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Introduction
Shallow coastal ecosystems such as salt marshes are vital 

habitats for a diversity of species and are especially impor-
tant nurseries for juvenile fish and crustaceans that support 
fisheries (Baker et al. 2020). Coastal shorelines are also high-
ly prized areas (Gedan et al. 2009), with significant areas of 
shorelines being occupied by human infrastructure such as 
houses (Waltham and Connolly 2011). To combat issues such 
as storms, erosion from wave action and increasing rates of sea 
level rise, as well as maintaining navigation channels, hard ar-
moring methods such as seawalls or rip—rap have been widely 
implemented. However, armored shorelines tend to degrade 
the natural ecosystem (Munsch et al. 2017). Living shorelines 
are becoming a popular alternative to hard armoring as they 
are designed to counteract erosion while maintaining the eco-
system services provided by natural coastal seascapes (Bilkovic 
et al. 2016, Smith et al. 2020). 

Although the enhancement of 
fish habitat is one of the most widely 
stated benefits of employing living 
shoreline approaches, evaluating the 
effectiveness of achieving this goal 
is a challenging task (Sheaves et al. 
2015). A number of studies have ex-
amined nekton responses to shore-
line restoration (Smith et al. 2020), 
however, larger studies comparing 
multiple treatment types across mul-
tiple locations remain relatively rare 
and show mixed results (Guthrie et 
al. 2022). Understanding if and how 
restoration projects enhance shore-
line habitat is critical for guiding fu-
ture restoration projects to maximize 

beneficial outcomes (Bilkovic et al. 2016). The aim of this proj-
ect was to evaluate multiple metrics for quantifying the values 
of restored shorelines as fish habitat. To achieve this aim, we 
compared (1) nekton community composition, (2) diets, and 
(3) caloric content of common fish species between living 
shorelines, adjacent controls, and a nearby rip—rap hardened 
shoreline in Mississippi Sound, AL. 

Materials and Methods
Mississippi Sound, AL contains large areas of salt marsh 

ecosystems, multiple large—scale living shoreline restoration 
projects, and rip—rap hardened shorelines, making it an ideal 
location to evaluate fish habitat values of restored shorelines. 
Samples were collected from several living shorelines, adjacent 
marsh control sites, and a rip—rap hardened shoreline (Figure 
1). Northeast Point aux Pins (PaP), Little Bay Peninsula (LB), 
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and Marsh Island (MI) living shoreline sites are protected by 
breakwaters made from concrete wave attenuation devices 
(WADs), while the Coffee Island (CI) living shoreline is pro-
tected by an alternating series of loose shell, Reef Blocks, and 
Reef Balls. Control sites for each of these living shoreline 
projects consisted of adjacent unprotected marsh shorelines. 
A rip—rap protected shoreline along Shell Belt Road (SB) was 
also sampled to represent a typical alternative shoreline protec-
tion approach to living shoreline methods. These sites span a 
gradient of exposure from the prevailing southeasterly winds, 
with PaP, LB, and SB along the northern mainland shore of 
Mississippi Sound being partially protected by Coffee Island, 
Marsh Island, and the marsh complex at Barron Point (Figure 
1). Further details about each of the restoration sites are avail-
able in Moody et al. 2013 and Sharma et al. 2016a.

To represent nekton communities at each site, and to col-
lect nekton for diet and condition analyses, between 4 and 12 
(mean = 6) replicate seine hauls were collected at each site dur-
ing the summer of 2022, using a 17 x 1.8 m seine net with 6 
mm mesh. Replicate locations were positioned at the marsh 
edges behind each living shoreline structure. The number of 
replicates performed at each site was based on the length of 
the shoreline and variety of structures present. Replicate seine 
hauls were located at least 100 m apart to ensure indepen-
dence. Each replicate involved a 10 m haul with each end of 
the seine maintained at 10 m apart using a headrope to pro-
vide standardized 100 m² replicate samples. All samples were 
submerged in an ice slurry immediately after capture according 
to IACUC protocols, and returned to the laboratory for fur-
ther processing. All individuals were identified to species with 
the exception of Palaemonetes shrimp, which were identified to 
genus only. All individuals were measured (mm); total length 
was recorded for all fish species, carapace width was recorded 
for crab species, and mantle length was taken for squid species. 
Both carapace length and total length were taken for all shrimp 
species. 

Pinfish (Lagodon rhomboides) and Silver Perch (Bairdiella chrys-

oura) were the most abundant and widespread 
generalist fish species sampled and were there-
fore selected for diet analysis to give a sense of 
resource availability in the areas (Warburton et 
al. 1998, Barbosa and Taylor 2020). The stom-
ach contents were examined underneath a dis-
secting microscope to identify prey items to the 
lowest taxonomic level possible. The presence of 
each prey type in each stomach was recorded to 
provide the frequency of occurrence of each prey 
type since this metric provides the least biased 
measure of general dietary composition (Baker 
et al. 2014). 

