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Antiviral Responses in Mouse Embryonic Stem Cells
DIFFERENTIAL DEVELOPMENT OF CELLULAR MECHANISMS IN TYPE I INTERFERON
PRODUCTION AND RESPONSE*□S
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Ruoxing Wang‡, Jundi Wang‡, Dhiraj Acharya‡, Amber M. Paul‡, Fengwei Bai‡, Faqing Huang§, and Yan-Lin Guo‡1

From the Departments of ‡Biological Sciences and §Chemistry and Biochemistry, University of Southern Mississippi,
Hattiesburg, Mississippi 39406

Background: mESCs are deficient in type I IFN expression.
Results: mESCs can respond to type I IFNs and express interferon-stimulated genes.
Conclusion: mESCs are unable to express type I IFNs but can respond to type I IFNs.
Significance: The findings are important for understanding the antiviral mechanisms and innate immunity in ESCs.

We have recently reported that mouse embryonic stem cells
(mESCs) are deficient in expressing type I interferons (IFNs) in
response to viral infection and synthetic viral RNA analogs
(Wang, R., Wang, J., Paul, A. M., Acharya, D., Bai, F., Huang, F.,
and Guo, Y. L. (2013) J. Biol. Chem. 288, 15926 –15936). Here,
we report that mESCs are able to respond to type I IFNs, express
IFN-stimulated genes, and mediate the antiviral effect of type I
IFNs against La Crosse virus and chikungunya virus. The major
signaling components in the IFN pathway are expressed in
mESCs. Therefore, the basic molecular mechanisms that medi-
ate the effects of type I IFNs are functional in mESCs; however,
these mechanisms may not yet be fully developed as mESCs
express lower levels of IFN-stimulated genes and display weaker
antiviral activity in response to type I IFNs when compared with
fibroblasts. Further analysis demonstrated that type I IFNs do
not affect the stem cell state of mESCs. We conclude that mESCs
are deficient in type I IFN expression, but they can respond to
and mediate the cellular effects of type I IFNs. These findings
represent unique and uncharacterized properties of mESCs and
are important for understanding innate immunity development
and ESC physiology.

Embryonic stem cells (ESCs)2 can proliferate continuously
under proper culture conditions. When induced, they can dif-
ferentiate into different cell lineages. These properties, defined
as self-renewal and pluripotency, respectively (1, 2), make ESCs
a promising cell source for regenerative medicine. Although the
benefit of ESC research in medical applications is exciting, cur-
rently there is limited understanding of the basic physiology of
ESCs and their derived cells. Several recent studies (3–5),

including our own (6), have demonstrated that ESC-derived
cells have limited response to inflammatory cytokines and var-
ious infectious agents. When used for cell therapy, ESC-derived
cells would be placed in a wounded area of the patient that is
likely to be exposed to various pathogens. Therefore, the lack of
innate immunity in ESC-derived cells may conceivably affect
their fate and functionality.

Cellular innate immunity is mediated by toll-like receptors
(TLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors
(RLRs). TLRs, localized on the cell surface or on the membrane
of endosomes, detect a wide variety of molecules that evoke
immune responses (7). RLRs, including RIG-I and MDA5 (mel-
anoma differentiation-associated gene 5), reside in the cytosol
and primarily recognize viral RNA (7, 8). Upon binding with
their ligands, TLRs and RLRs activate several signaling path-
ways, which coordinately regulate the expression of type I IFNs
and pro-inflammatory cytokines that participate in various
aspects of the immune responses (7, 8). Innate immunity is
presumably developed in most, if not all, cell types (9). How-
ever, several recent studies have indicated that neither human
ESCs (hESCs) (3) nor mESCs (4, 10) can mount effective innate
immune responses to common infectious agents, including live
bacteria (11) and viruses (12). Our recent study in mESCs (13,
14) and studies from other investigators in hESCs (15) demon-
strated that the cellular mechanisms for expressing type I IFNs
are not functional in these cells. Therefore, ESCs, normally
residing in the womb, may not have active (or fully active) anti-
viral mechanisms as in differentiated somatic cells. These find-
ings also suggest that the current in vitro differentiation meth-
ods do not effectively promote innate immunity development,
which explains the defective immune responses observed in
ESC-derived cells (3, 4).

