlying asset. This results in the deterministic change in

the portfolio value:

dΠ =

(
∂V
∂ t

+
1
2

σ
2S2 ∂ 2V

∂S2

)
dt. (2.7)

Because of the assumption that there are no arbitrage possibilities and no transaction costs,

the return on an amount Π invested in risk-free assets would be the same as a risk-free bank
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deposit with a fixed interest rate r. The return on Π would then see a growth of rΠ dt in a

time t. Thus, we obtain

rΠ dt =
(

∂V
∂ t

+
1
2

σ
2S2 ∂ 2V

∂S2

)
dt. (2.8)

After substituting equation (2.3) and (2.6) into (2.8), dividing by dt throughout, and rear-

ranging, we obtain
∂V
∂ t

+
1
2

σ
2S2 ∂ 2V

∂S2 + rS
∂V
∂S
− rV = 0.

This is the Black-Scholes equation. Under the assumptions stated previously, all derivative

securities whose price depend solely on the current value of S and t must satisfy this equation.

Since the value of a put option is solved in the exact way as a call option with the same

solutions, just in the opposite direction, we are going to restrict our attention to the call

option to avoid the repetition of information. This gives us the model

∂C
∂ t

+
1
2

σ
2S2 ∂ 2C

∂S2 + rS
∂C
∂S
− rC = 0. (2.9)

The Black-Scholes equation is a partial differential equation and, by its nature, can be

solved using numerical methods. However, it is a rather lengthy and cluttered system. Also,

the equation steps backward in time with the final data given at t = T . To work around

these issues, numerical analysts have been converting the Black-Scholes equation to the heat

equation [7]:
∂u
∂τ

=
∂ 2u
∂x2 (2.10)

Conversion is achieved through the following variable transformations:

S = Eex, t = T − τ/
1
2

σ
2, C = Ev(x,τ), (2.11)

where v is:

v = e−
1
2 (k−1)x− 1

4 (k+1)2
τu(x,τ), k = r/

1
2

σ
2 (2.12)

The heat or diffusion equation is a partial differential equation that has been studied for

almost two centuries as a model of the flow of heat in a continuous medium. It is one of the

most successful and broadly applied mathematical models, and a substantial body of theory

on its properties and solution is accessible [6]. As can be seen, it is a much simpler system
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than the original Black-Scholes equation. Thus, the numerical scheme for solving the heat

equation will be more straightforward, giving it the potential to be faster and more adaptable.

This is the reason that computer algebra programs such as Maple solve the Black-Scholes

equation using this conversion method in their built-in functions [7].

2.2. Finite-difference Methods

Finite-difference methods are methods used to obtain numerical solutions to partial

differential equations. They are powerful techniques that can generate accurate solutions to

many partial differential equations arising in different scientific fields, including financial

sciences. The underlying idea behind these methods is to replace the partial derivatives in

the equations by approximations produced by the Taylor expansions of functions near the

point of interest [8]. For the heat equation, we can generate a Taylor series evaluated at the

point u(x,τ +δτ) centered at (x,τ) :

u(x,τ +δτ)≈ u(x,τ)+
∂u
∂τ

δτ +O(δτ
2) (2.13)

After rearranging, we obtain an approximation of the partial derivative

∂u
∂τ
≈ u(x,τ +δτ)−u(x,τ)

δτ
+O(δτ) (2.14)

When we regard δτ as an infinitesimal but nonzero value, we can use the approximation

above to estimate the value of our partial derivative. This is called a finite-difference

approximation. Equation (2.14) is a particular type of finite-difference formula called the

forward difference because the differencing is in the forward τ direction.

Similarly, we can generate a Taylor series for u(x,τ − δτ) and use that to obtain a

backward difference approximation for the partial derivative

∂u
∂τ
≈ u(x,τ)−u(x,τ−δτ)

δτ
+O(δτ) (2.15)

The backward difference is used to generate an implicit finite-difference schemes for the

partial differential equation. Both the forward and back difference approximations give a

first order rate of convergence.
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As it turns out, there is another finite-difference method that can be derived to give a

faster convergence rate of O
(
(δτ)2). We can obtain the centered difference approximation

of ∂u
∂τ

by combining the Taylor series of both u(x,τ−δτ) and u(x,τ +δτ)

u(x,τ +δτ)≈ u(x,τ)+
∂u
∂τ

δτ +O(δτ)

u(x,τ−δτ)≈ u(x,τ)− ∂u
∂τ

δτ +O(δτ)

and subtract them to get the partial derivative

∂u
∂τ
≈ u(x,τ +δτ)−u(x,τ−δτ)

2δτ
+O

(
(δτ)2) (2.16)

Figure 2.1 shows a geometric interpretation of the three types of finite-difference approxima-

tions. It can be easily seen that the centered difference give more accurate approximations

than either the forward or the backward difference.

Figure 2.1: Forward, backward, and centered difference approximations [7].

When approximating second order partial derivatives, such as the ∂ 2u
∂x2 term from the heat

equation (2.10), a symmetric finite-difference approximation can be obtained by applying

the backward difference to the forward difference approximations of the first derivative.

