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FIGURE 4 | Congenital ZIKV infection causes a thinner cortical layer 1, dysregulated neuronal migration and astrogliosis. Brain sections of pups from ZIKV (104 PFU,
i.p.) or mock-infected dams on E8.5 were analyzed at various time points post-birth. (A) Representative images of cortical layers (L1-6) of D19 p.b. coronal brain
sections stained with DAPI. (B) Layer 1 (L1) thickness measurements per 100× magnification field were quantified by using ImageJ software (n = 3).
(C) Representative images of brains (D40 p.b.) stained with NeuN showing cortical layers 1–6 (L1-6, 400× magnification). (D) Quantification of NeuN+ cells in the
coronal cortical sections per 400× magnification field at D40 p.b. (n = 3). (E) Anatomical images of (i) hippocampus at D19 p.b. (80× magnification); (ii) dentate
gyrus at D40 p.b. (1000× magnification); (iii) NeuN+ dentate gyrus and hilar region of the hippocampus (400× magnification); and (iv) TUNEL labeled dentate gyrus
and hilar region of the hippocampus (400× magnification, scale bar = 20 µm). (F) GFAP immunoreactivity (brown) and hematoxylin (purple) staining of midsagittal
sections (D12, D19, and D60 p.b.) of the hippocampus CA1 labeled neurons (i, left panel); and the cerebellum (ii, right panel). DG, dentate gyrus; SGZ, subgranular
zone; ML, molecular layer; PCL, Purkinje cell layer; GL, granule cell layer; WM, white matter. Images represent three biological samples from each group. The L1
thickness and the number of the NeuN+ cells were compared using a Mann–Whitney U test (∗denotes p < 0.05; center values are means and error bars represent
s.e.m.).
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FIGURE 5 | Zika virus down-regulates the expression of neural development- and microcephaly- related genes in Neuro-2a cells, ZIKV-pup brain tissue, and
embryoid bodies. (A) Expression profile of neural development- and microcephaly- related genes in ZIKV-infected Neuro-2a cells by mRNA sequencing. (B) qPCR
measurement of the expression of neuronal- and microcephaly-related genes in fetal brains on E10.5 (n = 12/group), and in pup brains on D0, D19, and D40 p.b.
(n = 7–13/group). (C) qPCR analysis of the expression of Sox1 and Cenpf in Neuro-2a cells infected with ZIKV and WNV, (MOI = 1) for 24 h. (D) Flow cytometric
analysis of SOX1 and CENPF expression in Neuro-2a cells infected with ZIKV (MOI = 1) for 48 h. MFI, mean fluorescence intensity. (E) Expression of neural
development- and microcephaly- related genes in embryoid bodies (EB) (6–8 days old) infected with ZIKV (104 PFU). qPCR analyses are represented as relative fold
change (RFC) and are normalized to cellular β-actin, with a definition of mock control as 1. Data were compared using a two-tailed, Student’s t-test (∗denotes
p < 0.05; error bars represents s.e.m.). qPCR and flow cytometry experiments were repeated twice.

cannot exclude the possibility that in utero inflammation may
also contribute to the developmental deficits of ZIKV-pups,
our results are consistent with other congenital viral infections,
such as CMV and rubella, which can both cause postnatal

manifestations in human infants (Sever et al., 1985; Fowler et al.,
1992), suggesting ZIKV infection during pregnancy could also
lead to postnatal developmental deficits that may due to direct
or indirect damages of ZIKV infection in neural progenitor cells.
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In conclusion, our results showed that even a transient, mild
congenital ZIKV infection in immunocompetent mice could lead
to postnatal neurobehavioral deficits, suggesting it is necessary
to closely monitor both physical and intellectual development
in children whose mothers were exposed to ZIKV infection
during pregnancy. In addition, our study also provides a valuable
animal model to mimic human congenital ZIKV-infection caused
postnatal developmental deficits.

MATERIALS AND METHODS

Ethics Statement and Biosafety
All animal care and experiments were conducted according to
the Guide for the Care and Use of Laboratory Animals approved
by The University of Southern Mississippi (USM) under the
IACUC protocol # 16031002. All in vitro experiments and
animal studies involving live ZIKV and WNV were performed
by certified personnel in biosafety level 2 and 3 laboratories
following standard biosafety protocols approved by the USM
Institutional Biosafety Committees.

Viruses, Animals, and Cells
Zika virus (strain PRVABC59) was obtained from B. Johnson
(CDC Arbovirus Branch, Fort Collins, CO, United States) and
WNV isolate (CT2741), kindly provided by John F. Anderson,
were propagated in Vero cells (ATCC CCL-81). Viral stocks
were titered in Vero cells by a plaque assay, as previously
described (Paul et al., 2014). C57BL/6J mice were purchased from
the Jackson Laboratory (Bar Harbor, ME, United States) and
9–10 week-old mice were paired for copulation. When vaginal
plugs appeared (embryonic day, E0.5) pairs were separated.
At E8.5, dams were inoculated i.p. with ZIKV (104 PFU),
or phosphate buffered saline (PBS) as mock control. Murine
neuroblast cells (Neuro-2a, ATCC CCL-131) were cultured in
DMEM supplemented with 10% FBS and 1% Pen/Strep at 37◦C
with 5% CO2. Mouse ESCs (D3 cell line, ATCC) were maintained
in mouse ESC medium. ESC differentiation through embryoid
body (EB) formation was performed as previously described
(Guo et al., 2007).