In response to pathogen invasions, especially viral infections,
the cells rapidly synthesize and secrete type I IFNs, a family of
cytokines that include IFN� and IFN�, the two best studied
members, and several other less characterized members, such
as IFN� and IFN� (16). Once synthesized and secreted, type I
IFNs act through autocrine and paracrine mechanisms by bind-
ing to a common cell surface receptor complex composed of the
IFNAR1 and IFNAR2 subunits. The activated receptor triggers
the activation of Janus tyrosine kinases (JAK1 and TYK2) in the
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cytosol, which phosphorylate signal transducers and activators
of transcription (STAT1 and STAT2). Phosphorylated STAT1
and STAT2 translocate to the nucleus where they induce the
transcription of various genes, known as IFN-stimulated genes
(ISGs), which participate in various aspects of antiviral activi-
ties and promote the cell to enter an “antiviral state” (17–19).

Although IFN production and responding systems are evo-
lutionally conserved among different cell types in different spe-
cies of mammals, recent studies suggest that the molecular
mechanisms for type I IFN production and action in mESCs
(13) and hESCs (15) may fundamentally differ from differenti-
ated somatic cells. Although these studies demonstrate that
both hESCs and mESCs are deficient in producing type I IFNs,
the next logical question to be asked is whether or not they can
respond to type I IFNs. In this report, we demonstrate that
mESCs have basic functional mechanisms to detect and
respond to type I IFNs, which differ from hESCs that have lim-
ited or no responses to IFN� (20).

EXPERIMENTAL PROCEDURES

Cell Culture—D3 and DBA252 mESCs were maintained in
the standard mESC medium as described previously (13).
C3H10T1/2 cells (10T1/2, a line of mouse embryonic fibro-
blasts, ATCC) were cultured in DMEM that contains 10% fetal
calf serum and 100 units/ml penicillin and 100 �g/ml strepto-
mycin. All cells were maintained at 37 °C in a humidified incu-
bator with 5% CO2. Most experiments were performed with D3
cells, and key results were confirmed with DBA252 cells.

Preparation of Virus Stocks and Titer Determination—La
Crosse virus (LACV, SM6 v3), West Nile virus (WNV, strain
CT 2741), and chikungunya virus (CHIKV, LR 2006 OPY1
strain) were propagated in Vero cells (African green monkey
kidney cell line, ATCC). Titers of virus stocks were determined
by plaque assay as described previously (21).

Fibroblast (FB) Differentiation from mESCs—Retinoic acid
(RA)-induced mESC differentiation was performed according
to the published method with some modifications (22). Cell
differentiation was initiated by adding 1 �M RA to mESCs
grown in a culture dish coated with gelatin. The medium was
refreshed three times during a 10-day period of differentiation.
The differentiated cells, which formed a monolayer, were
trypsinized and replated in an uncoated cell culture dish where
FBs quickly attach within 30 – 45 min. Other types of cells float-
ing in the medium were removed. Adhered cells have morphol-
ogy similar to naturally differentiated 10T1/2 FBs and were des-
ignated as mESC-FBs.

Cell Treatment—mESCs and 10T1/2 cells were plated at �40
and �70% confluence, respectively, and cultured for �24 h
before experiments. The conditions for cell infection with dif-
ferent viruses were specified in individual experiments. The
cellular responses to type I IFNs were determined with mouse
recombinant IFN� (IFN�-2, 1 � 108 units/mg, eBioscience)
and human recombinant IFN� or IFN� (5 � 108 units/mg, 1 �
108 units/mg, respectively, PeproTech) that are active in mouse
cells (23–25). The effects of IFNs on viral replication were
determined by viral titers in the media of infected cells (21). For
polyinosinic-polycytidylic acid (poly(I-C), a synthetic dsRNA)
treatment, the cells were transfected with poly(I-C) using

DharmaFECT reagent (Thermo Scientific). The control cells
were transfected with DharmaFECT reagent alone (13).

Real Time Quantitative Polymerase Chain Reaction (RT-qPCR)—
Total RNA was extracted using TRI-Reagent (Sigma). cDNA
was prepared by Moloney murine leukemia virus reverse tran-
scriptase (Sigma). RT-qPCR was performed using SYBR Green
ready mix on a MX3000PTM RT-PCR system (Stratagene), as
reported previously (26). The mRNA level from RT-qPCR was
calculated using the comparative Ct method (27). �-Actin
mRNA was used as a calibrator for the calculation of relative
mRNA of the tested genes. The sequences of the primer sets are
listed in supplemental Table 1.