Forward difference of the first derivative:

∂u
∂τ
≈ u(x,τ +δτ)−u(x,τ)

δτ
+O

(
(δτ)2)

Backward difference of the second derivative:

∂

∂τ

(
∂u
∂τ

)
≈

u(x,τ+δτ)−u(x,τ)
δτ

− u(x,τ)−u(x,τ−δτ)
δτ

δτ
+O

(
(δτ)2)

10



∂ 2u
∂x2 ≈

u(x+δx,τ)−2u(x,τ)+u(x−δx,τ)
(δx)2 +O

(
(δx)2) (2.17)

In fact, this difference approximation can also be obtained by applying the forward difference

approximation to the backward difference of the first derivative, or by applying the centered

difference approximation to the centered difference of the first derivative. Although there

exist other methods for approximation, the symmetric centered-difference is preferred

because the symmetry preserves the reflectional symmetry of the second-order partial

derivative. The centered difference also makes the approximation more accurate than other

methods.

Using different approximation methods, we can generate different numerical schemes to

solve our partial differential equation. By using a forward difference for ∂u
∂τ

(2.14) and a

symmetric difference for the second derivative ∂ 2u
∂x2 (2.17), after rearranging, we obtain the

explicit method
um+1

n −um
n

δτ
=

um
n+1−2um

n +um
n−1

(δx)2 ,

where um
n = u(nδx,mδτ). After rearranging our terms based on time indices, we obtain

um+1
n = αum

n+1 +(1−2α)um
n +αum

n−1

α =
δτ

(δx)2 .

As we can see, we can explicitly calculate the value at time-step m+1 by using the values

at time-step m. This makes the explicit method a very easy and straightforward computation.

However, this numerical scheme has a stability limitation. We can rewrite our heat equation

discretizing only in space to obtain a system of ordinary differential equations (ODE)

ut = Au

where

A = QDQT =
1

(δx2)


−2 1
1 −2 1

. . .
1 −2 1

1 −2

 , um =

u1
...

uN

 ,
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with D being a diagonal matrix of eigenvalues and the columns of Q being eigenvectors. We

can transform our ODE into

vt = Dv

where

v = QT u.

Then, applying the explicit scheme, we have

vm+1
n = vm

n +δτλnvm
n

= (1+δτλn)vm
n

where λn is an eigenvalue of A and − 4
(δx)2 ≤ λn ≤ 0. Because the heat solution decays over

time, for stability, we must have

|1+δτλn| ≤ 1

−1≤1+δτλn ≤ 1

−2≤−δτ
4

(δx2)
≤ 0

1
2
≥ δτ

(δx)2 .

Thus, when α is greater than one half, this scheme is unstable, and our rounding error

grows in magnitude at each iteration of the process. This puts a huge limit on the size of

the time-steps we can take. For instance, if we want to increase accuracy by using twice

as much spatial steps, we must then take 4 times as many time steps to keep our scheme

stable. This means that we will spend a significant amount of time on computation more

than maybe what is needed.

To overcome the stability limitation, we can instead use the backward difference to

approximate ∂u
∂τ

. This generates the implicit method

um+1
n −um

n
δτ

=
um+1

n+1 −2um+1
n +um+1

n−1

(δx)2 .

After rearranging, we obtain

αum+1
n−1 +(1+2α)um+1

n −αum+1
n+1 = um

n

12



α =
δτ

(δx)2 .

Even though we have to solve the values at time-step m+1 implicitly from values at time-

step m, which means that we have to set up a linear system to find the solution, the implicit

method is overall a more efficient scheme because now it allows us to take larger time-steps.

Thus, the overall computation time would be less. The implicit method do not have the

stability limitation because we have the transformation

(1−δτλn)vm+1
n = vm

n

vm+1
n =

1
(1−δτλn)

vm
n .

Because λn is negative,
∣∣∣ 1
(1−δτλn)

∣∣∣ is always guaranteed to be less than 1, and the scheme is

unconditionally stable. Since the explicit and implicit method use forward and backward

differences, they both have a first order rate of convergence. As we recall, the centered

difference has a second rate of convergence. So naturally, it makes sense for us to try to

generate a numerical scheme using that to obtain a faster rate of convergence.

If we use the centered difference (2.16) to approximate ∂u
∂τ

, we obtain the Leap-frog

method
um+1

n −um−1
n

2δτ
=

um
n+1−2um

n +um
n−1

(δx)2 ,

and we have the transformation

vm+1
n = vm−1

n +2δτλnvm
n .

This equation is basically a 3-term recurrence relation

vm
n = c1zm

1 + c2zm
2

where c1 and c2 are coefficients and z1,2 = δτλn±
√
(δτλn)2 +1.

For z = δτλn+
√

(δτλn)2 +1≥ 1, we will always get growth in the solutions, which means

that our scheme is unstable. Thus, centered differences of the form (2.16) are never used

in practice because they always lead to unstable numerical schemes [7]. Instead, we use a
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slightly varied version of the centered difference of the form

∂u
∂τ
≈

u(x,τ + 1
2δτ)−u(x,τ− 1

2δτ)

δτ
+O

(
(δτ)2) (2.18)

where the Taylor expansion takes 1
2 steps in each direction instead of 1 full step. This leads

us to the Crank-Nicolson method.

The Crank-Nicolson scheme can be achieved by taking an average of the implicit and

explicit methods, which gives

um+1
n −um

n
δτ

=
1
2

(
um

n+1−2um
n +um

n−1

(δx)2 +
um+1

n+1 −2um+1
n +um+1

n−1

(δx)2

)
.