Quantitative PCR (qPCR) and
Plaque-Forming Unit (PFU) Assay
Total RNA was extracted from tissues or cultured cells by using
TRIreagent (Molecular Research Center, Inc.) and converted to
cDNA using iSCRIPT cDNA synthesis kit (Bio-Rad). QPCR
assays were performed using iTAQ polymerase supermix for
probe-based assays (Bio-Rad) or iQ SYBR Green Supermix (Bio-
Rad). Viral RNA of ZIKV envelope (E) (Acharya et al., 2016)
was measured by qPCR and infectious viruses were measured by
plaque assay as we previously described (Acharya et al., 2015).
Threshold cycle values that were ≥39 cycles were excluded from
the qPCR results, and 1 PFU per volume of sample was set as
the limit of viral detection for the plaque assays. WNV-envelope
(E) gene primers and probes sequences were adapted according
to a previous publication (Town et al., 2009). All additional gene
primer sequences are described in Supplementary Table S1.

Neurobehavioral Tests
Dowel Test
Balance and motor coordination was measured using a 24-inch
long dowel (0.9 cm in diameter), attached to a bar cross apparatus
and the time mice remained on the dowel was recorded for up to
a maximum of 2 min, the longer time that mice remained on the
dowel indicated balance/motor coordination disparity (Vig et al.,
2012).

Wire Suspension Test
As previously described (Santos et al., 2007), mice were hung onto
a 3-mm wire with their forelimbs for 1 min and the time they took
to fall (seconds) was recorded.

Bar Cross Test
Mice were placed on one arm of a U-shaped bar cross apparatus
(30 cm high and 18 mm wide) and allowed to move for 5 min.
Locomotion time (duration of mobile activity) and passivity
time (duration of total inactivity) was recorded (Vig et al.,
2012).

T-Maze Test
Mice were habituated (5 min/mouse) in a T-maze with
dimensions previously described (Deacon and Rawlins, 2006),
for 5 days prior to testing. A side preference was noted during
habituation days and on the test day; a mouse was placed in the
starting arm, with the preferred arm closed and the other arm
open (alternating arm test), with both arms containing a reward
(Kellog’s R© Fruitloops R©). Once the mouse explored the maze by
finding the reward and returning to the start arm, the closed arm
was opened and the timer was started. The time it took (seconds)
and the number or errors (entering incorrect arm) was recorded.

All the neurobehavioral tests were blinded to both the
investigator performing the tests and another investigator
collecting data.

Magnetic Resonance Imaging
Whole heads were collected on D19 p.b., fixed in 4% PFA for
96 h, and transferred to PBS until ready for MRI imaging. All
MRI images were acquired with a GE Signa Excite HDx MR
machine with a 3.0 T magnet. The skulls were individually
placed into the Mayo Clinic BC-10 Wrist Coil (Part #13G5614)
and imaged using a Transverse T2 fast spin echo sequence.
Sequence parameters included an 85 ms echo time (TE),
3350 ms repetition time (TR), 4 cm field of view, 12 echo train
length (ETC), and 3 averages, with 1.0 mm slice thickness and
0.0 mm slice spacing. Image segmentation, 3D reconstruction,
and dimensional quantifications were performed using Scan IP
(Simpleware, United Kingdom).

Immunohistochemistry and
Immunofluorescence
Midsagittal and coronal brain sections (6 µm) at D12,
D19, D40, and D60 p.b were probed with NeuN and
GFAP specific antibodies, followed by labeling with Alexa
488 secondary antibody (Invitrogen) and DAPI and TUNEL
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for immunofluorescence, or biotinylated secondary antibody,
developed with ExtrAvidin peroxidase immunostaining kit
(Sigma), for immunohistochemistry. Non-specific Toluidine blue
and hematoxylin staining was also performed. The slides were
mounted with Aqua-mount (Fisher Scientific) and observed
using an Epi-fluorescence (Olympus BX60) or bright-field
microscope, and images were captured using a digital camera
(DP70).

Flow Cytometry
Neuro-2a cells infected with ZIKV (MOI = 1) for 48 h were
fixed in 4% PFA, probed with rabbit anti-CENPF or anti-
SOX-1 antibodies (Abcam), followed by FITC-conjugated goat-
anti-rabbit-IgG antibody (Santa Cruz). Cells were then washed
twice and analyzed with a BD LSRFortessa flow cytometer (BD
Biosciences) and data were acquired using the BD FACSDIVATM

version 7.0 (BD Biosciences). Cells probed with secondary IgG
antibodies were used as fluorescence gating controls.

RNA-Sequencing (RNA-seq)
Neuro-2a cells were infected with ZIKV (MOI = 0.5) for 48 h
and total RNA was extracted and purified using TRI Reagent
and RNeasy Mini kit (Qiagen). RNA-seq was performed at the
Molecular and Genomics Core Facility of the University of
Mississippi Medical Center.

Statistical Analyses
Data were compared with a two-tailed Student’s t-test or a Mann-
Whitney U test GraphPad Prism software (version 6.0), with
p < 0.05 considered statistically significant.
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