Cell Proliferation, Viability, and Cell Cycle Analysis—Cell
proliferation and viability were determined by the number of
viable cells after toluidine blue staining as we described previ-
ously (28). The absorbance at 630 nm of toluidine blue-stained
cells was measured with a microtiter plate reader. The absor-
bance values, which correlate with the number of viable cells,
were used as an indirect measurement of cell proliferation or
viability. Cell cycle analysis by flow cytometry was performed
after the cells were stained with 50 �g/ml propidium iodide.
The cell cycle profiles were generated with the CFlow software
as described previously (28).

Protein Analysis by Flow Cytometry—Cellular protein analy-
sis by flow cytometry was performed according to our pub-
lished method (29). Briefly, treated cells were incubated with
the antibodies against the specific proteins to be analyzed, as
specified in individual experiments. The cells were then incu-
bated with secondary antibodies conjugated with fluorescein
isothiocyanate (FITC) and examined by an Accuri C6 flow
cytometer. The fluorescence intensity, which correlates with
the protein level, was determined with the CFlow software as
described previously (13).

Immunocytochemistry—Immunostaining was performed
according to our published method (30). Briefly, cells were fixed
with 4% paraformaldehyde and incubated with the following
antibodies as specified in individual experiments: pSTAT1
(Cell Signaling Technology); N-cadherin (Santa Cruz Biotech-
nology); and NG2, metalloproteinase-14, or type IV collagen
(Millipore). The cells were then incubated with rhodamine- or
fluorescein isothiocyanate (FITC)-labeled secondary antibod-
ies and examined under an LSM 510 laser-scanning confocal
microscope (Zeiss).

siRNA Transfection—siRNA targeting suppressor of cytokine
signaling 1 (SOCS1, from Santa Cruz Biotechnology) was trans-
fected to cells with DharmaFECT reagent as described previ-
ously (13). The cells were then analyzed for knockdown effi-
ciency and for mRNA levels of SOCS1.

Cell Lysate Preparation and Western Blot Analysis—Cells
were lysed with SDS sample buffer that contains 150 mM NaCl,
10 mM NaF, and 0.25 mM NaVO4. Western blot analysis was
carried out as described previously (28).

Statistical Analysis—Data are presented as the mean � S.D.
derived either from three independent experiments or from a
representative experiment performed in triplicate that was per-
formed at least twice with similar results. Statistical analysis
was performed using a two-tailed and paired Student’s t test.

Type I IFN-induced Responses in mESCs
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Differences are considered statistically significant when p �
0.05.

RESULTS

Type I IFNs Protect mESCs from LACV- and CHIKV-induced
Cell Death and Repress Viral Replication—LACV is a negative
sense single-stranded RNA virus that is known to cause lytic
cell death of mammalian cells and is sensitive to IFN�/� (31,
32). We have previously reported that mESCs are deficient in
type I IFN expression and are susceptible to LACV-induced cell
death (13). Using this model, we analyzed the antiviral effects of
IFN�, IFN�, and IFN�, which represent two well studied and a
less characterized type I IFNs.

We have previously shown that LACV at m.o.i. of 1 caused
about 50% cell death of 10T1/2 cells within a 48-h incubation
period, whereas similar cytopathic effects in mESCs were
observed at much higher m.o.i. (5 and 10) (13). Although the
low efficiency of LACV infection and/or replication in mESCs
could be an intrinsic property of these pluripotent cells, it is
noted that mESCs have a rapid proliferation rate (doubling time
in �6 h versus �24 h in 10T1/2 cells), which may significantly
alter the initial m.o.i. during the course of experiments. For this
reason, mESCs were infected with high dose of LACV (m.o.i.
10). As shown in Fig. 1A, IFN� pretreatment protected both
10T1/2 and D3 cells from subsequent LACV-induced cell death
in a dose-dependent manner. LACV-induced death of 10T1/2
cells was significantly attenuated by IFN� at 500 units/ml and
was completely prevented at 5000 units/ml, whereas the pro-
tecting effect of IFN� on D3 cells was marginal at 500 units/ml
but significantly increased at 5000 units/ml of IFN� or IFN�
(Fig. 1A).

The above results suggest that mESCs can mediate the anti-
viral effect of IFN� and IFN�. To obtain further evidence, we
analyzed the effects of IFN� on LACV replication. By determin-
ing the titer of virus released to the medium from LACV-in-
fected cells, our results showed that the viral load was signifi-
cantly reduced in both 10T1/2 and D3 cells that were pretreated
with IFN� (Fig. 1B, graph). The repression of viral replication
by IFN� was further confirmed by the reduced expression of
the M-segment protein (Gc protein) encoded by the LACV
genome (33). As shown in Fig. 1B (flow profiles), the expression
of Gc protein was detected in a large population of D3 cells
exposed to LACV, which was significantly reduced by IFN�.