This is essentially using the centered difference approximation (2.18) derived from the

Taylor expansion centered at the half-step u(x,τ + 1
2δτ). We can transform this scheme as

vm+1
n =

1+ 1
2δτλn

1− 1
2δτλn

vm
n ,

and the multiplier is also guaranteed to be ≤ 1 in absolute value. Thus, the Crank-Nicolson

scheme is superior to the previous numerical schemes because it does not have the stability

limitation, and it has a faster rate of convergence.
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Chapter 3

Methodology

As we saw in Chapter 2, once the Black-Scholes equation is reduced to a heat equation

(2.10), it is relatively simple to find solutions using finite-difference methods because the

heat equation is a considerably simpler and less cluttered equation. Thus, it is much easier

to solve the heat equation and then convert the solutions back into the numerical solutions

of the Black-Scholes equation through the variable transformations in equation (2.11) than

it is to solve the Black-Scholes equation directly. However, there may be several drawbacks

of the conversion approach. The heat equation is elegant and straightforward, however, the

variable transformations are exponentially scaled and cluttered. The rather uniform error

produced by the numerical scheme for the heat equation could be exponentially multiplied

and become very unevenly distributed after being transformed back into financial terms,

compromising accuracy in the results. There are also many examples, such as the case of

multi-factor models, where variable transformation either cannot be performed or would

result in a scheme not that much simpler than the original equation. Thus, we cannot expect

to count on the conversion to solve the Black-Scholes model for all occasions. To overcome

these limitations, we have proposed to solve the Black-Scholes equation directly using

finite-difference methods. We hypothesize that the resulting numerical scheme will be more

accurate and robust with a more evenly distributed error across the domain.

To thoroughly investigate the differences, advantages, and disadvantages of both ap-

proaches, we solve the Black-Scholes equation using each method and apply the same

parameters to both resulting schemes to analyze their behavior. We then conduct an error

analysis of each approach in which the local truncation errors are derived, plotted, and

compared to reveal the error distribution of each scheme.

Before we begin to solve the Black-Scholes partial differential equation, we must first

return to one of the assumptions about the model. The value of an option is unique because
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otherwise, there would be arbitrage possibilities. However, a partial differential equation

on its own has many solutions. Thus, to ensure the uniqueness of the solution, final and

boundary conditions must be imposed. From the Black-Scholes equation (2.9), we can solve

for the value of a call option C(S, t) with exercise price E and expiry date T .

The final condition, which is applied at t = T , comes from the theory of arbitrage. At

the final time, the value of a call option is known with certainty to be the payoff:

C(S,T ) = max(S−E,0). (3.1)

Our boundary conditions are applied at S = 0 and at S→ ∞. From the random walk model

(2.1), we can see that if S is zero, dS is also zero, and the asset value can never change. Thus,

the call option is worthless regardless of the time to expiry. Hence, we have

C(0, t) = 0 (3.2)

as our first boundary condition. For our second boundary condition, we note that as asset

price rises to infinity, it becomes ever more probable that the option will be exercised, and

the magnitude of the exercise price becomes less significant. Hence, we have our second

boundary condition [7]:

C(S, t)∼ S−Ee−r(T−t), S→ ∞. (3.3)

We first solve the Black-Scholes equation using the traditional method of reducing to the

heat equation.

3.1. The Heat Equation Approach

As stated in Chapter 2, the Black-Scholes equation can be reduced to a simple heat

equation through variable transformations (2.11). We can then solve the much simpler heat

partial differential equation and convert our solutions back into financial variables. Because

the heat equation steps forward in time, our final condition is converted to an initial condition

u(x,0) = max
(

e
1
2 (k+1)x− e

1
2 (k−1)x,0

)
. (3.4)
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Our first boundary condition at x = 0 is transformed into

u(0,τ) = 0, (3.5)

and our second boundary condition at x→ ∞ becomes

u(x,τ)∼ e
1
4 (k+1)2τ

(
e

1
2 (k+1)τ − e

1
2 (k−1)τe−kτ

)
. (3.6)

To solve the heat equation:
∂u
∂τ

=
∂ 2u
∂x2 ,

we denote time index m and spatial index n, and we average the explicit scheme

um+1
n −um

n
δτ

≈
um

n+1−2um
n +um

n−1

(δx)2

with the implicit scheme

um+1
n −um

n
δτ

≈
um+1

n+1 −2um+1
n +um+1

n−1

(δx)2

to obtain:

um+1
n −um

n
δτ

≈ 1
2

(
um

n+1−2um
n +um

n−1

(δx)2 +
um+1

n+1 −2um+1
n +um+1

n−1

(δx)2

)
.

After rearranging, we arrive at the Crank-Nicolson scheme:

um+1
n − 1

2
α(um+1

n−1 −2um+1
n +um+1

n+1 ) = um
n +

1
2

α(um
n−1−2um

n +um
n+1) (3.7)

where α = δτ

(δx)2 .

Since the heat equation steps forward in time, everything on the right-hand side of

equation (3.7) can be calculated explicitly. Solving this system is then reduced to first

calculating

Zm
n = (1−α)um

n +
1
2

α(um
n−1 +um

n+1) (3.8)

and then implicitly solving

(1+α)um+1
n − 1

2
α(um+1

n−1 +um+1
n+1 ) = Zm

n . (3.9)
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We can rewrite equation (3.9) as a linear system

Cum+1 = bm (3.10)

where the matrix C is

C =


1+α −1

2α 0 · · · 0

−1
2α 1+α −1

2α
...