We measured the caloric content of Pinfish 
as a measure of fish condition (e.g., Wedge et 
al. 2015). The empty stomach and other organs 
were added to the rest of the individual fish and 
dried to a constant weight. The stomach con-
tents and intestines were not included because 

food contents could bias the calorimetry data. Each dried fish 
was then ground to a homogenous powder, sieved to remove 
scales which do not homogenize well, and further ground to 
fine powder for analysis (LaBon 2021). The resulting homoge-
neous powder was pelletized into 0.1 g units for analysis in a 
Parr 6772 semi—micro bomb calorimeter. The bomb calorim-
eter was standardized with a 0.1 g pellet of benzoic acid, which 
has a known calories/gram value. Results from each sample 
were returned as calories/gram of the dry weight, and reported 
here as mean ± 1 se. 

To compare nekton abundances and species richness be-
tween sites and treatment types, 2—way analyses of variance 
(2—way ANOVAs) with interaction terms were conducted. 
Weighted means and Type I sum of squares were used to ac-
count for the unbalanced design. Each seine pull was treated 
as an independent replicate in the analysis. Test assumptions of 
homogeneity of variances between factor levels (Levene’s test), 
and residual normality (Shapiro—Wilks’ test) were verified be-
fore accepting test results. Statistical analyses were conducted 
in the R software for statistical programming version 4.0.5 (R 
Core Team, 2022). 

Results and Discussion
Nekton community composition
A total of 2,346 individuals from 40 taxa were collected 

during replicate seine net sampling (Supplemental Table S1). 
The nekton assemblage was dominated by white shrimp (Lito-
penaeus setiferus), brown shrimp (Farfantepenaeus aztecus), Pin-
fish, grass shrimp (Palaemonidae), Silver Perch, and Hardhead 
Catfish (Ariopsis felis), which are typical of shallow water nekton 
communities of the region (e.g., Scyphers et al. 2015, Sharma 
et al. 2016b). Across the restored and adjacent control sites, 
species richness followed the gradient of exposure, being high-
est at the most protected site, PaP in the northwest, and low-
est at the least protected site, MI in the southeast (Figure 2A). 
Although also located along the partially sheltered mainland 

SC2

Figure 2. Means (± se) of nekton from replicate seine net sampling at restored (LS), control, 
and rip-rap hardened shorelines in Mississippi Sound, AL. A. Species richness. B. Abundance 
(catch per unit effort, CPUE). Site codes: CI—Coffee Island; LB—Little Bay; MI—Marsh Island; 
PaP—Point aux Pins; SB—Shell Belt Road;  C—control sites; T—restored sites.
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coastline, the riprap shoreline of SB had the lowest species 
richness and abundance of any site (Figure 2A, B; F2,5 = 5.067, 
p < 0.05). Like species richness, nekton abundance varied ac-
cording to treatment type (F2,5 = 22.026, p = 0.0108) and was 
highest at PaP (Tukey pairwise test, p < 0.05), and intermediate 
at the other restored and control sites (Figure 2B). 

Although based on limited sampling, our community re-
sults were largely as expected. Each of the restoration sites stud-
ied was designed to protect the eroding shorelines of natural 
salt marsh areas, and the nekton assemblage sampled is typical 
of shallow nekton communities in the region (Scyphers et al. 
2015). The gradient of species richness from the northwest to 
southeastern sites (Figure 2A) probably reflects the gradient of 
wave exposure. While shallow coastal waters in general provide 
nursery habitat for a diversity of species (Beck et al. 2001), the 
most physically sheltered waters seem to be particularly impor-
tant (Blaber and Blaber 1980). The PaP restored site also has 
the greatest diversity of habitat types, with the concrete WADs, 
constructed loose—shell oyster reefs, seagrass, unvegetated sedi-
ment, marsh edge, and tidal marsh creeks, so it is unsurprising 
to see the highest abundance and diversity of nekton at this 
site. 

Our findings clearly suggest that the natural shorelines and 
those restored using living shoreline approaches are more valu-
able fish habitat than the rip—rap hardened shoreline sampled. 
This is consistent with previous findings that hardened shores 
have lower habitat values (Munsch et al. 2017). Among the 
various shoreline hardening techniques, rip—rap appears to 
provide the highest quality habitat, with the meta—analysis of 
Gittman et al. (2018) finding no difference in biodiversity and 
abundance of nekton between rip—rap and natural shorelines. 
However, high heterogeneity in their results show effects can 
be site—dependent and vary considerably, probably due to sea-
scape—level effects and influences of factors other than habitat 
type (Bradley et al. 2020; Nagelkerken et al. 2015). Therefore, 
while rip—rap may provide the highest habitat quality among 
hardening types, our findings suggested the rip—rap shoreline 

we sampled was poorer in habitat quality than our natural and 
restored sites. 