We have previously shown that LACV-induced IFN� and
IFN� expression precede lytic cell death in 10T1/2 cells (13). As
shown in Fig. 1C, LACV-induced IFN� and IFN� expression in
10T1/2 cells was significantly reduced in the cells pretreated
either with IFN� or IFN�, which is likely due to the reduced
viral replication. Conversely, D3 cells did not express IFN� or

FIGURE 1. IFN� and IFN� protect 10T1/2 cells and mESCs from LACV-
induced cell death. A, 10T1/2 and D3 cells were pretreated with IFN� or IFN�
for 24 h or left untreated and then infected with LACV at m.o.i. of 1 and 10,
respectively. Viable cells were determined at 48 h post-infection. The control

(Con) represents cells without viral infection. B, cells were pretreated with
5000 units/ml IFN� for 24 h followed by infection with LACV for an additional
24 h under the conditions described in A. Graph shows LACV titers in the
culture medium of infected cells as measured by plaque assay. Flow cytom-
etry profile shows the cells that express LACV Gc protein (the populations
above the dashed lines). Con represents cells without viral infection. C, induc-
tion of IFN� and IFN� mRNA by LACV infection (under the conditions
described in B) was determined at 12 h post-infection. The mRNA level in
control is designated as 1. *, p � 0.05, compared with virus-infected cells
without IFN pretreatment.

Type I IFN-induced Responses in mESCs
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IFN� in response to LACV infection as expected, and pretreat-
ment with either IFN� or IFN� had no additional effect. There-
fore, IFN� or IFN� can protect mESCs from the cytopathic
effect of LACV, but they do not alter deficiency of these cells in
expressing type I IFNs. Additional experiments with West Nile
Virus (WNV) also showed that IFN� inhibited replication of
WNV-infected D3 cells, although the effect of IFN� was less
potent than in 10T1/2 cells (data not shown).

To confirm the results obtained from the experiments with
IFN�, we further analyzed the antiviral activity of IFN� to
LACV infection under conditions that differed from those used
for IFN�, where both 10T1/2 cells and mESCs were infected
with LACV at m.o.i. of 5 and were incubated for a longer incu-
bation period (55 h). As shown in Fig. 2, LACV-induced cell
death of 10T1/2 cells was effectively attenuated in the cells that
were pretreated with 20 units/ml IFN�. LACV-induced death
of D3 cells was also attenuated by IFN� in a dose-dependent
manner, but the maximal effect was achieved at a much higher
concentration (500 units/ml). The antiviral effect of IFN� was
further confirmed in DBA mESCs (Fig. 2).

We further tested the antiviral effect of IFN� on CHIKV, a
positive sense single-stranded RNA virus that is particularly
effective in infecting fibroblasts and is sensitive to type I IFNs
(34, 35). Infection of 10T1/2 cells with CHIKV at m.o.i. of 2
caused the death of almost all cells within a 48-h incubation

period, which was attenuated by IFN� pretreatment in a dose-
dependent manner (Fig. 3A, 10T1/2). CHIKV infection caused
death of mESCs; however, the effect was less dramatic, and the
protecting effect of IFN� in these cells is marginal at low con-
centrations but statistically significant above 100 units/ml (Fig.
3A, D3 and DBA). IFN� inhibited CHIKV replication in both
10T1/2 and D3 cells, which correlated with its antiviral activity
(Fig. 3B).

Viral Infection-induced Antiviral Molecules in 10T1/2 Cells
and mESCs and the Effects of IFNs—Induction of IFN-stimu-
lated genes (ISGs) in response to viral infection plays key roles
in host antiviral defense (17). We examined three representa-
tive ISGs as follows: 2�-5�-oligoadenylate synthetase 1 (OAS1),
which activates ribonuclease L (RNase L), thereby hydrolyzing
cellular and viral RNA; PKR, which inhibits protein synthesis

FIGURE 2. IFN� protects 10T1/2 cells and mESCs from LACV-induced cell
death. Cells were pretreated with IFN� for 24 h or left untreated, followed by
LACV infection at m.o.i. of 5. Viable cells were determined at 55 h post-infec-
tion. The control (Con) represents cells without viral infection. *, p � 0.05,
compared with LACV-infected cells without IFN pretreatment.