0 −1
2α

. . . . . .
... . . . . . . −1

2α

0 0 −1
2α 1+α

 (3.11)

and vectors um+1 and bm are

um+1 =


um+1

N−+1
...

um+1
n
...

um+1
N+−1

 , bm =


Zm

N−+1
...

Zm
n
...

Zm
N+−1

+
1
2

α


um+1

N−
0
...
0

um+1
N+

 (3.12)

where N− and N+ denote the lower and upper spatial boundary terms respectively. After

establishing the linear system and imposing the initial and boundary conditions, the solution

u is obtained by solving

um+1 = (C)−1bm =C\bm. (3.13)

The solution is then transformed back into call option values via equation (2.11) and (2.12).

The MATLAB algorithm (crankheatdirecttrans.m) was coded which solves the

Black-Scholes equation using this approach.

3.2. The Direct Approach

To solve the Black-Scholes equation

∂V
∂ t

+
1
2

σ
2S2 ∂ 2V

∂S2 + rS
∂V
∂S
− rV = 0 (3.14)

directly, we derive the following finite-difference approximations:

∂V
∂ t

=
V m+1

n −V m
n

δ t
(3.15)
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∂V
∂S

=
1
2

(
V m

n+1−V m
n−1

2δS
+

V m+1
n+1 −V m+1

n−1

2δS

)
. (3.16)

∂ 2V
(∂S)2 =

1
2

(
V m

n+1−2V m
n +V m

n−1

(δS)2 +
V m+1

n+1 −2V m+1
n +V m+1

n−1

(δS)2

)
(3.17)

Substituting (3.15), (3.16), and (3.17) back into the equation and rearranging the terms,
we obtain the Crank-Nicolson scheme for the Black-Scholes equation:(

1− δ t
2

r− 1
2

ασ
2S2
)

V m+1
n +

(
1
4

δ t
δS

rS+
1
4

ασ
2S2
)

V m+1
n+1 +

(
−1

4
δ t
δS

rS+
1
4

ασ
2S2
)

V m+1
n−1

=

(
1+

δ t
2

r+
1
2

ασ
2S2
)

V m
n +

(
−1

4
δ t
δS

rS− 1
4

ασ
2S2
)

V m
n+1 +

(
1
4

δ t
δS

rS− 1
4

ασ
2S2
)

V m
n−1

(3.18)

where α = δ t
(δS)2 .

Since the Black-Scholes equation steps backward in time with given final condition, the
left-hand side of this scheme can be calculated explicitly. Thus, solving this system is then
reduced to first calculating

Zm+1
n =

(
1− δ t

2
r− 1

2
ασ

2S2
)

V m+1
n +

(
1
4

δ t
δS

rS+
1
4

ασ
2S2
)

V m+1
n+1 +

(
−1

4
δ t
δS

rS+
1
4

ασ
2S2
)

V m+1
n−1

and then implicitly solving(
1+

δ t
2

r+
1
2

ασ
2S2
)

V m
n +

(
−1

4
δ t
δS

rS− 1
4

ασ
2S2
)

V m
n+1 +

(
1
4

δ t
δS

rS− 1
4

ασ
2S2
)

V m
n−1 = Zm

n .

(3.19)

Equation (3.19) can then be rewritten as a linear system

BV m = dm+1 (3.20)

where the matrix B is

B=



(
1+ δ t

2 r+ 1
2 ασ2S2

) (
−1

4
δ t
δS rS− 1

4 ασ2S2
)

0 · · · 0(
1
4

δ t
δS rS− 1

4 ασ2S2
) . . . . . .

...

0
. . . . . . . . .

...
. . . . . .

(
−1

4
δ t
δS rS− 1

4 ασ2S2
)

0 0
(

1
4

δ t
δS rS− 1

4 ασ2S2
) (

1+ δ t
2 r+ 1

2 ασ2S2
)


(3.21)
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and vectors V m and dm+1 are

V m =


V m

N−+1
...

V m
n
...

V m
N+−1

 , dm+1 =


Zm+1

N−+1
...

Zm+1
n
...

Zm+1
N+−1

−
(

1
4

δ t
δS

rS− 1
4

ασ
2S2
)


V m
N−
0
...
0

V m
N+

 (3.22)

where N− and N+ denotes the lower and upper spacial boundary terms respectively.

After setting up the linear system, the value of the option can be obtained directly by

solving

V m = (B)−1dm+1 = B\dm+1 (3.23)

with the final and boundary conditions given by (3.1), (3.2), and (3.3). The MATLAB

algorithm (crankblackh.m) was coded which solves the Black-Scholes equation using

this approach.

3.3. Error Analysis

Now that we have obtained the numerical schemes for both approaches, we can seek the

local truncation error (LTE) and further analyze the convergence behavior of each method.

The local truncation error of a numerical method is an estimate of the error generated from a

single iteration of that method [9]. Because it is the residual from each iteration, we can

calculate its value by approximating both sides of the numerical scheme using Taylor series

and subtract them from each other to obtain the residual.

From our Crank-Nicolson scheme for the heat equation

um+1
n − 1

2
α(um+1

n−1 −2um+1
n +um+1

n+1 ) = um
n +

1
2

α(um
n−1−2um

n +um
n+1), (3.24)

we Taylor expand both sides around center u(xn,τm) to the fourth degree. After rearrange-

ments simplification, we obtain the error

LTE for heat =
1
2
(2uxx +

1
6

uxxxx(δx)2 +uxxτδτ +
1
2

uxxττ(δτ)2)−uτ −
1
2

uττδτ.