Patterns between the restored and control sites were more 
subtle, with similar species richness and abundance between 
restored and controls. Similarly, Scyphers et al. (2011) used 
seine nets at nearby restored sites and found no difference in 
demersal fish abundances between restored and adjacent con-
trols, although they did find decapod crustaceans were more 
abundant near the breakwater structures at their sites. This 
general lack of differences between treatment types could be 
interpreted in various ways. The similarity to adjacent controls 
could indicate success in maintaining the habitat values of the 
shoreline (e.g., Guthrie et al. 2022). Alternatively, if the goal 
of the restoration was to improve the habitat values of actively 
eroding shorelines, then a lack of difference could indicate 
limited success in achieving this goal. The control sites were 
mostly directly adjacent to, and contiguous with, the shorelines 
protected by breakwater structures, and a lack of difference in 
community metrics could simply indicate that the same nek-
ton populations occupy the restored and adjacent control sites. 
The preliminary findings from the limited sampling in the 
current study cannot distinguish between these possibilities. 
However, high spatial and temporal variability is characteris-
tic of coastal nekton communities (Sheaves et al. 2012), and 
even substantially higher replication may still be insufficient 
to detect subtle effects of shoreline restoration efforts on fish 
habitat values (Guthrie et al. 2022).

Diet and Condition
Given the inherently variable nature of coastal nekton com-

munities, we collected preliminary data on other potential 
metrics of habitat quality, specifically, diet and condition. The 
stomach contents of 105 Pinfish and 84 Silver Perch sampled 
from CI and PaP restored and control sites were examined. 
A greater diversity of prey types was found in the stomachs of 
both species at PaP than at CI, and in both sites, more prey 
types occurred in the stomachs of fish from the restored shore-
lines than the adjacent controls (Figure 3). Stomach content 

Figure 3. Diets of Pinfish (La-
godon rhomboides) and Silver 
Perch (Bairdiella chrysoura) 
from Coffee Island (CI) and 
Point aux Pins (PaP) Control 
(C) and Restored (T) sites in 
Mississippi Sound, AL. Diets 
expressed as frequency of oc-
currence of each prey type, 
defined as the proportion of 
stomachs containing each prey 
type, where 1 indicates all stom-
achs. Values above 1 arise from 
individual stomachs containing 
multiple prey types. Sample size 
(number of stomachs with food) 
are shown in parenthesis above 
each bar.
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sample sizes were very limited, and caution is needed interpret-
ing these findings, particularly since higher prey diversity cor-
responds to higher sample sizes from those sites. However, the 
preliminary findings may reflect the greater diversity of habi-
tats and substrates at PaP than CI, and at the restored sites with 
breakwaters compared to the control sites. The breakwater 
structures themselves provide hard substrate that is generally 
lacking from natural shorelines, which may provide additional 
prey resources. For example, both Pinfish and Silver Perch at 
PaP living shoreline had algae in their stomachs, which was 
absent in the stomachs from PaP control. Algae has been ob-
served growing on the WADs at this site, and this may repre-
sent an additional prey resource not readily available at control 
sites. As with the other metrics examined, preliminary calorim-
etry data suggest that Pinfish from the PaP living shoreline are 
in better condition (mean ± 1 se; 4,709 ± 99.8 c/g dw, n = 24) 
than those from the PaP control (4,249 ± 138 c/g dw, n = 3), CI 
control (4,429 ± 80.8, n = 3), and CI living shoreline (4,222 ± 
94.7, n = 2). Caloric content has proven to be a useful metric of 

habitat quality for Gulf Killifish (Fundulus grandis) in tributaries 
of the nearby Perdido Bay system, with fish from creeks with 
more natural catchments having significantly higher caloric 
content than those from catchments with more urban develop-
ment (Wedge et al. 2015).

Ongoing research at these and other Alabama living shore-
line sites will more comprehensively address the utility of diet 
and condition, along with growth, as alternate metrics of habi-
tat quality and restoration success. Although the enhancement 
of fish habitat quality is a major goal of many living shoreline 
projects, it is challenging and expensive to identify the specif-
ic benefits gained due to the highly variable nature of these 
communities. Alternate metrics such as growth and condition, 
founded on differences in access to prey resources, may provide 
a more cost—effective and sensitive evaluation of the success of 
living shoreline projects. Better understanding of the relative 
success of individual projects can help to refine future project 
designs and maximize the benefits of restoration investments.
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