FIGURE 3. IFN� protects 10T1/2 and mESCs from CHIKV-induced cell
death. A, 10T1/2 cells and mESCs (D3 and DBA) were pretreated with different
concentrations of IFN� for 24 h or left untreated. The cells were then infected
with CHIKV at an m.o.i. of 2. Viable cells were determined at 48 h post-infec-
tion. The control (Con) represents cells without viral infection. B, IFN�
represses CHIKV replication in 10T1/2 and D3 cells. The cells were pretreated
with 500 units/ml IFN� for 24 h followed by infection with CHIKV for an addi-
tional 24 h under the conditions described in A. The CHIKV titers in the culture
medium of infected cells were measured by plaque assay. *, p � 0.05, com-
pared with CHIKV-infected cells without IFN pretreatment.
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In hESCs, the major signaling molecules in the IFN pathway
are expressed at relatively lower levels than in differentiated
cells. However, the failure of hESCs to respond to IFN� seems
to be mainly attributed to the high expression level of SOCS1
(20). In differentiated cells, SOCS1 is expressed at a low basal
level in the resting cells but is rapidly induced by IFNs and acts
as a negative regulator of ISG induction (53). However, hESCs
constitutively express a high level of SOCS1, thereby limiting
IFN� action (20). However, our analysis in mESCs suggests
that, with the exception of Ifnar2, the mRNAs of the major
signaling molecules in the IFN pathway are expressed at com-
parable levels to that of 10T1/2 cells. Unlike hESCs, the mRNA
of Socs1 is expressed at a similar level to 10T1/2 cells. Further-
more, silencing SOCS1 by RNAi did not increase IFN�-induced
ISG expression, indicating that SOCS1 is not a major repressor
that limits IFN response in mESCs.

Although our results provided a molecular basis that explains
the responsiveness of mESCs to type I IFNs, we do not know the
reasons for the low levels of ISG induction in these cells.
Because cellular responses to IFNs are regulated at multiple
levels, one can speculate that the mechanisms required for
maximal ISG expression may not have fully developed yet in
mESCs. It is also possible that the low level ISG induction
in mESCs may be closely related to their defective IFN-express-
ing mechanism. In differentiated cells, exogenous IFN-induced
ISGs can be strongly potentiated by cell-expressed IFNs
through autocrine signaling as a positive feedback mechanism
(17, 19). Therefore, in IFN-primed (or virally infected) 10T1/2
cells, the ISG induction is the collective effects of exogenously
added IFNs and cell expressed IFNs, whereas the ISG induction
in mESCs is solely induced by exogenously added IFN� or IFN�
because these cells are deficient in expressing type I IFNs (13). It
appears that the positive feedback loop in IFN production and
action established in differentiated cells is incomplete in
mESCs due to the lack of the IFN expression system.

In addition to innate immune responses, type I IFNs also
regulate several other important biological processes (40).
Whether and how they affect the stem cell state of ESCs is of
particular interest. Our results suggest that none of the three
types of IFNs tested affects the distinctive features of mESCs,
i.e. rapid cell proliferation rate, colony formation, and pluripo-
tency. However, it should be pointed out that these experi-
ments were performed in the presence of leukemia inhibitory
factor, which represses cell differentiation. The outcome could
be different if the experiments were conducted with differenti-
ating mESCs in the absence of leukemia inhibitory factor.

hESCs and mESCs share fundamental similarities in pluripo-
tency and self-renewal, but they also show species differences in
two important aspects. First, activation of the JAK/STAT3
pathway by leukemia inhibitory factor (which in fact shares the
similar signaling paradigm with IFN) is essential for the main-
tenance of self-renewal and pluripotency in mESCs (54), but it
is not required for hESCs (55, 56). Second, mESCs are charac-
terized by a shortened cell cycle, and hESCs have a time frame
similar to differentiated cells (57–59). The difference in
response to type I IFNs in mESCs (this study) and in hESCs (20)
represents a new distinctive feature between the two species.
However, it is noted that the cellular mechanisms that respond