Substituting uτ = uxx, we simplify to

LTE for heat = (δx)2 · 1
12

uττ +(δτ)2 · 1
4

uτττ .
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Although this error formula looks simple and brief, it is not of much use to us. Because the

solutions from the heat equations were transformed back into financial variables, the error

terms must be transformed as well for it to disclose information about the final solution.

From the variable transformation equations (2.11) and (2.12), we obtain that

δx =
1
S
·δS (3.25)

and

δτ =−1
2

σ
2
δ t. (3.26)

From the transformation

u =
1
E
· e

1
2 (k−1)x+ 1

4 (k+1)2τ ·V,

we also obtain

uτ =
1

4E
(k+1)2eq ·V − 2

σ2E
eq ·Vt (3.27)

uττ =
1

16E
(k+1)4e1 ·V − 1

σ2E
(k+1)2eq ·Vt +

4
σ4E

e1Vtt (3.28)

uτττ =
1

64E
(k+1)6eq ·V − 3

8σ2E
(k+1)4e1 ·Vt +

3
σ4E

(k+1)2eq ·Vtt−
8

σ6E
eq ·Vttt ,

(3.29)

where eq = e
1
2 (k−1)x+ 1

4 (k+1)2τ . Substituting these term back into the LTE equation, we obtain

LTE for heat =
1

12S2 (δS)2eq
(

1
16E

(k+1)4V − 1
σ2E

(k+1)2Vt +
4

σ4E
Vtt

)
+

1
16

σ
4(δ t)2eq

(
1

64E
(k+1)6V − 3

8σ2E
(k+1)4Vt +

3
σ4E

(k+1)2Vtt−
8

σ6E
Vttt

)
.

(3.30)

This is a very messy and cluttered error formula, and it is exponentially scaled.
From our Crank-Nicolson scheme for the Black-Scholes equation(
1− ∂ t

2
r− 1

2
ασ

2S2
)

V m+1
n +

(
1
4

∂ t
∂S

rS+
1
4

ασ
2S2
)

V m+1
n+1 +

(
−1

4
∂ t
∂S

rS+
1
4

ασ
2S2
)

V m+1
n−1

=

(
1+

∂ t
2

r+
1
2

ασ
2S2
)

V m
n +

(
−1

4
∂ t
∂S

rS− 1
4

ασ
2S2
)

V m
n+1 +

(
1
4

∂ t
∂S

rS− 1
4

ασ
2S2
)

V m
n−1,

(3.31)
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we Taylor expand both sides around center V (Sn, tm) to the third degree. After simplification

and rearrangements, we obtain

LTE for direct = (δ t)2
(
−1

4
rVtt +

1
4

rSVstt +
1
6

Vttt

)
+(δ s)2

(
1
6

rSVSSS

)
+(δ t)3

(
− 1

12
rVttt

)
.

(3.32)

As can be seen, the error formula for the direct approach is much simpler and contains no

exponential component.
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Chapter 4

Results

To analyze the different behavior of each approach, we apply the following parameters

to both schemes:

S =


0.05
0.10

...
15.95

16

 ,δS = 0.05,δ t = 0.01,E = 10,T = 1,r = 0.1,σ = 3.

Solutions from both schemes were generated by the corresponding MATLAB algorithms

developed in the previous chapter. Solutions obtained from the heat equation scheme are

shown in Figure 4.1, and solutions from the direct approach are shown in Figure 4.2.

Figure 4.1: Progression of solutions from the heat equation approach.
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Figure 4.2: Progression of solutions from the direct approach.

It can be observed that both schemes converge to the same result at a similar rate.

However, solutions from the heat equation scheme contain a kink at around S = 10, which

represents a discontinuity in the higher order derivatives. The solutions from the direct

approach appear smooth and contain no such discontinuities.

To better understand the error distribution of both approaches, the local truncation errors

in the last ten steps from both schemes were analyzed and plotted. For the direct scheme, as

shown in Figure 4.3, the local truncation error stays within the range of 10−5. For the heat

equation, as shown in Figure 4.4, LTE ranges from 10−9 to 10−3. Although, overall, the heat

equation scheme yields a smaller average error, we can see that the error is very unevenly

distributed. The spike in the error around S = 10 also corresponds to the discontinuity we

saw in the solutions before. When we take the infinity norm of both errors, the heat equation

scheme will yield an error two orders of magnitude higher than the direct scheme.
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Figure 4.3: LTE from the heat equation approach.

Figure 4.4: LTE from the direct approach.
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Chapter 5

Conclusion

The heat equation is a very familiar model with a considerable amount of theory on its

properties and solutions available to us. However, just because a method works does not

mean that it is the best method. Our hypothesis that the heat equation sacrifices accuracy

through the process of transformation is confirmed by the error analysis. Having a more

evenly distributed error, the direct approach to solving the Black-Scholes equation gives a

much more accurate and robust scheme.

There are still a lot that can be done for this project. In the future, we hope to start

experimenting our scheme with varying volatility and interest and analyze its behavior. We

hope to investigate further into the cause of the discontinuity in the heat equation scheme.

There are also many other higher-order finite difference methods we can experiment with to

directly solve the Black-Scholes model that might improve the accuracy and efficiency of

our current scheme.
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Appendix A

Code

A.1. Heat scheme (crankheatdirecttrans.m)

1 function [b,U] = crankheatdirecttrans(S,E,dt,ti,T,r,sigma)
2 % using crank-nicolson to solve the transformed heat equation ...

with direct back-slash
3 % then heat variables are transformed back into financial ...

variables and are plotted
4 % S = vector of asset value
5 % E = exercise price
6 % dt = change in time for black scholes
7 % T = end time
8 % ti = initial time
9 % r = interest rate

10 % sigma = volatility% t = vector of all time values in variable t
11 t = (T:-dt:ti)'; % we stepped backwards in time for black-scholes
12 tstep = round((T-ti)/dt); % total number of time steps
13 x = log(S/E); % this is a vector
14 N = length(x); % total # of points
15 num = N-2 ; % # of interior points
16 dx = (x(end) - x(1))/(num+1);
17 x = x(1):dx:x(end); % make x equally spaced
18 tau = zeros(length(t),1);
19 for i = 1:length(t)
20 tau(i) = (T - t(i))*(1/2)*sigma^2;
21 % tau is now a vector of all transformed time value
22 end
23 dtau = (tau(end)-tau(1))/tstep; % new dtau transformed for tau
24 a = dtau/(dx*dx);
25 atwo = a/2;
26 k = r/(0.5*sigma^2);
27 u = zeros(N,1);
28 % initial condition at (time)tau = 0
29 for i = 1:N
30 taui = 0;
31 u(i,1) = payoffcall(x(i),taui,k);
32 end
33 U = zeros(N,tstep+1);
34 V = zeros(N,tstep+1);
35 % (rows,columns)
36 % prelocate space needed
37 % columns corresponds to each time step
38 % rows corresponds to each N
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39 U(:,1) = u; %inital condition
40 v = exp( (-1/2)*(k-1)*x - (1/4)*(k+1)^2*tau(1) ).*u'; %transform ...

value back to V
41 C = E*v;
42 V(:,1)=C; % store value in V
43 b = zeros(N,1);
44 f1 = figure('Name','heat values');
45 f2 = figure('Name','transformed-back values');
46 for i = 2:tstep+1 % step forward in time (column)
47 % uptdate end points
48 for n = 2 : N-1 % (row) change only the inside points of b
49 b(n,1) = (1-a)*u(n,1)+ atwo*(u(n+1,1)+u(n-1,1));
50 end
51 u(1) = uminfcall(x(1),tau(i),k);
52 u(end) = upinfcall(x(end), tau(i),k);
53 b(2,1) = b(2,1)+atwo*u(1);
54 b(N-1,1) = b(N-1,1)+atwo*u(end);
55 e = ones(N,1);
56 A = a * spdiags ([e -2*e e], [-1, 0, 1], N-2, N-2);
57 I = speye(N-2,N-2);
58 u(2:end-1,1)= (I - (1/2)*A) \ b(2:N-1);
59 U(:,i) = u; % store results in corresponding time-step column
60 v = exp( (-1/2)*(k-1)*x - (1/4)*(k+1)^2*tau(i) ).*u'; % ...

transform value back to v
61 C = E*v; % transform value back to the value of the option
62 V(:,i)=C; % store it in the matrix
63 S = E*exp(x); %change space values back to in terms of S ...

based on the equally spaced x-vector
64 %since x at this point is equally spaced, S is not because it ...

is now exponentially spaced
65 hold on
66 figure(f1);
67 plot(x,u)
68 hold on
69 figure(f2);
70 plot(S,C)
71 pause(0.1)
72 end
73 hold off
74

75 LTE=zeros(N-1,tstep-3);% prelocate space needed, with 2 layers of ...
the time edge trimmed and 1 side of the space edge trimmed)

76 % columns corresponds to each time step
77 % rows corresponds to each N space step
78 f3 =figure('Name','heat LTE');
79 figure(f3);
80 for m = tstep-13:1:tstep-3
81 % we are really only interested in the last ten steps the scheme ...

takes since they are supposed to be the most accurate
82 % since as more time steps are taken, results converge more to ...

the correct values
83 for n = 1:N-1
84 % we have to leave the last N out because it cannot be a ...

center, only a stenil
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85 % as there is no N+1 that can give it a ds value
86 ds=S(n+1)-S(n);
87 % since our S vector is expoenential scaled from an ...

equally spaced x vector, it is not equally spaced anymore
88 % and ds is not constant but changes with each spacial step
89 % thus, unlike the LTE for B-S, we have a changing ds ...

based on the space step we are on
90 LTE(n,m)=heatLTE(V,dt,ds,n,m+2,S,r,sigma,E,T,k,t);
91 end
92 semilogy(S(2:N),abs(LTE(:,m)));
93 % because plotting it on a linear scale creates a huge spike ...

in the middle
94 % makeing the changes in the smaller values difficult to observe
95 % we change it to a log scale so bigger values are brought ...

closer to the smaller values
96 % and we can observe the change in the smaller value regions ...

better
97 % this makes the y-axis logarithmically scaled with a base 10
98 % since you can't log(-#) we have to put an absolute value ...

around our y-values
99 pause(0.1);

100 hold on
101 end
102 hold off

crankheatdirecttrans.m is used to generate and plot the solutions and error from the

Heat equation approach.