FIGURE 10. mESC-FB differentiation and response to IFNs. A, morphology
of undifferentiated DBA mESCs (DBA), RA differentiated cells (10dRA), purified
fibroblasts (DBA-FBs), and 10T1/2 cells. The images were acquired from live
cells (DBA and 10dRA) and toluidine blue-stained cells (DBA-FBs and 10T1/2
cells) under a phase contrast microscope. B, cell marker expression in DBA-FBs
and 10T1/2 cells. The cells were immunostained with antibodies against indi-
cated cell markers and detected with rhodamine- (red) or FITC (green)-labeled
secondary antibodies. The images were acquired with an LSM 510 laser-scan-
ning confocal microscope (Zeiss). Scale bar, 20 �m. C, IFN-induced ISG expres-
sion in 10T1/2 cells and mESC-FBs. Cells were treated with IFN� (500 units/ml)
or IFN� (5000 units/ml) for 12 h. The mRNA levels of ISG15 are expressed as
fold-activation where the mRNA level in their respective control cells (without
IFN treatment) is designated as 1 (data not shown). D, IFN� protects mESC-
FBs from CHIKV-induced cell death. DBA-FBs and D3-FBs were pretreated
with the indicated concentrations of IFN� for 24 h or left untreated (0 units/
ml). The cells were then infected with CHIKV at m.o.i. of 1. Viable cells were
determined at 24 h post-infection. Control (Con) represents cells without viral
infection. *, p � 0.05, compared with CHIKV-infected cells without IFN
pretreatment.
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to type I IFNs appear more developed in mESCs than in hESCs,
which could be an advantage for mESCs dealing with viral
infection during embryogenesis. The lack of such mechanism
in hESCs is somehow surprising. This finding suggests that
some differences may exist in the development of innate immu-
nity between two species during embryogenesis.

Because the IFN system is developed in most somatic cells,
the deficiency of this mechanism in ESCs suggests that it is
developmentally acquired during differentiation, as indicated
by the increased responsiveness of in vitro differentiated
mESC-FBs to IFN� and IFN�. However, it is noted that, in
comparison with naturally differentiated 10T1/2 cells, the in
vitro differentiated mESC-FBs have lower IFN response, which
is in line with other studies demonstrating that ESC-derived
endothelial cells and smooth muscle cells cannot effectively
respond to various pathogens as their naturally differentiated
counterparts (3, 4). Therefore, the differentiation process could
in principle promote the development of innate immunity, but
the maturity of in vitro differentiated cells from ESCs could be
affected by many factors, such as differentiation methods and
cell types involved.

The underdeveloped IFN system in ESCs raises an intriguing
question as follows. What is the rationale for ESCs not having
such an effective antiviral mechanism that is well developed in
most differentiated cells? Although we do not yet have a com-
plete understanding of this question, we can speculate from
different perspectives. ESCs normally reside in the womb
where they have limited exposure to pathogens (60). From this
point of view, the lack of innate immunity in ESCs is not entirely
surprising because the innate and adaptive immunity of the
mother may offer necessary protection to ESCs. However, a
different speculation could be made based on the pleiotropic
effects of IFN-based antiviral responses. It is known that mul-
tiple forms of antiviral activities mobilized by the IFN system
can cause adverse effects to the infected cells, such as cell cycle
inhibition or cell death (17, 36). Although these negative effects
on infected cells in a tissue may not cause much damage to a
developed organism, the consequence could be detrimental to a
developing organism if the infected cells are ESCs because they
are the progenitors for all tissues. However, viral infections of
ESCs would be equally disastrous if they lack an effective anti-
viral mechanism as their descendant cells would be infected as
well. The recent discovery of a functional RNA interference
(RNAi) mechanism in mESCs (61) offers a plausible solution to
this dilemma. RNAi has been known as a major antiviral mech-
anism in plants and invertebrates that lack the IFN-based anti-
viral immunity (62), but whether it plays any role in mammals
has been uncertain (63– 65). Using mESCs as a model system,
Maillard et al. (61) recently provided definitive evidence for the
antiviral function of RNAi in mammals. This finding has led to
the conclusion that mammalian cells, especially in ESCs,
retained a functional RNAi pathway. It also provides a rational
explanation for the underdeveloped IFN system in ESCs. By
utilizing virus-specific/short lived siRNA derived from an
invading virus, ESCs can effectively prevent viral infection,
thereby avoiding potentially detrimental consequences associ-
ated with the IFN system. An emerging paradigm is that mam-

mals may have adapted different antiviral strategies at different
stages of development (63).

The studies using ESC models have led to the new insights of
innate immunity in developmental biology and regenerative
medicine. However, further details and many important ques-
tions remain to be investigated. For instance, the attenuated
IFN response in ESCs may help alleviate the potential adverse
effects; nonetheless, the IFN-responding system in mESCs is
not completely inactive. It would be interesting to know
whether mESCs have additional mechanisms to counteract the
potential damage caused by IFN responses. The studies with
ESC models have been and will continue to be instrumental to
address the compelling questions overlapping innate immu-
nity, stem cell biology, and regenerative medicine.
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