A.2. Heat payoff (payoffcall.m)

1 function g = payoffcall(x,tau,k)
2 g = exp(0.25*((k+1)^2)*tau) * ...

max(exp(0.5*(k+1)*x)-exp(0.5*(k-1)*x),0);
3 return

payoffcall.m is used to generate the initial condition for the heat equation.

A.3. Heat lower boundary (uminfcall.m)

1 function um = uminfcall(x,tau,k)
2 um = 0;
3 return

uminfcall.m is used to generate the lower boundary for the heat equation.
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A.4. Heat upper boundary (upinfcall.m)

1 function up = upinfcall(x,tau,k)
2 up = exp(0.25*((k+1)^2)*tau ) * (exp(0.5*(k+1)*x) - ...

exp(0.5*(k-1)*x)*exp(-k*tau));
3 return

upinfcall.m is used to generate the upper boundary for the heat equation.

A.5. Heat LTE (heatLTE.m)

1 function er=heatLTE(V,dt,ds,n,m,S,r,sigma,E,T,k,t)
2 Vt=(V(n,m+1)-V(n,m-1))/(2*dt);
3 Vtt=(V(n,m+1)-2*V(n,m)+V(n,m-1))/(dt)^2;
4 Vttt=(V(n,m+2)-2*(V(n,m+1)-V(n,m-1))-V(n,m-2))/(2*(dt)^3);
5 eq=(S(n))^(r/sigma^2-1/2)*E^(1/2-r/sigma^2)*...
6 exp((2*r+sigma)^2/(8*sigma^2)*(T-t(m)));
7 er=1/S(n)^2*ds^2*(1/12)*(V(n,m)*1/(16*E)*(k+1)^4*eq-Vt*...
8 1/(sigma^2*E)*(k+1)^2*eq+Vtt*4/(sigma^4*E)*eq)+1/4*sigma^4*...
9 dt^2*1/4*(V(n,m)*1/(64*E)*(k+1)^6*eq-Vt*3/(8*sigma^2*E)*...

10 (k+1)^4*eq+Vtt*3/(sigma^4*E)*(k+1)^2*eq-Vttt*8/(sigma^6*E)*eq);
11 return

heatLTE.m is used to calculate the local truncation error generated by each iteration of

solving the heat equation.

A.6. Direct scheme (crankblackh.m)

1 function V = crankblackh(dt,ti,T,r,sigma,S,E,theta)
2 % dt = change in time
3 % ti = initial time
4 % T = end time
5 % r = interest
6 % sigma = volatility
7 % S = vector of values of asset varying spatially
8 % E = exersice price fixed
9 % V = value of the option, depends on S and t

10 N = length(S); % total number of points in the S vector
11 num = N-2; % num = # of interior points
12 ds = (S(end) - S(1)) / (num+1); % ds is constant as our S vector ...

is equally spaced
13 alpha = dt/(ds*ds);
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14 tstep = round((T-ti)/dt); % total number of time steps
15 t = ti:dt:T; % vector of all time steps
16 Vmplus = zeros(N,1); % prelocate space
17 % value of the option at the end of time = T
18 % initial contition
19 for i = 1:N
20 Vmplus(i) = max(S(i)-E,0); % spatially varying
21 end
22 Vmplus(1) = 0; % lower boundary condition
23 Vmplus(end) = S(end) - E*exp(-r*(T-T)); % upper boundary condition
24 V = zeros(N,tstep+1); % prelocate space needed
25 % columns corresponds to each time step
26 % rows corresponds to each N space step
27 f1 = figure('Name','against S');
28 f2 = figure('Name','against t');
29 figure(f1);
30 for i = tstep+1:-1:2 % we fill-in the matrix backwards because we ...

are stepping backwards in time
31 V(:,i) = Vmplus; % fill-in the column (that time-step) with ...

the last computed Vmplus value
32 Zmplus = explicith(N,dt,r,alpha,sigma,S,ds,Vmplus,theta);
33 Vm = implicith(N,dt,r,alpha,sigma,S,ds,Zmplus,Vmplus,1-theta);
34 Vmplus(2:N-1) = Vm; % update Vmplus vector values, leaving ...

boundary conditions
35 Vmplus(1) = 0; % boundary condition
36 Vmplus(end) = S(end) - E*exp(-r*(T-t(i))); % boundary condition
37 plot(S,Vmplus);
38 pause(0.1);
39 hold on;
40 end
41 hold off;
42 V(:,1) = Vmplus; % fill in the last column in time-stepping ...

(first column in matrix) with the last Vmplus
43 figure(f2);
44 for n = 1:N
45 row = V(n,:);
46 plot(t,row);
47 pause(0.1);
48 hold on;
49 end
50 hold off
51

52

53 % caculate LTE for this method
54 f3 = figure('Name','B-S LTE');
55 LTE = zeros(N-4,tstep-3); % prelocate space needed, with 2 layers ...

of the edge trimmed to allow space for stencils
56 % columns corresponds to each time step
57 % rows corresponds to each N space step
58 figure(f3);
59 for m=10:-1:1
60 % we are really only interested in the last ten steps the ...

scheme takes since they are supposed to be the most accurate
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61 % in this scheme, since we are stepping backwards in time, ...
our last ten steps were the first ten time points

62 for n = 1:(N-4)
63 % corresponding to S(3:N-2)
64 % we leave two spaces at the begining and end to allow ...

for stencil points around the point of focus in the center
65 LTE(n,m)=BSLTE(V,n+2,m+2,dt,ds,S,r);
66 end
67 plot(S(3:N-3),LTE(1:n-1,m));
68 % we trimmed out the last point in our vector because it ...

spikes up
69 % and makes the changes in the smaller values un-observable
70 pause(0.1);
71 hold on
72 end
73 hold off

crankblackh.m is is used to generate and plot the solutions and error from the direct

approach.

A.7. Explicit solve (explicith.m)

1 function Zmplus = explicith(N,dt,r,alpha,sigma,S,ds,Vmplus,h)
2 mainA = zeros(N-2,1);
3 superA = zeros(N-2,1);
4 subA = zeros(N-2,1);
5 for i = 1:(N-2)
6 mainA(i) = 1 - dt*r*h - alpha*sigma^2*S(i+1)^2*h;
7 subA(i) = -1/2*dt/ds*r*S(i+2)*h + 1/2*alpha*sigma^2*S(i+2)^2*h;
8 end
9 for i = 2:(N-2)

10 superA(i) = 1/2*dt/ds*r*S(i)*h + 1/2*alpha*sigma^2*S(i)^2*h;
11 end
12 A =spdiags ([subA mainA superA], [-1, 0, 1], N-2, N-2);
13 % coefficient matrix, boundary terms excluded
14 % Vmplus = ones(N,1) * max(max(S)-E,0);
15 % spdiags takes elements of super-diagonals from the lower part ...

of the specified vector
16 % takes elements of the sub-diag from the upper part of the ...

specified vector
17 Zmplus = A*Vmplus(2:N-1); %boundary terms excluded
18 % add excluded boundary terms
19 Zmplus(1) = Zmplus(1) + (-1/2*dt/ds*r*S(2)*h + ...

1/2*alpha*sigma^2*S(2)^2*h)*Vmplus(1);
20 Zmplus(end) = Zmplus(end) + (1/2*dt/ds*r*S(end-1)*h + ...

1/2*alpha*sigma^2*S(end-1)^2*h)*Vmplus(end);

explicith.m is used to calculate right-hand side of the (3.18).
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A.8. Implicit solve (implicith.m)

1 function Vm = implicith(N,dt,r,alpha,sigma,S,ds,Zmplus,Vmplus,h)
2 mainB = zeros(N-2,1);
3 superB = zeros(N-3,1);
4 subB = zeros(N-3,1);
5 for i = 1:(N-2)
6 mainB(i) = 1 + dt*r*h + alpha*sigma^2*S(i+1)^2*h;
7 subB(i) = 1/2*dt/ds*r*S(i+2)*h - 1/2*alpha*sigma^2*S(i+2)^2*h;
8 end
9 for i = 2:(N-2)

10 superB(i) = -1/2*dt/ds*r*S(i)*h - 1/2*alpha*sigma^2*S(i)^2*h;
11 end
12 B =spdiags ([subB mainB superB], [-1, 0, 1], N-2, N-2); % ...

coefficient matrix boundary terms excluded
13 % B*V = Z
14 Zmplus(1) = Zmplus(1) - (1/2*dt/ds*r*S(2)*h - ...

1/2*alpha*sigma^2*S(2)^2*h)*Vmplus(1);
15 Zmplus(end) = Zmplus(end) - (-1/2*dt/ds*r*S(end-1)*h - ...

1/2*alpha*sigma^2*S(end-1)^2*h)*Vmplus(end);
16 % move known boundary terms to Zmplus's side
17 Vm = B\Zmplus;
18 % Vm = inv(B)*Zmplus

implicith.m is used to implicitly solve the left-hand side of (3.18).

A.9. Direct LTE (BSLTE.m)

1 function e=BSLTE(V,n,m,dt,ds,S,r)
2 Vtt=(V(n,m+1)-2*V(n,m)+V(n,m-1))/(dt)^2;
3 Vttt=(V(n,m+2)-2*(V(n,m+1)-V(n,m-1))-V(n,m-2))/(2*(dt)^3);
4 Vsss=(V(n+2,m)-2*(V(n+1,m)-V(n-1,m))-V(n-2,m))/(2*(ds)^3);
5 Vstt=(V(n+1,m+1)-V(n-1,m+1)-2*(V(n+1,m)-V(n-1,m))+V(n+1,m-1) - ...

V(n-1,m-1))/(2*ds*dt^2);
6 e=(dt)^2*((-1/4)*r*Vtt+(1/4)*r*S(n)*Vstt+(1/6)*Vttt) + ...

(ds)^2*((1/6)*r*S(n)*Vsss)+(dt)^3*((-1/12)*r*Vttt);

BSLTE.m is used to calculate the local truncation error generated by each iteration of solving

the Black-Scholes equation directly.

A.10. Parameters (EUdefine_variables.m)
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1 S = 0.05:0.05:16;
2 % S = value of asset varying spatially
3 E = 10;
4 % E = exersice price fixed
5 dt = 0.01;
6 % dt = change in time
7 ti = 0;
8 % ti = initial time
9 T = 1;

10 % T = end time
11 r = 0.1;
12 % r = interest
13 sigma = 3;
14 % sigma = volatility
15 theta = 0;
16 % control
17

18 crankheatdirecttrans(S,E,dt,ti,T,r,sigma);
19 crankblackh(dt,ti,T,r,sigma,S,E,theta);

EUdefine_variables.m is used to input parameters and compare the solutions from the

two approaches side by side.
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